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Abstract

Belief merging is concerned with combining multiple streams of information into a
single, consistent stream. In the literature this is modelled through a set of formal
postulates, usually given in propositional logic. A representation result is then used
to show that the postulates constrain the merging operation in intended ways.

In this work we study merging in the context of Horn propositional logic. The
main challenge hereby is to define a coherent framework such that the knowledge
bases to be merged and the result are restricted to the Horn fragment.

This, as far as we know, has not been attempted before.
By building on existing work of James Delgrande and Pavlos Peppas on revision

in the Horn fragment, we: (i) spell out why the standard results of merging break
down in the Horn fragment, (ii) put forth an amended framework to account for
this and obtain a representation result, and (iii) present a series of Horn merging
operators.
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Kurzfassung

Das ProblemdesBeliefMergings besteht darin Information aus verschiedenenQuel-
len konsistent zu kombinieren. Eine solche Operation soll diversen intuitven Postu-
laten genügen, und darüber hinaus soll die Gesamtheit solcher Operatoren durch
sogenannte Repräsenationstheoreme charakterisierbar sein.

Während für den Fall der klassischen Aussagenlogik entsprechende Resultate
bereits existieren, sind diese Fragen für die Einschränkung auf Horn Formeln noch
ungeklärt. Eine besondere Herausforderung stellt dabei das Erfüllen der Postulate
unter gleichzeitiger Berücksichtigung der Tatsache, dass das Ergebnis desMergings
in Horn repräsentierbar bleiben muss, dar. Aufbauend auf Arbeiten von James Del-
grande and Pavlos Peppas im Bereich der Revision im Hornfragment, beschäftigen
wir uns in dieser Arbeit mit folgenden Aspekten:

(i) illustrieren wir warum die existierenden Resultate für Merging nicht
direkt auf den Hornfall anwendbar sind,
(ii) stellen wir ein erweitertes Framework für Merging vor, das diese Probleme

umgeht und ein allgemeines Repräsentationstheorem erlaubt,
(iii) führen wir konkrete Operatoren ein, die alle Postulate auch im Hornfall

erfüllen.
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CHAPTER 1
Introduction

It is the prerogative of any intelligent agent that its beliefs and goals are not static,
but that they change in light of new information. This may involve adding or remov-
ing items from an existing store of information, updating existing knowledge about
the world, or combining information from different sources. When inconsistencies
arise, the expectation is that the system will not break down, but that it will extract
some useful core out of the information it possesses.

In the past few decades a distinct line of research has developed in this area,
inspired by the work of Alchourron, Gärdenfors and Makinson [1, 2, 25, 27] and
Katsuno and Mendelzon [30, 31] in belief change, and Konieczny and Pino Pérez
[34, 35] in belief merging. Though they start from different premises, the two fields
are closely related. Belief change studies ways in which a single knowledge base,
typically represented by a set K of logical formulas, is modified in response to some
input formula µ. Prominent belief change operations are contraction, expansion and
revision, which we discuss in Chapter 3. In merging, one starts from a multi-set of
knowledge bases (called a profile) and tries to combine them into a single, consistent
knowledge base, usually under some constraint.

In both belief change and merging, focus falls on three main questions. First,
how should knowledge be structured such that changes to one knowledge base (or
many) can occur in a principled way? Quite consistently, the idea of assuming that
items of knowledge are ranked with respect to how important or preferred they are
has proven fruitful. Second, what should the principles that govern change be? This
question is usually met by appealing to certain standards of rationality [25] which
any change operation of a particular type should obey. One then puts forth a set of
postulates in a logical language, in the hope that they accurately model the intended
operation. A measure of success is proving a representation result, showing that
the class of change operators defined by the postulates corresponds, at some level,
to an intuitively appealing semantic structure. Third, can we come up with specific
change operators, and perhaps devise some general methods for finding them? Many
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types of operators have been proposed—in this work we will focus mainly on model-
based operators. This is the stage at which practical uses could emerge.

The existing framework for belief change and merging is abstract enough to lend
itself to many applications: knowledge bases can represent beliefs and goals of an
agent, but they can also represent entries in a database or ground logic programs;
input formulas can stand for new knowledge—and hence be subject to acquiescence
or rejection—or they could be constraints that have to be satisfied at all times. How-
ever, before they can truly find their way into applications, reasoning procedures
that use merging or change need to bridge the gap of tractability: hence, there is an
incentive to study these notions in restricted contexts affording more efficient deci-
sion algorithms, such as the Horn fragment of propositional logic. Though revision
and merging in themselves are computationally expensive, even in the propositional
case [12, 22, 33], by working in the Horn fragment we keep normal reasoning pro-
cedures (such as satisfiability) efficient.

Fundamental work in the area of Horn revision has already been done by James
Delgrande and Pavlos Peppas [16, 17]. They point out that standard model-based
revision operators, when restricted to Horn knowledge bases and inputs, may pro-
duce results that are not in the Horn fragment; furthermore, natural attempts to
fix these operators lead to postulates not being satisfied.

On the other hand, ‘pure’ Horn revision operators obeying the standard postu-
lates may have a different semantic behaviour from their classical counterparts.
This shows that the matter is not conceptually trivial: keeping to the standard,
model-based revision procedures one risks losing some of the standard postulates,
while keeping to the standard postulates one loses the intuitive semantic charac-
terization. Delgrande and Peppas find a middle ground between these options that
succeeds in not sacrificing any desired properties.

In this work, we try to extend the ideas of Delgrande and Peppas [17] for Horn
revision to merging. Our purpose is to obtain a coherent theoretical framework for
merging in the Horn fragment. This involves charting out the difficulties that come
with restricting classical merging operators to the Horn fragment, and supplement-
ing the classical framework such that in the end we get familiar behaviour from our
operators. It also requires finding specific operators, since the standard ones cannot
be relied upon to stay within the Horn fragment.

We find that, besides inheriting problems from revision, Horn merging adds to
this a series of problems of its own: the correspondence between the postulates
and the semantic structure they are meant to characterize breaks down at multiple
points, and notably with respect to the postulates specific to merging.

Therefore, we are forced to go beyond the solutions suggested by the work of
Delgrande and Peppas [17]. This, as far as we know, has not yet been attempted.
We ask ourselves how the standardmerging postulates should be strengthened, such
that our operators end up exhibiting the intended semantic behaviour. We look at
various options, and we propose an alternative formulation of the postulates, which
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we prove does the job.
We then look at ways of constructing specific Horn merging operators. Here the

challenge is to make sure that we always get a result that stays within the Horn
fragment. By pulling together several threads, we find a series of general properties
that in combination are sufficient to guarantee this.

To summarize, our main contributions are as follows:

• we spell out the main reasons why restricting merging operators to the Horn
fragment while preserving the standard postulates does not reproduce familiar
representation results;

• besides adapting Delgrande and Peppas’ framework [17], we amend the stan-
dard postulates and get a representation result;

• we present a series of model-based Horn merging operators.

The work is organized as follows. In Chapter 2 we introduce the main notions
used later on: the vocabulary of belief change andmerging, as well as the framework
of propositional logic and its Horn fragment. Chapter 3 is an introduction to the
theories of belief change and merging. Though self contained, it is not exhaustive:
in the belief change part we focus mainly on revision, and the presentation is usually
centred around model-based operators. Chapter 4 contains a discussion of Horn
revision, and it mainly presents the ideas of Delgrande and Peppas in [17]. We use
their work as a template for the work on Horn merging.

Chapters 5 and onward present our novel results and insights. In Chapter 5 we
present difficulties related to restricting merging operators to the Horn fragment.
They show why the representation results that hold in the case of full propositional
logic become problematic in the Horn case. In Chapter 6 we discuss ways of address-
ing the difficulties, and proposals for amending the merging framework in order to
capture familiar structures. In Chapter 7 we present some specific Horn merging
operators and discuss general properties that are suitable for defining them. We
conclude with Chapter 8, where we touch on related work and present our conclu-
sions and ideas for future study.
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CHAPTER 2
General notions and

preliminaries

Throughout this work we will always assume that we are working within proposi-
tional logic (or its Horn fragment of it) with a finite alphabet. For ease of reference,
we collect here the notation used later on.

2.1 Propositional logic
Wewill take U = {p1, p2, . . . , pn} to be the alphabet, with each pi being a propositional
atom. In particular examples we will usually mention explicitly the value of n.

A propositional formula ϕ is an expression built with atoms from U , logical con-
stants > and ⊥, and the usual connectives (¬,∧,∨,→). More formally:

ϕ := p1 | · · · | pn | > | ⊥ | ¬ϕ1 | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 → ϕ2.

We will denote by L the set of all propositional formulas. A literal is either an atom
or its negation. As is the custom, ϕ1 ↔ ϕ2 is shorthand for (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1).

An interpretation is a function assigning a truth-value (either True or False) to
every atom in U . The logical constants > and ⊥ are always assigned True and False,
respectively. Using the well-known definitions for connectives, any interpretation
can be extended to cover the full set of propositional formulas L. This means that
there is a compositional semantics for L whereby every propositional formula ϕ ∈ L
is assigned a unique truth-value, depending on the truth-values of ϕ’s components
and the connectives used.

We denote by W the set of all interpretations over the alphabet U . Using 1 to
represent True and 0 to represent False we will write interpretations as bit-vectors
x1x2 . . . xn, where xi ∈ {0, 1} and xi = 1 if and only if pi is true. Thus, 101010 . . .
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stands for the interpretation where p1 is true, p2 is false and so on. We will refer to
the xi’s as bits.

If w is an interpretation, we will write |w| for the number of bits in w equal to 1;
for example, |110| = 2. Clearly, |w| tracks the number of atoms true in this interpre-
tation. At some point we will want to quantify the measure of difference between
interpretations, hence we offer a reminder of some well known distances between
interpretations. TheHamming distance between two interpretations w1 and w2, de-
fined as the number of bits on which w1 and w2 differ, is written as dH(w1, w2). The
drastic distance between two interpretations w1 and w2 is written dD(w1, w2), and
defined as:

dD(w1, w2) =

{
0, if w1 = w2,

1, otherwise .
These are well known distance measures and we assume familiarity with their prop-
erties. In particular, if d ∈ {dD, dH}, we take it as known that the following proper-
ties hold:

d(w1, w2) = d(w2, w1), (symmetry)

d(w1, w2) = 0 iff w1 = w2. (minimality)

An interpretation w is a model for a formula ϕ, written w |= ϕ, if and only if
w makes ϕ true according to the usual semantics. A formula ϕ is logically valid,
written |= ϕ, if and only if any interpretation is a model for it. For formulas ϕ1 and
ϕ2, ϕ1 logically implies ϕ2 if and only if every model of ϕ1 is a model for ϕ2. A formula
ϕ is consistent if and only if it has at least a model.

For a formula ϕ ∈ L, [ϕ] denotes the set of its models. More formally:
[ϕ] := {w ∈ W | w |= ϕ}.

Notice that ϕ is consistent if and only if [ϕ] 6= ∅. A formula ϕ is complete if and only
if |[ϕ]| = 1. We denote by Lc the set of complete formulas.

IfM is a set of interpretations, we denote by ϕM a propositional formula such
that [ϕM] =M. In particular, ifM = {w1, w2}, we write ϕw1,w2 instead of ϕ{w1,w2}.

It is easy to see that ϕM always exists. Any singleton {w} can be captured as a
conjunction of the literals it makes true. For largerM, the following example gives
the general idea: takeM = {10, 11} in the two letter alphabet. We can compute ϕM
as follows:

ϕM = (p1 ∧ ¬p2) ∨ (p1 ∧ p2).

IfM = ∅, we can take ϕM = p1 ∧ ¬p1. Obviously, for a givenM there is no unique
ϕM.

Any syntactic operation on formulas has a counterpart on the model side. For
instance:

[¬ϕ] =W\[ϕ],

[ϕ1 ∧ ϕ2] = [ϕ1] ∩ [ϕ2],

[ϕ1 ∨ ϕ2] = [ϕ1] ∪ [ϕ2].
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All these equalities can be proven using the well-known definition of the logical con-
nectives.

Logical implication can also be written as a relation on sets of models:

ϕ1 |= ϕ2 iff [ϕ1] ⊆ [ϕ2].

Though it will play only a passing role, we assume there is a consequence relation
over L, written `, that satisfies the following properties:

(a) if |= ϕ, then ` ϕ; (superclassicality)

(b) if ϕ ` ψ and ` ϕ, then ` ψ; (modus ponens)

(c) 0 L; (consistency)

(d) {ϕ1, . . . , ϕn} ` ψ iff ` ϕ1 ∧ · · · ∧ ϕn → ψ; (deduction theorem)

(e) ` is compact. (compactness)

For a set of sentences T ⊆ L, Cn(T ) is the set of consequences of T . More formally:

Cn(T ) := {ψ ∈ L | T ` ψ}.

A set of sentences T is a theory if it is closed under the consequence relation `, or
T = Cn(T ).

2.2 Propositional Horn logic
A propositional Horn formula ϕ is an expression over an alphabet Un = {p1, . . . , pn}∪
{⊥}, built using the connectives ∧ and→ in the following way:

ϕ := p1 | · · · | pn | ⊥ | p1 ∧ · · · ∧ pi → pi+1 | p1 ∧ · · · ∧ pi → ⊥ | ϕ1 ∧ ϕ2

We will denote by LH the set of propositional Horn formulas. Quote clearly, every
propositional Horn formulas is also a regular propositional formula, so LH ⊆ L.
Hence we will sometimes refer to LH as the Horn fragment of propositional logic.
We take LcH to be the set of complete propositional Horn formulas.

The semantics for propositional Horn formulas is the same as for propositional
formulas. Overloading some of the set notation, let us say that an interpretation w1

is included in an interpretation w2, written w1 ⊆ w2, if and only if the set of atoms
made true by w1 is included in the set of atoms made true by w2. As an example,
100 ⊆ 101, but 100 * 001. We will say that an interpretation w is the intersection of
w1 and w2 if and only if the set of atoms made true by w is the intersection of the
sets of atoms made true by w1 and w2, respectively. For instance, 000 = 100 ∩ 010.

For reasons that will become apparent soon, we define the closure of a set of in-
terpretationsM under intersection, written Cl∩M, as the smallest set that includes
M and for which it is the case that if w1, w2 ∈ M, then w1 ∩ w2 ∈ M. For instance,
Cl∩{100, 010} = {100, 010, 000}.
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We will say that a setM of interpretations is representable by a propositional
Horn formula if there is ϕ ∈ LH such that [ϕ] =M. This raises the question of when
a set of interpretationsM is representable by a propositional Horn formula, and the
answer turns out to be: whenM is closed under intersection.

Proposition 1. A set of interpretationsM is the set of models of a Horn formula ϕ
if and only ifM = Cl∩(M).

That the set of models of any Horn formula is closed under intersection is a well-
known result, and easy to prove. The converse, that any setM of interpretations
closed under intersection can be represented by a Horn formula, is a subject of re-
search in the area of structure identification, formalized by Rina Dechter and Judea
Pearl in [14]. In this same paper Dechter and Pearl gave a constructive solution
that finds a formula in O(|M|n2) time, where |M| is the size of the set of models
M and n is the size of the alphabet. See [11, 32, 53] for a broader view and further
refinements.

Proposition 1 shows that in the Horn case it does not always make sense to speak
of ϕw1,w2 , since {w1, w2}might not be representable by a Horn formula. Thus, let us
agree that when we are working in the Horn fragment, ϕw1,w2 is defined as:

[ϕw1,w2 ] := Cl∩({w1, w2}).

If the context is clear, we write ϕ1,2 instead of ϕw1,w2 .
More generally, if µ1 and µ2 are Horn formulas, let us call µ1,2 a Horn formula

such that [µ1,2] = Cl∩([µ1] ∪ [µ2]). Since Cl∩([µ1] ∪ [µ2]) is by definition closed under
intersection, µ1,2 always exists.

2.3 Pre-orders and pseudo-preorders
The idea of ranking interpretations will play a prominent role, so we give the formal
background here. A pre-order on a set Z is a binary relation on Z, usually denoted
by ≤, that is reflexive and transitive. We write x ≤ y to mean that (x, y) ∈ ≤. A
pre-order ≤ on Z is total if for any x, y ∈ Z, either x ≤ y or y ≤ x. We write x ≈ y if
x ≤ y and y ≤ x, and x < y if x ≤ y and y � x.

We will be representing pre-orders on the set W as directed graphs, with inter-
pretations as nodes and an edge between w1 and w2 if w1 ≤ w2. The convention will
be that an interpretation is placed lower in a graph if it is strictly lower in the order.
Thus, Figure 2.1 is interpreted as saying that 000 < 010, 000 < 100 and 010 ≈ 100. If
V ⊆ Z, the minimal elements of V with respect to a (partial or total) pre-order ≤ on
Z are:

min≤V = {x ∈ V | for any y ∈ V : if y ≤ x, then x ≤ y}

Dually, the maximal elements of V with respect to ≤ are defined as:

max≤V = {x ∈ V | for any y ∈ V : if x ≤ y, then y ≤ x}
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000

010, 100

Figure 2.1: A pre-order, represented graphically

000

101110

011

111

Figure 2.2: A pseudo-preorder with a cycle between 110, 011, 101

Clearly, min≤V and max≤V are subsets of V . Also, notice that in a total pre-order
≤ on Z, min≤V and max≤V are always non-empty.

A pseudo-preorder, in the sense used here, is a binary relation ≤ on a set Z that
is reflexive but does not need to be transitive. The notion is important only insofar as
we will use pseudo-preorders on interpretations to illustrate how representation re-
sults for revision and merging break down in the Horn case. The examples featured
will usually include some non-transitive cycle: a series of elements w1, . . . , wn ∈ W
such that w1 < · · · < wn < w1. Outside the cycle, the assumption will be that a
pseudo-preorder behaves like a regular pre-order.

We will represent pseudo-preorders as directed graphs in the same way we rep-
resent regular pre-orders, with some added mark-up for non-transitive cycles. Thus,
the example in Figure 2.2 should be interpreted as saying that there is a cycle be-
tween 110, 011 and 101 (i.e., 110 < 011 < 101 < 110), while behaving as a regular
pre-order outside the cycle.

As a note, it still makes sense to talk about the minimal (or maximal) elements
of a set of elements in a pseudo-preorder. What changes is that the set of minimal
(or maximal) elements can now be empty. As a concrete example, for the pseudo-
preorder in Figure 2.2 withM = {110, 011, 101}, we have:

min≤M = max≤M = ∅.
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2.4 Revision and merging
In this section we present the primary notions and vocabulary used in belief change
and belief merging. As it stands, belief change is a broad notion, and one can find
in the literature analyses of several belief change operators: expansion, contrac-
tion, revision and update. Each operator has its origin in an intuition about some
cognitive operation that people (or intelligent agents) do.

Formally, a belief change operator is individuated by postulates that it is sup-
posed to satisfy. In this work we will focus mainly on revision and only briefly men-
tion its relationship to the other operators in Section 3.2.5. The postulates for revi-
sion are presented in Section 3.2.2. Following are the main notions.

A knowledge base is a finite set K = {ϕ1, . . . , ϕn} of propositional formulas. The
set of knowledge bases is K. A Horn knowledge base contains only Horn formulas.
The set of Horn knowledge bases is KH .

An interpretation w is a model of a knowledge base K if and only if w |= ϕ, for
every ϕ ∈ K. We will write [K] to refer to the set of models of K. Two knowledge
bases K1 and K2 are equivalent, written K1 ≡ K2, if and only if [K1] = [K2].

We write
∧
K for the conjunction of all formulas in K.

∧
K reduces a knowledge

base to a single propositional formula, a feature it is useful to have. We will often
identifyK with

∧
K. Clearly, [K] = [

∧
K] so no semantic information is lost in doing

so.

In the framework of merging, a knowledge base (or sometimes simply a base) has
the same meaning as in revision: it is a finite set of propositional formulas. The
difference is that, unlike revision, which only deals with one knowledge base at a
time, merging typically considers multiple knowledge bases.

A profile is a finite multi-set E = {K1, . . . ,Kn} of knowledge bases. We take E to
be the set of profiles. A Horn profile contains only Horn knowledge bases. The set
of Horn profiles is EH .

If E1 and E2 are profiles, E2 t E2 is the multi-set union of E1 and E2. We write
En for E t · · · t E, repeated n times. E1 v E2 stands for multi-set inclusion.

An interpretation w is a model of a profile E if and only if w is a model of K, for
everyK ∈ E. We denote by [E] the set of models of E. We write

∧
E for

∧
K∈E(

∧
K).

This reduces a profile to a single propositional formula. Clearly, [
∧
E] = [E].

E1 and E2 are equivalent, written E1 ≡ E2 if and only if there exists a bijection
f : E1 → E2 such that for any K ∈ E1, K ≡ f(K). Equivalence for profiles, in
this sense, is stronger than logical equivalence: for logical equivalence only models
count, whereas in profile equivalence the way a profile is specifiedmatters as well. If
E1 ≡ E2 then

∧
E1 ≡

∧
E2, but the converse does not hold: for instance, E1 = {K,K}

and E2 = {K} cannot be equivalent as profiles, though they have the same models.
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CHAPTER 3
Knowledge in flux

In this chapter we set up the rudiments of belief revision and merging. We present
some of the historical background, a motivating example for each, and just enough
formal machinery to state the main representation theorems. We also present some
of the standard model-based operators for revision and merging, respectively.

As mentioned in Section 2.4, among all the classes of belief change operators
studied in the literature, we zoom in on revision in the Katsuno and Mendelzon
framework [31], as it has the closest ties to merging. Other formulations of revision
(such as the classical AGM approach), as well as connections to other belief change
operators, are brought up in Section 3.2.4.

3.1 Revision: some history and motivation
In the late ’70s, Carlos Alchourrón and David Makinson were thinking about the
logic of removing an item from a legal code. Derogation, as it was called, proved non-
trivial: merely taking a provision out a code is useless if the provision is implicitly
endorsed by the remaining items—to be thorough, one needs to chase down anything
else that might imply the provision and take that out as well. In doing so one must
show restraint and not remove anything above what is necessary.

Alchourrón and Makinson thought about this in logical terms: laws and obli-
gations could be propositions in some logical language, and a legal code could be a
logical theory A. Agents typically engage in all sorts of legal reasoning, so the logic
should be equipped with a consequence relation, and A should include all its logical
consequences.

What is now needed for the derogation of an item Y from A, Alchourrón and
Makinson argued, is finding a subset of A which does not imply Y and is maximal
with respect to inclusion. Such a subset, which they called a remainder, could then
serve as the new legal code. The challenge comes from the fact that there is usually
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no unique subset of A satisfying these conditions. There could be many remainders,
which—when applied to concrete situations—might lead to different conclusions:

Let us imagine the situation of a judge who is called upon to apply a code
of laws upon which a non-unique derogation has been made. He needs
to reach a verdict on some question before him, but he does not know
which of the various remainders [...] left after rejecting the set Y , he is
free to use. The choice of remainder may make a material difference to
this judgment on the question. Of course, if all the remainders imply a
given verdict, then he has no need to choose between them, and can leave
that problem to the next judge. But in general, this will not be possible.
(Alchourrón and Makinson [1981])

What Alchourrón and Makinson ended up doing in this early paper was to assume
the set A was ordered, at least partially: the reason was that laws are, so to say,
not all equal—some may be more important than others and should not be given up
too easily. Thus, the (partial) order they advocated reflected a preference ranking
on items of a legal code. They then showed that, by ranking elements of A, one can
always order the remainders such that a unique element ends up being the most
preferred: an early representation result, illustrating how a more nuanced view of
a subject can be achieved by endowing it with additional structure. In the long run,
this strategy has paid good dividends.

At around the same time, Peter Gärdenfors was trying to formalize counterfac-
tual statements. The dominant approach of the day used possible worlds in the
strong modal realist reading of David Lewis [40], but Gärdenfors disliked possible
world semantics and tried to avoid it. What he ultimately settled on was an epis-
temic reading of conditionals: rather than say when a conditional like ‘If ϕ then ψ’ is
true, he formulated conditions for when it is ok for an agent to accept it, given some
background knowledge K.

Roughly, his prescription was: first, modify K as little as possible so as to incor-
porate ϕ, while making sure consistency is preserved; then, check to see if ψ holds
in this modified epistemic state. If yes, accept the conditional, if no, do not accept it.

The operation of performing minimal change on an epistemic state to incorpo-
rate new information captured Gärdenfors’ attention, and he began thinking about
how it should work, in general. If the new information did not contradict existing
knowledge, the answer seemed clear—just add it to the current stock of beliefs. But
what to do if the new information contradicted what was already believed? Clearly,
the agent should give up some of its existing beliefs and replace themwith new ones.
But here Gärdenfors confronted the same problem that had beset Alchourrón and
Makinson: there was simply no single way of doing this. So, drawing inspiration
from earlier work by Issac Levi and William Harper in the philosophy of science,
Gärdenfors focused instead on general constraints that any such operation should
satisfy.
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At some point during all this, Gärdenfors found out about Alchourrón andMakin-
son’s work and approached them with the idea of a joint paper. Derogation eventu-
ally became contraction, incorporating information with minimal change became
revision and the two operations were bridged by the Harper and Levi identities.
The result of their efforts was [1], a paper that defined the AGM approach to belief
change and is now one of the main references in the field.1

Thirty years later, the ideas in the original AGM paper have been expanded and
reworked in a multitude of ways: belief revision has been put forward as a compo-
nent in an automatic, AI-inspired librarian ([9, 41]), as a tool for information re-
trieval ([38, 39]), or as a framework of modelling changes in consumer preferences
for marketing applications ([52]). More to the point, the main framework has been
adapted to fit multiple streams of information, with the purpose of combining them
into a single, consistent knowledge base—the problem of merging, on which more
later.

In all cases, the utility of revision stems from addressing the problem of how an
agent’s epistemic state should change in light of new information. This new infor-
mation might be anything from novel observations about the world to constraints
about what is allowed or prohibited. The usefulness of having a formal tool to rep-
resent epistemic states and transitions between them can be hardly exaggerated: it
would be an essential component of any intelligent agent. It is enough to think of
all the ways humans suffer changes of mind in day-to-day contexts: we modify our
plans when certain options become unavailable, and change our expectations when
our predictions fail. It is an operation so basic that, after being pointed out, one
starts seeing it everywhere.

To get a better feeling of the type of operation revision wants to model, consider
the following motivating example.

Example 1. Anna has a day off and she has planned out her morning as follows: she
will work on a presentation (presentation), do the laundry (laundry) and go to the
market for groceries (market). She has assigned no particular chronological order
to the tasks, but she does intend to do all of them. However, when she checks her
inbox, Anna finds an e-mail from her boss, calling her to work. She realizes this
gives her time for at most one of the planned activities. Which of them will she do?

The aim of belief revision is not to tell Annawhat to dowith her time, but tomodel
a decision process that results in her choosing a course of action which complies with
the existing constraint. To this end, we can assume Anna prefers certain outcomes
to others. In fact, we can assume that, as a good rational agent, Anna has a total
preference relation over all possible outcomes. Such a relation is pictured in Figure
3.1-(a) as an order on bit-vectors.

To clarify what the graph in Figure 3.1 depicts: each bit-vector is a truth-assignment
over the alphabet U = {presentation, laundry, market}. Thus, 111 means that each

1The ideas and motivations leading up to the AGM paper are recounted by Gärdenfors and Makin-
son in [26, 42]. For an overview of Gärdenfors’ analysis of conditionals, see, for instance, Chapter 8 of
[25].
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Figure 3.1: Anna’s preference relation

of the propositional atoms is true; 100 means that only presentation is true. An
atom being true means that Anna will do the corresponding activity.

Anna’s initial plan is that she will do all of the three activities, which we can look
at in two ways. On the knowledge level, Anna’s goals are encoded by the knowledge
base K, where:

K = {presentation, laundry, market}.

On the semantic side, Anna’s most preferred outcome is represented by the models
of K:

[K] = {111}.

Figure 3.1-(a) shows Anna’s range of options when she can choose among all possible
outcomes, ordered according to her preferences. Clearly, when she can choose freely,
Anna will do all of the three activities, so 111 is the smallest element in the ranking.
The rest of the outcomes are ordered according to how much they are preferred, by
the rule that lower elements are more preferred. Thus, Anna prefers 111 to each of
110 and 101, but she is indifferent about 110 and 101.

After reading the e-mail from her boss, Anna’s range of options is restricted to
outcomes where at most one of the propositional atoms is true. This corresponds to
the models of the constraint µ, and is depicted in Figure 3.1-(b).

[µ] = {000, 100, 010, 001}

It seems rational that in this new situation, Annawill choose from among themodels
of µ the ones that are most preferred, in this case the outcome 100. Anna will work
on her presentation.
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Earlier in Example 1 we performed a sanity check by seeing if Anna’s expressed
intentions describe themost preferred outcomes in her preference ranking. It stands
to reason that this should always be the case. Then, when there was a constraint,
we picked the outcome that was most preferred among those that complied with the
constraint. This easily translates into a general strategy for revision of a knowledge
base K with a constraint µ: if there is an order on possible outcomes such that the
models of K are the minimal elements in this order, then pick the models of µ that
are minimal according to this order.

It turns out that this strategy is sound, in the sense that it satisfies a set of
postulates that are reasonably taken to constrain any revision operation. Let us
now put all this in a formal framework.

3.2 Revision: some theory
In this section we build up toward the representation result of Katsuno andMendel-
zon [31]. We introduce the idea of faithful assignments and we give postulates for
revision. We also present some specific revision operators. First, though, let us
formally define what a belief revision operator is.

Definition 1. A belief revision operator is a function ◦ : K × L → K.
We typically write K ◦ µ instead of ◦(K,µ).

We want to see what constraints are appropriate for belief revision operators,
so that they behave in the way we expect them to. Let us start by introducing the
semantic structure that we would like belief revision operators to model.

3.2.1 Faithful assignments and their associated operators
Example 1 emphasized the fact that one way of representing an agent’s epistemic
state, besides the more familiar option of a formula in some logical language, is as
an order over possible outcomes.

In revision, one typically assumes that a knowledge baseK represents an agent’s
most preferred outcomes—hence any ranking that reflects the agent’s epistemic
state has to place the models of K as the minimal elements in the preference or-
dering. Additionally, it is conceded that—as long as we are talking about a single
agent—the preference order should not change if the knowledge base is expressed
differently: in other words, the way an agent ranks possible outcomes does not de-
pend on the syntax of its beliefs. This leads to the notion of faithful assignments.

Definition 2 ([31]). A faithful assignment is amapping assigning to each knowledge
base K a total pre-order ≤K on W such that, for any interpretations w1, w2 and
knowledge bases K,K1,K2, the following properties hold:

(km1) if w1, w2 ∈ [K], then w1 ≈K w2;
(km2) if w1 ∈ [K] and w2 /∈ [K], then w1 <K w2;
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(km3) if K1 ≡ K2, then ≤K1=≤K2 .

A total pre-order that satisfies km1 − km3 is called a faithful pre-order for K.

Faithful assignments provide the basis on which an agent can asses the impor-
tance of any possible outcome, relative to some background knowledge.

Since we want to connect faithful assignments to a logical notion of belief revi-
sion, it will be useful to define a logical operator based on individual pre-orders.

Definition 3. If ≤ is a total pre-order on W and K is a knowledge base such that
[K] = min≤W, then for any formula µ the corresponding operator of ≤ with respect
to K is a function ◦K : L → L, defined as:

[◦K(µ)] = min≤[µ].

For ease of use, let us write K ◦ µ instead of ◦K(µ), and if ≤ is explicitly indexed
to some knowledge base K (as it would be if it were part of a faithful assignment),
we will call ◦K simply the corresponding operator of ≤. This operator overloading
is intentional: each total pre-order defines its own corresponding operator, which is
essentially a revision operator specialized to K (if the models of K are the minimal
elements in ≤).

A corresponding operator is not the same thing as a revision operator, but put
enough corresponding operators together and things look different: having a corre-
sponding operator for every knowledge baseK (modulo logical equivalence), plus an
operator for inconsistent knowledge bases, gives us a full revision operator.

It might seem superfluous to define such a notion formally, but its usefulness will
become apparent as we progress. Later on we will want to look at how revision op-
erators act ‘locally’, often with respect to a single knowledge baseK. Corresponding
operators give us this luxury by allowing the construction of revision operators on
the fly, from a single faithful pre-order. They are like building blocks in the context
of a larger construction.

As for the larger construction, we will usually assume that a single faithful pre-
order forK is embedded in a faithful assignment. Notice that given a faithful assign-
ment and a knowledge base K, if we change the assigned pre-order ≤K with a new
faithful pre-order ≤′K , the assignment itself remains faithful. We will often want
to do this: we will start with an ‘out of the box’ assignment, and modify only one
pre-order in it in order to test our intuitions. By leaving everything else in the stock
assignment unchanged, we make sure that we are still within a faithful assignment.

3.2.2 Postulates for revision
We want to impose certain constraints on revision operators, what Gärdenfors calls
‘standards of rationality’ in ([25]). These constraints are written as postulates in
propositional logic.
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Historically, revision was first introduced in the AGM paper via such postulates.
Though the AGM framework is commonly taken as the frame of reference for revi-
sion, we give here the postulates presented in [31], as they are more appropriate in
a finite setting. Nothing is lost, however, as the Katsuno & Mendelzon postulates
are equivalent to the AGM ones (see Section 3.2.5).

(R1) K ◦ µ |= µ.
(R2) If K ∧ µ is consistent, then K ◦ µ ≡ K ∧ µ.
(R3) If µ is consistent, then K ◦ µ is also consistent.
(R4) If K1 ≡ K2 and µ1 ≡ µ2, then K1 ◦ µ1 ≡ K2 ◦ µ2.
(R5) (K ◦ µ1) ∧ µ2 |= K ◦ (µ1 ∧ µ2).
(R6) If (K ◦ µ1) ∧ µ2 is consistent, then K ◦ (µ1 ∧ µ2) |= (K ◦ µ1) ∧ µ2.

Keep in mind that the notation for knowledge bases should be taken loosely: often
what is meant is

∧
K instead ofK, and the reader is advised to consider what makes

more sense in the context at hand.
The postulates themselves deserve some commentary. In Chapter 1 it was men-

tioned that an agent can acquiesce to or reject the new information µ. This is cer-
tainly a reasonable stance, and it has been explored in the literature. However, the
classical framework of revision assumes that µ is always accepted, and in this way
behaves as a constraint. This is what R1 says. On the semantic side, R1 requires
that the result of revision should always be a subset of [µ]—recall Example 1, where
Anna had to choose from a restricted range of choices.

R2 stipulates that, if µ does not contradict the available information K, revision
amounts to simply adding µ to the existing knowledge base—we take the conjunction
of K and µ.

R3 stipulates that, if the constraint µ is not contradictory, revision should never
proceed by just erasing all information: in model terms, revision should produce a
non-empty subset of [µ].

R4, sometimes called the principle of the ‘irrelevance of syntax’, amounts to
saying—unsurprisingly—that the result of revision should not depend on how the
knowledge base or the constraint is formulated.

R5 and R6, together, say that if K needs to be revised by µ1 ∧ µ2 one first tries to
revise by µ1; if one is lucky and the result does not contradict µ2, µ2 can just be added
on. This is supposed to enforce the idea of minimal change. An example will perhaps
illustrate how these postulates are not satisfied when revision changes more than
what is strictly required.

Example 2. Take an agent that has a set of beliefs K = {p, q, r} and has to revise
by µ = ¬p and ϕ = ¬q. By R1 and R3, after revision by µ the agent has to give up its
belief that p and believe instead that ¬p. If the agent wants to change its beliefs as
little as possible, it would only modify its belief about p and leave the other atoms
alone. But suppose the agent does not follow this principle and, as a rule, randomly
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pick an extra atom to flip: in this case, say it also changes its belief about q. So we
have:

K ◦ µ = ¬p ∧ ¬q ∧ r,

and thus:
(K ◦ µ) ∧ ϕ = (¬p ∧ ¬q ∧ r) ∧ ¬q = ¬p ∧ ¬q ∧ r.

Obviously, (K ◦ µ) ∧ ϕ is consistent, so R5 − R6 would require that (K ◦ µ) ∧ ϕ ≡
K ◦ (µ ∧ ϕ).

But now consider what happens when the agent revises independently by µ∧ ϕ:
it has to give up its belief that p and that q and, because the agent follows this rule
where it always revises more than is needed, it also gives up its belief that r. So we
get:

K ◦ (µ ∧ ϕ) = ¬p ∧ ¬q ∧ ¬r.

Quite clearly, this violates R5 and R6—and, hopefully, it takes a step toward moti-
vating their existence.

3.2.3 A representation result
Faithful assignments turn out to be intimately connected to revision operators, as
the following theorem shows.

Proposition 2 ([31]). A change operator ◦ : K×L → K satisfies the revision postulates
R1−R6 if and only if there exists a faithful assignment mapping every knowledge base
K to a total pre-order ≤K such that, for any formula µ:

[K ◦ µ] = min≤K [µ].

This result is important and will provide a template for subsequent research.
One can interpret it as showing that if an agent ranks its possible worlds in a faith-
ful way and always picks the most preferred outcomes, then such an agent acts in
accordance with postulates R1 −R6. Conversely, the result shows that an agent do-
ing revision according to the postulatesR1−R6 behaves as if it always ranks possible
outcomes according to the rules of faithful assignments.

Pragmatically, the Katsuno and Mendelzon representation result allows us to
study revision operators from a model-theoretic perspective: finding operators that
satisfy R1−R6 becomes equivalent to finding faithful assignments. Some examples
of such assignments are given below.

3.2.4 Revision operators
It turns out that a very general notion of distance between interpretations turns out
to be enough to guarantee a faithful assignment.
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Definition 4. A non-symmetric pseudo-distance between interpretations is a func-
tion m : W ×W → R+ such that, for any w1, w2 ∈ W:

m(w1, w2) = 0 if and only if w1 = w2. (minimality)

Both the drastic distance dD and the Hamming distance dH are non-symmetric
pseudo-distances.

Given a non-symmetric pseudo-distance m one can define in a straightforward
way ≤K for any knowledge base K. A revision operator follows immediately:

Definition 5. For a non-symmetric pseudo-distance m, knowledge base K and in-
terpretation w, the level of w with respect toK, written as lK(w), is a positive number
defined as follows:

lK(w) =

{
min{m(w,w′) | w′ ∈ [K]}, if K is consistent
1, otherwise.

The relation ≤mK is defined as:

w ≤mK w′ iff lK(w) ≤ lK(w′).

For a knowledge base K and formula µ, the operator ◦m is defined as:

[K ◦m µ] = min≤m
K

[µ],

It is quite easy to see that ≤mK , thus defined, is a faithful pre-order.

Proposition 3. If i is a non-symmetric pseudo-distance, the relation≤iK constructed
as in Definition 5 is a total pre-order. It is also faithful.

Proof. To show that ≤K is a total pre-order, we need to show that it is reflexive,
transitive and total. This follows immediately from the fact that each w ∈ W is
assigned a positive real, and the natural ordering of the reals is itself reflexive and
transitive.

To show that ≤K is a also faithful, let us make a case distinction. First, suppose
K is consistent. If w1, w2 ∈ [K], then (by minimality):

lK(w1) = lK(w2) = 0,

so w1 ≈K w2. This shows that km1 holds. If w1 ∈ [K] and w2 /∈ [K], we get that
lK(w1) = 0 and lK(w2) > 0. To see why this latter statement holds, assume that
lK(w2) = 0. Then there would have to be some w′ ∈ [K] such that:

m(w2, w
′) = 0.

Byminimality , it follows thatw2 = w′ and hencew2 ∈ [K]. But this is a contradiction.
This shows km2.
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Figure 3.2: ≤dHK in action.

Since ≤K is constructed solely in terms of the models of K, the syntax of K does
not matter, so km3 holds.

Second, ifK is inconsistent, all interpretations have the same level and they are
all equal under ≈K , hence all pre-orders under inconsistent knowledge bases are
equal. This shows km3. Since K has no models, km1 and km2 apply trivially.

Now that we know that ≤mK is a faithful pre-order, the Katsuno and Mendelzon
representation result (Proposition 2) guarantees that ◦m is a revision operator (i.e.
satisfies postulates R1 −R6).

Let us look at a concrete case.

Example 3. Consider again Example 1, where we have the knowledge base K with
[K] = {111}, and a formula µ with [µ] = {000, 001, 010, 100}. In Example 1 the
pre-order for K was hand-picked, under the assumption that it directly represented
Anna’s preferences. Now, by plugging in different distances in Definition 5, we get
a different pre-order depending on the distance used.

When we use the Hamming distance dH , then—since [K] contains only 111—
lK(w) will just be dH(w, 111), for any interpretation w. The levels assigned to each
interpretation are shown in Figure 3.2-(a), and the pre-order generated is shown in
Figure 3.2-(b).

Revising K by µ now gives us:

[K ◦dH µ] = min≤dH
K

[µ] = {001, 010, 100},

in other words:

K ◦dH µ ≡ (¬presentation ∧ ¬laundry ∧ market) ∨
(¬presentation ∧ laundry ∧ ¬market) ∨
(presentation ∧ ¬laundry ∧ ¬market).
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This means Anna will do exactly one of the activities, perhaps randomly choosing
which one since she does not strictly prefer one over the others.

111

000, 001, 010, 100,110, 101, 011

[µ] [K]

Figure 3.3: ≤dDK in action.

When we use the drastic distance dD, we get that lK(111) = 0 and lK(w) = 1, for
any interpretation other than 111. The order in this case is very simple (see Figure
3.3), and revision by µ yields:

K ◦dD µ = min≤dD
K

[µ] = {000, 001, 010, 100}.

In this case, Anna will choose one of the activities or do nothing.

It will be useful at this point to have a simple revision operator, one which we can
invoke freely as an all-purpose tool. The operator associated with the assignment
got using the drastic distance dD seems simple enough, but it would be nice if we
could express it in purely syntactic terms.

Definition 6. The default assignment is the assignment got by plugging in the dras-
tic distance dD in Definition 5.

By Definition 5, the default assignment gives a revision operator ◦dD . Let us
introduce now another operator.

Definition 7. The default operator ◦def : K × L → K is defined as:

K ◦def µ =

{
K ∧ µ, if K ∧ µ is consistent,
µ, otherwise.

It is straightforward to verify that the default operator satisfies postulates R1 −
R6 and is, therefore, a revision operator. Intuitively, ◦def spells out a very simple
revision strategy: if the new information µ is consistent with the knowledge baseK,
then simply add µ toK. If µ contradicts existing beliefs, then forget about them and
just hold on to the new information.

Of course, the entire point of this is that ◦dD and ◦def coincide.

Proposition 4. The default revision operator ◦def is equivalent to ◦dD (generated by
the drastic distance), in the sense that:

(i) for any knowledge base K and formula µ, K ◦def µ ≡ K ◦dD µ;
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(ii) they correspond to the same faithful assignment (which we have called the de-
fault assignment).

Proof. Let us start with (i). For a visual reminder of how ◦dD assignment looks, see
Example 3.

Take a knowledge base K and a formula µ. If K ∧ µ is consistent, then (by R2),
it follows that K ◦dD µ ≡ K ∧ µ. If K ∧ µ is inconsistent, then [K ∧ µ] = ∅. Since
[K ◦dD µ] = min≤K [µ] and the order≤K has only two levels, it follows that [K ◦dD µ] =
[µ]. So K ◦dD µ always behaves as the default operator.

Since ◦def is a revision operator, we know by the Katsuno and Mendelzon repre-
sentation result (Proposition 2) that it corresponds to some faithful assignment. To
show (ii), we need to show that ◦def can only correspond to an assignment that be-
haves as the one generated by the drastic distance. Consider, then, a knowledge base
K and two interpretations w1, w2. As a reminder, ϕw1,w2 is a propositional formula
such that [ϕw1,w2 ] = {w1, w2}. In this setup ≤K is the faithful pre-order correspond-
ing to ◦def .

If w1, w2 ∈ [K] or w1 ∈ [K], w2 /∈ [K], the situation is decided by ≤K being a
faithful pre-order: we have thatw1 ≈K w2 orw1 <K w2, respectively. The interesting
case, then, is when w1, w2 /∈ [K]. In this case [K ∧ ϕw1,w2 ] = ∅, so K ∧ ϕw1,w2 is
inconsistent. We get that K ◦def ϕw1,w2 = ϕw1,w2 , hence min≤K [ϕw1,w2 ] = [ϕw1,w2 ].
This means that w1 ≈K w2. Since w1 and w2 were arbitrarily chosen, it follows that
all interpretations not in [K] are equivalent with respect to ≤K .2 This shows that
≤K is the same pre-order as the one got using the drastic distance.

Other formulations

In the AGM framework presented in [1], the object of revision is a logical theory, and
revision is defined using an additional belief change operator, called expansion.

Definition 8. The expansion of a theory T by a formula µ, written T + µ, is defined
as:

T + µ := Cn(T ∪ {µ}).

Notice that the expansion of T by µ is by definition also a theory. Keeping this
in mind, the revision of a theory T by µ, written T ∗ µ, is defined via the following
postulates:

(K1) T ∗ µ = Cn(T ∗ µ).
(K2) µ ∈ T ∗ µ.
(K3) T ∗ µ ⊆ T + µ.
(K4) If ¬µ /∈ T , then T + µ ⊆ T ∗ µ.
(K5) T ∗ µ = L only if 0 ¬µ.

2The argument works in the same way when K is consistent or inconsistent.
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(K6) If ` µ1 ↔ µ2, then T ∗ µ1 = T ∗ µ2.

(K7) T ∗ (µ1 ∧ µ2) ⊆ T ∗ µ1 + µ2.

(K8) If ¬µ2 /∈ T ∗ µ1, then T ∗ µ1 + µ2 ⊆ T ∗ (µ1 ∧ µ2).

Postulate K1 ensures that the result of revision is also a theory. Other than
this, there is a clear correspondence between the AGM postulates and the R1 − R6

postulates presented earlier. For instance, K3 and K4 taken together say that if
T is consistent with µ (in the sense that T 0 ¬µ), then T ∗ µ = T + µ. The same
idea is behind R2: expansion, in a certain sense, is the set theoretic counterpart to
conjunction.

The AGM paper goes on to explore more constructive ways of defining revision
operators, the details of which should not concern us here. As a side note, one of
their operators, defined from—what they call—the full meet contraction function, is
essentially the same as the default operator introduced in Section 3.2.4.

The reader might have been struck by the very syntactic nature of AGM revi-
sion: there is virtually no semantics at play in it. This was a conscious decision: the
original motivation for belief change, Gärdenfors writes, was to model transitions
between epistemic states of an agent—what goes on, so to speak, in the agent’s
head when it changes its mind. From this perspective, the relationship between
an agent’s beliefs and reality (what semantics is purportedly about) does not mat-
ter, since an agent cannot go outside itself and inspect the relationship between its
beliefs and the world:

From the subject’s point of view there is no way to tell whether she ac-
cepts something as knowledge, that is, has full belief in it, or whether
her accepted knowledge is also true. When I speak of particular pieces of
knowledge, I use the word “knowledge" in the sense of full belief, and I
do not assume that this concept entails anything about the truth of the
beliefs. (Gärdenfors [1988], p. 20)

This distrust for semantics, however, leads to tensions in other parts of the frame-
work: to preserve the idea that agents are rational, the AGM authors force the agent
to incorporate every consequence of its (explicit) beliefs. This leads to the object of
revision being whole theories, which—as infinite sets—put the whole theory on a
rather abstract footing. To make revision computationally feasible, epistemic states
must in the least be scaled down to finite representations, which is why we go with
the Katsuno and Mendelzon framework of a finite alphabet.

As for the incursion into semantics, this is perhaps unavoidable. What could be
said to meet Gärdenfors’ qualms is that, at least insofar as computational systems
are concerned, semantics does not commit one to any definitive view about reality; it
merely offers an alternative way of representing the part of reality we are interested
in modelling.
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Leaving the philosophical issues aside, it should be noted that there is a neat
correspondence between revision operators ◦ and AGM revision operators ∗, as the
following lemma shows.

Proposition 5 ([31]). If T is a theory that is represented by a knowledge baseK such
that T = {ϕ | K |= ϕ}, µ is a propositional formula, ∗ is an AGM revision operator
and ◦ its corresponding operator on knowledge bases, we have that ∗ satisfiesK1−K8

if and only if ◦ satisfies R1 −R6.

Beside the formalisms presented here, there are other ways of thinking about
revision, all of which turn out to be equivalent. One should mention Grove’s Sys-
tem of Spheres and Epistemic Entrenchments, where the idea is to assign different
priorities to formulas of a language: the more entrenched a formula is, the more
resistant it is to revision. For nice reviews, see [43, 48]. As a side note, all these
approaches end up assuming some sort of ranking over the objects of focus.

3.2.5 Other belief change operations

Section 3.2.4 already mentioned expansion as a belief change operator alongside
revision. One need only add contraction to complete the picture.

Contraction, written T−ϕ, was conceived as the operation of removing ϕ from the
theory T—recall the problem of derogating an item from a legal code mentioned at
the beginning of the chapter. The AGM paper [1] featured postulates for contraction
alongside those of revision, amd ever since then it has become customary to think
of revision and contraction as inter-definable via the following set of identities:

T ∗ ϕ := (T − ¬ϕ) + ϕ (Levi identity)

T − ϕ := (T ∗ ¬ϕ) ∩ T (Harper identity)

The AGM paper showed that if an operator − satisfies the contraction postulates,
then ∗ defined from − with the Levi identity satisfies the revision postulates. Con-
versely, an operator − defined from a revision operator ∗ with the Harper identity
satisfies the contraction postulates.

This is not just a nice result, but another means of building revision operators:
the AGM paper, in fact, always started from contraction and built its way up to
revision—one reason behind this may be that it is in some sense easier to conceptu-
alize contraction than revision. The semantic approach of Katsuno and Mendelzon
opened up a more intuitive way of thinking directly about revision, by looking at
how a revision operator acts on sets of interpretations (rather than on sets of formu-
las). Also, of all the belief change operators, revision has the strongest connections
to merging, which is why it enjoys more attention here.
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3.3 Merging: some history and motivation
Early work on merging ([3, 4]) came out of concerns about databases: we may want
to combine several databases into a single, consistent database, so what are the
general principles of doing this? What happens when we reach an inconsistency:
which parts do we keep, which do we throw out? What if we also add an integrity
constraint? In [3], Baral, Kraus and Minker considered four possible answers:

1. There is an Oracle that knows everything: if a contradiction arises, the Oracle
decides what goes in the result of the merging.

2. There is some partial order on database items that allows us to choose when a
conflict appears.

3. If there is a conflict between two databases over some atom p, define p’s truth-
value as unknown.

4. Choose amaximal amount of consistent information from the combined databases.

Their professional diagnosis regarding these four solutions was that 1 is impossible,
3 leads to loss of information, and 2 might be untenable because there is no access
to priority information. They eventually settled for the 4th alternative.3

In [46], Peter Revesz noted that there was a connection between combining sev-
eral sources of information (which he called arbitration) and revision: Revesz thought
of arbitration in the framework introduced by Katsuno and Mendelzon for revision.
This meant coming up with postulates for an operator (in a finite propositional lan-
guage), and describing the semantics of the operator through a representation re-
sult. Revesz managed to show that his arbitration operator . corresponded to a loyal
assignment on interpretations.

Though we will not go into the details of Revesz’ work, one of his postulates
deserves attention:

(M7) (K1 . µ) ∧ (K2 . µ) |= (K1 ∪K2) . µ.

M7 is a postulate that tells us how . should behave when two knowledge bases (K1

and K2) are combined into a single knowledge base (K1 ∪ K2). We never saw this
with revision.

In the end, though, the formalism that really caught on was the one proposed by
Konieczny and Pino Pérez. An early version ([34]) featured postulates for a generic
merging operator∆, and introduced the notion ofmajority and arbitration operators.
Constraints were added in a later version ([35]). Konieczny and Pino Pérez’s idea
was to encode a notion of fairness in the postulates, to ensure that merging does
not favour one source over the others. The postulates were shown to correspond to
syncretic assignments (see 3.4.1).

3For a very general overview of areas where multiple streams of information have to be combined
into a single, coherent stream, see [5].
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[K1]

Intervewer 1

100(0)

101, 110(1)

001, 010(2)

000(3)

111(4)

011(5)

+

[K2]

Interviewer 2

011(0)

001, 010(1)

101, 110, 111(2)

000(3)

100(4)

−→

[µ2]

[µ1]

Result of merging

001, 010, 101, 110(3)

100(4)

011(5)

000, 111(6)

Figure 3.4: Preference relations for the two interviewers, and the ranking that re-
sults from a Borda count method of voting.

This work follows the Konieczny and Pino Pérez framework for merging. Let us
motivate it further with an example.

Example 4. Two interviewers have to decide who to hire from a range of three
applicants. After screening the candidates, each interviewer arrives at their own
opinion about who should be hired. Unfortunately, their assessments differ.

We can represent the problem logically by having atoms p1, p2 and p3 stand for
the applicants, and knowledge basesK1 andK2 expressing the interviewers’ conclu-
sions:

K1 = {p1,¬p2,¬p3},
K2 = {¬p1, p2, p3}.

In other words, Interviewer 1 wants to hire only applicant 1, while Interviewer 2
wants to hire applicants 2 and 3. Clearly, there is no common ground between the
two interviewers: in logical terms,

∧
K1 ∧

∧
K2 is inconsistent.

Here is, then, a situation where multiple agents have to settle on a common
course of action, even though they may have competing views. As with revision, we
will want to assume that possible worlds are ranked with respect to how much they
are preferred. The additional twist is that, since we are now dealing with multiple
agents, there needs to be a preference relation for each of them. In our example, we
will assume that each interviewer ranks the possible options of which candidates to
hire as in Figure 3.4.

Later on we will study general methods for ranking possible worlds, but in Fig-
ure 3.4 we assume that the rankings reflect directly the interviewers’ preferences.
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Notice, for instance, that Interviewer 1 has a strong preference for applicant 1 and
an equally strong dislike for the other two applicants: she would rather see no one
hired than have applicants 2 and 3 working together. The situation is reversed for
Interviewer 2: she would like applicants 2 and 3 to be hired and would prefer leaving
the positions unfilled rather than have candidate 1 on the job.

So who will get hired? This is the challenge that merging faces: as with revision,
the aim is to describe a general process that ultimately results in a concrete rec-
ommendation, and which—at the same time—strives to be fair toward the parties
concerned. More specifically, the individual preferences need to be aggregated into
a single preference relation over possible worlds, while making sure that certain
fairness constraints are met.

In our example, we can imagine that the interviewers settle the issue by voting
on the possible outcomes: each interviewer assigns a score to every possible world
according to its place in the preference ranking (see Figure 3.4), then they add the
scores for each world and order the worlds according to their total score. The re-
sulting ranking is shown in Figure 3.4. The method of voting is essentially a Borda
count, with the only caveat that in our example worlds are more preferred if they
have lower scores.

The advantage of representing the result as a total preference ranking on possi-
ble worlds is the fact that we can add constraints on the result of merging. Suppose
the employer says that, because of budgetary reasons, exactly one candidate can be
hired. This constrains the range of options to µ1, where:

[µ1] = {001, 010, 100}.

Given the preference ranking, we can just choose the most preferred outcomes from
the models of µ1, that is:

min[µ1] = {001, 010}.
So either the second or third applicant should be hired.

Suppose, on the other hand, there is a different constraint: the final choice must
be one of the initial first choices of the two interviewers (encoded by the constraint
[µ2] = {100, 011}). Then the preferred candidate would be applicant 1:

min[µ2] = {100}.

Applicant 1 was interviewer 1’s first choice, so it appears the final ranking favours
Interviewer 1 over Interviewer 2. There is a sense in which this is unfair, since the
fact that 100 has a lower score than 011 is just an artefact of the way in which Inter-
viewer 1 structured her preferences, and not some impartial arbitration procedure.
This leads to the possibility that, in the absence of any constraints on the merging
process, the result might end up favouring one agent over the other, and that agents
could ultimately game the system in their favour.

It could be argued, then, that a fair merging procedure should ensure that none
of the agents is given precedence over the others when the final ranking is computed.
The general problem of merging ends up being tricky, precisely for this reason.
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We are left with the following questions: how should individual preferences be
aggregated such that we get a unique preference relation? Under which conditions
is the merging process fair?

The following subsections address these questions by looking at the problem from
two perspectives: on the semantic side we look at ways of ranking interpretations,
much like we did for revision with faithful assignments. For merging, however, we
need to add certain conditions to ensure fairness. On the syntactic side we look at
postulates that a merging operator should satisfy: again, the revision postulates
need to be supplemented such that some notion of fairness is enforced. The two
perspectives are then shown to coincide through the representation result obtained
in [35].

3.4 Merging: some theory
We start by defining merging operators.

Definition 9. A merging operator is a function ∆: E × L → K.
We typically write ∆µ(E) instead of ∆(E,µ).

In other words, merging operators map profiles and formulas (called constraints)
onto knowledge bases. Intuitively, each knowledge base in a profile E represents the
beliefs or goals of an agent.

3.4.1 Syncretic assignments
We give here the main semantic construction for merging: a syncretic assignment
tells how the rankings for a profile should look like. The assignment should be fair
when merging requires aggregating competing choices, and approximate a group
consensus when something like that exists.

Definition 10. A syncretic assignment is a mapping assigning to each profile E a
total pre-order≤E onW such that, for any profilesE,E1, E2, knowledge basesK1,K2

and interpretations w1, w2:

(kp1) if w1 ∈ [E] and w2 ∈ [E], then w1 'E w2;
(kp2) if w1 ∈ [E] and w2 /∈ [E], then w1 <E w2;
(kp3) if E1 ≡ E2, then ≤E1=≤E2 ;
(kp4) if w1 ∈ [K1], there is w2 ∈ [K2] such that w2 ≤{K1,K2} w1;

(kp5) if
{
w1 ≤E1 w2,

w1 ≤E2 w2,
then w1 ≤E1tE2 w2;

(kp6) if
{
w1 ≤E1 w2,

w1 <E2 w2,
then w1 <E1tE2 w2.
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≤{K1}

w′′

w

w′

+

≤{K2}

w′

w

w′′

−→

≤{K1,K2}

w′, w′′

w

Figure 3.5: Property kp8 eliminates this outcome.

Additionally, we may want to consider the following properties:

(kp7) If w1 <E2 w2, then there is an n ∈ N such that w1 <E1tEn
2
w2.

(kp8) If


w <{K1} w

′,

w <{K2} w
′′,

w′ ≈{K1,K2} w
′′,

then w <{K1,K2} w
′.

What are these properties about? Notice that kp1 − kp3 are the conditions for
faithful assignments: any pre-order ≤E that satisfies them is faithful, and hence
has a corresponding revision operator.

Property kp4 ensures fairness: if it would be false, then there would be a model of
K1 strictly smaller than anymodel ofK2 in≤{K1,K2}—some state of affairs consistent
with K1 would be preferred to anything K2 thinks is desirable (think back to µ2 in
Example 4). We want to avoid this.

Property kp5 says that if everyone prefers w1 to w2, this choice should be reflected
in the final ranking. Property kp6 sees to it that if someone has a strong preference
for w1 over w2 and no one else disagrees with this, then the final ranking should
make sure that w1 is strictly preferred to w2.

In kp7, one wants to give some decision power to a majority: kp7 says that if w1

is strictly preferred to w2 by E2, then under an enough number of agents with the
same preference structure, their preference prevails.

Property kp8 only makes sense when w′′ <K1 w <K1 w
′ and w′ <K2 w <K2 w

′′

(for all other arrangements, the property follows from kp6). And in this situation, we
want to eliminate the outcome of Figure 3.5. The reasoning behind this, if we look at
Figure 3.5, is that in profile {K1} w′′ is strongly preferred to w′, with w somewhere
in the middle. In the profile {K2} the situation is reversed—there is a real conflict
here, in which two agents hold opposing views. So if in the merged order ≤{K1,K2}
there is nothing to choose between w′, w′′ (they are equivalent), the order should
favour the ‘middle ground’ between w′ and w′′, which in this case happens to be w.

Definition 11. An assignment that satisfies kp1 − kp6 + kp7 is called a majority
syncretic assignment. An assignment that satisfies kp1 − kp6 + kp8 is called a fair
syncretic assignment.
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3.4.2 Postulates for merging
As with revision, we want to constrain the behaviour of a merging operator such that
it conformswith certain standards of rationality. The following postulates have been
proposed [35]:

(IC0) ∆µ(E) |= µ.
(IC1) If µ is consistent, then ∆µ(E) is consistent.
(IC2) If

∧
E is consistent with µ, then ∆µ(E) ≡

∧
E ∧ µ.

(IC3) If E1 ≡ E2 and µ1 ≡ µ2, then ∆µ1(E1) ≡ ∆µ2(E2).
(IC4) IfK1 andK2 are consistent, andK1 |= µ andK2 |= µ, then∆µ({K1,K2})∧

K1 is consistent iff ∆µ({K1,K2}) ∧K2 is consistent.
(IC5) ∆µ(E1) ∧∆µ(E2) |= ∆µ(E1 t E2).
(IC6) If∆µ(E1)∧∆µ(E2) is consistent, then∆µ(E1tE2) |= ∆µ(E1)∧∆µ(E2).
(IC7) ∆µ1(E) ∧ µ2 |= ∆µ1∧µ2(E).
(IC8) If ∆µ1(E) ∧ µ2 is consistent, then ∆µ1∧µ2(E) |= ∆µ1(E) ∧ µ2.

Additionaly, we may want to consider the following postulates:

(Maj ) There is n ∈ N such that ∆µ(E1 t En2 ) |= ∆µ(E2).

(Arb) If


∆µ1(K1) ≡ ∆µ2(K2),

∆µ1↔¬µ2({K1,K2}) ≡ (µ1 ↔ ¬µ2),

µ1 2 µ2, µ2 2 µ1,

then∆µ1∨µ2({K1,K2}) ≡ ∆µ1(K1).

Definition 12. An operator that satisfies postulates IC0−IC8 is called an IC merg-
ing operator. An operator that satisfies IC0−IC8 +Maj is called a majority merging
operator. An operator that satisfies IC0− IC8 +Arb is called an arbitration merging
operator.

Notice that if we replace∆µ(E)withE◦µ, IC0−IC3+IC7−IC8 become theR1−R6

postulates for revision in Section 3.2.2. This is intentional, asmerging is modelled to
be an extension of the revision framework. The point is that if an operator satisfies
IC0 − IC3 + IC7 − IC8, there automatically exists by the Katsuno and Mendelzon
representation result a ‘faithful’ assignment on profiles, that is to say there exists an
assignment that satisfies kp1−kp3. We are fudging some notions here, since profiles
(which merging is concerned about) should be distinguished from knowledge bases
(which is what revision works with). However, when we switch to interpretations
and how they are ranked this distinction does not really matter. Hence, any IC
merging operator is also—from the semantic point of view—a revision operator

Postulates IC4, IC5, IC6,Maj,Arb are meant to capture properties kp4, kp5, kp6,
kp7, kp8 of syncretic assignments, and are best understood as their syntactic coun-
terparts.
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Observation 1. The condition that K1 and K2 need to be consistent in IC4 is usu-
ally not explicitly included, though Konieczny and Pino Pérez mention separately in
[35] that the postulate does not make sense unless it holds. I have chosen to write
the postulate in this way because we want to be able to think of merging even when
some of the knowledge bases are inconsistent (though that may not be of particular
interest). Adding a separate clause saying that we are only going to deal with con-
sistent knowledge bases might only create confusion, if it would be retracted later.

Observation 2. IC8 is sometimes written in amore economical way as ∆µ1∧µ2(E) |=
∆µ2(E), since we already have that ∆µ1∧µ2(E) |= µ2 by IC0. I have chosen to write
it like this for reasons of symmetry.

3.4.3 A representation result
As with revision, it can be shown that merging operators reflect the semantic struc-
ture of syncretic assignments, via the familiar strategy of always picking the mini-
mal models of a constraint.

Proposition 6 ([35]). An operator ∆ satisfies the merging postulates IC0−IC8 if and
only if there exists a syncretic assignment mapping each profile E to a total pre-order
≤E such that, for any formula µ:

[∆µ(E)] = min≤E [µ].

The pragmatic takeaway of this representation result is that we can think of
merging as an operation on pre-orders, essentially one that aggregates different
pre-orders into a single pre-order under some fairness constraints (this is spelled out
more in subsequent sections). As such, merging begins to look very much like social
choice theory (and voting, in particular), where the issue is to aggregate preference
rankings as effectively as possible. The connections between merging and social
choice have been touched upon and are subject to ongoing research (see [21, 23, 36]).4

It was mentioned in the previous sections that merging operators are also revi-
sion operators. What merging adds to the revision framework is a set of constraints
about fairness and optimality: viewed from the semantic side, a pre-order ≤E is not
independent from the other pre-orders in the assignment (as it is in revision), but
depends on the pre-orders ≤E1 , ≤E2 , if E1 t E2. A particular consequence of this is
that if an assignment is not fit for revision (i.e., it is not faithful), it will not be fit for
merging also. This issue will come up in the case of Horn merging.

With regard to postulate kp4, it is worth mentioning that IC4 is relevant for
enforcing it only when {K1,K2} is inconsistent. If {K1,K2} is consistent, then kp4

comes ‘for free’, in the sense that we do not need a special postulate to make sure
that it holds.

4The word ‘profile’ itself is taken from social choice theory. What is different in the case of merging
is that agents are invited to rank possible worlds, or interpretations. In social choice theory, preference
rankings are on entities unconnected to each other.

31



Lemma 1. If {K1,K2} is consistent, then in an assignment that assigns to each pro-
file E a total pre-order ≤E such that [∆µ(E)] = min≤E [µ], if kp1 − kp3 are true, then
kp4 is also true.

Proof. Take an assignment that satisfies the above conditions and≤{K1,K2} the total
pre-order it assigns to {K1,K2}. So, now, for any w1 ∈ [K1] we can take a w2 ∈
[K1 ∧ K2] (which, by assumption, is non-empty). Obviously, w2 ∈ [K2]. By kp1 and
kp2, [K1 ∧ K2] contains the minimal elements of ≤{K1,K2}, and this gives us that
w2 ≤{K1,K2} w1.

Lemma 1 will come in handy in the context of Horn merging, where we will be
forced to reconsider the kp4.

3.4.4 Merging operators
By the Konieczny and Pino Pérez representation result (Proposition 6) we can pro-
duce look at merging as a logical operation and as a semantic operation that ag-
gregates pre-orders on interpretations. In this section we define classes of merging
operators from the semantic side, by defining a series of syncretic assignments.

As with faithful assignments for revision, a good starting point would be to use
some notion of distance between interpretations in order to define the level of an
interpretation with respect to a knowledge base K. This gives us a pre-order ≤K .
The next step is a strategy for aggregating different pre-orders. In doing this we
need to keep in mind the constraints set by kp4 − kp6. To see how this adds to the
revision framework, consider, for example, a profile E = {K1,K2,K3}. We can split
E in various ways:

E = {K1,K2} t {K3} = {K1} t {K2,K3} = {K1,K3} t {K2}.

Consequently, ≤E depends on the interactions between ≤{K1,K2} and ≤{K3}, ≤{K1}
and ≤{K2,K3} and so on. This makes things trickier, as faithful assignments need to
satisfy extra properties (i.e., kp4 − kp6).

In [35, 37] it was shown that, as long as the distance and aggregation functions
satisfy some fairly general conditions, the assignment constructed from them will
be syncretic.

Definition 13. A pseudo-distance between interpretations is a function d : W×W →
R+ such that, for any w1, w2 ∈ W:

d(w1, w2) = d(w2, w1) (symmetry)

d(w1, w2) = 0 if and only if w1 = w2. (minimality)

A pseudo-distance extends the notion of a non-symmetric pseudo-distance that
was required for defining faithful assignments (see Definition 4), by adding symme-
try. The familiar distances dH (the Hamming distance) and dD (the drastic distance)
are also pseudo-distances, in the sense defined here.
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With pseudo-distances we can rank interpretations with respect to their degree
of ‘closeness’, and create pre-orders ≤K for knowledge bases K. The next step is to
aggregate these pre-orders.

Definition 14. An aggregation function is a function f : Rn+ → R+, for n ∈ N, such
that, for any x1, . . . , xn, x, y ∈ R+ and any permutation σ, the following conditions
hold:

· if x ≤ y, then f(x1, . . . , x, . . . , xn) ≤ f(x1, . . . , y, . . . , xn); (monotony)

· f(x1, . . . , xn) = 0 if and only if x1 = · · · = xn = 0; (minimality)

· f(x) = x; (identity)

· f(x1, . . . , xn) = f(σ(x1), . . . , σ(xn)); (symmetry)

· if f(x1, . . . , xn) ≤ f(y1, . . . , yn), then f(x1, . . . , xn, z) ≤ f(y1, . . . , yn, z); (composition)

· if f(x1, . . . , xn, z) ≤ f(y1, . . . , yn, z), then f(x1, . . . , xn) ≤ f(y1, . . . , yn). (decomposition)

Putting pseudo-distances and aggregation functions together, we can define a
general class of merging operators.

Definition 15. Take a pseudo-distance d between interpretations and an aggrega-
tion function f . If w is an interpretation and K is a consistent knowledge base,
define the distance between w and K as:

d(w,K) = min{d(w,w′) | w′ ∈ [K]}.

If E = {K1, . . . ,Kn} is a profile where each K ∈ E is consistent,5 define the level of
w with respect to E as:

lE(w) = f(d(w,K1), . . . , d(w,Kn)).

Define ≤E as:
w ≤E w′ if and only if lE(w) ≤ lE(w′).

Define an operator ∆d,f as:

[∆d,f (E)] = min≤E [µ].

The idea, therefore, is that the pre-order ≤E is computed from pre-orders for
the component knowledge bases K by aggregating the levels of each interpretation,
base-wise. It turns out that this is a sound merging strategy.

Proposition 7. An operator ∆d,f built using a pseudo-distance d and an aggregation
function f as in Definition 15 satisfies IC0 − IC8.

5There is no guarantee, however, that E will be consistent.
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Observation 3. We have put this result in a form that will be easy to use later, but
actually a stronger version holds. An aggregation function f that satisfiesmonotony,
minimality and identity gives a merging operator ∆d,f that satisfies IC0−IC2, IC7−
IC8. ∆d,f satisfies IC0− IC8 if and only if f also satisfies symmetry , composition and
decomposition. See [33], or Theorems 8-9 in [37].

The problem now hinges on choosing an appropriate pseudo-distance d and an
aggregation function f . It is easy to see, for instance, that the simple sum Σ sat-
isfies all the properties of an aggregation function. We can also use the GMAX
function, which–though strictly speaking not an aggregation function (it does not fit
the definition)—can be used to define≤E for a profile E. The details are given below.

Definition 16. For a profile E = {K1, . . . ,Kn} and an interpretation w, take LE(w)
to be a list of all the distances d(w,Ki), for i ∈ {1, . . . , n}, written in descending order.
In other words:

LE(w) = (d(w,Ki1), . . . , d(w,Kin)),

where {Ki1 , . . . ,Kin} = {K1, . . . ,Kn} and d(w,Kij ) ≥ d(w,Kij+1), for j ∈ {1, . . . , n− 1}.
Define the aggregation function GMAX as:

GMAX(d(w,K1), . . . , d(w,Kn)) = LE(w),

and use the lexicographic order ≤lex to compare interpretations. In other words:

w1 ≤E w2 iff LE(w1) ≤lex LE(w2),

The following example shows how GMAX works to rank interpretations.

Example 5. Suppose E = {K1,K2,K3}, d is some pseudo-distance and w,w′ are
interpretations such that:

d(w,K1) = 2, d(w,K2) = 0, d(w,K3) = 3,

d(w′,K1) = 3, d(w′,K2) = 1, d(w′,K3) = 2.

Then LE(w) = (3, 2, 0), LE(w′) = (3, 2, 1). We have that LE(w) ≤lex LE(w′), hence
w ≤E w′.

It turns out that if we plug into Definitions 15, 16 familiar distances, such as the
Hamming distance dH or the drastic distance dD, we get operators that satisfy the
IC merging postulates.

Proposition 8 ([35]). Take a pseudo-distance d between interpretations. Then ∆d,Σ

and ∆d,GMAX are IC-merging operators.
Additionally:

• ∆d,Σ is a majority merging operator;

• ∆d,GMAX is an arbitration merging operator.

34



[Ki]

100 011 Σ GMAX

000 1 1 2 (1,1)
001 1 1 2 (1,1)
010 1 1 2 (1,1)
011 1 0 1 (1,0)
100 0 1 1 (1,0)
101 1 1 2 (1,1)
110 1 1 2 (1,1)
111 1 1 2 (1,1)

(a) Drastic distance dD

[Ki]

100 011 Σ GMAX

000 1 2 3 (2,1)
001 2 1 3 (2,1)
010 2 1 3 (2,1)
011 3 0 3 (3,0)
100 0 3 3 (3,0)
101 1 2 3 (2,1)
110 1 2 3 (2,1)
111 2 1 3 (2,1)

(b) Hamming distance dH

Figure 3.6: Merging K1,K2,K3 under a constraint µ, different distances and differ-
ent aggregation functions

Let us see how these operators work in a concrete example.

Example 6. Consider again the setup in Example 4, with knowledge bases K1 and
K2 such that [K1] = {100} and [K2] = {011}. Take the profile E = {K1,K2} and the
constraint µ with [µ] = {001, 010, 100}.

There are various possibilities for how the merging should be computed: we can
use the drastic distance dD or the Hamming distance dH as a pseudo-distance, in
combination with either Σ or GMAX as an aggregation function. Figure 3.6 shows
what we get in every case: the entries in the table under the models ofKi, i ∈ {1, 2},
give d(w,Ki), for every interpretation w ∈ W. We then aggregate these distances to
get the level of each w in ≤E , using an aggregation function f ∈ {Σ,GMAX}. The
level for each interpretation is shown under the corresponding function symbol.

The models of the constraint µ are shown in red—∆d,f
µ (E) is then computed by

choosing the minimal elements among them, written in bold font. Notice that we
get different results, depending on the parameters chosen. For instance:

[∆dD,Σ
µ (E)] = [∆dD,GMAX

µ (E)] = {100},

which means that ∆dD,Σ
µ (E) ≡ ∆dD,GMAX

µ (E) ≡ p1 ∧ ¬p2 ∧ ¬p3. However:

[∆dH ,GMAX
µ (E)] = {001, 010},

which means that ∆dH ,GMAX
µ (E) ≡ (¬p1 ∧ ¬p2 ∧ p3) ∨ (¬p1 ∧ p2 ∧ ¬p3).

For an example in a larger alphabet, see [37], pp. 248-249.

Observation 4. Definition 15 and the examples so far have all assumed that the
knowledge bases making up a profile are all consistent. What happens if this is not
the case? Though it may be debated whether it is of practical interest to perform
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merging when some of the knowledge bases are inconsistent, an approach for doing
so has been outlined in [33].

The idea, roughly, is to introduce an extra aggregation step before computing the
distance between an interpretation and a knowledge base. If K = {ϕ1, . . . , ϕn} is a
knowledge base, all the ϕ’s are propositional formulas , d is a pseudo-distance, w is
an interpretation and g : Rn → R+ is the extra aggregation function, define d(w,K)
as:

d(w,K) = g(d(w,ϕ1), . . . , d(w,ϕn)).

It is understood that d(w,ϕ), where ϕ is a propositional formula, is defined as:

d(w,ϕ) = min{d(w,w′) | w′ ∈ [ϕ]}.

Once this is done, d(w,E) and ≤E are constructed in Definition 15. An operator
defined in this way is called a DA2 merging operator, and is denoted ∆d,f,g.6

The innovation brought by DA2 operators is that d(w,K) depends on the for-
mulas that make up K rather than the models of K, which makes it possible—as
mentioned in the beginning—to work with inconsistent knowledge bases.

The drawback is that many combinations of intuitive aggregation functions pro-
duce operators that do not satisfy all the IC postulates. As with the simpler distance
based operators, the authors of [33] find some conditions on d, f and g under which
∆d,f,g are IC merging operators.

One more thing deserves to be mentioned here. It can hardly escape notice that
merging has deep connections with revision, indeed that it tightens the revision
framework to cover interactions between knowledge bases. One way of seeing this
is via the types of assignments captured by the revision and merging functions,
respectively. Revision, by talking about faithful assignments, treats every pre-order
≤K individually: what happens in a pre-order≤K1 does not depend on what happens
in a neighbouring pre-order ≤K2 (unless K1 and K2 are logically equivalent). In
merging, however, pre-orders ≤E are not independent of pre-orders ≤E1 ,≤E2 , if E1t
E2 = E. Merging, in this sense, places stricter conditions on assignments than
revision, in order to assure that the assignments respect certain fairness conditions.

It would be natural, then, to ask if we can use revision operators to construct
merging operators. A series of nice results regarding this appear already in [35],
and they are presented below.

We know, by the Katsuno and Mendelzon representation result (Proposition 2),
that for any revision operator ◦ we can find a faithful assignment which assigns to
any knowledge baseK a pre-order ≤◦K such that [K ◦µ] = min≤◦K [µ]. The idea, then,
is to start from faithful assignments and use them to build up syncretic assignments.

6According to [33],DA stands for Distance-based Aggregation operator, and 2 refers to the number
of aggregation functions used.
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Definition 17. Take a revision operator ◦. For any knowledge base K, ≤◦K is the
pre-order assigned to K by the corresponding faithful assignment.

For any interpretationw, define the the level ofwwith respect toK, written l◦K(w),
to be the height at which w appears in ≤K . More formally, l◦K(w) is the length of the
longest chain:

w0 <K · · · <K wn,

where w0 ∈ [K] and wn = w.
If E = {K1, . . . ,Kn} is a profile and f is an aggregation function, define the level

of w with respect to E to be:

l◦E(w) = f(l◦K1
(w), . . . , l◦K2

(w)).

Define the relation ≤E as:

w1 ≤E w2 iff l◦E(w1) ≤ l◦E(w2).

Define an operator ∆◦ as:
∆◦µ(E) = min≤E [µ].

The aggregation function f can be something familiar, like the sum Σ or the
GMAX function. To use the GMAX function, the assignment is defined a bit differ-
ently but the intuition is the same: for a profile E = {K1, . . . ,Kn} and an interpre-
tation w, create a vector (lK1(w), . . . , lKn(w)) and rearrange it such that its elements
appear in descending order, from left to right. Denote the ordered vector as LE(w).
The lexicographic order of these vectors determines the order ≤E , i.e.:7

w1 ≤E w2 iff LE(w1) ≤lex LE(w2).

Definition 17 only says that we can aggregate pre-orders from faithful assignments
to get pre-orders for profiles. The question is, however, if this always results in
a syncretic assignment and, by extension, an IC merging operator. Unfortunately,
this is not the case: a merging operator defined in this way does not generally satisfy
all the IC merging postulates, in particular IC4. The following example shows this.

Example 7. Take K1 = {00},K2 = {10, 11}, and a faithful assignment that assigns
to K1 and K2 the following pre-orders:

≤K1 : 00 <K1 01 ≈K1 10 ≈K1 11 ≈K1 ,

≤K2 : 10 ≈K2 11 <K2 01 <K2 00.

Pre-orders ≤K1 and ≤K2 are clearly faithful, though it is not assumed that ≤K1 and
≤K2 were computed with any distance function.

Using Definition 17, interpretations get a level with respect to each knowledge
base, and we can merge the profile E = {K1,K2} using the sum as an aggregation
function. The results are shown in Figure 3.7. Notice that in the merged pre-order

7This is practically the same strategy as in Definition 16.
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[Ki]

{00} {10, 11} Σ

00 0 2 2
01 1 1 2
10 1 0 1
11 1 0 1

[K1]

≤K1

00(0)

01, 10, 11(1)

+
[K2]

≤K2

10, 11(0)

01(1)

00(2)

−→

≤{K1,K2}

10, 11(1)

00, 01(2)

Figure 3.7: Merging two faithful pre-orders using the sum.

≤{K1,K2} the models ofK2 are strictly lower than any of the models ofK1. This shows
that IC4 is not satisfied. The reader may convince herself of this by seeing that IC4

is not true for [µ] = {00, 10, 11}.

The problem with IC4 can be fixed by placing an additional condition on assign-
ments. First, let us extend the notion of distance between interpretations to dis-
tances between knowledge bases.

Definition 18. If ◦ is a revision operator and l◦K(w) is the level of w with respect to
some knowledge baseK as in Definition 17, then the distance between two knowledge
bases K1 and K2 is defined as:

d(K1,K2) = min{l◦K1
(w) | w ∈ [K2]}.

We are interested in knowledge bases that satisfy the following property.

Definition 19. Knowledge basesK1 andK2 are symmetric if they satisfy the follow-
ing condition:

d(K1,K2) = d(K2,K1) (symmetry)

Proposition 9 ([35]). If ◦ is a revision operator and ∆◦ is an operator defined as in
Definition 17 using either Σ or GMAX as an aggregation function, then ∆◦ is an IC
merging operator iff any two knowledge bases are symmetric.8

8Without symmetry on knowledge bases, ∆◦ satisfies all merging postulates except IC4. With
symmetry , ∆◦ defined with Σ is also a majority merging operator and ∆◦ defined with GMAX is also
an arbitration merging operator.
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Observation 5. Notice that in Example 7 symmetry does not hold for the knowledge
bases K1 and K2:

d(K1,K2) = 1,

d(K2,K1) = 2.

One more interesting thing needs to be mentioned here. Proposition 3 shows
that we can construct a revision operator ◦ from a very thin notion of distance m
between interpretations, one that satisfies onlyminimality. If we now add symmetry
on interpretations, we get symmetry for knowledge bases.

Lemma 2 ([35]). If ◦ is a revision operator, then symmetry for knowledge bases holds
if and only if ◦ is defined from a pseudo-distance.

This shows that as long as we build our faithful assignments based on pseudo-
distances we get symmetry for free. Since the familiar distances dH and dD are sym-
metric, any pre-orders got by using these distance measures can be aggregated (with
Σ or GMAX), and we get a syncretic assignment.
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CHAPTER 4
Revision in the Horn fragment

In this chapter we go over the work on revision in the Horn fragment by Delgrande
and Peppas [16, 17]. We present the main difficulties in restricting ourselves to the
Horn fragment, as well as what can be done to overcome them.

4.1 Restricting ourselves to the Horn fragment
Chapter 3 focused on revision andmerging in the general framework of propositional
logic. But for practical applications, it is often useful to limit the expressiveness of a
language. A loss in expressiveness can be mitigated by the presence of more efficient
reasoning procedures. A quick look at the success of Description Logics (formally,
fragments of First Order Logic) shows this is a strategy that can pay off handsomely.

The choice of the propositional Horn fragment is motivated by several factors.
For one thing, reasoning in the fragment can be done effectively: a notable result
[20] shows that the satisfiability of a propositional Horn formula ϕ can be decided
in linear time (linear in the number of occurrences of literals in ϕ).

Also, as is mentioned in [29], the rule-like nature of Horn formulas has a con-
ceptual appeal. One can use (first-order) Horn clauses to build up sets inductively,
using rules of the form:

even(x)→ odd(successor(x)).

even(0).

Expert knowledge is often expressed in terms of rules, and we may expect that rea-
soning procedures such as revision and merging produce results expressed in a sim-
ilar way.

From a more theoretical point of view, a Horn clause theory always has a unique
minimal model, and one can check if an atom is in the model by retracing the process
through which the model was generated. As such, Horn clauses provide the basis
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of Prolog and related declarative programming frameworks, such as Datalog and
Answer Set Programming (see also [18, 49]).

Our purpose is to characterize the class of revision operators that work in the
restricted context of Horn propositional logic. The aim is to have a set of logical
postulates and a representation result connecting them to a semantic structure.
Preferably, the theory of Horn revision does not diverge too much from the theory of
regular revision, as the same intuitions guide both inquiries. For now, let us define
a Horn revision operator as follows.

Definition 20. A Horn revision operator is a function ◦ : KH × LH → KH .
We write K ◦ µ instead of ◦(K,µ).

That is to say, a Horn revision operator maps Horn knowledge bases and Horn
formulas to Horn knowledge bases.

We will use the standardR1−R6 postulates for revision (see Section 3.2.2) to con-
strain Horn revision operators. Quick inspection shows that they make sense when
restricted to Horn knowledge bases and formulas. In consequence, we use them as
such and we do not reiterate them here. The standard notion of faithful assignment
also works when restricted to Horn knowledge bases, as it does not depend on the
logical language used.

The question is whether something like the Katsuno and Mendelzon representa-
tion result which connects the revision postulates with faithful assignments (Propo-
sition 2) still holds in the Horn fragment, and if any concrete operators exist for the
Horn fragment. This is what we will address in the following sections.

4.2 Problems
Recall that, by Proposition 1, only sets of interpretations closed under intersection
can be represented in the Horn fragment. Thus, a set like {01, 10} is not repre-
sentable by a Horn formula. In general, even if ϕ1 and ϕ2 are Horn formulas, ϕ1∨ϕ2

might not be expressible as a Horn formula. The problem this creates for belief re-
vision is that the standard model-based operators introduced in Section 3.2.4 might
produce results that are not in the fragment. This does, in fact, happen.

4.2.1 Standard operators do not work in the Horn fragment
Consider the faithful pre-order for [K] = {111} computed with the Hamming dis-
tance dH , and assume it is embedded in a faithful assignment. Example 3 in Sec-
tion 3.2.4 illustrates this pre-order. For [µ] = {000, 100, 010, 001} and the operator
corresponding to this pre-order, we get:

[K ◦ µ] = {100, 010, 001}.
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(a)

11

01, 10

00
[µ]

(b)

11

01, 10

00
[µ1]

[µ2]

Figure 4.1: Standard revision operators might not work in the Horn fragment; if we
try to repair them they might not satisfy the revision postulates.

Since [K ◦µ] is not closed under intersection, the result of revision is not in the Horn
fragment.

Or, for a simpler case, consider the two letter alphabet U = {p1, p2}, the knowl-
edge base K = {p1, p2} and the pre-order ≤K constructed using the Hamming dis-
tance (see Figure 4.1-(a)). If we revise by µ = (p1 ∧ p2) → ⊥, we have that [µ] =
{00, 01, 10} and:

min≤K [µ] = {01, 10}.

Since {01, 10} is not closed under intersection, there is no Horn formula that rep-
resents it. Though it is easy to see what the result of revision would look like in
full propositional logic (the formula (p1 ∧¬p2)∨ (¬p1 ∧ p2), or something equivalent)
there is no way to express this in the Horn fragment. The problem goes beyond dis-
tance based operators: indeed, any pre-order where there exist sets of models whose
minimal elements are not representable by Horn formulas will not work for Horn
revision (the drastic distance, however, does not suffer from this problem).

We can try to fix this by redefining how revision by µ is computed on the semantic
side: if classical revision produces a set of interpretations that is not representable
by a Horn formula, take its closure under intersection. In other words:

[K ◦ µ] := Cl∩(min≤K [µ]).

This strategy ensures that revision stays in the Horn fragment and has been pur-
sued in [12]. However, it leads to problems elsewhere.

4.2.2 Revision axioms may not be satisfied
If we take up the suggestion that we always close the set of minimal elements, we
get an operator that stays within the Horn fragment. Unfortunately, this operator
does not necessarily satisfy the revision postulates, as Examples 8, 9 show.

Example 8. Consider again the pre-order generated via Hamming distance for the
two letter alphabet and K = {p1, p2}. Take µ1 = p1 ∧ p2 → ⊥, µ2 = p1 → ⊥. The
models of µ1 and µ2 are [µ1] = {00, 01, 10} and [µ2] = {00, 01}. They are represented
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111

010, 100

001

000

011, 101

110

[µ1]

[µ2]

Figure 4.2: A faithful pre-order whose associated operator does not satisfy all the
revision postulates

in Figure 4.1-(b). The understanding is that we close any set of minimal elements
under intersection if it is not representable by a Horn formula.

However, notice that R5 does not hold here for the corresponding operator. On
the one hand, we have:

[K ◦ µ1] = Cl∩(min≤K [µ1]) = Cl∩({01, 10}) = {00, 01, 10}.
[(K ◦ µ1) ∧ µ2] = {00, 01}.

On the other hand:

[K ◦ (µ1 ∧ µ2)] = Cl∩(min≤K [µ1 ∧ µ2]) = Cl∩({01}) = {01}.

If R5 held it should be the case that [(K ◦ µ1) ∧ µ2] ⊆ [K ◦ (µ1 ∧ µ2)], which is clearly
not true. R6 does hold, though this is merely an artefact of the particular setup we
have chosen, as the following example demonstrates.

Example 9. For the three letter alphabet, take a faithful assignment that assigns
to K = {p1, p2, p3} the pre-order in Figure 4.2, and otherwise behaves as the default
assignment.

Let us test R5 and R6 with µ1 = p1 ∧ p2 → ⊥ and µ2 = (p1 → ⊥) ∧ (p2 → ⊥). We
have [K] = {111}, [µ1] = {000, 001, 010, 011, 100, 101} and [µ2] = {000, 001}. Revision
gives us:

[K ◦ µ1] = Cl∩(min≤K [µ1]) = Cl∩({010, 100}) = {000, 010, 100},
[(K ◦ µ1) ∧ µ2] = {000}.

At the same time:

[K ◦ (µ1 ∧ µ2)] = Cl∩(min≤K [µ1 ∧ µ2]) = Cl∩({001}) = {001}.
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11

00

01

10

(a) ≤1
K

11

00

10

01

(b) ≤2
K

11

00

01, 10

(c) ≤3
K

Figure 4.3: Different pre-orders can yield the same corresponding operator

Since (K◦µ1)∧µ2 is consistent, ifR5 andR6 held it should follow that [(K◦µ1)∧µ2] =
[K ◦ (µ1 ∧ µ2)], but this is clearly not the case. Neither R5 nor R6 hold here.

It seems that as long as there is no restriction on what the minimal models of a
formula can be, candidate operators either do not stay in the Horn fragment or fail
to satisfy all the revision postulates. The proposal of Delgrande and Peppas [17] is
to restrict the pre-orders.

Definition 21. A total pre-order ≤K is Horn compliant if and only if for any Horn
formula ϕ, min≤K [ϕ] is representable by a Horn formula.

We say that a faithful assignment is Horn compliant if for any knowledge base
K, the pre-order it assigns to K is Horn compliant.

The idea, now is that as long as we work with Horn compliant pre-orders the
above problems fade away: the minimal models of any Horn formula will be repre-
sentable by a Horn formula, so we do not need to take their closure to guarantee
that they are in the Horn fragment.

4.2.3 Different rankings yield the same revision operator
A related issue is that different pre-orders (even when Horn compliant) might yield
the same corresponding operator. Consider the following example.

Example 10. In the two letter alphabet, takeK = {p1, p2} and three faithful assign-
ments that assign to K the pre-orders ≤1

K ,≤2
K ,≤3

K in Figure 4.3, while otherwise
behaving as the default assignment.

It is easy to see that all of these pre-orders yield the same corresponding operator.
We just have to show that for any Horn formula µ, it is the case that:

min≤1
K

[µ] = min≤2
K

[µ] = min≤3
K

[µ].
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00, 11

10

01

(a) ≤1
K

00, 11

01

10

(b) ≤2
K

00, 11

01, 10

(c) ≤2
K

Figure 4.4: The default operator is associated to several pre-orders.

We can convince ourselves of this by inspecting the three pre-orders for different
Horn formulas µ. If [µ] contains only one element, the conclusion is immediate.
Next, if 11 ∈ [µ], then min≤i

K
[µ] = {11}, for i ∈ {1, 2, 3}. If 11 /∈ [µ] but 00 ∈ [µ], then

min≤i
K

[µ] = {00}. This exhausts all the possibilities: if 00, 11 would not be in [µ],
then [µ] would have to be {01, 10}, which is not be closed under intersection. This
would be a contradiction, since µ is assumed to be a Horn formula.

One can look at Example 10 from a different perspective: a Horn revision oper-
ator cannot distinguish between pre-orders ≤1

K ,≤2
K and ≤3

K . More to the point, it
cannot distinguish between 10 and 01 when neither is among the minimal models of
some formula ϕ.

Though this is not in itself an obstacle to having a Horn revision operator, it does
point to a potential weakness of such an operator, since it might lose some control
over what the pre-orders look like.

Observation 6. As a side-effect of this issue, consider the operator defined as:

K ◦ µ =

{
K ∧ µ, if K ∧ µ is consistent,
µ, otherwise.

In Section 3.2.4 we called this the default revision operator. Though it is a revision
operator even in the Horn case, it does not enforce the default assignment (induced
by the drastic distance) any more. To see this, take [K] = {11, 00}, and three assign-
ments that assign to K the pre-orders ≤1

K ,≤2
K ,≤3

K in Figure 4.4, while otherwise
behaving as the default assignment. Reasoning as in Example 10, we conclude that
all of these three assignments yield the same revision operator (the default one),
though only ≤K3 belongs to the default assignment.

4.2.4 The revision postulates allow undesirable structures
What makes the representation result of Katsuno and Mendelzon useful is that it
works in both directions: revision based on faithful assignments satisfies the revi-
sion postulates, and any operator satisfying the revision postulates induces some
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000

101110

011

001

010

100

111

Figure 4.5: A pseudo-preorder whose associated operator satisfies the revision pos-
tulates.

pre-order ≤K , for any K. However, this turns out not to be the case in the Horn
fragment.

Example 11. In the three letter alphabet, take K = {p1 → ⊥, p2 → ⊥, p3 → ⊥}
and an assignment that assigns to K the pseudo-preorder ≤K in Figure 4.5, while
otherwise behaving as the default assignment. If ◦ is the corresponding operator of
≤, Delgrande and Peppas show in [16, 17] that, for K fixed as above, it satisfies the
revision postulates (the reader may convince herself of this by directly checking that
the postulates are true).

Since ≤K is embedded in a faithful assignment, ◦ can be extended to arbitrary
knowledge bases. This means that we have a full-scale operator, defined on top of
a pseudo-preorder, that satisfies the revision postulates. To make matters worse,
there is no faithful assignment that produces the same revision operator.

Proposition 10 ([16, 17]). There is no pre-order≤? that has the same corresponding
operator as≤ and which does not contain a non-transitive cycle between 110, 011, 101.

Proof. Suppose there is such a pre-order ≤?. Take [µ] = {110, 011, 010}. We know
that [K ◦ µ] = {110}, because we have ≤K to tell us this. Since ≤? is equivalent to
≤K , it follows that min≤?

K
[µ] = {110}. So 110 <? 011.

By the same reasoning, we get that 011 <? 101 and 101 <? 110. This creates the
cycle.
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Non-transitive cycles are clearly a problem for Horn revision, as a representation
result in the style of Katsuno and Mendelzon (see Prop. 2) does not hold any more.
More precisely, one direction does not imply the other: doing revision in the Horn
fragment according to the revision postulates does not guarantee that there is a
ranking on possible worlds that has the desired properties.

How do we move on from here? One way is to see what sort of structure the Horn
revision postulates do enforce on the set of possible worlds. Following this thread
we would get a representation result for the Horn case, which would in all likelihood
be weaker than the Katsuno-Mendelzon one. It could be argued that this is how the
situation stands and we should leave things at that.

Another way would be to put the question differently: how would we have to
modify the revision postulates such that they force the assignment to be faithful
even in the Horn case? The answer to this question takes us in a different direction:
rather than studying the sort of semantic structure described by the standard revi-
sion postulates, we stick to one particular type of structure (faithful pre-orders) and
strengthen the postulates so as to characterize it and nothing else.

There is a philosophical reason to go along the second route: as mentioned in
Chapter 3, faithful assignments represent agents’ preferences, and the postulates
are seen as a tool for characterizing them in a logical language. Allowing the postu-
lates to range over non-faithful pre-orders would mean that we are allowing differ-
ent types of rankings. And, though it might be useful to study alternative ways of
representing the structure of an agent’s preferences, we should probably not allow
rankings that are unrealistic. In particular, transitivity seems like a core feature
of any preference ranking. Non-transitive cycles (as in Example 11) seem to violate
our usual intuitions about how people rank their choices.

4.3 Modifying the revision framework
We would like, therefore, to introduce some constraints that eliminate cycles. Del-
grande and Peppas [16, 17] have proposed adding the following postulate-schema to
the standard postulates R1 −R6:

(Acyc) If, for any n ≥ 1 and µ0, . . . , µn ∈ LH , all the following formulas
are consistent: 

K ◦ µ0 ∧ µn,
K ◦ µ1 ∧ µ0,

. . .

K ◦ µn ∧ µn−1,

then K ◦ µn ∧ µ0 is also consistent.

The rationale behind Acyc is that it renders non-transitive cycles in the assignment
harmless. To see how this is done, let us see the effect Acyc has on the pseudo-
preorder in Example 11 (see Figure 4.5).
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110 101

011

001

010

100

[µ0]

[µ2]
[µ1]

Figure 4.6: This non-transitive cycle is not possible if Acyc is true.

Take µ0 = ϕ101,110, µ1 = ϕ110,011, µ2 = ϕ011,101. Notice that:

[µ0] = {101, 110, 100},
[µ1] = {110, 011, 010},
[µ2] = {011, 101, 001}.

The part of the pre-order that is relevant here is shown in Figure 4.6. We get
that:

[K ◦ µ0 ∧ µ2] = min≤K [µ0] ∩ [µ2] = {101},
[K ◦ µ1 ∧ µ0] = {110},
[K ◦ µ2 ∧ µ1] = {011}.

This makes the antecedent of Acyc true. However, its consequent is false since
[K ◦ µ2 ∧ µ0] = ∅. So a non-transitive cycle like the one in Figures 4.5 and 4.6
would not be possible if Acyc were true.

It should be mentioned that, though a pre-order without non-transitive cycles
will satisfy Acyc, Acyc does not, in general eliminate cycles. To see this, consider the
pseudo-preorder in Figure 4.7 and its corresponding operator ◦. It turns out that ◦
also satisfies the revision postulates—not only that, but it also satisfies Acyc.

The argument that ◦, associated to the pseudo-preorder in Figure 4.7, satisfies
the revision postulates is essentially the same as for Example 11. Too see that it
also satisfies Acyc, let us focus on the cycle and take µ0 = ϕ001,100, µ1 = ϕ010,100, µ2 =
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[µ2]
[µ1]

Figure 4.7: A pseudo-preorder with a non-transitive cycle that satisfies the revision
postulates, as well as Acyc.

ϕ100,001. We get:

[K ◦ µ0 ∧ µ2] = {000},
[K ◦ µ1 ∧ µ0] = {000},
[K ◦ µ2 ∧ µ1] = {000}.

Also:
[K ◦ µ2 ∧ µ0] = {000}.

So K ◦ µ2 ∧ µ0 is consistent, and Acyc is satisfied for these particular formulas and
n = 2. It is easy to see that Acyc is also satisfied in general.

The moral is that Acyc has a subtle effect on what structures are allowed: Exam-
ple 11 was harmful because there did not exist any equivalent pre-order that did the
same job as the one with the non-transitive cycle. For the pre-order in Figure 4.7
it turns out that we can find an equivalent pre-order. Observation 7, coming later,
makes this point.

Though it eliminates potentially unwanted cycles, we have to make sure that
Acyc does not eliminate too much. Delgrande and Peppas have shown that:

Proposition 11 ([16, 17]). In the case of regular propositional logic, Acyc is logically
implied by postulates R1 −R6.
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The question is whether Acyc is enough to guarantee that Horn compliant faith-
ful assignments match with Horn revision functions. It turns out this is the case.

4.4 A representation result
Proposition 12 ([16, 17]). An operator ◦ : KH × LH → KH satisfies R1 − R6 + Acyc
if and only if there exists a Horn compliant faithful assignment mapping every Horn
knowledge baseK ∈ LH to a Horn compliant faithful pre-order ≤K such that, for any
Horn formula µ ∈ LH , ◦ is the corresponding operator for ≤K . In other words:

[K ◦ µ] = min≤[µ].

We do not give the full proof here, just sketch the general idea. For one direction,
we assume that for a Horn compliant faithful assignment and an operator ◦ defined
on top of it, ◦ satisfies the revision postulates R1 −R6 and Acyc. This is a matter of
straightforward checking.

For the other direction, the task is to define aHorn compliant faithful assignment
assuming that a Horn revision function is given. In [17], James Delgrande and
Pavlos Peppas propose a construction that proceeds in three steps, explained below
and illustrated in Example 12.

Example 12. We will show how the Delgrande and Peppas definition of a pre-order
≤K works, given a revision operator ◦ and a knowledge base K.

Let us take K = {p1 → ⊥, p2 → ⊥, p3 → ⊥}, [K] = {000}. What we need, first of
all, is to specify a revision operator ◦. How do we do that? One option would be to
give a table of the values forK ◦µ, for Horn formulas µ (modulo logical equivalence).
Since there is no reason why the reader should trust us when we say that ◦ thus
introduced is a revision operator, an additional argument would then have to be
given that ◦ satisfies the revision postulates. This would end up being a very tedious
example.

A simplermethod is to take ◦ as the corresponding operator of an already existing
pre-order ≤, for instance the one in Figure 4.8. Since ≤ is obviously faithful, and at
this point it has already been argued that one direction of Proposition 12 holds, we
can safely assert that ◦ satisfies the revision postulates.

Now that we have a revision operator ◦ (given by ≤ in Figure 4.8) and we know
how it acts on K, let us use the construction suggested by Delgrande and Peppas
[17] to obtain a Horn compliant faithful pre-order ≤K .

Step 1. We start by defining a relation≤′K on interpretations, in the following way.
For any w1, w2 ∈ W:

w1 ≤′K w2 iff w1 ∈ [K ◦ ϕw1,w2 ].

As a reminder, ϕw1,w2 is a Horn formula such that [ϕw1,w2 ] = Cl∩({w1, w2}).
It is easy to see that ≤′K is reflexive, though in general it is neither transitive

nor total. For instance in our running example, by bootstrapping on ≤ we get that
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Figure 4.8: A pre-order ≤ which we can use to define a revision operator.
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100 010 001
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Figure 4.9: Step 1. ≤′K
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100 010 001

110 101 011

111

Figure 4.10: Step 2. ≤∗K

000

100, 010, 001

110, 101, 011

111 S0

S1

S2

S3

Figure 4.11: Step 3. ≤K

[K ◦ ϕ100,010] = min≤{000, 100, 010} = {000}. Thus, 000 <′K 100 and 000 <′K 010, but
100 and 010 are not in ≤′K . The full graphic of ≤′K is shown in Figure 4.9.

Step 2. We take the transitive closure of ≤′K , and denote it by ≤∗K . By design, ≤∗K
is a pre-order on interpretations, but it is still not total; ≤∗K for our running example
is shown in Figure 4.10.
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Step 3. We partition the set of interpretations in a series of levels, defined on the
basis of ≤∗K : the first level is made up of the maximal elements of ≤∗K , and denoted
S0. After this is done, we put S0 aside. Then we take the maximal elements of the
remaining interpretations and put them in level S1, and so on. Since there is a finite
number of interpretations, this process eventually reaches an end.

The order ≤K is then defined by taking all the elements in a level Si to be equiv-
alent, and strictly smaller than elements in all the preceding levels Sj , j < i. In our
running example, we get:

000 <K 100 ≈K 010 ≈K 001 <K 110 ≈K . . . .

The full picture of ≤K together with the levels is shown in Figure 4.11. Delgrande
and Peppas [17] show that all the above notions are well-defined: in particular, any
subset of elements in≤∗K always hasmaximal elements, so the definition of the levels
makes sense; they also show, through a number of lemmas, that ≤K is the pre-order
we were looking for.

Observation 7. We have seen that Horn revision operators that give rise to non-
transitive cycles like the one in Figure 4.5 are made impossible by adding the pos-
tulate Acyc. What made that example particularly problematic was that there was
no equivalent pre-order (Proposition 10). What about, then, the pseudo-preorder in
Figure 4.7? It also contains a non-transitive cycle, and it is not rendered impossible
by Acyc.

The key thing, in the case of Figure 4.7, is that in this case there exists an equiv-
alent pre-order (i.e., it has the same associated revision operator and is transitive).
We can find an equivalent pre-order by following through the construction suggested
by Delgrande and Peppas and illustrated in the previous example: it turns out that
we obtain the same pre-order as that in Figure 4.11.

In support of this claim, it is enough to look at the interpretations involved in
the cycle, two at a time. Notice that [K ◦ϕ010,100] = {000}. This will mean that in the
initial step 1, we have 000 <′K 010, 000 <′K 100 and 010, 100 are unconnected by ≤′K .
The same goes for the pairs 100, 001 and 001, 010. For the remaining interpretations,
notice that they are ranked in the same way as in Figure 4.8. All this is to say that
≤′K will end up looking exactly as in the example we just studied, with the rest of
the construction following suit.

In fact, the proof of Proposition 12 that we have just sketched offers a constructive
method for building a Horn compliant faithful pre-order from a revision operator
that also satisfies Acyc.

A remaining question is whether we can point to any specific Horn revision op-
erators. By Proposition 12, it is sufficient to find a Horn compliant syncretic assign-
ment that satisfies Acyc. In [17], Delgrande and Peppas given an example of such
an assignment. The details are given below.
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001, 110

000

010, 100

011, 101

111

[K]

Figure 4.12: Definition 21 gives us this Horn compliant pre-order for [K] =
{001, 110}.

Definition 22. If K is a knowledge base and w1, w2 are interpretations, define ≤K
as:

w1 ≤K w2 iff either w1 ∈ [K], or w1, w2 /∈ [K] and |w1| ≤ |w2|.

The point of this definition is that it always places w1 ∩ w2 below w1 and w2 in
a pre-order, and this is sufficient to ensure Horn compliance. As an example, take
[K] = {001, 110}. By Definition 21, ≤K will look as in Figure 4.12.
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CHAPTER 5
Merging in the Horn fragment:

challenges and difficulties

In this chapter we present the main difficulties related to Horn merging. Ideas for
how to address them are left for the next chapter. Let us start by defining Horn
merging operators.

Definition 23. A Horn merging operator is a function ∆: EH × LH → KH .
We write ∆µ(E) instead of ∆(E,µ).

In other words, a Hornmerging operatormaps aHorn profile and aHorn formula
(the constraint) to a Horn knowledge base.

The problem of Horn merging is much the same as for classical merging: we
want to characterize the class of Horn merging operators through a representation
result linking a set of logical constraints to a semantic structure. We will use the
IC-merging postulates, restricted to the Horn fragment, as the constraints for our
Horn merging operator. Quick inspection shows that none of the IC postulates is
problematic in the Horn case.

Of the two additional postulates that were presented in Section 3.4.2, Maj can
also be used without modification. However, the arbitration postulate Arb does not
make sense in the Horn fragment, since it uses disjunction. Disjunction is not de-
fined in the Horn fragment, and neither is it always expressible in terms of other
notions. Hence, in order to make Arb functional in the Horn case we would have to
replace it with a different postulate, one that preserves the original intuition.

Much as with revision, restricting our merging operators turns out not to be
straightforward: we lose all the standard operators, and we open the door to a slew
of unintended structures to take shelter under the standard postulates. Correct-
ing this will require patching up both the notion of a syncretic assignment and the
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postulates we use to model them. Some of the problems that arise for merging are
inherited from revision (in a sense to be made more precise below), and for those we
will adapt the solutions suggested by Delgrande and Peppas [17] in the context of
Horn revision. Other problems, however, turn out to be specific to merging. We will
look at these in turn.

5.1 Problems inherited from revision
It was remarked in Section 3.4.2 that a merging operator is also a revision operator.
When we identify E with

∧
E, postulates IC0 − IC3 + IC7 − IC8 are equivalent

to postulates R1 − R6 for revision. What’s more, properties kp1 − kp3 of syncretic
assignments are exactly the properties of faithful assignments. That is to say, on
the semantic side a merging operator has all the properties of a revision operator.

The analogy goes further. Though wemust formally distinguish between profiles
and knowledge bases, on the semantic side this distinction is often blurred. For the
specific merging operators we have considered, the pre-order for a profile E is often
computed by aggregating the pre-order for the knowledge bases in K, using some
familiar aggregation function and notion of distance between interpretations. Now,
the formal requirements fall on ≤E , not on the pre-orders for particular knowledge
bases. However, consider a profile E that contains a single knowledge base, E =
{K}. In this case any standard aggregation function guarantees that ≤E is exactly
≤K , since by Definition 14 the aggregation function satisfies identity—or, to put it
differently, aggregating ≤K alone outputs ≤.

The point here is that if a syncretic assignment has pre-orders that are not Horn
compliant this will reflect on the merging operator, which—for this reason—will
not stay in the Horn fragment. Remember, this was a prominent issue with Horn
revision (see Section 4.2.1). For instance, the Hamming distance is off the table from
the start, at least in combination with any of the usual aggregation functions. As
was already remarked in Section 4.2.1, pre-orders built using the Hamming distance
dH are not always Horn compliant: if [K] = {111} and E = {K}, then ≤E ends up
equating 100, 010 and 001, while placing 000 above them. That is to say, if we take a
profile E = {K}, then any aggregation function will assign to E the same pre-order
as the one for K. So for a Horn formula [µ] = {000, 100, 010, 001}, we get:

min≤E [µ] = {100, 010, 001},

which is not closed under intersection.
Let us define a Horn compliant assignment for profiles. It is clear what is meant

by this, but it does no harm to be precise.

Definition 24. An assignment for profiles is Horn compliant if and only if for any
profile E, the pre-order it assigns to E is Horn compliant.

It is apparent, then, that the Hamming distance dH in combination with stan-
dard aggregation functions does not produce Horn compliant assignments.
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A similar thing applies for non-standard structures, like the non-transitive pre-
orders of Section 4.2.4. The point is, if a pseudo-preorder ≤K satisfies the revision
postulates, then the pre-order ≤E where E = {K} will turn out to satisfy the cor-
responding merging postulates. That is to say, non-transitive cycles need to be en-
forced with a version of Acyc adapted to the merging scenario:

(Acyc) If for every n ≥ 1, all of the following are consistent:
∆µ0(E) ∧ µn,
∆µ1(E) ∧ µ0,

. . .

∆µn(E) ∧ µn−1,

then ∆µn(E) ∧ µ0 is consistent.

Acyc makes a difference only in the Horn fragment. In classical propositional logic,
it follows from postulates IC0 − IC3 + IC7 − IC8.

Proposition 13. Acyc follows from postulates IC0 − IC3 + IC7 − IC8 in full propo-
sitional logic.

Proof. We can show this by induction. For n = 1, Acyc follows immediately. Let us
suppose now that if Acyc is true for every i ≤ n, then it is also true for n+ 1.

Since ∆µ1(E)∧ µ0 is consistent, there exists an interpretation w ∈ [∆µ1(E)∧ µ0].
We know that (µ1 ∨ µ2) ∧ µ1 ≡ µ1, so ∆(µ1∨µ2)∧µ1(E) ≡ ∆µ1(E). We infer that w ∈
[∆(µ1∨µ2)∧µ1(E)]. Now, applying IC7, we get that [∆(µ1∨µ2)∧µ1(E)] ⊆ [∆µ1∨µ2(E)∧µ1],
which implies that w ∈ [∆µ1∨µ2(E)]. Since we also know that w ∈ [µ0], it follows that
∆µ1∨µ2(E) ∧ µ0 is consistent.

Similarly, we get that ∆µ3(E) ∧ (µ1 ∨ µ2) is consistent. Applying the induction
hypothesis, to µ0, µ1 ∨ µ2, µ3, . . . , µn+1, we get the conclusion.

These problems, inherited from revision, can be fixed by adapting the ideas of
Delgrande and Peppas in [17]. Let us look now at problems specific to merging.

5.2 Standard operators do not stay in the Horn
fragment

We cannot, in general, rely on the standard operators to work in the Horn case. Let
us look at a couple of examples.

We have eliminated assignments built with the Hamming distance dH on the
ground that they are not Horn compliant. The drastic distance dD fares no better,
though for a different reason: even though a pre-order ≤K built with dD is Horn
compliant, aggregating several of these pre-order does not always produce a Horn
compliant pre-order. Thus, in this case, we identify ≤E with ≤K . Consider knowl-
edge bases [K1] = {01}, [K2] = {10} and the profile E = {K1,K2}. Table 5.1 shows
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[Ki]

{01} {10} Σ GMAX

00 1 1 2 (1,1)
01 0 1 1 (1,0)
10 1 0 1 (1,0)
11 1 1 2 (1,1)

Table 5.1: ≤E aggregated using Σ and GMAX, under levels assigned with the drastic
distance dD.

[Ki]

{000} {111} Σ GMAX

000 0 1 1 (1,0)
001 1 2 3 (2,1)
010 1 2 3 (2,1)
100 1 2 3 (2,1)
011 2 3 5 (3,2)
101 2 3 5 (3,2)
110 2 3 5 (3,2)
111 3 0 3 (3,0)

Table 5.2: ≤E aggregated using Σ and GMAX, under levels assigned by ◦DP .

the pre-order ≤E got using Σ and GMAX as aggregation functions. Notice, under
both aggregation functions the pre-order that results for ≤E is not Horn compliant:
in both cases, 01 ≈E 10 <E 00, which means that the set of minimal elements of
[µ] = {00, 01, 10} is not representable by a Horn formula.

5.3 Postulates may not be satisfied
What about the assignment that Delgrande and Peppas define in [17] for their Horn
revision operator (see Definition 22)? We already know, from Definition 17, that we
can aggregate pre-orders from a faithful assignment. We also know that this assign-
ment is Horn compliant. As a reminder, this assignment orders interpretations w1

and w2 according to the number of bits in them equal to 1.
Though Horn compliance is guaranteed, problems arise when we aggregate pre-

orders, both with Σ and GMAX. As an example, take [K1] = {000}, [K2] = {111} and
the profile E = {K1,K2}. The pre-orders ≤K1 and ≤K2 are used to assign levels to
each interpretationw, whichwe then proceed to aggregate using the usual functions.
Table 5.2 shows the results. Notice that both aggregation functions produce the
same pre-order ≤E , and that (in both cases) 000 <E 111. Off the bat, this means
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[K1]

≤K1

01(0)

00(1)

11(2)

10(4)

+

[K2]

≤K2

10(0)

00, 11(1)

01(3)

−→

≤{K1,K2}

00(2)

01, 11(3)

10(4)

Figure 5.1: ≤{K1,K2} satisfies the merging axioms, but not kp4

that as an assignment for profiles, this does not respect kp4 and is therefore not
syncretic. As a reminder, in the setting of regular propositional logic, kp4 was used
to ensure that the merging operator satisfies postulate IC4. And, though it is not
clear at this point that there is a correspondence between merging operators and
syncretic assignments in the Horn case, our fears turn out to be true.

Supposing that a merging operator is defined in the usual manner, as [∆µ(E)] =
min≤E [µ], for a Horn formula µ and a Horn profile E, IC4 is not satisfied in this
assignment. To see this, consider a Horn formula µ such that [µ] = {000, 111}. Ob-
viously, K1 |= µ and K2 |= µ. But we have [∆µ({K1,K2}) ∧ K1] = {000}, whereas
[∆µ({K1,K2}) ∧K2] = ∅.

5.4 Undesirable structures
We will show that there exist assignments that are not syncretic, yet satisfy the
merging postulates. It turns out that the merging postulates may be satisfied, even
though properties kp4 − kp6 are individually violated. We show this with counter-
examples pertaining to each of the properties.

5.4.1 Property kp4

In Example 13, we consider an assignment where the merging postulates are sat-
isfied, yet property kp4 is false. As a reminder, kp4 says that for any w1 ∈ [K1]
there is w2 ∈ [K2] such that w2 ≤{K1,K2} w1. The postulate we have to look out
for is IC4, which says that if K1 and K2 are consistent and K1 |= µ, K2 |= µ, then
∆µ({K1,K2}) ∧K1 is consistent if and only if ∆µ({K1,K2}) ∧K2 is consistent.

Example 13. Consider belief bases K1,K2 such that [K1] = {01}, [K2] = {10}, and
an assignment that works as in Figure 5.1, when restricted to K1 and K2.

Figure 5.1 shows the level of each interpretation with respect to the respective
knowledge base in parentheses, and the pre-orders that are thus formed. It is worth
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noting, ≤K1 and ≤K2 are not generated using any familiar notion of distance—the
levels were assigned by hand. However, merging of ≤K1 and ≤K2 to get ≤{K1,K2}
is done through the Σ aggregation function (i.e., by adding up the levels of each
interpretation).

A (Horn) merging operator ∆ is defined on top of this assignment in the usual
way, by taking [∆µ(E)] = min≤E [µ], for any µ ∈ LH . It makes sense to do this, as we
argue below.

Proposition 14. There exists a Horn merging operator ∆ that behaves as in Figure
5.1 with respect to K1, K2 and {K1,K2}.

Proof. The full assignment (of which Figure 5.1 is only a fragment) is given in Sec-
tion 7.4, and there it becomes clearer that one can define a merging operator on top
of it. In this section let us concentrate on ≤K1 , ≤K2 and ≤{K1,K2}.

Direct inspection shows that ≤K1 , ≤K2 and ≤{K1,K2} are faithful pre-orders and
that they are Horn compliant. This alone makes it possible to associate with each of
the profiles {K1}, {K2}, {K1,K2} an operator ∆, defined as [∆µ(E)] = min≤E [µ], if E
is one of these three profiles and µ is aHorn formula. By theKatsuno andMendelzon
representation result (see Proposition 2), ∆ satisfies Postulates IC0−IC3+IC7−IC8,
since these are essentially the postulates for revision.

Because we aggregate≤K1 and≤K2 with Σ, kp5−kp6 are also satisfied. It is easy
to see why this holds, as kp5 and kp6 reduce to a couple of inequalities between pos-
itive integers. This guarantees that IC5 − IC6 are also satisfied, since they depend
only on kp5 and kp6.

The only postulate left to be checked is IC4. Even here, the only problematic case
concerns the models of K1 and K2 in ≤{K1,K2}. Take, then, a Horn formula µ such
that [µ] = Cl∩([K1] ∪ [K2]) = {00, 01, 10}. Obviously, K1 � µ and K2 � µ, so we are
in the range of application of IC4 (in fact, this is exactly the kind of situation IC4 is
employed for).

We have that [∆µ({K1,K2})] = {00}, and

[∆µ({K1,K2}) ∧K1] = [∆µ({K1,K2}) ∧K2] = ∅,

so IC4 is satisfied for this particular µ.

At the same time, though, kp4 is not true for this assignment, because 01 <{K1,K2}
10.

Could it be the case, however, that there is an alternative pre-order where kp4 is
satisfied, and which yields the same operator as ≤{K1,K2}?

Proposition 15. There is no pre-order satisfying kp4 which yields the same operator
as ≤{K1,K2}.

Proof. Suppose there is a pre-order≤?{K1,K2} where kp4 is satisfied, and which yields
the same merging operator as ≤{K1,K2}.
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If ≤?{K1,K2} satisfies kp4, then it should be the case that 10 ≤?{K1,K2} 01. However,
we know that:

[∆ϕ10,11({K1,K2})] = {11},
[∆ϕ01,11({K1,K2})] = {01, 11}.

This implies that 01 ≈?{K1,K2} 11 <?{K1,K2} 10, which creates a contradiction.

Proposition 15 shows that there is no way of emulating the same merging oper-
ator while making kp4 true.

5.4.2 Properties kp5 and kp6

For full propositional logic postulates IC5 and IC6 make sure that an assignment
corresponding to a merging operator satisfies properties kp5 and kp6, respectively.
In this subsection we make the case that this becomes problematic in the Horn case:
even though there might exist an assignment that satisfies all the merging postu-
lates, the examples show it is doubtful whether it has to also satisfy kp5 and/or kp6.
We remind the reader of postulates IC5 − IC6 and properties kp5 − kp6:

(IC5) ∆µ(E1) ∧∆µ(E2) |= ∆µ(E1 t E2);
(IC6) If∆µ(E1)∧∆µ(E2) is consistent, then∆µ(E1tE2) |= ∆µ(E1)∧∆µ(E2);

(kp5) if
{
w1 ≤E1 w2,

w1 ≤E2 w2,
then w1 ≤E1tE2 w2;

(kp6) if
{
w1 ≤E1 w2,

w1 <E2 w2,
then w1 <E1tE2 w2.

The following examples show how IC5 − IC6 can fail to enforce kp5 − kp6 in the
case of Horn logic. The first one targets property kp5.

Example 14. Assume there exists a faithful assignment which for two profiles E1

and E2 behaves as in Figure 5.2 with respect to interpretations 000, 010, 100 and
110, and is otherwise Horn compliant and syncretic.

Notice that kp5 does not hold in this setup: we have 010 ≈E1 100, 010 ≈E2 100,
but 010 <E1tE2 100. This raises the question of whether IC5 could be satisfied for a
merging operator defined on top of this assignment.

First of all, let us show that under our assumptions such an operator could ex-
ist. We have said that the assignment is Horn compliant and syncretic everywhere,
except on the fragment shown in Figure 5.2. It turns out the assignment is Horn
compliant here as well: we have that min≤E{000, 010, 100} = {000} for any pre-order
≤E∈ {≤E1 ,≤E2 ,≤E1tE2}. Any other subset of interpretations is linearly ordered,
hence its set of minimal elements is representable by a Horn formula.
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≤E1

000

010, 100

110

+

≤E2

110

000

010, 100

−→

≤E1tE2

000

010

110

100

Figure 5.2: Counter-example for kp5.

This implies that the assignment is Horn compliant everywhere. It makes sense,
then, to define a Horn operator ∆: EH × LH → KH such that [∆µ(E)] = min≤E [µ],
for any Horn formula µ and Horn profile E. We want to claim that ∆ satisfies all
the Horn merging postulates. Indeed, this is true anywhere ∆ is under-girded by
a Horn compliant syncretic assignment, which—we have assumed—is true every-
where except in Figure 5.2. All we are left to check is Figure 5.2.

Since the assignment is faithful, we can assert, by the left-to-right direction of
the Delgrande and Peppas representation result for Horn revision (Proposition 12),
that the postulates pertaining to Horn revision (IC0 − IC3 + IC7 − IC8 + Acyc) are
true. Since the assignment is, by assumption, syncretic everywhere except the part
displayed in Figure 5.2, we can also assert that IC4 is satisfied.

All that remain are postulates IC5 − IC6 and, to cut the suspense, the only case
that could be problematic is the one posed by the interpretations for which kp5 does
not hold, which are interpretations 010 and 100.

Notice, however, that there is no Horn formula that represents exactly the set
{010, 100}. The best we can do is [ϕ010,100] = {000, 010, 100}, and in this case we have
that ∆ϕ010,100(E1) ∧∆ϕ010,100(E2) is consistent, and:

[∆ϕ010,100(E1) ∧∆ϕ010,100(E2)] = [∆ϕ010,100(E1 t E2)] = {000}.

We have just shown that for [µ] = {000, 100, 010}, IC5 and IC6 are true. It is trivial
to show that IC5 − IC6 are also satisfied for any other formulas whose models are
among the featured interpretations.

It is perhaps surprising to see that IC5 can be satisfied in an assignment where
kp5 does not hold, but closer thought shows this is to be expected: since in the Horn
fragment we cannot capture the set {100, 010} with a formula, it becomes harder to
control the order in which 100 and 010 appear. Without any additional constraints
on ∆, one cannot prevent it from varying the order of 100 and 010 in ways that
directly contradict kp5.
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≤E1

011

000

010, 100

110

+

≤E2

110

000

010

011

100

−→

≤E1tE2

011

000

100

110

010

Figure 5.3: Counter-example 1 for kp6.

This might not be a problem if there existed an equivalent assignment described
by ∆, where kp5 holds: in our case, it would mean that there exists a pre-order
≤?E1tE2

such that 100 ≈?E1tE2
010. However, as the following proposition shows, this

is not possible.

Proposition 16. There is noHorn compliant syncretic assignment based on the oper-
ator ∆ from Example 14 that assigns to E1tE2 a pre-order ≤?E1tE2

where 100 ≈?E1tE2

010.

Proof. Suppose there is such an assignment, and keep in mind that (by assumption)
it is described by the same operator ∆ that describes Figure 5.2.

Looking at ≤E1tE2 , we get that:

[∆ϕ100,110(E1 t E2)] = {110},
[∆ϕ110,010(E1 t E2)] = {010}.

This leads us to conclude that 010 <?E1tE2
110 <?E1tE2

100, and by transitivity
010 <?E1tE2

100. This contradicts the assumption that 100 ≈?E1tE2
010.

Example 14 will serve as a template for subsequent ones showing the different
ways in which postulates IC5 − IC6 can fail to enforce properties kp5 − kp6 of syn-
cretic assignments. The following examples are directed at kp6, and the reasoning
is analogous to Example 14. Hence we skip the ceremony and only point out how
IC6 is true, even though kp6 for the underlying assignment is not.

Example 15. Assume there exists an assignment which behaves locally as in Figure
5.3 and is syncretic otherwise. Notice that 010 ≈E1 100 and 010 <E2 100, so kp6 would
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≤E1

000

010, 100

110

+

≤E2

110

100

000, 010

−→

≤E1tE2

000

010

110

100

Figure 5.4: Counter-example 2 for kp6.

require that 010 <E1tE2 100. Instead, we have 100 <E1tE2 010. At the same time,
∆ϕ010,100(E1) ∧∆ϕ010,100(E2) is consistent, and:

[∆ϕ010,100(E1) ∧∆ϕ010,100(E2)] = [∆ϕ010,100(E1 t E2)] = {000}.

Could we ‘fix’ the assignment in Figure 5.3 by putting 010 <E1tE2 100, so that
kp6 holds? The answer is no.

Proposition 17. There is noHorn compliant syncretic assignment based on the same
operator as that in Figure 5.3 which assigns to E1 t E2 a pre-order ≤?E1tE2

where
010 <?E1tE2

100.

Proof. We already have:

[∆ϕ010,110(E1 t E2)] = {110},
[∆ϕ110,100(E1 t E2)] = {100}.

So 100 <?E1tE2
110 <?E1tE2

010, and by transitivity 100 <?E1tE2
010. So it cannot be

the case that 010 ≈?E1tE2
100.

For similar reasons, we cannot fix the assignment by putting 100 <E2 010. This
shows that if a Horn merging operator ∆ behaves as in Figure 5.3 there is no escap-
ing the fact that kp6 does not hold in the assignment ∆ describes.

Let us now look at another type of counter-example for kp6.

Example 16. Assume there exists an assignment which behaves locally as in Figure
5.4 and is syncretic otherwise. Notice that 100 ≈E1 010 and 100 <E2 010, so kp6 would
require that 100 <E1tE2 010. Instead, we have 010 <E1tE2 100. At the same time, we
have that:

[∆ϕ010,100(E1) ∧∆ϕ010,100(E2)] = {000} ∩ {100} = ∅,
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Thus, ∆ϕ010,100(E1) ∧∆ϕ010,100(E2) is inconsistent and IC5 − IC6 are satisfied (IC6 is
trivially satisfied, since the condition for its application does not apply). As before,
this cannot be fixed by finding an equivalent pre-order ≤E1tE2 where 100 is placed
strictly lower than 010 (the argument is the same as for Example 14).

5.4.3 Discussion
In the regular case, a faithful assignment (that satisfieskp1 − kp3) is coerced tp sat-
isfy kp4 − kp6 by postulates IC4 − IC6. This is achieved because we can apply IC4

to the formula [µ] = [K1] ∪ [K2] and IC5 − IC6 to [µ] = [ϕw1,w2 ], for any two inter-
pretations w1, w2. The postulates thus control which interpretations can appear in
min≤E [µ], for a Horn profile E. However, in the Horn case we have less control on
what can appear in min≤E [µ], especially if [µ] = {w1, w2, w1 ∩ w2}.

With respect to kp5 − kp6, problematic cases could appear for two reasons. On
the one hand we can have:

∆µ(E1) ∧∆µ(E2) is inconsistent,

and µ is the formula characterizing the interpretations that contradict kp5 (or kp6).
In this case IC5 is trivially true, and IC6 just fails to apply. Hence, if there are
problematic cases where this is the case, axioms IC5, IC6 simply are of no use.

The other case is where:

∆µ(E1) ∧∆µ(E2) is consistent, and
∆µ(E1) ∧∆µ(E2) ≡ ∆µ(E1 t E2).

Such a situation, if possible, would show that IC5, IC6 can apply meaningfully,
but fail to detect problematic cases.

It is apparent by now that the ‘extra’ interpretations 011 and 110 appear in these
examples as wedges between interpretations, to guarantee that their order cannot
be switched without changing the operator on which it is based: for instance, the
presence of 110 between 010 and 100 in ≤E1tE2 (Example 14) forces any Horn op-
erator modelling this arrangement to replicate it as such and, implicitly, place 100
strictly lower than 010. This occurs in a context where we cannot say anything about
the pair {010, 100} directly, as it is not representable by a Horn formula.

It does, however, suggest the possibility that if we could somehow guarantee that
such wedges do not exist, then we could rearrange 100 and 010 in ways that conform
to kp5 and/or kp6. We will be exploring this possibility in the next chapter.
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CHAPTER 6
Merging in the Horn fragment:

a representation result

In this chapter we explore the correspondence between syncretic assignments and
Horn merging operators. As we have seen from the previous chapter, the standard
framework for merging does not work in the Horn case. We explore viable solutions
by adapting the Delgrande and Peppas [17] work for Horn revision, and extending
it to Horn merging.

Section 6.1 presents one half of a representation theorem: it shows that one can
define a Horn merging operator that satisfies IC0 − IC8 + Acyc on top of a syn-
cretic assignment, if the assignment satisfies the additional condition of Horn com-
pliance. The following sections tackle the reverse problem: what conditions does a
Hornmerging operator ∆ need to satisfy in order to describe a syncretic assignment?

6.1 From assignments to operators
In this section we present a first half of a representation result, which takes us from
horn compliant syncretic assignments to Horn merging operators. As a reminder, a
pre-order ≤ on interpretations is Horn compliant if for any Horn formula µ, the set
min≤[µ] is representable by a Horn formula (see Definition 21).

Theorem 1. If there exists a Horn compliant syncretic assignment mapping each
profile E to a total pre-order ≤E , then an operator ∆: EH × LH → KH defined as:

[∆µ(E)] = min≤E [µ],

satisfies postulates IC0 − IC8 +Acyc.

Observation 8. Note that under the condition of Horn compliance,min≤E [µ] is rep-
resentable in the Horn fragment, for any Horn formula µ. This makes the definition
formally correct, since it ensures that the result of merging is in the Horn fragment.
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Proof. Assume that there exists a Horn compliant syncretic assignment mapping
each profile E to a total pre-order ≤E , and define the operator ∆: EH ×LH → KH as:

[∆µ(E)] = min≤E [µ],

Let us take each of the postulates IC1−IC8+Acyc in turn and show they are satisfied.

(IC0) ∆µ(E) |= µ.

This is equivalent tomin≤E [µ] ⊆ [µ], which holds in virtue of how the set of minimal
elements is defined (see Section 2.3).

(IC1) If µ is consistent, then ∆µ(E) is consistent.

Suppose, on the contrary, that µ is consistent and∆µ(E) is inconsistent. Then [µ] 6= ∅
and min≤E [µ] = ∅. Take, now, w0 ∈ [µ]. Since min≤E [µ] = ∅, w0 cannot be a minimal
model of µ. Hence there exists w1 ∈ [µ] such that w1 <E w0.

By the same reasoning w1 is not minimal, so there exists w2 ∈ [µ] such that
w2 <E w1. Iterating this process, we can generate a sequence w0, w1, . . . , wn, . . . of
models of µ, such that:

· · · <E wn <E · · · ≤E w1 <E w0.

Since [µ] is finite, some element wi in this chain must appear more than once, and
we get:

wi <E wi+k <E · · · <E wi+1 <E wi.

By transitivity we get that wi ≤E wi+1 <E wi, which is a contradiction.

(IC2) If
∧
E is consistent with µ, then ∆µ(E) ≡

∧
E ∧ µ.

As a first thing to keep in mind we have, by assumption, that [E] ∩ [µ] 6= ∅. This
tells us that there exists w0 ∈ [E] ∩ [µ] and, consequently, that [µ] 6= ∅. By IC1, it
follows that min≤E [µ] 6= ∅. Now, let us show that min≤E [µ] = [E] ∩ [µ] by double
inclusion.

First, take w1 ∈ min≤E [µ]. It is immediate that w1 ∈ [µ]. Suppose, however,
that w1 /∈ [E]. Consider the w0 from above: since w0 ∈ [E] and the assignment is
syncretic, we have (by kp2) that w0 <E w1. At the same time, since w0, w1 ∈ [µ] and,
moreover, w1 ∈ min≤E [µ], we get that w1 ≤E w0. This leads to a contradiction. So
w1 ∈ [E], and therefore min≤E [µ] ⊆ [E] ∩ [µ].

For the reverse inclusion, take w1 ∈ [E] ∩ [µ] and suppose w1 /∈ min≤E [µ]. Since
min≤E [µ] 6= ∅, there exists w2 ∈ min≤E [µ]. In virtue of this we get that w2 <E w1.
But we also have that w1 ∈ [E], and by kp1 and kp2, w1 ≤E w2. This leads to a
contradiction, so w1 ∈ min≤E [µ] and therefore [E]∩ [µ] ⊆ min≤E [µ], which concludes
the proof.
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(IC3) If E1 ≡ E2 and µ1 ≡ µ2, then ∆µ1(E1) ≡ ∆µ2(E2).

From E1 ≡ E2 and kp3 we have that ≤E1=≤E2 . Since µ1 ≡ µ2, we get that [µ1] = [µ2].
Putting these two results together, we have thatmin≤E1

[µ1] = min≤E2
[µ2], and hence

∆µ1(E1) ≡ ∆µ2(E2).

(IC4) If K1 |= µ and K2 |= µ, then ∆µ({K1,K2}) ∧ K1 is consistent iff
∆µ({K1,K2}) ∧K2 is consistent.

TakeK1,K2 and µ such thatK1 |= µ,K2 |= µ, and supposemin≤{K1,K2}
[µ]∩ [K1] 6= ∅.

Take w1 ∈ min≤{K1,K2}
[µ] ∩ [K1]. Then w1 ∈ [K1], and by kp4 there exists w2 ∈ [K2]

such that w2 ≤{K1,K2} w1. Because [K2] ⊆ [µ], it also follows that w2 ∈ [µ].
Putting this together with the fact that w1 ∈ min≤{K1,K2}

[µ], we get that w2 ∈
min≤{K1,K2}

[µ] and hence (because w2 ∈ [K2]), w2 ∈ min≤{K1,K2}
[µ]∩ [K2]. This shows

that ∆µ({K1,K2}) ∧K2 is consistent. The converse is completely analogous.

(IC5) ∆µ(E1) ∧∆µ(E2) |= ∆µ(E1 t E2).

If min≤E1
[µ] ∩ min≤E2

[µ] = ∅, the conclusion is immediate. Otherwise, take w0 ∈
min≤E1

[µ] ∩min≤E2
[µ]. We want to show that w0 ∈ min≤E1tE2

[µ].
Take any w ∈ [µ] and suppose w ≤E1tE2 w0. We have that w0 ≤E1 w, and w0 ≤E2

w, hence (by kp5), w0 ≤E1tE2 w. This shows that w0 ∈ min≤E1tE2
[µ].

(IC6) If∆µ(E1)∧∆µ(E2) is consistent, then∆µ(E1tE2) |= ∆µ(E1)∧∆µ(E2).

From the fact that ∆µ(E1) ∧∆µ(E2) is consistent we infer that:

min≤E1
[µ] ∩minE2 [µ] 6= ∅,

so there exists w0 ∈ min≤E1
[µ] ∩minE2 [µ]. This shows that w0 ∈ [µ] and [µ] 6= ∅, so

(by IC1) min≤E1tE2
[µ] 6= ∅.

Take, now, w ∈ min≤E1tE2
[µ] and suppose w /∈ min≤E1

[µ] ∩ min≤E1
[µ]. Then,

either w /∈ min≤E1
[µ] or w /∈ min≤E2

[µ].
If w /∈ min≤E1

[µ], recall the w0 from above. We get that w0 <E1 w and w0 ≤E2 w.
By kp6, we have w0 <E1tE2 w. But at the same time, since w ∈ min≤E1tE2

[µ], we
have that w ≤E1tE2 w0. Together, these conclusions lead to a contradiction.

The case w /∈ min≤E2
[µ] is completely analogous and also also leads to a contra-

diction. So the original assumption must be false. In other words, w ∈ min≤E1
[µ] ∩

min≤E2
[µ], and so min≤E1tE2

[µ] ⊆ min≤E1
[µ] ∩min≤E2

[µ].

(IC7) ∆µ1(E) ∧ µ2 |= ∆µ1∧µ2(E).

IC7 is equivalent to min≤E [µ1] ∩ [µ2] ⊆ min≤E [µ1 ∧ µ2]. The case when min≤E [µ1] ∩
[µ2] = ∅ is immediate, hence assume min≤E [µ1] ∩ [µ2] 6= ∅ and take w ∈ min≤E [µ1] ∩
[µ2]. Observe that this implies w ∈ [µ1], and since w ∈ [µ2], we have w ∈ [µ1] ∩ [µ2]
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which gives w ∈ [µ1 ∧ µ2]. We now want to show that w is among the minimal
elements of [µ1 ∧ µ2].

For that, assumew /∈ min≤E [µ1∧µ2]. We already have that [µ1∧µ2] 6= ∅, which (by
IC1) gives usmin≤E [µ1∧µ2] 6= ∅. Take, then, w0 ∈ min≤E [µ1∧µ2]. We conclude that
w0 <E w. Regarding w0, we can also conclude that w0 ∈ [µ1]. However, we also have
that w ∈ min≤E [µ1], which implies w ≤E w0. We have arrived at a contradiction.

(IC8) If ∆µ1(E) ∧ µ2 is consistent, then ∆µ1∧µ2(E) |= ∆µ1(E) ∧ µ2.

By hypothesis, min≤E [µ1] ∩ [µ2] 6= ∅, hence there exists w0 ∈ min≤E [µ1] ∩ [µ2]. It
follows that w0 ∈ [µ1], w0 ∈ [µ2] and, from here, that w0 ∈ [µ1 ∧ µ2].

We want to show thatmin≤E [µ1 ∧µ2] ⊆ min≤E [µ1]∩ [µ2], so take w ∈ min≤E [µ1 ∧
µ2]. Obviously, w ∈ [µ1 ∧ µ2], hence w ∈ [µ1] and w ∈ [µ2]. Suppose, however, that
w /∈ min≤E [µ1]. This, together with w0 ∈ min≤E [µ1], implies that w0 < w. On the
other hand, w ∈ min≤E [µ1 ∧ µ2] and w0 ∈ [µ1 ∧ µ2], so w ≤ w0. We have arrived at a
contradiction.

(Acyc) If for every n ∈ N, all of the following are consistent:
∆µ0(E) ∧ µn,
∆µ1(E) ∧ µ0,

. . .

∆µn(E) ∧ µn−1,

then ∆µn(E) ∧ µ0 is consistent.

By hypothesis, we have that min≤E [µ0] ∩ [µn] 6= ∅, and min≤E [µi+1] ∩ [µi] 6= ∅, for
0 ≤ i < n. This means that there exist w0, w1, . . . , wn such that:

w0 ∈ min≤E [µ1] ∩ [µ0],

w1 ∈ min≤E [µ2] ∩ [µ1],

. . .

wn−1 ∈ min≤E [µn] ∩ [µn−1],

wn ∈ min≤E [µ0] ∩ [µn].

From the first two statements we can infer that w0 ∈ min≤E [µ1] and w1 ∈ [µ1], which
implies that w0 ≤E w1. Following up, w1 ≤E w2, . . . , wn−1 ≤E wn and wn ≤E w0.
By transitivity, it follows that wn ≤E wn−1. Putting this together with the fact that
wn−1 ∈ min≤E [µn] and wn ∈ [µn], it follows that wn ∈ min≤E [µn]. We also have that
wn ∈ [µ0], so wn ∈ min≤E [µn] ∩ [µ0]. Clearly, then, min≤E [µn] ∩ [µ0] 6= ∅.

(Maj ) There exists n > 0 such that ∆µ(E1 t En2 ) |= ∆µ(E2).
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We want to show that there exists an n > 0 such that min≤E1tEn
2

[µ] ⊆ min≤E2
[µ].

Suppose, on the contrary, that for all n > 0 there exists wn ∈ [µ] such that wn ∈
min≤E1tEn

2
[µ] and wn /∈ min≤E2

[µ].
Since [µ] is finite, one of the wi’s will have to appear infinitely often. In other

words, there is an infinite set M = {n1, n2, . . . } ⊆ N? and a w ∈ [µ] such that
for every ni ∈ M we have w ∈ min≤

E1tE
ni
2

[µ] and w /∈ min≤E2
[µ]. Without loss of

generality assumeM is ordered, i.e. n1 ≤ n2 ≤ . . . .
Obviously [µ] 6= ∅, and (by IC1) min≤E2

[µ] 6= ∅. Take w0 ∈ min≤E2
[µ]. Two things

are of interest here. First, we have that w ≤E1tE
ni
2
w0, for every ni ∈M . Second, we

get that w0 <E2 w.
Therefore, by kp7, there exists a k ∈ N such that w0 <E1tEk

2
w. Now, since M is

infinite, there will always exist an ni ∈M such that ni > k—in fact, there will be an
infinity. Take the smallest such ni.

We know that w0 <E2 w and w0 <E1tEk
2
w, hence by kp6 we get that:

w0 <(E1tEk
2 )tE2

w.

Effectively, this means that w0 <E1tEk+1
2

w. We iterate this until we get w0 <E1tE
ni
2

w. This leads to a contradiction, because we have already established thatw ≤E1tE
ni
2

w0.

This is already a useful result, since it provides a sufficient condition for having
a Horn merging operator. We will use it in Chapter 7.

6.2 From operators to assignments
The purpose now is to see under what conditions an operator ∆: EH × LH → KH
describes a Horn compliant syncretic assignment mapping every profile E to a total
pre-order ≤E , such that [∆µ(E)] = min≤E [µ], for any Horn formula µ. The previ-
ous chapter has already made clear that in the Horn case the standard merging
postulates are not fit to the task.

We start by adapting the Delgrande and Peppas result for Horn revision [17] to
merging. We will show that for a Horn operator satisfying the revision postulates
(in our case IC0−IC3 +IC7−IC8 +Acyc), there exists a Horn compliant assignment
that satisfies kp1− kp3. The question, then, will to enforce the rest of the properties
for syncretic assignments

6.2.1 Defining a pre-order ≤E based on a merging operator
In the following we will assume we are given a Hornmerging operator ∆: EH×LH →
KH that satisfies (at least) IC0 − IC3 + IC7 − IC8 +Acyc.

Take a Horn profile E. We begin by defining a partial pre-order ≤′E based on ∆.
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Definition 25. Define the relation ≤′E on interpretations as follows:

w1 ≤′E w2 iff w1 ∈ [∆ϕw1,w2
(E)].

If [ϕw1,w2 ] = {w0, w1, w2}, where w0 = w1 ∩ w2, the postulates allow for the situ-
ation when [∆ϕw1,w2

(E)] = {w0}, so w1 �′E w2 and w2 �′E w1. In other words, ≤′E is
not necessarily total. We will be looking to extend this pre-order to a total pre-order
later on. The very next step, however, is to take the transitive closure.

Definition 26. Define ≤∗E to be the transitive closure of ≤′E . In other words:

w1 ≤∗E w2 iff there exist interpretations u0, . . . , un such that
w1 = u0 ≤′E u1 ≤′E · · · ≤′E un−1 ≤′E un = w2.

By construction ≤∗E is reflexive and transitive, in other words ≤∗E is a partial
pre-order.

Definition 27. Define the following chain:

S0 = max≤∗EW,

S1 = max≤∗E (W\S0),

. . .

Si+1 = max≤∗E (W\
⋃i
j=0 Sj).

A couple of observations are in order here.

Observation 9. The chain is constructed by progressively taking elements out of
W. SinceW is finite, the chain eventually reaches a point after which all subsequent
Si’s are equal to the empty set. Take m to be the first index where this happens, i.e.
Sm 6= ∅, Sm+i = ∅, for any i ≥ 1.

Now, any non-empty set of interpretations S has at least one maximal element
(this is proved later, see Lemma 7), thus all the Si’s from S0 up to Sm are non-empty.
Clearly, the Si’s up to Sm are disjoint and their union is W, so it is appropriate to
conclude that {Si | 0 ≤ i ≤ m} is a partition ofW.

Observation 10. Since {Si | 0 ≤ i ≤ m} is a partition of W, any interpretation
w ∈ W belongs to exactly one Si. We will call an Si to which w belongs a level of w.
Since Si, in this sense, is unique, it is appropriate to talk of the level of w in this
partition.

Definition 28. Define the relation ≤E as follows:

w1 ≤E w2 iff there are Si and Sj such that w1 ∈ Si, w2 ∈ Sj and i ≥ j.

The claim is that ≤E , thus defined, is Horn compliant and satisfies kp1 − kp3.
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6.2.2 Proving that ≤E is Horn compliant and faithful
We show in this section, following [17], that ≤E is Horn compliant and satisfies
kp1 − kp3.

Lemma 3. Take two interpretations w1, w2 such that w1 ≤′E w2. Then for any Horn
formula µ, if w1 ∈ [µ] and w2 ∈ [∆µ(E)], then w1 ∈ [∆µ(E)].

Proof. Take µ ∈ LH and two interpretations w1, w2 such that w1 ≤′E w2, w1 ∈ [µ] and
w2 ∈ [∆µ(E)]. We want to show that w1 ∈ [∆µ(E)].

By assumption, w2 ∈ [∆µ(E)] and obviously w2 ∈ [ϕw1,w2 ]. Thus, w2 ∈ [∆µ(E) ∧
ϕw1,w2 ], so ∆µ(E)∧ϕw1,w2 is consistent. By applying postulates IC7 and IC8 it follows
that:

[∆µ(E) ∧ ϕw1,w2 ] = [∆µ∧ϕw1,w2
(E)].

Sincew2 ∈ [∆µ(E)∧ϕw1,w2 ], it follows thatw2 ∈ [∆µ∧ϕw1,w2
(E)]. By IC0, [∆µ∧ϕw1,w2

(E)] ⊆
[µ ∧ ϕw1,w2 ]. We conclude that w2 ∈ [µ ∧ ϕw1,w2 ], and consequently that w2 ∈ [µ].

Lemma 4. For any Horn formula µ, min≤′E [µ] = [∆µ(E)].

Proof. We prove the lemma by double inclusion.

(i) min≤′E [µ] ⊆ [∆µ(E)], for any Horn formula µ.

Take µ ∈ LH and assume there is an interpretation w1 such that w1 ∈ min≤′E [µ] and
w1 /∈ [∆µ(E)]. Since w1 ∈ min≤′E [µ], it follows that [µ] 6= ∅, so (by IC1) [∆µ(E)] 6= ∅.
Take w2 ∈ [∆µ(E)] and let us show, first, that w1 �′E w2 and w2 �′E w1.

Assume, on the contrary, that w1 ≤′E w2. Since w1 ∈ [µ] and w2 ∈ [∆µ(E)],
then (by Lemma 3) we get that w1 ∈ [∆µ(E)], which contradicts our start-
ing assumption. So w1 �′E w2.
Assume, now, that w2 ≤′E w1. We have just shown that w1 �′E w2, so this
means that w2 <

′
E w1. We know that w2 ∈ [∆µ(E)], so (by IC0) w2 ∈ [µ].

Since w1 ∈ [µ], w2 <
′
E w1 contradicts the fact that w1 ∈ min≤′E [µ].

Denote w0 = w1 ∩ w2. We will next show that [∆ϕw1,w2
(E)] = {w0}.

By IC0, we have that [∆ϕw1,w2
(E)] ⊆ [ϕw1,w2 ]. Since [ϕw1,w2 ] 6= ∅, by IC1

we get [∆ϕw1,w2
(E)] 6= ∅. Also, we have that w1 /∈ [∆ϕw1,w2

(E)], because
otherwise we would have that w1 ≤′E w2, and we have just shown this
cannot happen. Similarly, w2 /∈ [∆ϕw1,w2

(E)]. So the only possibility left
is that [∆ϕw1,w2

(E)] = {w0}.

As a direct consequence, we have that:

[∆ϕw1,w2
(E)] ∩ [ϕw0,w1 ] = [∆ϕw1,w2

(E) ∧ ϕw0,w1 ] = {w0}. (6.1)
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From this it follows that ∆ϕw1,w2
(E) ∧ ϕw0,w1 is consistent, so by IC7 and IC8:

[∆ϕw1,w2
(E) ∧ ϕw0,w1 ] = [∆ϕw1,w2∧ϕw0,w1

(E)]. (6.2)

Since w0 ⊆ w1 we can say that, while [ϕw0,w1 ] surely contains w0 and w1, it does not
contain more than that—it is already closed under intersection. On the other hand,
[ϕw1,w2 ] contains w0, w1 and w2. So [ϕw0,w1 ] ⊆ [ϕw1,w2 ], and it follows that:

[ϕw1,w2 ] ∩ [ϕw0,w1 ] = [ϕw0,w1 ].

So [ϕw1,w2 ∧ ϕw0,w1 ] = [ϕw0,w1 ], which is to say that ϕw1,w2 ∧ ϕw0,w1 ≡ ϕw0,w1 . By IC3,
we get:

[∆ϕw1,w2∧ϕw0,w1
(E)] = [∆ϕw0,w1

(E)]. (6.3)

Connecting results 6.1, 6.2 and 6.3, we get:

[∆ϕw1,w2
(E) ∧ ϕw0,w1 ] = [∆ϕw0,w1

(E)] = {w0}. (6.4)

From 6.4 and the definition of ≤′E (see Definition 25) we can infer that w0 ≤′E w1.
Also, we get that w1 �′E w0 (because otherwise, by the same definition, we would get
that w1 ∈ [∆ϕw0,w1

(E)]). Putting these two things together, we have just shown that:

w0 <
′
E w1. (6.5)

Let us now focus our attention on something slightly different: we have that w1 ∈ [µ]
(because w1 ∈ min≤′E [µ] by assumption) and w2 ∈ [µ] (because w2 ∈ [∆µ(E)] by
assumption, and [∆µ(E)] ⊆ [µ] by IC0). Also, µ is a Horn formula, so w1 ∩w2 = w0 ∈
[µ]. And because w1 ∈ min≤′E [µ], it follows that w1 ≤′E w0. With result 6.5, this leads
to a contradiction.

(ii) [∆µ(E)] ⊆ min≤′E [µ], for any Horn formula µ.

Take µ ∈ LH and w1 ∈ [∆µ(E)]. We will show that w1 ≤′E w2, for any w2 ∈ [µ]. So
take a w2 ∈ [µ].

Obviouslyw1 ∈ [ϕw1,w2 ], and by assumptionw1 ∈ [∆µ(E)]. So [∆µ(E)∧ϕw1,w2 ] 6= ∅,
which is to say that ∆µ(E) ∧ ϕw1,w2 is consistent. By IC7 and IC8, it follows that:

[∆µ(E) ∧ ϕw1,w2 ] = [∆µ∧ϕw1,w2
(E)]. (6.6)

Take, again, w0 = w1 ∩ w2. Since w1, w2 ∈ [µ] and [µ] is a Horn formula, we get that
w0 ∈ [µ]. So [ϕw1,w2 ] ⊆ [µ] and hence [µ ∧ ϕw1,w2 ] = [ϕw1,w2 ]. By IC3, now, we get:

[∆µ∧ϕw1,w2
(E)] = [∆ϕw1,w2

(E)]. (6.7)

Connecting 6.6 and 6.7, we get that:

[∆µ(E) ∧ ϕw1,w2 ] = [∆ϕw1,w2
(E)]. (6.8)

By assumptionw1 ∈ [∆µ(E)] andw1 ∈ [ϕw1,w2 ], so by 6.8we get thatw1 ∈ [∆ϕw1,w2
(E)],

so (by Definition 25 of ≤′E) w1 ≤′E w2. This shows that w1 ∈ min≤′E [µ].
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Lemma 5. If w1 ≤′E w2 ≤′E · · · ≤′E wn ≤′E w1, then w1 ≤′E wn.

Proof. Take interpretations w1, . . . , wn such that w1 ≤′E w2 ≤′E · · · ≤′E wn ≤′E w1.
From Definition 25 of ≤′E and the given inequalities, we get:

w1 ∈ [∆ϕw1,w2
(E)],

w2 ∈ [∆ϕw2,w3
(E)],

. . .

wn ∈ [∆ϕwn,w1
(E)].

It follows that:

w1 ∈ [∆ϕw1,w2
(E) ∧ ϕwn,w1 ],

w2 ∈ [∆ϕw2,w3
(E) ∧ ϕw1,w2 ],

. . .

wn−1 ∈ [∆ϕwn−1,wn
(E) ∧ ϕwn−2,wn−1 ],

wn ∈ [∆ϕwn,w1
(E) ∧ ϕwn−1,wn ].

Applying Acyc, we get that:

[∆ϕwn,w1
(E) ∧ ϕw1,w2 ] 6= ∅

This allows us to apply IC8 which, together with IC8, gives us:

[∆ϕwn,w1
(E) ∧ ϕw1,w2 ] = [∆ϕwn,w1∧ϕw1,w2

(E)] (6.9)

At the same time we havew1 ∈ [∆ϕw1,w2
(E)∧ϕwn,w1 ], which implies that ∆ϕw1,w2

(E)∧
ϕwn,w1 is consistent. Applying IC7 and IC8 again, we infer:

[∆ϕw1,w2
(E) ∧ ϕwn,w1 ] = [∆ϕw1,w2∧ϕwn,w1

(E)] (6.10)

Obviously ϕwn,w1 ∧ϕw1,w2 ≡ ϕw1,w2 ∧ϕwn,w1 , so we can apply IC3 and connect 6.9 and
6.10 to get:

[∆ϕwn,w1
(E) ∧ ϕw1,w2 ] = [∆ϕw1,w2

(E) ∧ ϕwn,w1 ] (6.11)

We know that w1 ∈ [∆ϕw1,w2
(E) ∧ ϕwn,w1 ], so from result 6.10 we get that w1 ∈

[∆ϕwn,w1
(E) ∧ ϕw1,w2 ]. A fortiori, w1 ∈ [∆ϕwn,w1

(E)] and w1 ≤′E wn, which is we
wanted to show.

Lemma 6. For any two interpretations w1, w2, if w1 <
′
E w2, then w1 <

∗
E w2.

Proof. Consider two interpretations w1, w2 such that w1 <
′
E w2. From this it already

follows that w1 ≤∗E w2. What we still have to show is that w2 �∗E w1.
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Suppose, on the contrary, that w2 ≤∗E w1. Then there exist interpretations
u0, . . . , un such that

w2 = u0 ≤′E u1 ≤′E · · · ≤′E un−1 ≤′E un = w1.

Because w1 ≤′E w2 (since, by assumption, w1 <
′
E w2), we have that:

w2 ≤′E u1 ≤′E · · · ≤′E un ≤′E w1 ≤′E w2 (6.12)

From Lemma 5 and result 6.12 we get that w2 ≤′E w1, which together with the
assumption that w1 <

′
E w2 leads to a contradiction.

Lemma 7. For every set of interpretations S 6= ∅, max≤∗ES 6= ∅.

Proof. Take a set of interpretations S 6= ∅ and assume that max≤∗ES = ∅. Then for
any w ∈ S there is w′ ∈ S such that w <∗E w

′.
So, starting with w0 ∈ S one can build up a sequence:

w0 <
∗
E w1 <

∗
E w2 <

∗
E . . . .

Since S is finite, some of the interpretations in the sequence will have to repeat
themselves. In other words, there exist interpretations wi, wj such that:

wi <
∗
E wi+1 <

∗
E · · · <∗E wj−1 <

∗
E wj <

∗
E wi.

Applying Lemma 6 it follows that wi ≤∗E wj , which contradicts the fact that wj <∗E
wi.

Lemma 8. The pre-order ≤E is total and extends ≤∗E , in the sense that if w1 ≤∗E w2,
then w1 ≤E w2.

Proof. It was argued in Observation 9 that the set of levels {Si | 0 ≤ i ≤ m} forms a
partition of W. Thus, any two interpretations w1, w2 belong to some (unique) level
Si, Sj , respectively. Since i ≥ j or j ≥ i, it follows that w1 ≤E w2 or w2 ≤E w1. In
other words, ≤E is total.

Suppose w1 ≤∗E w2 and w1 ∈ Si, w2 ∈ Sj . We want to show that w1 ≤E w2, or in
other words that i ≥ j.

Assume, on the contrary, that j > i. We have that w1 ∈ Si, which means (by
Definition 27 of Si) that w1 ∈ max≤∗E (W\

⋃i−1
k=0 Sk). By assumption, w2 ∈ Sj , with

j > i. The fact that j > i tells us that Sj comes later in the sequence S0,S1, . . . than
Si, which means that w2 ∈ W\

⋃i−1
k=0 Sk. Since w1 is a maximal element of this set

and (by assumption) w1 ≤∗E w2, it follows that w2 ≤∗E w1, and w2 is also a maximal
element inW\

⋃i−1
k=0 Sk.

To see why this last statement holds, take w3 ∈ W\
⋃i−1
k=0 Sk such that w2 ≤∗E w3.

Since w1 ≤∗E w2 and ≤∗E is transitive (by definition), we have w1 ≤∗E w3. We know
that w1 is maximal in W\

⋃i−1
k=0 Sk, so w3 ≤∗E w1. Using transitivity again, we get

that w3 ≤∗E w2, so w2 is maximal inW\
⋃i−1
k=0 Sk.

This means, to recap, that w1 and w2 are both maximalW\
⋃i−1
k=0 Sk. So they both

belong to the same level. But this is a contradiction.
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Lemma 9. If w1 and w2 are interpretations, it holds that w1 ≈E w2 iff w1, w2 ∈ Si.

Proof. We know that w1 ≈E w2 iff w1 ≤E w2 and w2 ≤E w1, which—according to
Definition 28 of ≤E—is equivalent to there being some levels Si and Sj such that
w1 ∈ Si, w2 ∈ Sj , and i ≥ j and j ≥ i. This, in turn, is equivalent to i = j, which
means that w1 and w2 are on the same level.

Lemma 10. If w1 and w2 are interpretations, it holds that w1 <E w2 iff w1 ∈ Si, w2 ∈
Sj and i > j.

Proof. Though it is not difficult to grasp why this is true, for the sake of being rig-
orous let us prove the result one direction at a time.

(i) If w1 <E w2, then w1 ∈ Si, w2 ∈ Sj and i > j.

Unpacking the hypothesis, we have that w1 ≤E w2 and w2 �E w1. The first of these
statements guarantees (by Definition 28 of ≤E) that there are Si,Sj , such that w1 ∈
Si, w2 ∈ Sj1 and i ≥ j. Suppose i = j. This would imply that w2 ≤E w1, which
contradicts the second statement. Hence, i > j.

(ii) If w1 ∈ Si, w2 ∈ Sj and i > j, then w1 <E w2.

Using the hypothesis and Definition 28 of ≤E , we get that w1 ≤E w2. Suppose, also,
that w2 ≤E w1. Then w1 ≈E w2, and (by Lemma 10), it follows that i = j. But this is
a contradiction, so w2 �E w1.

Lemma 11. If Sk is the last element in the sequence S0,S1, . . . that intersects [µ], then
min≤E [µ] = Sk ∩ [µ].

Proof. We will show both directions.

(i) min≤E [µ] ⊆ Sk ∩ [µ].

Take w ∈ min≤E [µ] and suppose w /∈ Sk ∩ [µ]. Since obviously w ∈ [µ], it can only
be the case that w /∈ Sk. Since Sk is by hypothesis the last element in the sequence
S0,S1, . . . that intersects [µ], it follows that w ∈ Si, for some i < k. If we take now
some w′ ∈ Sk ∩ [µ], we get (by Lemma 10) that w′ <E w. But this contradicts the fact
that w is ≤E-minimal in [µ].

(ii) Sk ∩ [µ] ⊆ min≤E [µ].

Take w ∈ Sk ∩ [µ] and some w′ ∈ [µ] such that w′ ≤E w. To show that w is also
≤E-minimal in [µ], we need to show that w ≤E w′.

Suppose, on the contrary, that w′ <E w. This means (by Lemma 10) that w′ ∈ Sl,
for some l > k. But this contradicts the fact that Sk is the last element in the
sequence S0,S1, . . . that intersects [µ].

1As mentioned in Observation 10, each interpretation belongs to exactly one level.
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Lemma 12. For any Horn formula µ, min≤E [µ] = min≤′E [µ].

Proof. If µ is inconsistent, then [µ] = ∅ and the equality obviously holds. Assume,
then, that [µ] 6= ∅ and take Sk to be the last set in the sequence S0, . . . ,Sm that
intersects [µ]. By Lemma 9, we have that min≤E [µ] = Sk ∩ [µ], so what we need to
prove is that Sk ∩ [µ] = min≤′E [µ]. We will do this by showing the double inclusion.

(i) Sk ∩ [µ] ⊆ min≤′E [µ].

Assume, by contradiction, that there is w1 ∈ Sk ∩ [µ] such that w1 /∈ min≤′E [µ]. Then
there exists w2 ∈ [µ] such that w2 <

′
E w1. From this and Lemma 6 it follows that

w2 <
∗
E w1.

Because w2 <
∗
E w1, w2 cannot be in Sk. Since Sk is the last set in the sequence

that contains models of [µ], it follows that w2 must come earlier in the sequence, i.e.
w2 ∈ Sj , for some j < k (see Figure [...]). But if w2 ∈ Sj , then for any l > j and for any
w ∈ Sl, we have that w <∗E w2. In particular, this implies that w1 <

′
E w2, because

k > j. This is a contradiction.

(ii) min≤′E [µ] ⊆ Sk ∩ [µ].

Assume, by contradiction, that there is w1 ∈ min≤′E [µ] such that w1 /∈ Sk∩ [µ]. Since,
obviously, w1 ∈ [µ], it has to be that w1 /∈ Sk. But Sk is the last element in the
sequence S0,S1, . . . intersecting [µ], so w1 ∈ Sj , for some j < k.

Take w2 ∈ Sk ∩ [µ]. Since Sk comes after Sj in the sequence S0,S1, . . ., then (by
Lemma 10) it is the case that w2 <E w1. This implies that w1 �′E w2. Why? Assume,
on the contrary, that w1 ≤′E w2. Then w1 ≤∗E w2 and w1 ≤E w2 (since, by Lemma 8,
≤E extends ≤∗E). But this contradicts the fact that w2 <E w1.

In order to generate the final contradiction, let us show that w1 ∈ [∆ϕw1,w2
(E)].

Assume, on the contrary, that w1 /∈ [∆ϕw1,w2
(E)]. Then w1 �′E w2. Notice,

we also have that w2 �′E w1: if, on the contrary, it would hold that w2 ≤′E
w1, then from this and the fact that w1 ∈ min≤′E [µ] and w2 ∈ [µ] it would
follow that w1 ≤′E w2, which we already know does not hold.
So w2 �′E w1, and hence w2 /∈ [∆ϕw1,w2

(E)]. At the same time [ϕw1,w2 ] 6= ∅,
so (by IC1) [∆ϕw1,w2

(E)] 6= ∅, and (by IC0) [∆ϕw1,w2
(E)] ⊆ [ϕw0,w1 ]. It

follows that [∆ϕw1,w2
(E)] = {w0}, where w0 = w1 ∩ w2.

This shows that ∆ϕw1,w2
(E) ∧ ϕw0,w1 is consistent, and by IC7 and IC8:

[∆ϕw1,w2
(E) ∧ ϕw0,w1 ] = [∆ϕw1,w2∧ϕw0,w1

(E)] = {w0} (6.13)

At the same time, [ϕw1,w2 ∧ ϕw0,w1 ] = [ϕw0,w1 ]. So by IC3:

[∆ϕw1,w2∧ϕw0,w1
(E)] = [∆ϕw0,w1

(E)] (6.14)
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Connecting equalities 6.13 and 6.14, we get that:

[∆ϕw0,w1
(E)] = {w0},

which implies that w0 <
′
E w1. Because µ ∈ LH and w1, w2 ∈ [µ], it is also

the case that w0 ∈ [µ]. In the end this leads to a contradiction, because
w1 ∈ min≤′E [µ].

We have shown, then, that w1 ∈ [∆ϕw1,w2
(E)]. From this it follows that w1 ≤′E w2.

But we have already argued that w1 �′E w2, so we have derived a contradiction.

Proposition 18. The pre-order ≤E is Horn compliant and it corresponds to the op-
erator ∆, in the sense that for any Horn formula µ, [∆µ(E)] = min≤E [µ].

Proof. By Lemma 4, [∆µ(E)] = min≤′E [µ]. By Lemma 12, min≤′E [µ] = min≤E [µ].
Putting these two things together, we have that [∆µ(E)] = min≤E [µ], so ≤E corre-
sponds to the operator ∆.

Since, by assumption, ∆µ(E) is a Horn formula, [∆µ(E)] is always closed under
intersection. In other words, min≤E [µ] can always be represented by a Horn formula.
This shows that ≤E is Horn compliant.

6.2.3 Is ≤E syncretic?
We started by assuming we have a Horn merging operator ∆ that satisfies IC0 −
IC3 + IC7− IC8 +Acyc. Based on ∆, we defined in Section 6.2.1 an assignment that
assigns to each profile E a total pre-order ≤E . We showed in Section 6.2.2 that ≤E
is Horn compliant, for any Horn profile E, and that it satisfies:

[∆µ(E)] = min≤E [µ].

In doing this, we have been following the lead of Delgrande and Peppas in [17]. But
their work was tailored for Horn revision: in so doing, they were looking for Horn
compliant faithful assignments, whereas we want the assignments to be syncretic.
Let us convince ourselves, then, if the assignment defined in Section 6.2.1 is suitable
for merging and satisfies properties kp1 − kp6.

To anticipate, the answer is no: we will show that kp1 − kp3 hold, but that—
reconsidering the examples from the previous chapter—kp4 − kp6 are problematic.

First, let us show that for any profile E and interpretations w1, w2, the following
holds:

(kp1) if w1 ∈ [E] and w2 ∈ [E], then w1 ' w2;
(kp2) if w1 ∈ [E] and w2 /∈ [E], then w1 < w2.

If E is inconsistent, then [E] = ∅ and kp1− kp2 hold trivially. If E is consistent, take
a tautology [µ], for instance µ = p→ p. Then [µ] =W, so obviously [E∧µ] 6= ∅. Then,
by IC2:

[∆µ(E)] = [
∧
E ∧ µ] = [E] ∩W = [E].

79



Thismeans thatmin≤E [µ] = [E], and—since [µ] =W—it follows thatmin≤EW = [E].
Thus, the minimal elements of the entire set of interpretations W with respect to
the pre-order ≤E are exactly the models of E, which is what kp1 and kp2 amount to.

(kp3) If E1 ≡ E2, then ≤E1=≤E2 .

Let us observe, first, that if E1 ≡ E2, then ≤′E1
=≤′E2

. For this, take two interpre-
tations w1 and w2 and suppose that w1 ≤′E1

w2. Then, by Definition 25 of ≤′E1
, we

get that w1 ∈ [∆ϕw1,w2
(E1)]. Since E1 ≡ E2, by IC3 it follows that [∆ϕw1,w2

(E1)] =
[∆ϕw1,w2

(E2)] and w1 ∈ [∆ϕw1,w2
(E2)], hence w1 ≤′E2

w2. Applying this reasoning in
reverse, we get that w1 ≤′E1

w2 if and only if w1 ≤′E2
w2. This shows that ≤′E1

=≤′E2
.

Quite clearly, then, the transitive closures≤∗E1
, ≤∗E2

of≤′E1
and≤′E2

, respectively,
are equal. And, since they depend only on ≤∗E1

and ≤∗E2
, it must be the case that ≤E1

and ≤E2 are equal as well. This shows that kp3 holds.

Up to now we have been assuming that ∆ satisfies only IC0 − IC3 + IC7 − IC8 +
Acyc. This ensures that kp1 − kp3 are true. With regard to kp4 − kp6, even in the
normal case, we need more constraints on ∆. In the normal case, IC4 − IC6 enforce
kp4 − kp6, but does this hold here? Unfortunately, no. Recall that Section 5.4 of
the previous chapter we presented a series of counter-examples: assignments that
otherwise are Horn compliant and syncretic, except for not satisfying kp4, kp5 and
kp6, respectively. At the same time, it was shown that the merging operator based
on those assignments satisfies IC4, IC5 and IC6, respectively. We have also shown
no assignments equivalent to the problematic one. This shows that IC4 − IC6 are
not enough to enforce kp4 − kp6.

6.2.4 An alternative for IC4 and kp4

Example 13 in the previous chapter illustrates why it is difficult to force models of
K1 and K2 to be on an equal footing in ≤{K1,K2} with our logical postulates: the
operator ∆ might end up talking about the elements in the closure of [K1] ∪ [K2],
while the elements of [K1] and [K2] themselves remain inaccessible. We can try to
negotiate the intuition of fairness that IC4 and kp4 encode by looking at modified
versions of these statements.

As Lemma1 shows, the case that needs special attention is the onewhere {K1,K2}
is inconsistent: if {K1,K2} is consistent, then an assignmentwhich satisfies kp1−kp3

automatically also satisfies kp4.
In the normal case (of full propositional logic), IC4 takes care of kp4 when {K1,K2}

is inconsistent by applying to µ = K1 ∨ K2: IC4, in this case, makes sure that the
minimal elements of [K1]∪ [K2] do not consist of models belonging to one knowledge
base alone. In the Horn case, however, [K1] ∪ [K2] is not necessarily representable
by a Horn formula. We can, for instance, consider Cl∩([K1]∪ [K2]), but if the models
of [K1]∪ [K2] are inaccessible to the merging operator (as it happens in Example 13),
then a merging operator ∆ may satisfy IC4 while having no control over the inter-
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w1

[K1] [K2]

Cl∩([K1] ∪ [K2])

Figure 6.1: Cl∩([K1] ∪ [K2])

pretations in [K1]∪[K2], which will then be permitted to vary in ways that contradict
kp4.

It turns out, though, that in the case when {K1,K2} is inconsistent we can prove
a slightly amended property:

(kp′4) If {K1,K2} is inconsistent, then for any w1 ∈ [K1] there exists an
interpretation w2 ∈ Cl∩([K1] ∪ [K2])\[K1] such that w2 ≤{K1,K2} w1.

Proposition 19. IC4 implies kp′4.

Proof. Take w1 ∈ [K1] and suppose, on the contrary, that:

for any w ∈ Cl∩([K1] ∪ [K2])\[K1], w1 <{K1,K2} w. (6.15)

The situation is described visually in Figure 6.1. Consider now a Horn formula µ
such that [µ] = Cl∩([K1]∪ [K2]). One thing we can immediately say about [µ] is that
it is consistent, since [K1] is non-empty (w1 ∈ [K1] by hypothesis) and [K1] ⊆ [µ]. It
follows from IC1 that min≤{K1,K2}

[µ] 6= ∅.
We can use this to show thatmin≤{K1,K2}

[µ]∩ [K1] 6= ∅. Suppose, on the contrary,
that we have:

min≤{K1,K2}
[µ] ∩ [K1] = ∅. (6.16)

Because min≤{K1,K2}
[µ] 6= ∅, there exists w′ ∈ min≤{K1,K2}

[µ]. Since w1 ∈ [µ], it
follows that:

w′ ≤{K1,K2} w1 (6.17)

Notice that w′ cannot be in [K1] because of assumption 6.16. But w′ ∈ [µ], and hence
w′ ∈ [µ]\[K1]. This, together with our original assumption 6.15, implies that:

w1 <{K1,K2} w
′. (6.18)

Now, inequalities 6.17 and 6.18 lead to a contradiction, hence assumption 6.16 is
false.
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[K1]

[K2]

Cl∩([K1] ∪ [K2])

Figure 6.2: ≤{K1,K2}. kp′4 is true, but IC4 is not.

Next, notice thatK1 � µ,K2 � µ. Also, we have just proven that∆µ({K1,K2})∧K1

is consistent. Applying IC4, we get that ∆µ({K1,K2}) ∧ K2 is consistent. In other
words, there exists w2 ∈ min≤{K1,K2}

[µ] ∩ [K2].
From w2 ∈ min≤{K1,K2}

[µ] and w1 ∈ [µ] it follows that w2 ≤{K1,K2} w1. It is also
the case that w2 ∈ [K2], and since we have assumed that {K1,K2} is inconsistent,
we have that [K1] ∩ [K2] = ∅. This implies that w2 /∈ [K1]. Consequently, w2 ∈
[µ]\[K1]. Our original assumption 6.15 yields w1 <{K1,K2} w2 and we have derived a
contradiction, showing that assumption 6.15 is false.

The sad truth, however, is that in the other direction kp′4 does not guarantee IC4:
if we replace kp4 with kp′4 in the definition of a Horn compliant syncretic assignment,
then a merging operator defined in the usual way will not necessarily satisfy IC4.
The following example illustrates this fact.

Example 17. Take two knowledge bases [K1] = {01} and [K2] = {10} and a Horn
compliant assignment that assigns to {K1,K2} the pre-order in Figure 6.2. We as-
sume the assignment satisfies properties kp1 − kp3, kp

′
4 and kp5 − kp6. Notice that

≤{K1,K2} in Figure 6.2 does, as a matter of fact, satisfy kp′4: in the interesting case,
we have that for w1 = 01 ∈ [K1], there exists w2 = 00 ∈ Cl∩([K1] ∪ [K2])\[K1] such
that w2 ≤{K1,K2} w1.

If we define an operator ∆ as [∆µ(E)] = min≤E [µ], for any Horn profile E and
Horn formula µ, we notice that IC4 is not true. Take aHorn formula [µ] = {00, 01, 10},
Clearly, K1 |= µ and K2 |= µ, and [∆µ({K1,K2}) ∧K1] = {01}, so ∆µ({K1,K2}) ∧K1

is consistent. Now IC4 would require that ∆µ({K1,K2}) ∧ K2 is also consistent.
However, [∆µ({K1,K2}) ∧K2] = ∅.

This could be fixed by adopting the weaker version of IC4 for the Horn case below.
Recalling a notion introduced in Section 2.2, ifK1 andK2 are Horn knowledge bases,
K1,2 denotes a Horn knowledge base such that [K1,2] = Cl∩([K1] ∪ [K2]). Then, for
any Horn formula µ, we require that:

(IC ′4) If K1 and K2 are consistent, and if K1 |= µ, K2 |= µ, then the follow-
ing holds: if∆µ({K1,K2})∧K1 is consistent, then∆µ({K1,K2})∧K1,2

is consistent.
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Observation 11. It is easy to see that IC ′4 and kp′4 are both weaker versions of IC4

and kp4, respectively: that is to say, in the case of normal propositional logic IC4′ is
implied by IC4; also, kp4 implies kp′4.

It can be shown now that kp′4 and IC ′4 correspond in the Horn case.

Proposition 20. If ∆ is a Horn operator that satisfies IC0 − IC3 + IC7 − IC8 +
Acyc and there is a Horn compliant assignment that assigns to any Horn profile E
a total pre-order ≤E such that for any Horn formula µ, [∆µ(E)] = min≤E [µ], and if
the assignment satisfies kp1 − kp3, then ∆ satisfies IC ′4 if and only if the assignment
satisfies kp′4.

Proof. First, notice that if {K1,K2} is consistent, the result follows immediately.
Hence, we concentrate on the case when {K1,K2} is inconsistent. We prove this
result one direction at a time.

(i) If ∆ satisfies IC ′4, then the assignment satisfies kp′4.

The proof for this is essentially similar to the one for Proposition 19, except for the
fact that we should use IC ′4 instead of IC4 andK1,2 instead ofK2. We do not reiterate
the proof here.

(ii) If the assignment satisfies kp′4, then ∆ satisfies IC ′4.

Take a Horn formula µ such that K1 |= µ, K2 |= µ and suppose ∆µ({K1,K2})∧K1 is
consistent. Then there exists w1 ∈ [∆µ({K1,K2})∧K1], which means that w1 ∈ [K1]
and (by kp′4) there is w2 ∈ Cl∩([K1] ∪ [K2])\[K1] such that w2 ≤{K1,K2} w1. Since
[K1] ⊆ [µ] and [K2] ⊆ [µ], it follows thatw1, w2 ∈ [µ], and becausew1 ∈ min≤{K1,K2}

[µ],
then also w2 ∈ min≤{K1,K2}

[µ]. Because w2 ∈ Cl∩([K1] ∪ [K2])\[K1] and Cl∩([K1] ∪
[K2])\[K1] ⊆ Cl∩([K1] ∪ [K2]), it follows that w2 ∈ [K1,2]. The conclusion, now, is
easily derived.

6.3 Capturing elusive orderings
The stumbling block in the case of Horn merging are pairs of interpretations w1, w2

not closed under intersection, which—when not inmin≤E [ϕw1,w2 ]—escape the notice
of a ∆ under the current formulation of the postulates. We would like, then, to
characterize the case when w1 <E w2, for some profile E. Note that in the normal
case this is easy, since we have:

w1 <E w2 iff w1 ∈ [∆ϕw1,w2
(E)] and w2 /∈ [∆ϕw1,w2

(E)].

In the Horn case, this is still true if w1 ⊆ w2 or w2 ⊆ w1. However, if {w1, w2} is not
closed under intersection, the equivalence breaks down.

To be more precise, one direction still holds: if w1 ∈ [∆ϕw1,w2
(E)] then w1 ≤E w2.

Why? Because w1 ≤′E w2 by definition, and this carries over to ≤E by Lemma 8.
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But the converse does not hold: if w1 ≤E w2, it is not necessarily the case that
w1 ∈ [∆ϕw1,w2

(E)]. We can have any sort of arrangement betweenw1 andw2 with nei-
ther of them being in [∆ϕw1,w2

(E)] (this happens repeatedly throughout the counter-
examples).

The moral is that in the Horn case we cannot always judge the order between w1

and w2 simply by looking at [∆ϕw1,w2
(E)], which is particularly worrying for proper-

ties kp5−kp6. So is the situation hopeless? Fortunately this is not the case. It turns
out we can still control the order of w1 and w2, albeit in a more roundabout way.

We will rely on the construction of≤E on the basis of postulates IC0−IC3 +IC7−
IC8 + Acyc from Section 6.2.1. Let us start by fixing a few facts about elements in
≤E .

6.3.1 Some facts about ≤E
By Lemma 10, w1 <E w2 if and only if w1 comes later than w2 in the sequence
S0,S1, . . ., that is to say if and only if w1 ∈ Si, w2 ∈ Sj and i > j. If we picture
the levels with S0 on the top and the rest of the levels following underneath it, then
w1 <E w2 is equivalent to w1 being on a lower level than w2. The problem of figuring
out when w1 <E w2 now becomes the problem of seeing when w1 is on a lower level
than w2.

One suggestion is that w1 is lower than w2 if there is a chain of interpretations
going from w1 to w2 in a ≤∗E-chain. A moment’s reflection shows this is not a nec-
essary condition, since w1 might end up lower than w2 even though they are not
connected directly in ≤∗E . The following example shows this.

Example 18. Take a profile [E] = {000} and a Horn merging operator satisfying
IC0 − IC3 + IC7 − IC8 + Acyc that generates (through Definitions 25 and 26 the
pre-order ≤∗E) in Figure 6.3.

Notice that in the final pre-order ≤E 001 and 100 end up on the same level and
110 ends up on the level below them. Thus, 110 <E 001, even though in 110 and 001
are not connected in ≤∗E .

What we can do, however, is connect both w1 and w2 to some element of the top
level S0: in Figure 6.3, 001 and 110 are both connected to 011 on top level through
a ≤∗E-chain. The strategy, then, will be to characterize the elements of the top level
S0, and show that any interpretation is connected to the top level through some
continuous ≤∗E-chain. We will then judge the position of an interpretation w in the
≤E hierarchy by judging the distance from w to the top level.

Lemma 13. For any i ≥ 1 and any w ∈ Si, there is w′ ∈ Si−1 such that w <∗E w
′.

Proof. Suppose this is not the case, i.e. there is a level i ≥ 1 and there is a w ∈ Si
for which there is no w′ ∈ Si−1 such that w <∗E w

′ (see Figure 6.4).
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Figure 6.3: 110 is lower than 001, even though they are not connected in ≤∗K

w

w′

Si

Si−1

∗

Figure 6.4: There needs to be w′ ∈ Si−1 such that w <∗E w
′

It turns out that w ∈ Si−1, as the following argument shows. We know, by defi-
nition, that:

Si−1 = max≤∗E (W\
i−2⋃
j=0

Sj).

So take w? ∈M\
⋃i−2
j=0 Sj such that w ≤∗E w?. Because of our assumption, w? cannot

be in Si−1, so w? must be in one of the lower levels, i.e. w? ∈ Sk, for some k ≥ i.
Now, it cannot be the case that k > i. This would mean that w? is on a strictly

lower level than w, which (by Lemma 10) implies that w? <∗E w.
The only possibility, therefore, is that k = i and w? ∈ Si. Then, by the definition

of Si, we get that w? ≤∗E w. But, because w? was chosen as an arbitrary element
of M\

⋃i−2
j=0 Sj , this effectively shows that w is a maximal element in M\

⋃i−2
j=0 Sj .

Therefore w ∈ Si−1, which is a contradiction.

Corollary 1. For anywi ∈ Si, i ≥ 1, there is a sequence of interpretationswi−1, . . . , w0,
such that wi−1 ∈ Si−1, . . . , w0 ∈ S0, and wi <∗E wi−1 <

∗
E · · · <∗E w0 (see Figure 6.5).
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wi
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Si

Si−1
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∗

∗

∗

Figure 6.5: Lemma 13 gives us a chain wi <∗E wi−1 <
∗
E · · · <∗E w0

Let us now characterize the elements of the top level S0.

Definition 29. An interpretation w0 is a top-level interpretation in ≤E if w0 ∈ S0.

Lemma 14. For w ∈ W, we have that w is a top-level interpretation in ≤E iff the
following holds: for any u0, u1, . . . , un such that w = u0 ≤′E u1 ≤′E · · · ≤′E un−1 ≤′E un,
we have that un ≤′E un−1 ≤′E · · · ≤′E u1 ≤′E w = u0.

Proof. For one direction, take w ∈ S0, u0, u1, . . . , un such that w = u0 ≤′E u1 ≤′E
· · · ≤′E un−1 ≤′E un, and suppose one of the reverse inequalities does not hold.

This means that there are two interpretations ui, ui+1 somewhere in the chain
such that ui <′E ui+1. It follows that, in the transitive closure of ≤′E , we get:

w = u0 ≤∗E u1 ≤∗E · · · ≤∗E ui <∗E ui+1 ≤∗E · · · ≤∗E un,

and in particular w <∗E ui+1. But this is a contradiction, since w is assumed to be on
the top level.

For the other direction, take w for which the condition holds, and suppose it is
not on the top level S0. This means that w ∈ Si, i ≥ 1. But now, by applying Lemma
13, we get that there is a w′ ∈ Si−1 such that w <∗E w

′. Let us unpack this.
The fact that w <∗E w

′ implies that there are u0, u1, . . . , un−1, un such that:

w = u0 ≤′E u1 ≤′E · · · ≤′E un−1 ≤′E un = w′.

This follows from the definition of ≤∗E . Now we apply our assumption, and get that:

w = u0 ≈′E u1 ≈′E · · · ≈′E un−1 ≈′E un = w′.

When we take again the transitive closure of ≤′E , we get that w ≈∗E w′. This contra-
dicts our previous conclusion that w <∗E w

′.
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w1,u1,. . . ,ui−1,ui

ui+1, ui+2, . . . ,un−1, w2

Sk

Sj

≤′E

Figure 6.6: A jump from w1 on Sk to w2 on Sj , j < k

Top-level interpretations provide a good sky-hook on which to anchor other in-
terpretations. One thing that needs to be established, though, is how this anchoring
is to be done. To this end, the notion of a jump will prove useful.

Definition 30. For two interpretations w1, w2, we say there is a jump from w1 to w2

in≤E if there are u0, u1, . . . , un such that w1 = u0 ≤′E u1 ≤′E · · · ≤′E un−1 ≤′E un = w2,
and exactly one of those inequalities is strict.

Jumps are meant to capture the move from one level to a higher one, via the ≤′E
relation (see Figure 6.6).

Lemma 15. If there is a jump from an interpretationw1 to an interpretationw2 in≤E ,
then w2 is on a higher level than w1. In other words, if w1 ∈ Sk, then w2 ∈ Sj , j < k.

Proof. Take w1 ∈ Sk, such that there is a jump from w1 to w2. Then there are
u0, u1, . . . , un such that:

w1 = u0 ≤′E u1 ≤′E · · · ≤′E un−1 ≤′E un = w2,

with exactly one of the inequalities being strict. Take the strict inequality to be
between ui and ui+1, that is to say ui <′E ui+1. Now, when we consider the transitive
closure of ≤′E , we get that w1 <

∗
E w2, so (by Lemma 10), w2 is on a higher level than

w1.

Lemma 16. If w1 <
∗
E w2 and w2 is on a level immediately before the level of w1 in ≤E

(i.e., w1 ∈ Si and w2 ∈ Si−1, for some i ≥ 1), then there is a jump from w1 to w2.

Proof. The fact that w1 <
∗
E w2 means that there are u0, . . . , un such that:

w1 = u0 ≤′E u1 ≤′E · · · ≤′E un−1 ≤′E un = w2.

Wewill show that exactly one of those inequalities is strict. Suppose, on the contrary,
that this is not the case. In other words, suppose that either none of the inequalities
is strict, or that there is more than one strict inequality.

If none of the inequalities is strict, we have:

w1 = u0 ≈′E u1 ≈′E · · · ≈′E un−1 ≈′E un = w2,

which in turn leads to w1 ≈∗E w2, and w1, w2 end up on the same level.
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Suppose that more than one inequality is strict, i.e. ui <′E ui+1 and uj <′E uj+1,
for some i < j, with possibly even more strict inequalities. Then we get:

w1 ≤∗E · · · ≤∗E ui <∗E ui+1 ≤∗E · · · ≤∗E uj < uj+1 ≤∗E · · · ≤∗E w2.

In particular, we have that:

w1 <
∗
E ui+1 <

∗
E uj+1 ≤∗E w2.

This puts w2 at least two levels higher up than w1.
In both cases, we get a contradiction with the fact that w2 is on the level imme-

diately before the level of w1.

The converse to Lemma 16 does not hold. That is, if there is a jump from w1 to
w2, it does not follow that w2 is on a level immediately above the level of w1—there
can be jumps that, so to say, skip levels [perhaps an example].

Fortunately, we know from Lemma 13 that for any interpretation w, we can find
an interpretation w′ on the immediately preceding level, such that w <∗E w

′, so there
is a ≤∗E-chain that visits every level and ends at the top (Corollary 1). Let us put
these results together.

Corollary 2. For any interpretation wi ∈ Si, there is a sequence of interpretations
wi−1, . . . , w0, such that wi−1 ∈ Si−1, . . . , w0 ∈ S0, and there is a jump from wk to wk−1

in ≤E , for any k ∈ {0, . . . , i}.

Proof. By Corollary 1, there is a sequence of interpretations wi−1, . . . , w0, such that
wi−1 ∈ Si, . . . , w0 ∈ S0, and:

wi <
∗
E wi−1 <

∗
E · · · <∗E w0.

From Lemma 16 it follows that there is a jump fromwk towk−1, for any k ∈ {0, . . . , i}.

Corollary 2 shows that we can get from any interpretation w to the top level
through a series of successive jumps that visit every level. This result will prove to
be crucial in what is to come.

6.3.2 Doing things with formulas
Let us recall the notions we will use in this section. It is no mystery that single
interpretations can be characterized by propositional formulas, even in the Horn
fragment. For instance, if U = {p1, p2, p3}, then the interpretation 111 is character-
ized by the formula p1 ∧ p2 ∧ p3, 110 is characterized by p1 ∧ p2 ∧ (p3 → ⊥), and so on.
A general procedure is easily discernible.

In Section 2.1 we have introduced the notion of complete formulas: propositional
formulas whose set of models contains only one element. In Section 2.2 we have
named LcH the set of complete Horn propositional formulas. The formula p1 ∧ p2 ∧ p3
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from above is a complete formula. So is p1∧p1∧p2∧p3. The formula p1∧p2, however,
is not complete, since [p1∧p2] = {110, 111}. In general, we will denote by σw a formula
such that [σw] = {w}. When the context is clear, we write σi for σwi .

Recall also from Section 2.2 that if µi, µj are Horn formulas, µi,j is the Horn
formula such that [µi,j ] = Cl∩([µi]∪ [µj ]). We cannot express classical disjunction in
the Horn fragment, but µi,j is as close an approximation of it as we get. If σi and σj
are complete formulas with [σi] = {wi}, [σj ] = {wj}, then σi,j is basically ϕwi,wj , also
introduced in Section 2.2.

The purpose now is to define some syntactic condition (something that could fig-
ure in a postulate) on complete formulas, which corresponds to their models being
on different levels in the pre-order ≤E defined from a merging operator ∆ that sat-
isfies IC0 − IC3 + IC7 − IC8 + Acyc. In the following, we will always assume that
such a Horn merging operator ∆ is given, and that ≤E is the total pre-order built
from it as in Section 6.2.1.

Definition 31. A complete Horn formula σ0 ∈ LcH is a top-level formula with respect
to E if for any σ1, . . . , σn ∈ LcH , it is the case that:

if


σ0 ∧∆σ0,1(E),

σ1 ∧∆σ1,2(E),

. . .

σn−1 ∧∆σn−1,n(E)

are all consistent,

then


σ1 ∧∆σ0,1(E),

σ2 ∧∆σ1,2(E)

. . .

σn ∧∆σn−1,n(E),

are also consistent.

We will call LETop ⊆ LcH the set of top-level formulas with respect to E.

Top-level formulas are meant to characterize interpretations on the top level S0

of ≤E .

Lemma 17. A complete formula σ0 is a top-level Horn formula with respect to E iff
w0 is a top-level interpretation in ≤E , where [σ0] = {w0}.

Proof. We will prove the lemma one direction at a time.

(i) If σ0 is a top-level Horn formula with respect to E, then w0 ∈ [σ0] is a top-level
interpretation in ≤E .

Take a top-level formula σ0 with [σ0] = {w0}, and interpretations u0, . . . , un such
that:

w0 = u0 ≤′E u1 ≤′E · · · ≤′E un−1 ≤′E un.

We will show that all of these inequalities also hold in reverse, which (by Lemma
14) implies that w0 is a top level interpretation.
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Let us denote by σi a complete formula such that [σi] = ui. Since u0 ≤′E u1, we get
that u0 ∈ [∆σ0,1(E)], which allows us to conclude that u0 ∈ [σ0∧∆σ0,1(E)].Replicating
this reasoning, we get that:

u0 ∈ [σ0 ∧∆σ0,1(E)],

u1 ∈ [σ1 ∧∆σ1,2(E)],

. . .

un−1 ∈ [σn−1 ∧∆σn−1,n(E)]

Our assumption here is that σ0 is a top-level formula, so by applying the definition
we get that: 

σ1 ∧∆σ0,1(E),

σ2 ∧∆σ1,2(E),

. . .

σn ∧∆σn−1,n(E),

are all consistent. Let us show this implies that ui ≤′E ui−1, for any i ∈ {1, . . . , n}.
Let us look at these consistency statements one at a time. If σ1 ∧∆σ0,1(E) is con-

sistent, then [σ1 ∧∆σ0,1(E)] 6= ∅. But we know that [σ1] = {u1}, so u1 ∈ [∆σ0,1(E)] =
min≤E [σ0,1]. We also know that u0 ∈ [σ0,1], so we can conclude that u1 ≤′E u0. Iterat-
ing this reasoning for each of the consistency statements, we get that:

un ≤′E un−1 ≤′E · · · ≤′E u1 ≤′E u0 = w0.

By Lemma 14, this implies that w0 is a top interpretation.

(ii) If w0 is a top-level interpretation in ≤E , then σ0 with [σ0] = {w0} is a top-level
Horn formula with respect to E.

Take a top-level interpretation w0, and σ0 ∈ LcH a complete formula such that [σ0] =
{w0}. Also, take σ1, . . . , σn ∈ LcH such that:

σ0 ∧∆σ0,1(E),

σ1 ∧∆σ1,2(E),

. . .

σn−1 ∧∆σn−1,n(E)

are consistent. We want to show that the condition for σ0 being a top-level Horn
formula holds.

All the previous consistency statements allow us to take:
u0 ∈ [σ0 ∧∆σ0,1(E)],

u1 ∈ [σ1 ∧∆σ1,2(E)],

. . .

un−1 ∈ [σn−1 ∧∆σn−1,n(E)]
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Based on all this, what can we conclude about u0, . . . , un? First, since u0 ∈ [σ0] and
[σ0] = {w0}, it follows that w0 = u0. Second, since u0 ∈ [∆σ0,1(E)] and u1 ∈ [σ0,1], we
get that u0 ≤′E u1. All in all:

w0 = u0 ≤′E u1 ≤′E · · · ≤′E un−1 ≤′E un.

Since our assumption is that w0 is a top-level interpretation, we can apply Lemma
14 and get:

un ≤′E un−1 ≤′E · · · ≤′E u1 ≤′E u0 = w0.

From un ≤′E un−1 it follows that un ∈ [∆σn−1,n(E)], so un ∈ [σn ∧∆σn−1,n(E)], which
shows that σn∧∆σn−1,n(E) is consistent. In general, this gives us that σi∧∆σi−1,i(E)
is consistent, for i ∈ {1, . . . , n}, which is significant because it means that σ0 is a
top-level Horn formula with respect to E.

Let us now characterize jumps from one formula to another.

Definition 32. If σ, σ′ ∈ LcH are complete Horn formulas, we say there is a jump
from σ to σ′ with respect to E if there are σ0, . . . , σn such that σ0 = σ, σn = σ′, and
the following statements hold: 

σ0 ∧∆σ0,1(E),

σ1 ∧∆σ1,2(E),

. . .

σn−1 ∧∆σn−1,n(E),

are all consistent, and exactly one of the following is inconsistent:
σ1 ∧∆σ0,1(E),

σ2 ∧∆σ1,2(E),

. . .

σn ∧∆σn−1,n(E).

We can show now that jumps between complete Horn formulas correspond to
jumps between their interpretations.

Lemma 18. If σ, σ′ ∈ LcH are complete Horn formulas and [σ] = {w1}, [σ′] = {w2},
then there is a jump from σ to σ′ with respect to E iff there is a jump from w1 to w2 in
≤E .

Proof. We will prove the lemma on direction at a time.

(i) If there is a jump from σ to σ′ with respect toE, with [σ] = {w1} and [σ′] = {w2},
then there is a jump from w1 to w2 in ≤E .
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Take two complete Horn formulas σ, σ′, with [σ] = {w1}, [σ′] = {w2}, and assume
there is a jump from σ to σ′. This means that there are σ0, . . . , σn such that σ0 =
σ, σn = σ′, and: 

σ0 ∧∆σ0,1(E),

σ1 ∧∆σ1,2(E),

. . .

σn−1 ∧∆σn−1,n(E),

are all consistent.
Take, then: 

u0 ∈ [σ0 ∧∆σ0,1(E)],

u1 ∈ [σ1 ∧∆σ1,2(E)],

. . .

un−1 ∈ [σn−1 ∧∆σn−1,n(E)].

It follows immediately that u0 = w1, un = w2. More importantly, since ui−1 ∈
[∆σi−1,i(E)] and ui ∈ [σi−1,i] for i ∈ 1, . . . , n, we get that ui−1 ≤′E ui, or:

u0 ≤′E u1 ≤′E · · · ≤′E un−1 ≤′E un.

We need to show that exactly one of these inequalities is strict. Suppose, on the
contrary, that this is not the case. This means either none of the inequalities is
strict, or more than one is strict.

If none of the inequalities is strict, we have that:

u0 ≈′E u1 ≈′E · · · ≈′E un−1 ≈′E un.

But then neither of the formulas σi ∧ ∆σi−1,i(E) is inconsistent, since ui ∈ [σi ∧
∆σi−1,i(E)]. This contradicts what we know about these formulas from the definition
of a jump from σ to σ′.

If more than one inequality is strict, we also derive a contradiction. Suppose
ui−1 <

′
E ui and uj−1 <

′
E uj , for some 1 ≤ i < j ≤ n.

Now if ui−1 <
′
E ui, then ui /∈ [∆σi−1,i(E)]. Since [σi] = {ui}, it follows that [σi ∧

∆σi−1,i(E)] = ∅, or σi ∧∆σi−1,i(E) is inconsistent. The same holds for σj ∧∆σj−1,j (E).
Together, these contradict what we know about the jump from σ to σ′ from its defi-
nition.

To conclude, exactly one of the inequalities in the ≤′E-chain is strict, hence there
is a jump from w1 to w2.

(ii) If there is a jump from w1 to w2 in ≤E , then there is a jump from σ to σ′ with
respect to E, with [σ] = {w1} and [σ′] = {w2}.

Suppose there is a jump from w1 to w2. This means there are u0, . . . , un such that:

w1 = u0 ≤′E u1 ≤′E · · · ≤′E un−1 ≤′E un = w2,
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and exactly one of the inequalities is strict. Take σ0, . . . , σn such that [σk] = {uk}, k ∈
{0, . . . , n}, and suppose that ui−1 <′E ui, is the one strict inequality, for some i ∈
{1, . . . , n}.

Quite clearly, if we consider the statements in the following group:
σ0 ∧∆σ0,1(E),

σ1 ∧∆σ1,2(E),

. . .

σn−1 ∧∆σn−1,n(E),

all of them are consistent, since ui ∈ [σi ∧∆σi,i+1(E)], for i ∈ {1, . . . , n}. Half of the
definition for a jump from σ to σ′, then, is satisfied.

For the other half, let us show that σi ∧ ∆σi−1,i(E) is the only inconsistent for-
mula among the formulas of its kind. First, because ui−1 <′E ui, it follows that
ui /∈ [∆σi−1,i(E)], so σi ∧ ∆σi−1,i(E) is inconsistent. Second, suppose σj ∧ ∆σj−1,j (E)
is also inconsistent, for some j 6= i. Then we would get that uj /∈ [∆σj−1,j (E)], and
hence uj−1 <′E uj . But this contradicts the fact that ui−1 <′E ui is the only strict
inequality in the ≤′E-chain. This concludes the proof.

The notion of a jumpwill be used towards defining the level of a complete formula,
a notion analogous to the level of an interpretation in the order ≤E .

Definition 33. If σ ∈ LcH is a complete Horn formula, then an ascending ladder for σ
with respect to E is a sequence σ0, σ1, . . . , σn of formulas such that σ0 = σ, σn ∈ LETop,
and there is a jump from σi to σi+1, for any i ∈ {0, n− 1}.

Proposition 21. For any σ ∈ LcH , there exists an ascending ladder for σ with respect
to E.

Proof. Suppose [σ] = {w}. By Corollary 2, there are u0, . . . , un such that w = u0, un ∈
S0, ui is on a level immediately above the level of ui−1, and there is a jump from ui−1

to ui, for every i ∈ {0, . . . , n}.
Take σ0 = σ, and σi to be complete formulas such that [σi] = {ui}, for i ≥ 1. Since

un is a top-level interpretation, then by Lemma 17, σn is a top-level formula. By
Lemma 18, to every jump from ui−1 to ui there corresponds a jump from σi−1 to σi,
for every i ∈ {0, . . . , n}. This shows that there is an ascending ladder for σ.

The purpose is to use ascending ladders as a means of characterizing a formula’s
‘distance from the top’: the number of steps it takes to reach the top level starting
from the formula. Proposition 21 guarantees that there exists an ascending ladder
for any σ ∈ LcH , in other words that there exist paths to the top from every complete
formula.

In general there can exist many ascending ladders for any σ, depending on how
the jumps are done. We would like an ascending ladder that captures where the
model of σ is in terms of the hierarchy of levels S0,S1, . . . in ≤E .
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Definition 34. If σ0, . . . , σn is an ascending ladder for σ with respect to E, then we
take n to be its length.

Definition 35. For σ ∈ LcH , the level of σ with respect to E is the length of its longest
ascending ladder with respect to E.

We denote by lE(σ) the level of σ with respect to E.

Proposition 22. If [σ] = {w}, then the level of σ with respect to E is the same as the
level of w in ≤E .

Proof. Suppose this is not the case, i.e. take m to be the level of σ with respect to E
and n the level of w in ≤E , with m 6= n.

We have that w ∈ Sn, so (by Corollary 2) there is a sequence of interpretations
wn, wn−1, . . . , w0, such that wn = w ∈ Sn, wn−1 ∈ Sn−1, . . . , w0 ∈ S0, and there is a
jump from wk to wk−1, for any k ∈ {0, . . . , n}. Let us take σi to be complete formulas
such that σ0 = σ and [σi] = {wi}, for i ≥ 0. By Lemma 17, σ0 is a top-level formula;
by Lemma 18, there is a jump between σk−1 and σk, for any k ∈ {1, . . . , n}. Thus,
σ0, . . . , σn is an ascending ladder for σ with respect to E, and its length is n.

Now, we cannot have m < n, since the level of σ is supposed to be the length
of the longest ascending ladder of σ with respect to E, and we have just found an
ascending ladder of length n. It follows that m > n.

But then (by the definition of ascending ladders) there is a sequence σ0, σ1, . . . , σm
of complete Horn formulas (no connection with the σ’s above) such that σ0 = σ, σm ∈
LETop, and there is a jump from σi−1 to σi, for any i ∈ {1,m}.

If we take [σi] = {wi} (again, no connection to the interpretations considered
above), we get (by Lemma 18) that there is a jump from wi−1 to wi, for any i ∈ {1,m}.
Since a jump translates into a difference of at least one level (fromLemma 15) andwe
havem jumps, we get that the level of w0 is grater thanm and (as we have assumed
thatm > n), definitely greater than n. But w0 = w, and the level of w in ≤E is n. We
have arrived at a contradiction.

Thus, the only possibility is that m = n.

This now practically solves our problem, since we have found a characterization
of where a given interpretation stands in a particular order ≤E in terms of formulas
of LH and the ∆ operator.

Corollary 3. For any interpretationsw1, w2 and σ1, σ2 ∈ LcH such that [σ1] = {w1}, [σ2] =
{w2}, it is the case that w1 <E w2 iff lE(σ1) > lE(σ2).

Proof. By Lemma 10, w1 <E w2 iff the level of w1 is greater than the level of w2 in
the hierarchy of levels S0,S1, . . . in ≤E . By Proposition 22, the level of w1 is greater
than the level of w2 in ≤E iff lE(σ1) > lE(σ2).
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Figure 6.7: Distance from the top for interpretations on different levels

6.3.3 Conclusion
To spell out the intuition behind all this: we start from the fact that the relative
positioning of w1 and w2 in ≤E cannot be represented with ∆ϕw1,w2

(E) only. We
show this does not imply that the order between w1 and w2 is invisible to a Horn
merging operator—the order between w1 and w2 can be captured in LH by looking
at the interaction of ϕw1,w2 with the other formulas in LH .

More, precisely, the order between w1 and w2 in ≤E depends on the distance
between w1 and w2 and the top level S0: the one that is ’farther’ from the top is lower
in the hierarchy (see Figure 6.7).

This translates into a relation on formulas: it turns out that w1 is farther from
the top than w2 in≤E exactly when σ1 is farther from the top than σ2 with respect to
E, given suitably defined notions of ‘top’ and ‘distance from the top’ for formulas. To
put it more shortly, we have recoded the construction of ≤E in the actual language
of Horn logic, using the operator ∆.

6.4 kp5, kp6 (and kp4) revisited
In these conditions it becomes possible to capture kp5 and kp6. We can replace pos-
tulates IC5, IC6 with:

(IC ′5) For any σ1, σ2 ∈ LcH , if lE1(σ1) ≥ lE1(σ2) and lE2(σ1) ≥ lE2(σ2), then lE1tE2(σ1) ≥
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lE1tE2(σ2).

(IC ′6) For any σ1, σ2 ∈ LcH , if lE1(σ1) ≥ lE1(σ2) and lE2(σ1) > lE2(σ2), then lE1tE2(σ1) >
lE1tE2(σ2).

We can even get an equivalent for IC4 which targets kp4 specifically:

(IC ′′4 ) For any σ1 ∈ LcH such that σ1 |= K1, there is a σ2 ∈ LcH such that σ2 |= K2 and
l{K1,K2}(σ2) ≥ l{K1,K2}(σ1).

There is still the question of the relationship between these postulates and the stan-
dard postulates for merging in the normal case: ideally, in the normal case they are
logically implied by the IC postulates. We leave this matter to further reflection.
In the absence of definitive information about how these postulates relate to the
standard ones, we can formulate the theorem that follows as below:

Theorem 2. Take a Horn merging operator ∆ that satisfies IC0− IC3 + IC7− IC8 +
Acyc and the Horn compliant assignment defined from it as in Section 6.2.1, which
we know satisfies kp1 − kp3. Then the assignment satisfies kp4 − kp6 if and only if ∆
satisfies IC ′′4 , IC ′5 and IC ′6.

Proof. This follows immediately, using Corollary 3.

We have thus obtained a qualified representation result, which enforces kp4−kp6

on an assignment as long as it is built using the construction outlined in Section 6.2.1
and (the rather unwieldy) postulates IC ′′4 , IC ′5 and IC ′6 hold.
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CHAPTER 7
Specific Horn merging

operators

In this chapter we introduce a couple of specific Horn merging operators.

7.1 Some more notation
Before proceeding, let us gather some notation that will be used in the rest of this
chapter.

We have seen that a pre-order ≤ on interpretations can be represented as a
graph, by placing elements lower in the order lower on the graph, or through levels
assigned to each interpretation. A level is a positive integer, used to fix the position
of an interpretation in a particular pre-order. We will be making use of this fea-
ture heavily in the rest of this chapter. The convention will usually be that if K is a
knowledge base and w is an interpretation, then lK(w) denotes the level of w in ≤K .
The pre-order ≤K is completely determined if the levels of every interpretation are
given, by the rule:

w1 ≤K w2 iff lK(w1) ≤ lK(w2).

We will usually specify a pre-order by giving the levels of an interpretation in it. If
w ∈ [K], then lK(w) = 0, always. This is to ensure that the pre-order is at least faith-
ful. If K is a complete knowledge base and [K] = {w}, then for any interpretation
w′ we write lw(w′) instead of lK(w′).

If ≤1 and ≤2 are two total pre-orders specified through their levels, ≤1+2 denotes
the pre-order got by aggregating ≤1 and ≤2 through the sum aggregation function:
that is to say, we add the levels interpretation-wise.

The graph representation is useful to visualize the relative positions of interpre-
tations in a pre-order. In his chapter, though, we will mostly represent a pre-order
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01, 11(0)

10(3)

00(7)

[K1]

[K1] [K2] ≤K1 + ≤K2

00 7 0 7
01 0 2 2
10 3 2 5
11 0 5 5

Figure 7.1: Different representations of pre-orders

≤K through a table, where each column represents the vector of levels correspond-
ing to each interpretation. The head of the column will usually be a list of models
of K, or the way we obtained the pre-order.

As an example, Figure 7.1 shows on the left the graph representation for a pre-
order ≤K1 with [K1] = {01, 11}. On the right, it shows the same pre-order in a table,
alongside another pre-order ≤K2 and ≤K1 + ≤K2 .

The same things apply to pre-orders ≤E , where E is a profile.

Since our purpose will be to construct complete assignments for Horn profiles, it
will be useful to break assignments down into components.

Definition 36. A basic assignment is a faithful assignment for consistent knowledge
bases.

Observation 12. Since ≤K1=≤K2 if K1 ≡ K2, a basic assignment can be thought
of as a finite list of pre-orders, each corresponding to a non-empty subset ofW (i.e.,
we can pick one pre-order ≤K as a representative of the entire equivalence class of
pre-orders ≤K′ , where K ′ ≡ K).

For an alphabet with n propositional atoms the set of interpretations W has 2n

elements. Each non-empty subset of W represents one possible consistent knowl-
edge base, modulo logical equivalence. Thus, for a basic assignment we need 22n − 1
pre-orders. The number is smaller if we focus only on the sets of interpretations that
are representable by a Horn formula.

An even more basic component of an assignment will turn out to be the assign-
ment for complete knowledge bases K, that is to say knowledge bases that have
exactly one model.

Definition 37. An initial assignment is an assignment for complete knowledge
bases.

We will represent an initial assignment as a 2n × 2n square matrix, where n is
the size of the alphabet. For instance, Table 7.2 shows the initial assignment for
the assignment defined by Delgrande and Peppas for a Horn revision operator (see
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00 01 10 11
00 0 1 1 1
01 1 0 2 2
10 1 2 0 2
11 2 3 3 0

Figure 7.2: Basic assignment for the assignment defined by Delgrande and Peppas
for Horn revision (Definition 22).

Definition 22). The idea will be to take a suitable basic assignment and convert it
into a Horn compliant, syncretic assignment for profiles. For how this is done, once
we have a suitable basic assignment, see Section 7.3. The following section clarifies
what we mean by ‘suitable’.

7.2 Some general properties for Horn compliance
Theorem 1 tells us that a Horn compliant syncretic assignment can be used to define
a Horn merging operator that satisfies the standard postulates IC0− IC8 and Acyc.
It is useful, because it gives us a guide to building specific Horn merging operators.

The standardmethods for defining syncretic assignments (familiar notions of dis-
tance between interpretations and intuitive aggregation functions) fail in the Horn
case because they are typically not Horn compliant. The up-side is that if we can
make sure that an assignment is Horn compliant, even through multiple aggrega-
tions, then we can use it to define a Horn merging operator. So if we decide to use
familiar aggregation functions, the problem narrows down to making sure that the
pre-orders always remain Horn compliant.

In the following, we will mostly work with the sum aggregation function. For
Horn compliance, we prove some general properties that characterize Horn compli-
ant pre-orders.

The first thing to notice is that to check that a pre-order ≤ is Horn compliant
one need not go through all possible subsets [µ] ⊆ W, where µ ∈ LH , as a naive
reading of the definition would suggest. In fact, it is sufficient to check just triples
of interpretations {w0, w1, w2}, where w1 * w2, w2 * w1 and w0 = w1 ∩ w2.

Lemma 19. A total pre-order≤ on interpretations is Horn compliant if and only if for
every triple of interpretations {w0, w1, w2}, where w1 * w2, w2 * w1 and w0 = w1∩w2,
it is the case that min≤{w0, w1, w2} is representable by a Horn formula.

Proof. As a clarification, for a triple {w0, w1, w2} that satisfies the conditions above,
min≤{w0, w1, w2} is not representable by aHorn formula exactly whenw1 ≈ w2 < w0.
So what we need to shows is that Horn compliance means that this arrangement
never occurs in ≤.
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Now, if≤ is Horn compliant then (by definition) the minimal elements of any sub-
set of interpretations closed under intersection are representable by aHorn formula,
and this includes triples {w0, w1, w2}.

Conversely, assume that any triple {w0, w1, w2} is Horn compliant, but that ≤
is not. This means that there exists a Horn formula µ such that min≤[µ] is not
representable by a Horn formula. Clearly,min≤[µ] must contain at least 2 elements
(otherwise it would be representable in the Horn fragment).

Sincemin≤[µ] is not representable by a Horn formula, this means thatmin≤[µ] is
not closed under intersection. In other words, there are two interpretations w1, w2 ∈
min≤[µ] such that w1∩w2 = w0 /∈ min≤[µ]. Because µ is a Horn formula and w1, w2 ∈
[µ], then w0 ∈ [µ]. It follows, therefore, that w1 ≈ w2 < w0. But this implies that
{w0, w1, w2} is not Horn compliant, which contradicts our starting assumption.

We can break down our problem into two parts. The first part consists in defining
a set of pre-orders≤K for consistent knowledge basesK, and is often simple enough.
The next step is to find some condition which preserves Horn compliance through
sum aggregation: that is, if ≤1 and ≤2 are Horn compliant, what needs to happen
in order for ≤1+2 to be Horn compliant? The following property turns out to be
sufficient.

Definition 38. A pre-order ≤ is well-behaved if and only for any interpretations w0,
w1, w2 such that w1 * w2, w2 * w1 and w0 = w1 ∩ w2, it is the case that:

w0 ≤ w1 or w0 ≤ w2, and
|min{l(w1), l(w2)} − l(w0)| ≤ |max{l(w1), l(w2)} − l(w0)|

That is to say, ≤ is well-behaved if w0 is smaller than at least one of w1 and
w2 and, in case w0 is between w1 and w2, then w0 is closer to the smaller of the
two. Notice that if w0 is smaller than both w1 and w2, then ≤ is automatically well
behaved. Also notice that a well-behaved pre-order ≤ is also Horn compliant. We
can now show that well-behavedness is transmitted through sum aggregation.

Proposition 23. If ≤1 and ≤2 are well-behaved, then ≤1+2 is well-behaved.

Proof. We will show that ≤1+2 is well-behaved by case analysis. Take a triple of
interpretations {w0, w1, w2} such that w1 * w2, w2 * w1 and w0 = w1 ∩ w2.

(i) Suppose w0 is smaller than one of the other two interpretations in
both pre-orders. In other words, there exists wi ∈ {w1, w2} such that
l1(w0) ≤ l1(wi) and l2(w0) ≤ l2(wi).

Obviously, then, l1+2(w0) ≤ l1+2(wi), so the first property of well-behaved pre-orders
is satisfied. To see that the other property also holds, let us look at the possible
cases. Suppose l1(w0) ≤ l1(w1) and l2(w0) ≤ l2(w1). If w0 is smaller than both w1

and w2 in both pre-orders, then w0 is smaller than both w1 and w2 in the aggregated
pre-order, and the second property holds trivially.
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Suppose, then, that l1(w2) < l1(w0) ≤ l1(w1) and l2(w0) ≤ l2(w1). Here we also
have two cases. First, suppose l2(w2) ≤ l2(w0). So take m > 0, n, p, q ≥ 0 such that:

l1(w1) = l1(w0) + n,

l1(w2) = l1(w0)−m,
l2(w1) = l2(w0) + q,

l2(w2) = l2(w0)− p.

Because ≤1 and ≤2 are well-behaved, we have that m ≤ n and p ≤ q. The second
condition for well-behavedness translates as:

|min{n+ q,−m− p}| ≤ |max{n+ q,−m− p}|.

Since −m − p < 0 and n + q ≥ 0, it has to be the case that −m − p is the minimal
element of {n+ q,−m− p}. Then the inequality we have to prove becomes:

| −m− p| ≤ |n+ q|,

or m+ p ≤ n+ q. Because m ≤ n and p ≤ q, this follows immediately.
Second, suppose l2(w0) < l2(w2). Take m, p > 0 and n, q ≥ 0 such that:

l1(w1) = l1(w0) + n,

l1(w2) = l1(w0)−m,
l2(w1) = l2(w0) + q,

l2(w2) = l2(w0) + p.

The condition of well-behavedness translates as:

|min{n+ q, p−m}| ≤ |max{n+ q, p−m}|.

If both n+ q and p−m are positive, this follows immediately. If p−m < 0, then it is
clearly the minimal element in {n+ q, p−m}, and the inequality to prove becomes:

|p−m| ≤ |n+ q|,

or m− p ≤ n+ q. Since m ≤ n, the conclusion follows immediately.

(ii) Since it cannot be the case that w0 is greater than both w1 and w2 in
either ≤1 or ≤2, the only left possibility is that w1 <1 w0 ≤1 w2 and
w2 <2 w0 ≤2 w1, or other some such combination obtained through
symmetry. Let us focus on this case.

The fact that w1 <1 w0 ≤1 w2, means that l1(w1) < l1(w0) ≤ l1(w2). Take, therefore,
m > 0 and n ≥ 0 such that:

l1(w1) = l1(w0)−m,
l1(w2) = l1(w0) + n.
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Because ≤1 is, by assumption, well-behaved, it follows that m ≤ n. Analogously,
take p > 0 and q ≥ 0 such that:

l2(w2) = l2(w0)− p,
l2(w1) = l2(w0) + q.

We also have that p ≤ q.
Now assume, on the contrary, that w1 <1+2 w0 and w2 <1+2 w0. This means

that l1(w1) + l2(w1) < l1(w0) + l2(w0) and l1(w2) + l2(w2) < l1(w0) + l2(w0). Or, by
substituting the above equalities:

l1(w0)−m+ l2(w0) + q < l1(w0) + l2(w0),

l1(w0) + n+ l2(w0)− p < l1(w0) + l2(w0).

Simplifying, we get:

q −m < 0,

n− p < 0.

This means that q < m and n < p. Because m ≤ n and p ≤ q, we get that q < m ≤
n < p ≤ q, which leads to a contradiction.

We also need to show:

|min{l1+2(w1), l1+2(w2)} − l1+2(w0)| ≤ |max{l1+2(w1), l1+2(w2)} − l1+2(w0)|.

When we unpack this, it is equivalent to:

|min{l1(w1) + l2(w1), l1(w2) + l2(w2)} − (l1(w0) + l2(w0))| ≤
|max{l1(w1) + l2(w1), l1(w2) + l2(w2)} − (l1(w0) + l2(w0))|.

Or, to put it differently:

|min{(l1(w1) + l2(w1))− (l1(w0) + l2(w0)), (l1(w2) + l2(w2))− (l1(w0) + l2(w0))}| ≤
|max{(l1(w1) + l2(w1))− (l1(w0) + l2(w0)), (l1(w2) + l2(w2))− (l1(w0) + l2(w0))}|.

Plugging in the earlier equalities, this is equivalent to:

|min{q −m,n− p}| ≤ |max{q −m,n− p}|.

Suppose it does not hold, or |min{q − m,n − p}| > |max{q − m,n − p}|. A quick
case analysis shows that this leads to a contradiction. If min{q − m,n − p} ≥ 0,
the contradiction is immediate. Therefore, assume min{q −m,n− p} < 0, and that
min{q−m,n−p} = q−m. Since q−m < 0, we get that q < m. Adding this up to what
we already know about m,n, p, q from the fact that ≤1 and ≤2 are well-behaved, we
get that:

p ≤ q < m ≤ n
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Since |min{q −m,n − p}| > |max{q −m,n − p}|, it follows that |q −m| > |n − p|, or
m− q > n− p. This is a contradiction.

If min{q −m,n − p} = n − p, then n − p < 0 and n < p. Hence m ≤ n < p ≤ q.
From |min{q −m,n− p}| > |max{q −m,n− p}|, we derive that |n− p| > |q −m|, or
p− n > q −m. This is, again, a contradiction.

In Chapter 2 it was mentioned that if we want to aggregate pre-orders using Σ or
GMAX, the assignment should be symmetric (otherwise the merging operator does
not satisfy IC4). The condition of symmetry turns out to play an important role: if
symmetry holds, then the basic assignment is completely determined by the initial
assignment.

Lemma 20. In a symmetric assignment, the basic assignment is completely deter-
mined by the initial assignment.

Proof. If E = {K}, we may identify ≤E with ≤K . Now, if K is a complete knowledge
base, the pre-order ≤K is assumed to be given. Let us suppose, now, that [K] =
{w1, . . . , wn}, for n > 1. We want to show that if w is an interpretation, then the
level of w in ≤K is determined by the assignment for complete knowledge bases.

Take, then, an interpretation wi ∈ W. We denote by lK(wi) the level of wi in ≤K ,
and by Ki a knowledge base such that [Ki] = {wi}. By symmetry, we have that:

lK(Ki) = lKi(K).

Unpacking this, we get:

min{lK(w) | w ∈ Ki} = min{lKi(w) | w ∈ [K]}.

Since [Ki] = {wi}, we get that min{lK(w) | w ∈ Ki} = min{lK(wi)} = lK(wi). We
want to show that this is determined by the assignment for complete knowledge
base. For this, remember that Ki is a complete knowledge base, therefore lKi(w) is
determined, for any interpretation w, therefore min{lKi(w) | w ∈ [K]} is completely
determined.

Observation 13. Notice that symmetry requires thematrix representing the initial
assignment to be a symmetric matrix, with 0 on the main diagonal. For instance,
the assignment defined by Delgrande and Peppas for Horn revision (Definition 22)
is not symmetric, and this can be read off of its initial assignment matrix (see Table
7.2).

Let us look at an example of how symmetry allows us to determine the pre-order
≤K , where K is not complete, from the initial assignment.

Example 19. Consider the initial assignment in Table 7.1. Notice that it is sym-
metric. Take, now, a knowledge base [K] = {10, 11}. Let us apply symmetry to
compute the vector levels for ≤K . Take interpretation 00. By symmetry, we have
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00 01 10 11 10, 11
00 0 1 2 3 2
01 1 0 3 5 3
10 2 3 0 8 0
11 3 5 8 0 0

Table 7.1: Applying symmetry to determine pre-orders from the initial assignment.

that lK(00) = l00(K). Now:

l00(K) = min{l00(10), l00(11)} = min{2, 3} = 2.

Similarly, we can find the levels of every other interpretation in ≤K .

The nice thing is that if a basic assignment is defined from a symmetric initial
assignment by symmetry, then the entire basic assignment is symmetric.

Proposition 24. If a basic assignment is defined from a symmetric initial assign-
ment by symmetry, then the basic assignment is symmetric.

Proof. We have to show that for any consistent knowledge bases K1, K2, it is the
case that lK1(K2) = lK2(K1).

Let us do a case analysis and see that in a couple of cases the conclusion fall out
easily. If either of K1 or K2 is complete, then lK1(K2) = lK2(K1) by definition. If
[K1] ∩ [K2] 6= ∅, then lK1(K2) = lK2(K1) = 0.

The only case left to analyse is when K1 and K2 are consistent, non-complete
knowledge bases and they share no models. Suppose, then, that:

[K1] = {w1, . . . , wm},
[K2] = {w′1, . . . , w′n}.

Then:

lK1(K2) = min{lK1(w′1), . . . , lK1(w′n)}
= min{min{lw′1(w1), . . . , lw′1(wm)}, . . . ,min{lw′n(w1), . . . , lw′n(wm)}}.

The last step there was taken by applying symmetry. To visualize what this state-
ment says, consult Table 7.3 and focus on the square of dots in the upper right cor-
ner: min{lw′1(w1), . . . , lw′1(wm)} takes the minimum of the dotted elements in the
w′1-column, while min{lw′n(w1), . . . , lw′n(wm)} takes the minimum of the dotted ele-
ments in the w′n-column. We then have to take the minimum of all these minima,
which essentially means that lK1(K2) takes the minimum element from the upper
right dotted square.
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w1 . . . wm w′1 . . . w′n

w1 0 • . . . •
. . . • . . . •
wm 0 • . . . •
w′1 • . . . • 0
. . . • . . . •
w′n • . . . • 0

Figure 7.3: Symmetry

Completely analogously, we get that lK2(K1) takes the minimum element in the
lower left dotted square of Table 7.3. Crucially, remember that the initial assign-
ment matrix is symmetric—hence, the sub-matrix we have selected in Table 7.3 is
also symmetric. It follows that the dotted squares contain the same elements, and
so they have the same minima. This proves that lK2(K1) = lK1(K2).

Symmetry and well-behavedness combined allow us to take a ground assignment
and turn into a Horn compliant syncretic assignment.

Theorem 3. If a basic assignment determined through symmetry from a symmetric
initial assignment is also well-behaved, we can define a Horn compliant syncretic
assignment from it.

Proof. The basic assignment ends up being symmetric, by Proposition 24. Construct
now an assignment for profiles as follows:

• if E = {K} is a profile that contains only one (consistent) knowledge base, then
assign toE the pre-order≤ from the initial assignment that corresponds to the
models of K;

• if E = {K1, . . . ,Kn} contains more than one consistent knowledge bases, then
assign to E the pre-order ≤Σn

1
, where ≤i is the pre-order in the initial assign-

ment corresponding to the models of Ki.

Since the basic assignment is well-behaved (by assumption), it follows by Proposi-
tion 23 that aggregating any two pre-orders from the basic assignment produces a
well-behaved pre-order. By an induction argument, well-behavedness is preserved
through arbitrary aggregations. This means that≤E is well-behaved, for any profile
E. As mentioned earlier, well-behavedness implies Horn compliance.

We have argued above that the resulting assignment is Horn compliant. The
assignment is by design faithful, so it satisfies properties kp1 − kp3. We have also
argued above that the assignment is symmetric, so it satisfies kp4. Since aggrega-
tion is done with the sum function, it also satisfies kp5 − kp6. This means that the
assignment is Horn compliant and syncretic
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00 01 10 11 00, 01 00, 10 00, 11 01, 11 10, 11 00, 01, 10 00, 01, 11 00, 10, 11
00 0 1 1 2 0 0 0 1 1 0 0 0
01 1 0 2 3 0 1 1 0 2 0 0 1
10 1 2 0 3 1 0 1 2 0 0 1 0
11 2 3 3 0 2 2 0 0 0 2 0 0

Table 7.2: Ground assignment for the 2 letter alphabet

Observation 14. If we have an initial assignment that is symmetric, and the basic
assignment that results from it through symmetry is well-behaved, then by Theorem
3 we can define a syncretic assignment from it. By Theorem 1 this gives us a Horn
merging operator.

We can now use all the knowledge we gathered to define some Horn compliant
syncretic assignments.

7.3 A Horn compliant syncretic assignment for the two
letter alphabet

We first define the initial assignment. As a reminder, |w| is the number of bits in w
equal to 1. Now, if [K] = {w∗} is a complete knowledge base, define the level of an
interpretation w with respect to K as:

lK(w) =

{
0, if w ∈ [K],

|w∗|+ |w|, otherwise.

For any other knowledge base, the levels are computed by symmetry. Aggregation
is done through the sum aggregation function.

For the two letter alphabet, space allows us to present the whole basic assign-
ment (see Table 7.2). Notice that the initial assignment is symmetric, and the rest
of the basic assignment is symmetric by design. By Proposition 24, the entire basic
assignment is therefore symmetric.

The basic assignment is also well-behaved—this can be checked by inspecting
Table 7.2. It follows by Theorem 3 that this gives rise to a Horn compliant syncretic
assignment.

7.4 The counter-example for kp4

From Section 5.4.1, we owe the reader a faithful, Horn compliant assignment that
does not satisfy kp4 but still satisfies IC4. In Section 5.4.1 we only show what ≤K1

and ≤K2 , when [K1] = {01}, [K2] = {10}, have to be. In Table 7.3 we give the full
basic assignment. We aggregate by adding up the levels.

106



00 01 10 11 00, 01 00, 10 00, 11 01, 11 10, 11 00, 01, 10 00, 01, 11 00, 10, 11
00 0 1 1 1 0 0 0 1 1 0 0 0
01 1 0 3 1 0 1 1 0 2 0 0 1
10 1 4 0 1 1 0 1 1 0 0 1 0
11 1 2 1 0 1 1 0 0 0 1 0 0

Table 7.3: Counter-example for kp4

Remember that when we sum aggregate ≤K1 and ≤K2 we get a pre-order that
does not satisfy kp4, but its associated operator satisfies IC4 (see Section 5.4.1).

Notice that the initial assignment is not completely symmetric. However, the
basic assignment for the non-basic part is computed using symmetry from the basic
part. It can be checked by hand that except for the non-symmetric part we introduced
explicitly, the rest of the basic assignment is symmetric (we only need to additionally
check symmetry for pre-orders≤Ki and≤Kj , whereKi andKj are non-complete and
do not share any models).

Direct inspection of the basic assignment in Table 7.3 shows that it is well-
behaved. Hence, by Proposition 23, the basic assignment is Horn compliant and
stays Horn compliant through arbitrary aggregations.

By Theorem 3, this translates into a Horn compliant, almost-syncretic assign-
ment.

7.5 A Horn compliant syncretic assignment for an n

letter alphabet
We define here an assignment for the general case of an alphabet of size n. As be-
fore, we define the initial assignment and extend it to the basic assignment through
symmetry. Since the matrix for the initial assignment has to itself be symmetric
and have 0 on the main diagonal, we will only define the entries in the matrix below
the main diagonal, with the understanding the entries above the main diagonal are
fixed by symmetry. We aggregate using the sum.

An additional provision is that in the initial assignment matrix we rearrange
the rows and columns thus: we put first the interpretations with 0 bits that equal
to 1, then the interpretations with exactly 1 bits equal to 1, and so on. As an exam-
ple, in the 3 letter alphabet we would have the following order: 000, 001, 010, 100,
011, 101, 110, 111. This is slightly different than the order we had been putting
interpretations in up to now.

For just this definition, let us denote by (w0, . . . , w2n) the vector of interpretations
inW, where n is the size of the alphabet. This vector is ordered as we have described
in the previous paragraph.

The definition of the bottom half of the initial assignment matrix is recursive.
First, put:

lw0(wi) = i, for i ∈ {0, . . . , 2n}.
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w0 . . . wi−1 wi wi+1 . . .
w0 0 . . . i− 1 i i+ 1 . . .
. . . . . . . . . . . . . . . . . . . . .
wi−1 i− 1 . . . 0 . . .
wi i . . . a 0 . . .
wi+1 i+ 1 . . . b a+ b 0 . . .
. . . . . . . . . . . . . . . . . . . . .

Table 7.4: The recursive relation for levels

000 001 010 100 011 101 110 111
000 0 1 2 3 4 5 6 7
001 1 0 3 5 7 9 11 13
010 2 3 0 8 12 16 20 24
100 3 5 8 0 20 28 36 44
011 4 7 12 20 0 48 64 80
101 5 9 16 28 48 0 112 144
110 6 11 20 36 64 112 0 256
111 7 13 24 44 80 144 256 0

Table 7.5: Operator for the three letter alphabet

This means that the levels on the first column are 0, 1, 2, . . . 2n − 1.
Second, for 1 ≤ i ≤ 2n − 1, put:

lwi(wi+1) = lwi−1(wi) + lwi−1(wi+1).

Roughly, this means that the number in a particular cell under the main diagonal is
the sum of its two neighbours to the left. See, for instance, Table 7.4: if lwi−1(wi) = a,
lwi−1(wi+1) = b, then lwi(wi+1) = a + b. This is simpler than it sounds, and Table
7.5 shows the matrix that we get for the three letter alphabet. Notice the order of
interpretations in the heads of rows and columns.

Asmentioned above, the numbers above themain diagonal are fixed by symmetry
from the number below the main diagonal.

A couple of things should be noted here, such that the proof that follows goes
smoothly.

Observation 15. Notice that, because of the way we order the vector of interpre-
tations that make up the column and row heads of the matrix, an interpretation
w1 ∩ w2 always comes ‘before’ w1 and w2: that is to say, the column for w1 ∩ w2 is
always to the left of both w1 and w2, and the row for it is always above the row for
w1 and w2.
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wa wb

. . . . . . . . .
wim a+ b+
. . . a+ b+
win a+ b+
. . . . . . . . .

Table 7.6: Extracting a sub-matrix from the initial assignment matrix

Observation 16. Notice that as we traverse the initial assignment matrix from
left to right and from top to bottom, the levels keep increasing. More precisely, say
we select a subset two interpretations wa, . . . , wb, which appear in this order in the
matrix, and we extract their columns from the initial assignment matrix (see Figure
7.6).

We get a sub-matrix of the original one as in Figure 7.6. Suppose, now, that we
select some subset of interpretations {wim , . . . , win}, which also appear in this order.
Take:

min{lwa(wi) | wi ∈ {wim , . . . , win} and lwa(wi) 6= 0} = a,

that is to say: the smallest level on the column for wa, except 0, is a. We represent
this by writing a+ in the places for all levels except 0, to show that they are all at
least as great as a. Similarly, let us say that the smallest element on the column for
wb, is b. We represent this by writing b+.

The crucial thing to see here is that a ≤ b. This follows from the way we defined
the initial assignment, and the fact that levels keep increasing as we go from left to
write (or top to bottom).

Using these observation, let us show that the assignment we have defined is
well-behaved.

Proposition 25. The basic assignment just defined is well-behaved.

Proof. Take a triple of interpretations {w0, w1, w2} such that w1 * w2, w2 * w1

and w0 = w1 ∩ w2. We want to show that in any of the pre-orders ≤K of the basic
assignment, it is the case that w0 ≤K w1 or w0 ≤K w2, and that:

|min{lK(w1), lK(w2)} − lK(w0)| ≤ |max{lK(w1), lK(w2)} − lK(w0)|.

First, notice that the assignment for complete knowledge bases is well behaved.
This is because, from the way the assignment is defined, w0 always has a lower level
than both w1 and w2.

Let us see look now at knowledge bases K that have more than one model. We
will do a case distinction.
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w0 w1 w2 wi1 , . . . , wik

w0 0 a
w1 0 b
w2 0 c
wi1 a+ b+ c+ 0
. . . 0
wik a+ b+ c+ 0

Table 7.7: The level of w0 in ≤K has to be smaller than the levels of w1 and w2.

w0 w1 w2 w1, wi1 , . . . , wik

w0 0 a
w1 a+ 0 b+ 0
w2 0 b
wi1 a+ b+ 0
. . . 0
wik a+ b+ 0

Table 7.8: The level of w0 in ≤K has to be smaller than the level of w2.

First, suppose neither of w0, w1, w2 is in [K]. We claim that w0 ≤K w1 and
w0 ≤K w2. Suppose [K] = {wi1 , . . . , wik}. By symmetry, we have:

lK(w0) = lw0(K),

which means that:
lK(w0) = min{lw0(wi1), . . . , lw0(wik)}.

Similarly, we get that:

lK(w1) = min{lw1(wi1), . . . , lw1(wik)}.

To see that lK(w0) ≤ lK(w1), let us extract the sub-matrix with pre-orders for w0, w1

and [K] = {wi1 , . . . , wik} (see Table 7.7, where we have also included w2). Suppose
lK(w0) = a and lK(w1) = b.

Then, by symmetry, we must have:

min{lw0(wi1), . . . , lw0(wik)} = a.

min{lw1(wi1), . . . , lw1(wik)} = b.

Using Observations 15 and 16, it follows that a ≤ b. Similarly, it follows that
a ≤ c, which implies the conclusion. Second, suppose w1 ∈ [K], and that [K] =
{w1, wi1 , . . . , wik}. Since lK(w1) = 0, the condition for well-behavedness amounts to
showing that lK(w0) ≤ lK(w2).
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An argument similar to the one before shows why this holds. By consulting Table
7.8, which was also completed using symmetry, and by Observations 15 and 16, we
conclude that a ≤ b and hence that the level of w0 in ≤K is smaller than the level of
w2. The case when w2 ∈ [K] is completely analogous.

Together, these considerations show that the pre-order is well-behaved, for any
non-complete knowledge base.

Since the assignment is symmetric (by design) and, as we have just shown, it
is well-behaved, then Theorem 3 tells us that we can construct a Horn compliant
syncretic assignment from it.

111





CHAPTER 8
Discussion

We conclude by discussing related work and offering a summary of what has been
achieved, together with indications of future work.

8.1 Related work
The work closest to our own is by Delgrande and Peppas on Horn revision [16, 17],
presented at length in Chapter 4. In fact, our own work began as an attempt to
extend Delgrande and Peppas’ results to merging. The hope was that a represen-
tation result for merging would fall easily from their construction of a faithful pre-
order from a Horn revision operator. This did not happen, and the Horn merging
landscape turned out to be more complex than initially suspected.

Delgrande and Peppas [16, 17] approach revision directly, by exploring connec-
tions between Horn revision operators and model-based constructions. This itself
adapts previous work of Katsuno and Mendelzon [31]. Other approaches to Horn
revision take a different route, by defining revision operators from contraction oper-
ators with the Levi identity (see Section 3.2.5):

T ∗ ϕ := (T − ¬ϕ) + ϕ (Levi identity),

where T is a theory and ϕ a formula. This is a tactic for defining revision operators
that goes back to at least the original AGM paper [1]. Using the Levi identity in
the Horn becomes less straightforward, since contraction ends up having unwanted
properties, and there is still no universal agreement over what a contraction opera-
tor forHorn logic should look like [6, 15, 19]. In fact, aHorn revision operator defined
from a contraction operator has been presented only recently [57]. It is defined from
a variant of the Levi identity and a model-based Horn contraction function [56]. The
model-based Horn contraction of [56] is an interesting alternative to the approach
of Delgrande and Peppas [16, 17] (which we follow here), as it does not rely on the
pre-orders to be Horn compliant and total.
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Another important approach to Horn revision, which has the added advantage
of working for merging as well, is to attempt to ‘repair’ the results of standard op-
erators [12, 13]. As was mentioned in Sections 4.2.1 and 5.2, standard revision and
merging operators are unsuitable for use in the Horn fragment because they may
produce results that are not within the fragment—in model terms, the set of models
selected as the result of revision/merging might not be closed under intersection.
One can attempt to repair these results, either by closing them under intersection,
or by selecting subsets that are already closed. Unfortunately, this usually results
in operators that typically do not satisfy all the postulates.

We see the strategy of repairing as complementary to our own, as it answers
the same basic question: how should revision/merging proceed when the underlying
language is restricted to the Horn fragment? We have chosen to focus on ‘pure’
operators, that (by definition) always stay within the Horn fragment and satisfy all
the stated postulates—but by doing so we have had to abandon all the standard
operators and come up with ways of constructing new ones (see Chapter 7). But
one can just as well start from the standard operators and, by repairing them in
suitable ways, obtain approximate operators—operators that satisfy only a subset
of the postulates—for the Horn fragment.

The same type of concerns that motivate our inquiry are also present in works on
ontology revision and merging. Ontologies are normally expressed in some descrip-
tion logic (DL), which is usually some fragment of first order logic tailored so as to be
computationally efficient. Studying belief change for DL languages requires, there-
fore, adapting the operators to the particular fragment of interest. This is similar
to the problem we tackled in this work.

Using belief change in DL languages is appropriate, since maintenance tasks
that have to be performed on ontologies are powerfully reminiscent of the belief
change operations that have been touched upon here. Medical ontologies often con-
tain axioms that on later reflection turn out to be counter-intuitive and have to be
removed: this can be seen as an instance of contraction. A related problem arises
when new axioms are added and consistency has to be maintained: this can be seen
as an instance of revision. There is a growing literature modelling these tasks as
problems of belief change [24, 44, 45, 47, 54, 55]. We also mention here research
on updating knowledge bases not directly inspired by belief change, but which still
bears connection to it [50, 51].

Model-based approaches to ontology merging are largely inspired by Konieczny
and Pino Pérez [35, 37]. We mention here [28], where a family of merging operators
called dilation operators are presented, and [10], where an existing framework for
revision is used to define operations for ontologies.

8.2 Summary
Our purpose was to obtain a characterization of merging operators in the context
of Horn propositional logic. In Chapter 5 we showed that this presents some diffi-
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culties. Standard merging operators produce results that are not in the Horn frag-
ment, hence they cannot be used as out-of-the-box tools. Furthermore, the limited
expressiveness of the Horn fragment means that standard merging postulates fail
to characterize the same semantic structure (syncretic assignments) as in the case
of full propositional logic. The consequence is that a straightforward generalization
of the Konieczny and Pino Pérez representation result [35] to the Horn case is not
possible.

Drawing onDelgrande and Peppas’ work onHorn revision [16, 17], we introduced
in Chapter 6 a restricted notion of syncretic assignments, which required that every
ranking on interpretations be Horn compliant (see Definition 21). We then proved,
as one half of a representation result, that a Horn merging operator defined on top
of this restricted notion satisfies all the standard postulates (Theorem 1).

For the other half of a representation result, we were faced with the problem
that there were unwanted structures which, notwithstanding, fit in with the pos-
tulates (see Chapter 5). This included pseudo-preorders with non-transitive cycles,
as well as pre-orders which did not satisfy the conditions of fairness expected from
merging operators. As in Horn revision, pseudo-preorders were eliminated by intro-
ducing a special postulate called Acyc. Fairness was enforced by introducing a set of
specialized postulates. These postulates work on the condition that pre-orders are
built with a procedure inspired by Delgrande and Peppas [16, 17], but their relation
to the standard postulates is still open. We thus obtained a qualified version of a
representation result (see Theorem 2).

The first half of the representation result (Theorem 1) tells us that a syncretic
assignment can be used to construct a Horn merging operator, as long as the as-
signment is Horn compliant. We used this insight in Chapter 7, where we explored
the conditions under which a set of pre-orders is Horn compliant and continues to
be Horn compliant under successive sum aggregations. We defined the notion of
a well-behaved pre-order, which guarantees this, and we coupled it with other in-
sights (e.g., symmetry for knowledge bases) to construct a series of Horn compliant
syncretic assignments.

8.3 Conclusions and future work
There is plenty of space for improvement. In the short term, we would like to obtain
a better characterization of merging operators for the Horn fragment. This means
solving the open issues left with Theorem 2, or finding better ways to enforce the
fairness properties on an assignment built from a Horn merging operator. Other
issues left to be addressed are how to model the arbitration postulate Arb for the
Horn fragment (recall that in its standard formulation it could not be expressed in
Horn logic), and how to characterize the postulates Maj and Arb semantically.

The issue of specific merging operators for the Horn fragment is still very much
open. In Chapter 7 we presented a few samples, but a systematic treatment and
classification should be attempted.
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In the long run, the notion of merging should be extended to other types of for-
mulas, not just Horn ones. These include dual-Horn, Krom and affine formulas. A
unified framework for merging in arbitrary fragments would require amore abstract
framework, along the lines of [12].
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