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Abstract

In this paper we introduce proportionality to belief merging. Belief
merging is a framework for aggregating information presented in the form
of propositional formulas, and it generalizes many aggregation models in
social choice. In our analysis, two incompatible notions of proportional-
ity emerge: one similar to standard notions of proportionality in social
choice, the other more in tune with the logic-based merging setting. Since
established merging operators meet neither of these proportionality re-
quirements, we design new proportional belief merging operators. We
analyze the proposed operators against established rationality postulates,
finding that current approaches to proportionality from the field of social
choice are, at their core, incompatible with standard rationality postu-
lates in belief merging. We provide characterization results that explain
the underlying conflict, and provide a complexity analysis of our novel
operators.

1 Introduction

Proportionality is one of the central fairness notions studied in social choice
theory [4, 6, 25], arising whenever a collective decision should reflect the amount
of support in favor of a set of issues. Thus, notions of proportionality are key
when it is desirable that preferences of larger groups have more influence on the
outcome, while preferences of smaller groups are not neglected.

The idea of proportional representation shows up in many application sce-
narios: it is a key ingredient of parliamentary elections [3] and, more generally,
of multiwinner voting, i.e., the task of electing a committee of multiple can-
didates [13]. Recent work has set out to extend the notion of proportionality
from mathematically simple formalisms (mainly the apportionment setting) to
more general settings, with significant progress in areas such as approval-based
multiwinner voting [1, 28], ordinal multiwinner voting [8, 9], proportional rank-
ings [29], and multi-attribute committees [23].

∗Extended version of paper accepted at AAAI 2020.
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In this paper we introduce proportionality to the very general framework of
belief merging [20, 17, 18], in which agents can combine their individual posi-
tions on a set of issues in order to obtain a collective solution, with the added
option of imposing constraints on admissible outcomes. Though the agents’
individual positions are called beliefs, the belief merging framework is versa-
tile enough that it can accommodate a broad range of attitudes (e.g., beliefs,
preferences, judgments, goals or items of knowledge), as long as these, together
with the constraint and the outcome, can be expressed as formulas in a logical
language. The key challenges of such a process are that agents may hold mutu-
ally conflicting beliefs, and that beliefs may reflect complex interdependencies
between issues. The theory of belief merging then offers (i) a range of methods,
called belief merging operators, for aggregating beliefs and (ii) postulates used
to assess the rationality of the operators.

The most prominent belief merging operators studied so far tend to fall
into two main categories: operators following the majority opinion, and which
can be said to embody a utilitarian stance; and operators that place partic-
ular emphasis on the worst-off agents, and which can be said to be based on
an egalitarian viewpoint. Our aim is to find a compromise between these two
opposing positions, which, in a belief merging scenario, translates as the fol-
lowing desideratum: if a large enough proportion of the agents share common
beliefs, then these beliefs should be reflected at the collective level, to a degree
matching their proportion. Despite its intuitive appeal, such a proportionality
requirement has yet to find its way in the study of belief merging operators.

In defining proportional belief merging operators we rely on the Proportional
Approval Voting (PAV) rule, studied in multiwinner voting scenarios and known
to satisfy particularly strong proportionality requirements [1]. Based on PAV,
we introduce three belief merging operators: the PAV operator, the bounded
PAV operator and the harmonic Hamming operator. All these operators fall
into the class of satisfaction-based operators, introduced by us (Section 4) as
an alternative to the standard way of representing merging operators, which is
distance-based.

We look at the proposed belief merging operators from three perspectives.
Firstly, in Section 5, the operators are placed against the standard belief merging
IC-postulates. We show that any belief merging operator directly extending PAV
cannot be compatible with all IC-postulates; in particular, such an operator will
not satisfy postulate IC2 which stipulates that any admissible agreement among
agents shall be part of the merged result. We also provide a characterization of
operators that fail IC2 based on properties of the ranking a satisfaction-based
operator induces, which provides an alternative view on why the PAV approach
to proportionality is inconsistent together with IC2. However, we show that
the bounded PAV operator can be characterized as the only merging operator
(of a certain natural class) that extends PAV and satisfies all other postulates.
While the harmonic Hamming operator is defined via the harmonic sum used
by PAV, it does not generalize PAV. Thus, the aforementioned impossibility
does not hold; indeed, the harmonic Hamming operator satisfies all standard IC
postulates IC0−8.
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Secondly, in Section 6, we introduce two basic proportionality postulates for
the belief merging domain. The first one (classical proportionality) is the kind
of proportionality requirement typically studied in social choice settings, in par-
ticular in the apportionment setting [3]. This notion is based on the assumption
that agents derive utility from positive occurrences, i.e., from approved candi-
dates being selected in the collective choice. The second notion (binary propor-
tionality) is closer to the logical nature of belief merging. Here, no difference is
made between positive and negative agreement: the agents’ utility derives from
the (Hamming) distance between their preferences and the collective choice. We
show that these two notions are mutually exclusive and contradict each other.
Furthermore, we show by example that established belief merging operators
satisfy neither of these two postulates. In contrast, the aforementioned PAV
and bounded PAV operators satisfy classical proportionality and the harmonic
Hamming operator satisfies binary proportionality.

Thirdly, in Section 7, we study the complexity of our proposed merging
operators. Our results are that our novel operators fall into similar complexity
classes as established merging operators, which shows that the introduction of
proportionality comes at a moderate computational cost.

As mentioned before, belief merging can be seen as a general framework. In
Section 3, we make this argument precise for approval-based committee elec-
tions, and we show that our work has implications for other settings (Sect. 8).
In particular, our work yields new proportional goal-based voting rules [26] and
approval-based multiwinner rules with a variable number of winners [16, 14],
and gives insights for proportional judgment aggregation [24, 11, 12].

Proofs of formal results are detailed in the supplement.

2 Belief Merging

We assume a set A of m propositional atoms, with L the set of propositional
formulas generated from A using the usual connectives. An interpretation w is
a truth-value assignment to atoms in A, and we denote by U the set of all inter-
pretations over the set A of atoms. We typically write interpretations as words
where letters are the atoms assigned to true. If v and w are interpretations, the
symmetric difference v4w between v and w is defined as v4w = (v\w)∪(w\v).
The Hamming and drastic distances dH and dD, respectively, are defined as
dH(v, w) = |v4w| and dD(v, w) = 0, if v = w, and 1 otherwise. If ϕ ∈ L is a
propositional formula and w is an interpretation, w is a model of ϕ if w satisfies
ϕ. We write [ϕ] for the set of models of ϕ. If ϕ1, ϕ2 ∈ L, we say that ϕ1 |= ϕ2

if [ϕ1] ⊆ [ϕ2], and that ϕ1 ≡ ϕ2 if [ϕ1] = [ϕ2]. A formula ϕ is consistent, or
satisfiable, if [ϕ] 6= ∅.

A propositional profile P = (ϕ1, . . . , ϕn) is a finite tuple of consistent propo-
sitional formulas. We will assume that each formula ϕi in a profile P corresponds
to an agent i. If P1 and P2 are profiles, we write P1 + P2 for the profile obtained
by appending P2 to P1. If ϕi is a formula and there is no danger of ambiguity,
we write P + ϕi instead of P + (ϕi). A merging operator ∆ is a function map-

3



ping a profile P of consistent formulas and a propositional formula µ, called the
constraint, to a propositional formula, written ∆µ(P ). Two merging operators
∆1 and ∆2 are equivalent if ∆1

µ(P ) ≡ ∆2
µ(P ), for any profile P and constraint µ.

The following postulates are typically taken to provide a core set of rationality
constraints that any merging operator ∆ is expected to satisfy [19, 18]:

(IC0) ∆µ(P ) |= µ.

(IC1) If µ is consistent, then ∆µ(P ) is consistent.

(IC2) If
∧
P ∧ µ is consistent, then ∆µ(P ) ≡

∧
P ∧ µ.

(IC3) If P1 ≡ P2 and µ1 ≡ µ2, then ∆µ1
(P1) ≡ ∆µ2

(P2).

(IC4) If ϕ1 |= µ and ϕ2 |= µ, then ∆µ(ϕ1, ϕ2) ∧ ϕ1 is consistent if and only if
∆µ(ϕ1, ϕ2) ∧ ϕ2 is consistent.

(IC5) ∆µ(P1) ∧∆µ(P2) |= ∆µ(P1 + P2).

(IC6) If ∆µ(P1) ∧∆µ(P2) is consistent, then ∆µ(P1 + P2) |= ∆µ(P1) ∧∆µ(P2).

(IC7) ∆µ1
(P ) ∧ µ2 |= ∆µ1∧µ2

(P ).

(IC8) If ∆µ1
(P ) ∧ µ2 is consistent, then ∆µ1∧µ2

(P ) |= ∆µ1
(P ) ∧ µ2.

These postulates are best understood as axiomatizing a decision procedure based
on the aggregation of information coming from different sources (the formulas
in P ), under a constraint µ that must be satisfied by the result (postulate IC0).
The result should be consistent (postulate IC1), independent of the syntax of
the formulas involved (postulate IC3), include outcomes that are unanimously
accepted across subprofiles (postulates IC5−6) and coherent when varying the
constraint (postulates IC7−8). Additionally, postulate IC2 requires that if there
is any agreement between the formulas in P and µ, then the merged result is
nothing more than the agreed upon outcomes; and postulate IC4 stipulates that
merging two formulas ϕ1 and ϕ2 should be fair, in the sense that if the result
contains outcomes consistent with one of the formulas, it should contain results
consistent with the other as well. We will see that the latter two postulates are
problematic for proportionality-driven merging operators.

Standard ways of constructing merging operators that satisfy postulates
IC0−8 are based on the idea of minimizing overall distance to the profile P =
(ϕ1, . . . , ϕn), and rely on two parameters [17, 18]. The first is a notion of pseudo-
distance d : U × U → R≥0 between interpretations, typically either Hamming
distance dH or drastic distance dD. The distance d(ϕ,w) from a formula ϕ to
an interpretation w is then defined as d(ϕ,w) = minv∈[ϕ] d(v, w). The collective
distance w.r.t. profile P is obtained using the second ingredient, an aggregation
function f : Rn≥0 → R≥0 that, for any integer n, maps a vector of n real num-

bers to a real number, and is defined as df (P,w) = f(d(ϕ1, w), . . . , d(ϕn, w)).
Typical aggregation functions are the sum Σ and gmax. By f = gmax vectors
are ordered in descending order. For this aggregation function, the resulting
ordered vectors are compared according to a lexicographic order. The distance-
based merging operator ∆d,f is defined, for any profile P and formula µ, as a
formula ∆d,f

µ (P ) such that [∆d,f
µ (P )] = argminw∈[µ]d

f (P,w), i.e., as a formula
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Table 1: Hamming distances for ∆H,Σ and ∆H,gmax.

dH x1x2x3x4 x1x2x3x4 x1x2x3x4 y1y2y3y4 Σ gmax

x1x2x3x4 0 0 0 8 8 (8, 0, 0, 0)
x1x2x3y1 2 2 2 6 12 (6, 2, 2, 2)
x1x2y1y2 4 4 4 4 16 (4,4,4,4)
x1y1y2y3 6 6 6 2 20 (6, 6, 6, 2)
y1y2y3y4 8 8 8 0 24 (8, 8, 8, 0)

whose models are the models of µ at minimal collective distance to P . When
d = dD, the operators ∆D,Σ and ∆D,gmax are equivalent and we will heretofore
refer to them as ∆D. Thus, we recall three main distance-based operators (∆H,Σ,
∆H,gmax and ∆D), all of which are known to satisfy postulates IC0−8 [19, 18].

Example 1. For the set of atoms A = X ∪ Y , where X = {x1, . . . , x4} and
Y = {y1, . . . , y4}, take a profile P = (ϕ1, ϕ2, ϕ3, ϕ4) with ϕi = (x1 ∧ x2 ∧
x3 ∧ x4) ∧ (¬y1 ∧ ¬y2 ∧ ¬y3 ∧ ¬y4), for i ∈ {1, 2, 3}, ϕ4 = (¬x1 ∧ ¬x2 ∧
¬x3 ∧ ¬x4) ∧ (y1 ∧ y2 ∧ y3 ∧ y4). We obtain that [ϕi] = {x1x2x3x4}, for
i ∈ {1, 2, 3} and [ϕ4] = {y1y2y3y4}. Additionally, take a constraint µ such
that [µ] = {x1x2x3x4, x1x2x3y1, x1x2y1y2, x1y1y2y3, y1y2y3y4}. Table 1 dis-
plays Hamming distances between models of µ and formulas in P as well as
the aggregated distances, for the Σ and gmax aggregation functions. We have
dΣ

H(P, x1x2x3x4) < dΣ
H(P, x1x2x3y1) and dgmax

H (P, x1x2y1y2) < dgmax
H (P, x1x2x3y1),

since the overall distance (4, 4, 4, 4) lexicographically dominates (6, 2, 2, 2). Opti-
mal outcomes are written in bold, i.e., [∆H,Σ

µ (P )] = {x1x2x3x4} and [∆H,gmax
µ (P )] =

{x1x2y1y2}. We also obtain that [∆D
µ (P )] = {x1x2x3x4}.

Example 1 illustrates a general feature of the standard merging operators: ∆H,Σ

sees optimal outcomes in utilitarian terms and thereby favors the majority opin-
ion, while ∆H,Σ attempts to improve the standing of the worse off agent, thereby
favoring an egalitarian outcome. While such approaches may produce, on occa-
sion, proportional outcomes, they are in no way guaranteed to do so in general.

3 Approval-Based Committee Elections as In-
stances of Belief Merging

Notions of proportionality have been systematically studied in the social choice
literature, notably in the case of Approval-Based Committee (ABC) elections
[13]. An ABC election consists of a set of candidates C, a desired size of the
committee k, and a preference profile A = (A1, . . . , An). The preference pro-
file A contains approval ballots, i.e., Ai ⊆ C is the set of candidates agent
i approves of. An ABC voting rule outputs one or more size-k subsets of
C, the chosen committee(s). The ABC voting rule of interest to us is called
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Table 2: PAV scores for a selection of committees of size 4.

PAV x1x2x3x4 x1x2x3x4 x1x2x3x4 y1y2y3y4 Σ

x1x2x3x4 h(4) h(4) h(4) h(0) 6.25
x1x2x3y1 h(3) h(3) h(3) h(1) 6.5
x1x2y1y2 h(2) h(2) h(2) h(2) 6
x1y2y2y3 h(1) h(1) h(1) h(3) 4.83
y1y2y3y4 h(0) h(0) h(0) h(4) 2.08

Proportional Approval Voting (PAV) [30]. It is based on the harmonic func-

tion h : N → R, defined as h(`) =
∑`
i=1

1
i with the added convention that

h(0) = 0. Given a committee w of size k, the PAV-score of w w.r.t. A is
PAV(A,w) =

∑n
i=1 h(|Ai ∩ w|), where h is the harmonic function. The PAV

rule applied to the preference profile A, for a desired size k of the committee, is
defined as PAVk(A) = argmaxw⊆C,|w|=kPAV(A,w), i.e., it outputs committees
of size k that maximize the PAV score w.r.t. A.

Example 2. Take a set C = X ∪ Y of candidates, where X and Y are as
in Example 1, and a preference profile A = (A1, A2, A3, A4) with Ai = [ϕi],
where ϕi are, again, chosen from Example 1. Suppose k = 4, i.e., the task is to
choose committees of size 4. Intuitively, a proportional outcome would consist
of three candidates from X and one from Y , to reflect the fact that supporters
X outnumber supporters of Y in A by a ratio of 3 : 1. Indeed, this is exactly
the type of outcome the PAV rule will select. In Table 2, depicting the PAV
scores of a representative sample of possible winning committees, a committee
maximizing the overall PAV score w.r.t. A is x1x2x3y1.

In Example 2 we have identified models of propositional formulas with sets of
approved candidates in an ABC election. Indeed, we may pursue this analogy
further and show that any ABC election can be rephrased as a belief merging
instance. Given an instance of an ABC election, we associate to C the set of
propositional atoms AC = C. To agent i’s approval ballot Ai ⊆ C we associate
the propositional formula: ϕAi

=
∧
x∈Ai

x ∧
∧
x∈C\Ai

¬x, the sole model of
which is exactly Ai. To the preference profile A we associate the propositional
profile PA = (ϕA1 , . . . , ϕAn). To obtain solutions that adhere to the cardinality
constraint k, we choose µk to be a formula whose models are all subsets of AC
of size k. By postulates IC0 and IC1, [∆µk

(PA)] consists of a non-empty set
of models of size k, which can be seen as the winning committees in the ABC
election.

In general, any ABC election for size-k committees can be seen as a belief
merging instance where the profile consists of formulas with exactly one model
and the constraint µ has models of fixed size k. A merging operator ∆ extends
PAV if for all preference profiles A, it holds that PAVk(A) = [∆µk

(PA)], i.e.,
the output of the PAV voting rule is the set of interpretations, or sets of atoms,
returned by ∆µk

(PA). In the following we will introduce merging operators that
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approval-based

 sAV(v, w) = |v ∩ w|
sPAV(v, w) = h(|v ∩ w|)
sbPAV(v, w) = 2h(|v ∩ w|)− h(|w|)

binary sat.-based

{
shH(v, w) = h(m− dH(v, w))
shD(v, w) = h(m− dD(v, w))

Figure 1: Proposed satisfaction measures.

extend PAV and another that is inspired by it.

4 Satisfaction-based Merging Operators

The framework of ABC elections presented in Section 3 can be used as a spring-
board for designing proportional belief merging operators. By conceiving ways
in which an agent derives utility from a possible outcome, it becomes possible to
reason about the social welfare of merging, i.e., the utility of the agents’ society
as a whole.

The key notion in doing so is a satisfaction measure s : U × U → R, quan-
tifying the amount of satisfaction s(v, w) of interpretation v with interpreta-
tion w. The satisfaction s(ϕ,w) of a formula ϕ with w is then defined as
s(ϕ,w) = maxv∈[ϕ] s(v, w). Finally, the collective satisfaction s(P,w) of a profile
P with w is defined as s(P,w) =

∑
ϕ∈P s(ϕ,w). The satisfaction-based merging

operator ∆s outputs a formula ∆s
µ(P ) such that [∆s

µ(P )] = argmaxw∈[µ]s(P,w),
i.e., a formula whose models are exactly the models of µ that maximize satis-
faction of P .

Note that we can convert a distance-based merging operator ∆d,Σ (see Sec-
tion 2) into an equivalent satisfaction-based operator by inverting the distance
measure d, i.e., by defining a satisfaction measure s as s(v, w) = m − d(v, w),
for any interpretations v and w (remember that m is the number of atoms
in A). The resulting satisfaction-based operator is s.t. ∆s

µ(P ) ≡ ∆d,Σ
µ (P ),

for any profile P and µ. Note that since d is assumed to be symmetric (i.e.,
d(v, w) = d(w, v), for any interpretations v and w), the satisfaction measure s
defined on the basis of it is also symmetric. This being said, in the general case
we do not require satisfaction measures to be symmetric, and hence satisfaction-
based operators as defined here form a more general class than distance-based
operators ∆d,Σ, where d is a pseudo-distance.

The concrete satisfaction measures we propose are defined, for any inter-
pretations v and w, in Figure 1, and generate two groups of operators. The
approval-based operators, consisting of the AV operator ∆AV, the PAV operator
∆PAV and the bounded PAV operator ∆bPAV, mimic the behavior of an ABC
voting rule (see Section 3) in that they compute satisfaction of v with w based
on how many atoms v and w have in common, similarly to how satisfaction of an
approval ballot Ai with a potential committee w is based on how many approved
candidates in Ai find themselves in w. Note that, while an ABC voting rule
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is defined only for committees of fixed size, the merging operators we propose
select among interpretations of any size. Nonetheless, it is straightforward to
see that if the allowed outcomes (here, models of the constraint µ) are restricted
to a given size, then the operators ∆PAV and ∆bPAV are equivalent and extend,
in the sense described in Section 3, the PAV voting rule.

The operator ∆AV is put forward as a benchmark approval-based operator,
based on a satisfaction measure that simply counts the atoms v and w have
in common: in particular, ∆AV does not incorporate any proportionality ideas.
Consequently the ∆AV operator does not extend PAV, and, as shown in Sec-
tion 6, it does not meet any of the proportionality requirements we propose. The
∆PAV operator refines ∆AV by using the harmonic function h, known to behave
well w.r.t. proportionality requirements [1], in order to compute satisfaction.
Intuitively, the harmonic function reflects the “diminishing returns” of added
satisfaction: the difference between h(x) and h(x+1) gets smaller as x increases.
Thus, the operator ∆PAV is a prime candidate for a proportional satisfaction-
based merging operator. Nonetheless, ∆PAV has several shortcomings, which
serve as motivation for the remaining operators.

One drawback of ∆PAV is that it favors larger interpretations if available
(Example 3), i.e., it tries to increase agents’ satisfaction by setting as many
atoms to true as possible. Such an inflationary strategy may be undesirable in
practice and, in a belief merging setting, interferes with postulate IC4.

Example 3. For A = {x1, x2}, profile P = (ϕ1, ϕ2), with [ϕ1] = {x1} and
[ϕ2] = {x1x2}, and constraint µ such that [µ] = {x1, x1x2}, we obtain that
[∆PAV

µ (P )] = {x1x2}, whereas satisfaction of IC4 requires the result to be {x1, x1x2}.
The same result is obtained for ∆AV

µ (P ), but [∆bPAV
µ (P )] = {x1, x1x2}.

To curb the inflationary tendencies of ∆PAV, operator ∆bPAV introduces a
penalty on interpretations depending on their size, in the process ensuring sat-
isfaction of postulate IC4 as well. Indeed, as Section 5 shows, ∆bPAV is the only
operator from a fairly broad class that manages to balance proportionality and
fairness, as formalized by postulate IC4.

A related problem with ∆PAV stems from the fact that sPAV(v, w) is obtained
by counting only atoms v and w have in common. Hence, ∆PAV is insensitive
to the presence of extraneous, possibly unwanted atoms in w, the assumption
being that atoms in w that are not in v represent issues on which v has no
opinion on, and thus their presence has no effect on the satisfaction of v (see
Example 4). This assumption has the side-effect of interfering with postulate
IC2.

Example 4. It holds that sPAV(x1, x1) = sPAV(x1, x1x2), i.e., the presence of
x2 does not affect the satisfaction of x1, which leads to non-satisfaction of IC2.
For A = {x1, x2}, P = (ϕ), where [ϕ] = {x1} and µ = >, we obtain that
[∆PAV

µ (P )] = {x1, x1x2}, whereas satisfaction of postulate IC2 would require the
result to be {x1}.

Note that shD(x1, x1) = shH(x1, x1) = h(2), while shD(x1, x1x2) = shH(x1, x1x2) =
h(1). Thus, according to shD and shH, x1x2 provides less satisfaction to x1 than
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x1 alone. Consequently, for P and µ as above, [∆hD
µ (P )] = [∆hH

µ (P )] = {x1}.
This is in accord with postulate IC2.

The binary satisfaction-based operators, consisting of the harmonic drastic oper-
ator ∆D and the harmonic Hamming operator ∆H, are introduced in an attempt
to deal with the effect of unwanted atoms while, at the same time, providing
proportional outcomes. The satisfaction measures they are based on penalize
interpretations w for including additional, purportedly unwanted atoms. This
is done by inverting familiar notions of distance, which pay attention to atoms
appearing in one of the interpretation but not in the other. The harmonic func-
tion h is added to the satisfaction notion thus obtained with the idea of ensuring
proportionality. The operators that emerge are worth investigating: neither of
them extends PAV (as hinted at in Example 4), but from this point onward their
properties diverge. Though ∆hH does not extend PAV, it still ends up having
interesting proportionality properties, formalized in Section 6. On the other
hand, operator ∆hD turns out to be so coarse in its assessment of satisfaction
as to become, as Proposition 1 shows, indistinguishable from existing merging
operators defined using drastic distance dD. As a result, the ∆hD operator is
not responsive to proportionality requirements.

Proposition 1. The satisfaction-based operator ∆hD is equivalent to the distance-
based operator ∆D.

What emerges is a landscape with three merging operators relevant to the issue
of proportionality, i.e., ∆PAV, ∆bPAV and ∆hH. Out of these, ∆bPAV and ∆hH

address, each in its own way, problems arising with the ∆PAV operator: ∆bPAV

deals with interpretations of varying sizes, while ∆hH incorporates sensitivity
toward rejected atoms. As we will see in Sections 5 and 6, the proposed solutions
involve various trade-offs between proportionality and the IC postulates.

5 IC Postulates: Possibility and Impossibility

In this section we look at the merging operators introduced in Section 4 in
light of the standard merging postulates IC0−8. The first result shows that any
satisfaction-based operator satisfies a core set of IC-postulates.

Proposition 2. If s is a satisfaction measure, then the merging operator ∆s

satisfies postulates IC0−1,3,5−8.

Proposition 2 applies to both the approval-based and the harmonic distance-
based operators. What remains, then, is an understanding of how the new
satisfaction measures interact with postulates IC2 and IC4, and we settle the
issue by characterizing the types of satisfaction measures compliant with these
postulates. If v 6= w, the following properties prove to be relevant:

(S1) s(v, v) > s(v, w); (S2) s(v, v) > s(w, v);
(S3) s(v, v) = s(w,w); (S4) s(v, w) = s(w, v).
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They formalize the intuition that satisfaction is symmetric (S4), maximal when
one gets exactly what one wants, and trailing off as the outcome diverges from
one’s most desired outcome (S1−3). Theorem 1 shows that properties S1−3

capture satisfaction measures compliant with postulate IC2.

Theorem 1. A satisfaction-based merging operator ∆s satisfies postulate IC2

iff s satisfies properties S1−3.

Since the satisfaction measures sAV, sPAV or sbPAV satisfy none of the proper-
ties S1−3, Theorem 1 implies that the approval-based operators ∆AV, ∆PAV or
∆bPAV do not satisfy postulate IC2. On the other hand, the satisfaction mea-
sures shD and shH do satisfy properties S1−3, showing that the corresponding
operators satisfy postulate IC2.

As mentioned in Section 4, we do not require satisfaction measures to be
symmetric and, indeed, sbPAV is not symmetric (though the other satisfaction
measures are). The following result shows that, in the presence of postulate IC2,
symmetry is connected to postulate IC4.

Theorem 2. If a satisfaction-based merging operator ∆s satisfies postulate IC2,
then ∆s satisfies postulate IC4 if and only if s also satisfies property S4 (i.e., is
symmetric).

Since the satisfaction measures shD and shH are symmetric and, as implied by
Theorem 1, satisfy properties S1−3, we get by Theorem 2 that they also satisfy
postulate IC4. Together with Proposition 2, this yields the full picture for the
binary satisfaction-based operators ∆hH and ∆hD

Corollary 1. The operators ∆hH and ∆hD satisfy postulates IC0−8.

For the approval-based operators, satisfaction of postulates IC2 and IC4 is clar-
ified by another perspective on satisfaction measures. A satisfaction measure s
is a counting index if there exists a function σ : N × N → R, called the witness
of s, such that σ(0, 0) = 0 and s(v, w) = σ(|v ∩ w|, |w|), for any interpretations
v and w. Theorem 3 shows that counting indices do not fit with postulate IC2.

Theorem 3. If s is a counting index, the satisfaction-based merging operator
∆s does not satisfy postulate IC2.

It is straightforward to see that the approval-based satisfaction measures in-
troduced in Section 4 are counting indices. Thus, by Theorem 3, none of the
operators they generate satisfies postulate IC2. For postulate IC4, however, the
situation is different. Example 3 shows that the ∆AV and ∆PAV operators do
not satisfy postulate IC4, though ∆bPAV manages to evade the counter-example.
In fact, it turns out that not only does the operator ∆bPAV satisfy postulate
IC4, but a much stronger result can be shown: it is the only operator based on
a counting index that does so.

Theorem 4. If ∆s is a satisfaction-based merging operator such that s is a
counting index with σ as witness, extends PAV and satisfies postulate IC4, then
σ(x, y) = 2h(x)− h(y), for any x, y ∈ R.

10



It deserves emphasis that ∆bPAV manages to satisfy postulate IC4 even though
sbPAV is not a symmetric satisfaction measure: since ∆bPAV does not satisfy
postulate IC2, Theorem 2 does not apply. Indeed, none of the approval-based
operators manages to satisfy both postulates IC2 and IC4. This suggests that
there is a trade-off between the kind of proportionality these operators stand
for and these postulates.

One aspect that proves to be relevant is the fact that approval-based op-
erators can consider interpretations of various sizes. Reflection on Examples 4
and 3 shows that the problematic situations always involve interpretations of
different sizes. Interestingly, it turns out that fixing the size of the models of the
constraint µ yields merging operators that behave well w.r.t. the IC postulates.

Theorem 5. If all models of the constraint µ have some fixed size k, then the
approval-based merging operators ∆AV, ∆PAV and ∆bPAV satisfy all postulates
IC0−8.

6 Two Types of Proportionality

Here we formalize two notions of proportionality, arising out of two different
ways of conceptualizing satisfaction with respect to a possible outcome. To
simplify the presentation, we define these notions only for very restricted profiles.

A formula ϕ is complete if it has exactly one model, and a profile P is
complete if all the formulas in it are complete. We write P = (v1, . . . , vn)
to denote the complete profile with [ϕi] = {vi}, for all i ∈ {1, . . . , n}. A
complete profile P = (v1, . . . , vn) is simple if v1 ∪ · · · ∪ vn = A, and ei-
ther vi = vj or vi ∩ vj = ∅, for every i, j ∈ {1, . . . , n}.1 A complete profile
P = (v1, . . . , vn) is `-simple if it is simple and |{v1, . . . , vn}| = `, i.e., P con-
tains ` distinct sets. If v1, . . . , v` constitutes a partition of A, and p1, . . . , p`
are positive integers, we write (vp11 , . . . , vp`` ) to denote the `-simple profile:
(v1, . . . , v1︸ ︷︷ ︸
p1 times

, v2, . . . , v2︸ ︷︷ ︸
p2 times

, . . . , v`, . . . , v`︸ ︷︷ ︸
p` times

). If P = (vp11 , . . . , vp`` ) is an `-simple pro-

file with
∑`
i=1 pi = n, we say that P is k-integral if k·pi

n is an integer, for every

i ∈ {1, . . . , `}. Intuitively, for a model w of µ of size k, the fraction k·pi
n denotes

the intended satisfaction if proportionality is taken into account: out of the k
atoms selected, the share of group i should be the relative size of the group.

We propose two proportionality postulates, formulated for simple profiles
P = (vp11 , . . . , vp`` ). As before, constraint µk has as its models all interpretations
of size k.

(ICcp) For any k ∈ {1, . . . ,m} and w ∈ [∆µk
(P )], it holds that if P is k-integral

and |vj | ≥ k·pj
n for each j, 1 ≤ j ≤ l, then |vi ∩ w| = k·pi

n , for all
i ∈ {1, . . . , `}.

1In the context of ABC voting, such profiles are referred to as party-list profiles [21].
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(ICbp) If P = (vp11 , vp22 ) is simple and there is a w ∈ [µ] s.t.

m− dH(vi, w) =
m · pi
n

for i ∈ {1, 2}, (1)

then (1) holds for all w′ ∈ [∆µ(P )].

We refer to ICcp and ICbp as postulates of weak classical proportionality and
weak binary proportionality, respectively, as they refer to different sources of
satisfaction. Postulate ICcp talks about classical satisfaction, in which agent i’s
satisfaction with an interpretation w is given by |vi∩w|, just like the satisfaction
with a committee in an ABC election is measured by the number of approved
committee members. This is the kind of satisfaction notion typically used in a
social choice context. Postulate ICbp talks about binary satisfaction, in which
agent i’s satisfaction with w is given by m − dH(vi, w), i.e., by the degree of
closeness between vi and w. This type of satisfaction, alluded to already in
Section 4, follows from a logical viewpoint where positive and negative variable
assignments are treated equally. This approach is better suited to deal with
interpretations of varying sizes than the classical one, and thus postulate ICbp

allows such interpretations to be selected.
Intuitively, both postulates stipulate ‘shares’ groups of agents shall receive

(under a classical or binary viewpoint) that meet proportionality based on the
relative size of the groups. For ICcp we restrict to µk, with k atoms to be dis-
tributed proportionally by each solution w (like for ABC elections). Postulate
ICbp states that in the presence of at least one admissible w ∈ [µ] that meets the
proportionality requirements, all solutions shall meet said requirements (other-
wise µ permits no proportional solution). Note that if P = (vp11 , vp22 ) satisfies
the conditions of ICbp, then P is m-integral, and the binary satisfaction of v1

and v2 adds up to m, i.e., m− dH(v1, w) +m− dH(v2, w) = m. Postulate ICbp

demands that this total satisfaction m is split proportionally.

Example 5. For A = X∪Y , with X = {x1, . . . , x6} and Y = {y1, y2}, take the
simple profile P = (v3

1 , v
1
2), with v1 = x1 . . . x6 and v2 = y1y2, and a constraint

µ4, with models of size 4. It is straightforward that, according to ICcp, an optimal
outcome contains three variables from X and one from Y , e.g., the interpretation
w = x1x2x3y1. Such an outcome is in the spirit of classical proportionality.

According to postulate ICbp, an optimal outcome w would be such that dH(v1, w) =
2 and dH(v2, w) = 6, e.g., w′ = x1x2x3x4, w′′ = x1x2x3x4x5y1 or w′′′ =
x1x2x3x4x5x6y1y2. Note that ICbp allows interpretations of varying sizes to be
selected. If the size is restricted to 4 (i.e., the constraint is µ4), then the out-
come narrows down to interpretations such as w′, which consist of four atoms
from X. More details on this can be found in the supplement.

Example 5 shows that classical and binary proportionality may require different
interpretations to be selected on the same input. Thus, even though our notions
of proportionality apply only to simple profiles, they set up a clear boundary
for distinguishing among the different merging operators.
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Theorem 6. The merging operators ∆PAV and ∆bPAV satisfy postulate ICcp,
∆hH satisfies postulate ICbp, while ∆H,Σ, ∆H,gmax, ∆hD and ∆AV satisfy neither
ICcp nor ICbp.

The proposed merging operators ∆PAV and ∆bPAV are representative of the
notion of classical proportionality, while ∆hH is representative for binary pro-
portionality. Theorem 7 shows that these notions are thoroughly incompatible.

Theorem 7. There is no merging operator that satisfies IC1 and both ICcp and
ICbp.

7 Computational Complexity

To investigate the complexity of our novel merging operators, we look at the
standard decision problem studied in this context [20]: given an operator ∆, a
profile P , an integrity constraint µ, and a Boolean formula ψ, determine whether
∆µ(P ) |= ψ holds. That is, the decision problem asks whether a formula ψ
follows from the merged result. The hardness results we use and recall here
hold when ψ = a is an atom. The two main complexity classes appearing
here are ∆P

2 and ΘP
2 , denoting the classes of decision problems solvable via a

deterministic polynomial time algorithm with access to an NP oracle, with the
latter class having the additional restriction that at most logarithmically many
oracle calls may be made. Many standard merging operators are complete for
one of these two classes [20].

We show that our novel operators fit into this picture; we obtain ΘP
2 hardness

and ∆P
2 membership for all new operators, except for ∆AV, which we show to

be ΘP
2 -complete. That is, our introduction of proportionality leads to neither

milder nor significantly more complex operators. Hardness for ΘP
2 can be shown

by adapting an existing reduction, originally from belief revision [7, Theorem
6.9]. Finally, membership diverges for ∆hH, ∆PAV, ∆bPAV and ∆AV, since the
first three operators induce an exponential set of possible satisfaction scores for
interpretations—in contrast to ∆AV that only induces a polynomial set.

Theorem 8. Deciding whether a formula follows from the result of merging
operator ∆s is ΘP

2 -complete for s = AV, and both ΘP
2 -hard and in ∆P

2 , for
s ∈ {PAV,bPAV,hH}.

We conjecture that merging under ∆hH, ∆PAV and ∆bPAV is ∆P
2 -complete.

However, usual hardness reductions used to show ∆P
2 -hardness in merging are

not suited for our novel operators based on harmonic functions.

8 Applications Beyond Belief Merging

In this section we briefly discuss how our results can be transferred to other,
related formalisms.
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Variable Approval-Based Committee Elections

In contrast to ABC elections as introduced in Section 3, it is sometimes desirable
to have flexibility with respect to the size of the committee by not fixing its size
in advance [16, 14]. We refer to ABC voting rules without a size constraint as
variable ABC voting rules. Note that, as mentioned in Section 4, a merging
operator defines a variable ABC rule by setting µ = >. It is easy to see that
the AV and PAV operators are not sensible in this context, as w = A (i.e.,
setting all atoms to true) is always an optimal model. However, the ∆bPAV and
∆hH operators present themselves as novel additions to this framework, being
proportional variable ABC rules.

Goal-Based Voting

Goal-based voting [26] is a formalism similar to belief merging but with a focus
on resolute rules (i.e., rules return only one model) and with different postulates.
All proposed operators in this paper can be viewed as goal-based voting rules
(subject to tie-breaking), and our proportionality postulates can be adapted
for this setting as well. To the best of our knowledge, our proposed merging
operators yield the first proportional goal-based voting rules. It would be par-
ticularly interesting to see whether Theorem 4 can be replicated by axioms from
the goal-based voting setting (instead of postulate IC4).

Judgment Aggregation

Judgment aggregation (JA) is another formalism for aggregating beliefs, related
but distinct from belief merging, with the connection having been discussed [11].
Even though they differ in important aspects, the main ideas in our paper can
be transferred from belief merging to JA. While propositional variables are the
basic building blocks for belief merging, it might be more suitable to take the
agenda (a set of propositional formulas) as the basis for defining proportionality
in JA. This allows for the definition of proportional JA operators. Further work
is required to analyze the resulting JA operators.

9 Discussion

In this paper we have initiated the study of proportional belief merging oper-
ators. We have presented three proportional operators: the PAV operator and
the bounded PAV operator, both satisfying ICcp, and the harmonic Hamming
operator satisfying ICbp. We summarize our results in Table 3.

Apart from the questions posed in Section 8, the current work suggests sev-
eral directions for future research, While the two proportionality postulates we
proposed apply only to certain instances, even weak proportionality postulates
have proven sufficient for axiomatic characterizations [21] and in our paper these
two postulates are sufficient to distinguish proportional from non-proportional
operators. On the other hand, stronger postulates are desirable to determine to
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Table 3: Summary of results. New results in gray, for all others see Konieczny
et al. (2004). Per Theorem 5, for results marked with ∗ the × becomes X when
models of the constraint µ are assumed to have fixed size.

IC0,1,3,5−8 IC2 IC4 ICcp ICbp Complexity

∆H,Σ X X X × × ΘP
2 -c

∆H,gmax X X X × × ∆P
2 -c

∆hD ≡ ∆D X X X × × ΘP
2 -c

∆hH X X X × X
in ∆P

2 , ΘP
2 -

h
∆AV X ×∗ ×∗ × × ΘP

2 -c

∆PAV X ×∗ ×∗ X × in ∆P
2 , ΘP

2 -
h

∆bPAV X ×∗ X X × in ∆P
2 , ΘP

2 -
h

which degree proportionality guarantees can be given. This has recently been
investigated in the context of approval-based committee elections [1, 2, 28]; this
line of work can serve as a basis for a similar analysis for belief merging opera-
tors.

Finally, manipulation and strategic voting, common concerns in social choice
theory, have received some attention in the belief merging framework as well [10,
15]. It can be expected that proportional belief merging operators are prone
to strategic voting, as in ABC voting even weak forms of proportionality and
strategy-proofness have been shown to be incompatible [27]. Still, it has been
found that the percentage of manipulable instances depends strongly on the
choice of voting rules [22], indicating that a detailed analysis of vulnerabilities
is an interesting avenue for future work.
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[12] Patricia Everaere, Sébastien Konieczny, and Pierre Marquis. An introduc-
tion to belief merging and its links with judgment aggregation. In Ulle
Endriss, editor, Trends in Computational Social Choice, chapter 7, pages
123–143. AI Access, 2017.

[13] Piotr Faliszewski, Piotr Skowron, Arkadii Slinko, and Nimrod Talmon.
Multiwinner voting: A new challenge for social choice theory. In Ulle
Endriss, editor, Trends in Computational Social Choice, chapter 2, pages
27–47. AI Access, 2017.

[14] Piotr Faliszewski, Arkadii Slinko, and Nimrod Talmon. The complex-
ity of multiwinner voting rules with variable number of winners. CoRR,
abs/1711.06641, 2017.

16



[15] Adrian Haret and Johannes Peter Wallner. Manipulating skeptical and
credulous consequences when merging beliefs. In Francesco Calimeri, Nicola
Leone, and Marco Manna, editors, Proc. JELIA, volume 11468 of LNCS,
pages 133–150. Springer, 2019.

[16] Marc D Kilgour. Approval elections with a variable number of winners.
Theory and Decision, 81(2):199–211, 02 2016.
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Appendix

In this appendix we give further examples that clarify our proposed operators
and their properties (Section A), as well as give proof detail for the formal
statements in the paper (Section B), and provide an additional discussion on
the behavior of the bounded PAV merging operator (Section C).

A Examples

Example 6 involves all the operators we talk about in the paper (both the stan-
dard distance-based ones and the satisfaction-based operators we introduce),
together with tables for the computed distances and satisfactions. It is a com-
panion to Examples 1 and 2 in the main body of the paper, and it expands on
the main ideas and techniques.

Example 6. For the set of atoms A = X ∪ Y , with X = {x1, x2, x3, x4, x5}
and Y = {y1, y2, y3, y4, y5}, take the simple profile P = (ϕ1, ϕ2, ϕ3, ϕ4), with
[ϕ1] = [ϕ2] = [ϕ3] = {x1x2x3x4x5} and [ϕ4] = {y1y2y3y4y5}, and a constraint
µ5, with models of size 5. The distances between the formulas in P and the
models of µ (i.e., dH(ϕi, w) and dD(ϕi, w), for i ∈ {1, 2, 3, 4} and w ∈ [µ]),
the satisfactions of the formulas in P with the models of µ (i.e., sAV(ϕi, w),
sPAV(ϕi, w), sbPAV(ϕi, w) and sAV(ϕi, w), for i ∈ {1, 2, 3, 4} and w ∈ [µ]), as
well as the aggregated distances and satisfactions, are depicted in Tables 4, 5
and 6. In these tables we only focus on a representative sample of models of µ.
Optimal values are written in bold font.

For the distance-based operators ∆H,Σ, ∆H,gmax, ∆D,Σ and ∆D,gmax note
that optimal values are those that minimize overall distance to P . Thus, we have
that dΣ

H(P, x1x2x3x4x5) < dΣ
H(P, x1x2x3x4y1), which means that x1x2x3x4x5 is,

according to the aggregation function Σ, closer to P than x1x2x3x4y1. On the
other hand, it holds that dgmax

H (P, x1x2x3y1y2) < dgmax
H (P, x1x2x3x4y1), since

(6, 4, 4, 4, 4) lexicographically dominates (8, 2, 2, 2, 2). We obtain that:

[∆H,Σ
µ (P )] = [∆D,Σ

µ (P )]

= [∆D,gmax
µ (P )]

= {x1x2x3x4x5},

while the optimal outcomes according to ∆H,gmax are interpretations containing
three atoms from X and two from Y , such as x1x2x3y1y2. It is straightforward
to see, looking at Table 4, that ∆D,Σ and ∆D.gmin are equivalent, since they both
do the same thing, i.e., count the number of bases of which w is not a model.

For the approval-based operators ∆AV, ∆PAV and ∆bPAV and the binary
satisfaction-based operator ∆hH, keep in mind that optimal values are those that
maximize overall satisfaction with respect to P . We obtain that:

[∆AV
µ (P )] = {x1x2x3x4x5},
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dH dD

4 · x1x2x3x4x5 y1y2y3y4y5 Σ gmax 4 · x1x2x3x4x5 y1y2y3y4y5 Σ gmax

x1x2x3x4x5 4 · 0 10 10 (10, 0, 0, 0, 0) 4 · 0 1 1 (1,0,0,0,0)
x1x2x3x4y1 4 · 2 8 16 (8, 2, 2, 2, 2) 4 · 1 1 5 (1, 1, 1, 1, 1)
x1x2x3y1y2 4 · 4 6 22 (6,4,4,4,4) 4 · 1 1 5 (1, 1, 1, 1, 1)
x1x2y1y2y3 4 · 6 4 28 (6, 6, 6, 6, 4) 4 · 1 1 5 (1, 1, 1, 1, 1)
x1y1y2y3y4 4 · 8 2 34 (8, 8, 8, 8, 2) 4 · 1 1 5 (1, 1, 1, 1, 1)
y1y2y3y4y5 4 · 10 0 40 (10, 10, 10, 10, 0) 4 · 1 0 4 (1, 1, 1, 1, 0)

. . .

Table 4: Distances dH and dD, as well as the overall distances aggregated with
Σ and gmin, for profile P and constraint µ from Example 6.

sAV sPAV

4 · x1x2x3x4x5 y1y2y3y4y5 Σ 4 · x1x2x3x4x5 y1y2y3y4y5 Σ

x1x2x3x4x5 4 · 5 0 20 4 · h(5) h(0) 9.13
x1x2x3x4y1 4 · 4 1 17 4 · h(4) h(1) 9.33
x1x2x3y1y2 4 · 3 2 14 4 · h(3) h(2) 8.83
x1x2y1y2y3 4 · 2 3 11 4 · h(2) h(3) 7.83
x1y1y2y3y4 4 · 1 4 8 4 · h(1) h(4) 6.08
y1y2y3y4y5 4 · 0 5 5 4 · h(0) h(5) 2.28

. . .

Table 5: Satisfactions sAV and sPAV, as well as the overall satisfactions, for
profile P and constraint µ from Example 6.

while the optimal outcomes according to the operators ∆PAV, ∆bPAV and ∆hH

are interpretations containing four atoms from X and one atom from Y , such as
x1x2x3x4y1. The distribution of chosen atoms according to the latter operators
reflects the ratio of supporters of X to supporters of Y in P , which is 4 : 1.

It is immediately visible how the operator ∆H,Σ favors the majority option,
while the operator ∆H,gmax optts for the more egalitarian outcome. Neither of
these strategies is guaranteed to yield outcomes that reflect the proportion of
support for a particular issue in the profile. By contrast, the operators ∆PAV,
∆bPAV and ∆hH aim for proportional outcomes, and this is visible on the exam-
ple.

sbPAV shH

4 · x1x2x3x4x5 y1y2y3y4y5 Σ 4 · x1x2x3x4x5 y1y2y3y4y5 Σ

x1x2x3x4x5 4 · (2 · h(5)− h(5)) 2 · h(0)− h(5) 6.85 4 · h(10− 0) h(10− 10) 11.71
x1x2x3x4y1 4 · (2 · h(4)− h(5)) 2 · h(1)− h(5) 7.25 4 · h(10− 2) h(10− 8) 12.37
x1x2x3y1y2 4 · (2 · h(3)− h(5)) 2 · h(2)− h(5) 6.25 4 · h(10− 4) h(10− 6) 11.88
x1x2y1y2y3 4 · (2 · h(3)− h(5)) 2 · h(3)− h(5) 4.25 4 · h(10− 6) h(10− 4) 10.78
x1y1y2y3y4 4 · (2 · h(1)− h(5)) 2 · h(4)− h(5) 0.75 4 · h(10− 8) h(10− 2) 8.72
y1y2y3y4y5 4 · (2 · h(0)− h(5)) 2 · h(5)− h(5) −6.85 4 · h(10− 10) h(10− 0) 2.93

. . .

Table 6: Satisfactions sbPAV and shH, as well as the overall satisfactions, for
profile P and constraint µ from Example 6.
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sPAV shH

3 · x1x2x3x4x5x6 y1y2 Σ 3 · x1x2x3x4x5x6 y1y2 Σ

x1x2x3x4 3 · h(4) h(0) 6.25 3 · h(6) h(2) 8.85
x1x2x3y1 3 · h(3) h(1) 6.5 3 · h(4) h(4) 8.33
x1x2y1y2 3 · h(2) h(2) 6.0 3 · h(2) h(2) 6.95

. . .

Table 7: Satisfaction sPAV and shH, as well as the aggregates satisfactions, for
profile P and constraint µ in Examples 5 and 7.

Example 7 presents a more elaborate version of Example 5, used to highlight
the difference between classical and binary proportionality.

Example 7 (Expanded from Example 5). For the set of atoms A = X ∪ Y ,
with X = {x1, x2, x3, x4, x5, x6} and Y = {y1, y2}, take the simple profile P =
(v3

1 , v
1
2), with v1 = x1x2x3x4x5x6 and v4 = y1y2, and a constraint µ4, with

models of size 4. Since the number of formulas in P is 4 (i.e., n = 4), it is easy
to see that the profile P is 4-integral as well as 8-integral (the latter is needed
because m = 8 in this case).

We would like to understand what kind of interpretations would be chosen by
a merging operator ∆ that satisfies postulate ICcp and ICbp, respectively. To do
this, we can use the equalities presented in these postulates to infer properties of
an optimal outcome, i.e., an interpretation w such that w ∈ [∆µ(P )]. In these
equalities, we are basically treating w as an unknown and solving for it.

Assume, first, we are working with a merging operator ∆ that satisfies pos-
tulate ICcp. Thus, for k = 4, postulate ICcp tells us that if w ∈ [∆µ4

(P )], then it
holds that:

|v1 ∩ w| =
4 · 3

4
= 3,

and:

|v2 ∩ w| =
4 · 1

4
= 1.

Thus, from the standpoint of classical proportionality, an optimal outcome of
size 4 reflects the proportion of agents that approve atoms within it, and it
would contain three variables from X and one from Y , e.g., the interpretation
w = x1x2x3y1.

Assume, however, that we are working with a merging operator ∆ that sat-
isfies postulate ICbp. Postulate ICbp tells us that if there exists an interpretation
w′ ∈ [∆µ4

(P )] that satisfies the equality:

m− dH(vi, w) =
m · pi
n

,
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for i ∈ {1, 2}, then every interpretation in [∆µ(P )] satisfies this equality. Sup-
pose there exists such an interpretation w. The equality requires that:

8− dH(v1, w) =
8 · 3

4
= 6,

and:

8− dH(v2, w) =
8 · 1

4
= 2.

This implies that dH(v1, w) = 2 and dH(v2, w) = 6. Among all possible inter-
pretations, the ones that satisfy these conditions are:

(a) interpretations of size 4, consisting of four atoms from X, e.g., x1x2x3x4;

(b) interpretations of size 6, consisting of five atoms from X and one from Y ,
e.g., x1x2x3x4x5y1;

(c) the interpretation consisting of all atoms from X and all atoms from Y ,
i.e., x1x2x3x4x5x6y1y2.

Thus, postulate ICbp says that if at least one of these interpretations are in mods
µ, then the interpretations that make it into the result are all from the same list.

Note that from the standpoint of binary proportionality, it makes sense to
select among interpretations of varying sizes, as the satisfaction notion is cal-
ibrated to take into account the differences that arise. Note also that if the
constraint is restricted to interpretations of size 4 (i.e., the constraint is µ4),
then only interpretations of type (a) get selected. In this setup, an interpreta-
tion such as w = x1x2x3y1 provides less satisfaction to P than interpretations
containing only atoms from X, such as w′ = x1x2x3x4. This is because for
agents v1, v2 and v3 the exclusion of the desired atom x4 at the expense of the
undesired atom y1 (when going from w′ to w) incurs double the penalty as in
the case of classical proportionality.

The quantity |vi ∩w| in ICcp is indicative of notions of classical satisfaction,
while the quantity m−dH(vi, w) in ICbp is indicative of binary satisfaction. The
operators ∆PAV and ∆bPAV are representatives of the former notion and the
operator ∆hH is representative of the latter. Notice that under the constraint
µ4 the operators ∆PAV and ∆bPAV select interpretations that have three atoms
from X and one from Y , e.g., x1x2x3y1, while ∆hH selects interpretations that
have only atoms from X, e.g., x1x2x3x4. See Table 7 for an illustration.

B Proof Details

In this proof appendix we give proof details for the formal statements in the
main paper, which were left out due to page limitations.
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Proofs of Section 4

Proposition 3. The approval-based merging operator ∆AV does not extend
PAV.

Proof. For A, P and µ as in Example 1, it holds that [∆AV
µ (P )] = {x1x2x3x4},

whereas the PAV outcome in the corresponding ABC election, as shown in
Example 2, outputs x1x2x3y1.

Proposition 4. The merging operators ∆hD and ∆hH do not extend PAV.

Proof. For ∆hD take A, P and µ as in Example 1. It holds that [∆hD
µ (P )] =

{x1x2x3x4}, whereas the PAV outcome in the corresponding ABC election, as
shown in Example 2, outputs x1x2x3y1.

For ∆hH take A = X ∪ Y , where X = {x1, x2, x3, x4, x5, x6} and Y =
{y1, y2}, the profile P = (ϕ1, ϕ2), where [ϕ1] = {x1x2x3x4x5x6} and [ϕ2] =
{y1y2}, and the constraint µ such that [µ] = {x1x2x3x4, x1x2x3y1, x1x2y1y2}.
We obtain that ∆PAV

µ (P ) = {x1x2x3y1} (see Table 7 for a depiction of the
satisfactions), and thus the corresponding PAV election for committees of size
4 would output x1x2x3y1. However, ∆hH

µ (P ) = {x1x2x3x4}, which would not
be among the committees elected by the corresponding ABC election.

We arrive at Propostion 1 via some intermediary notions and results. First,
we define the satisfaction measure ssD as ssD(v, w) = m − dD(v, w), for any
interpretations v and w.

Lemma 1. If ϕ is a formula and w is an interpretation, then it holds that:

(a) if w ∈ [ϕ], then ssD(ϕ,w) = m and shD(ϕ,w) = h(m);

(b) if w /∈ [ϕ], then ssD(ϕ,w) = m− 1 and shD(ϕ,w) = h(m− 1).

Proof. If w ∈ [ϕ] and v ∈ [ϕ], then by definition we have that ssD(v, w) =
m − dD(v, w), where m is the number of propositional atoms in A. Thus, it
holds that:

ssD(v, w) =

{
m, if v = w,

m− 1, if v 6= w.

Similarly, we obtain that:

shD(v, w) =

{
h(m), if v = w,

h(m− 1), if v 6= w.

If w ∈ [ϕ], the maximal value of ssD(v, w), for v ∈ [ϕ], is m, which means that
ssD(ϕ,w) = m. Similarly, the maximal value of shD(v, w), for v ∈ [ϕ], is h(m),
which means that shD(ϕ,w) = h(m).

If w /∈ [ϕ], then ssD(v, w) = m− 1 and shD(v, w) = m− 1, for every v ∈ [ϕ].
This means that ssD(ϕ,w) = m− 1 and shD(ϕ,w) = h(m− 1).
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The satisfaction-based merging operator defined using the satisfaction mea-
sure ssD is denoted as ∆sD. We now show that ∆hD and ∆sD are equivalent.

Lemma 2. The satisfaction-based operators ∆hD and ∆sD are equivalent.

Proof. Take a profile P = (ϕ1, . . . , ϕn) and two interpretations w1, w2 ∈ [µ]. We
will show that ssD(P,w1) ≥ ssD(P,w2) if and only if shD(P,w1) ≥ shD(P,w2).

We will denote by ai the number of formulas ϕ in P such that wi ∈ [ϕ], and
by bi the number of formulas ϕ in P such that wi /∈ [ϕ], for i ∈ {1, 2}. It then
holds that a1 + b1 = a2 + b2 = n and, by Lemma 1, that:

ssD(P,wi) = aim+ bi(m− 1),

shD(P,wi) = aih(m) + bih(m− 1),

for i ∈ {1, 2}. The claim we want to prove translates as:

a1m+ b1(m− 1) ≥ a2m+ b2(m− 1) iff

a1h(m) + b1h(m− 1) ≥ a2h(m) + b2h(m− 1).

With some algebraic manipulation of the left-hand-side term, and using the fact
that a1 + b1 = a2 + b2 = n, we obtain that:

a1m+ b1(m− 1) ≥ a2m+ b2(m− 1) iff

(a1 + b1)m− b1 ≥ (a2 + b2)m− b2 iff

nm− b1 ≥ nm− b2 iff

b2 ≥ b1 iff

n− a2 ≥ n− a1 iff

a1 ≥ a2.

With some algebraic manipulation of the right-hand-side term, and using the
facts that h(m) = h(m− 1) + 1

m and a1 + b1 = a2 + b2 = n, we obtain that:

a1h(m) + b1h(m− 1) ≥ a2h(m) + b2h(m− 1) iff

a1(h(m− 1) +
1

m
) + b1h(m− 1) ≥

a2(h(m− 1) +
1

m
) + b2h(m− 1) iff

(a1 + b1)h(m− 1) + a1(
1

m
) ≥

(a2 + b2)h(m− 1) + a2(
1

m
) iff

nh(m− 1) + a1(
1

m
) ≥ nh(m− 1) + a2(

1

m
) iff

a1 ≥ a2.

Thus, both sides reduce to the same inequality, and are therefore equivalent.
Moreover, it is straightforward to see that equality is obtained on both sides

24



in the same case: when there are as many formulas in P that feature w1 as a
model as there are formulas that feature w2 as a model. In other words, we
have that:

ssD(P,w1) = ssD(P,w2) iff shD(P,w1) = shD(P,w2)

iff a1 = a2.

We have obtained, therefore, that ssD(P,w1) ≥ ssD(P,w2) if and only if shD(P,w1) ≥
shD(P,w2). This, now, implies the conclusion, namely that ∆hD

µ (P ) ≡ ∆sD
µ (P ),

for any constraint µ.

Proposition 1. The satisfaction-based operator ∆hD is equivalent to the distance-
based operator ∆D.

Proof. By Lemma 2, operator ∆hD is equivalent to ∆sD defined previously. It
is now straightforward to see that ∆sD is equivalent to ∆D.

Proofs of Section 5

Proposition 2. If s is a satisfaction measure, then the merging operator ∆s

satisfies postulates IC0−1,3,5−8.

Proof. Using the definition of the satisfaction-based operator ∆s we infer that
∅ ⊂ [∆s

µ(P )] ⊆ [µ], i.e., ∆s is a formula whose set of models is a non-empty
subset of the set of models of µ, which implies that postulates IC0−1 are sat-
isfied. Since ∆s

µ(P ) is defined solely in terms of its models, the syntax of the
formulas involved does not influence the merging result and, hence, postulate
IC3 is satisfied.

For postulate IC5, take an interpretation w ∈ [∆s
µ(P1) ∧ ∆s

µ(P2)], and an
arbitrary interpretation w′ ∈ [µ]. We have that:∑

ϕ∈P1

s(ϕ,w) ≥
∑
ϕ∈P1

s(ϕ,w′), (2)

∑
ϕ∈P2

s(ϕ,w) ≥
∑
ϕ∈P2

s(ϕ,w′). (3)

Adding the two inequalities gives us:∑
ϕ∈P1

s(ϕ,w) +
∑
ϕ∈P2

s(ϕ,w) ≥
∑
ϕ∈P1

s(ϕ,w′) +
∑
ϕ∈P2

s(ϕ,w′),

which, in turn, implies that:∑
ϕ∈(P1+P2)

s(ϕ,w) ≥
∑

ϕ∈(P1+P2)

s(ϕ,w′). (4)

Thus, the interpretation w, which provides maximal satisfaction for profiles P1

and P2, also provides maximal satisfaction for profile P1 + P2, which allows us
to conclude that w ∈ [∆s

µ(P1 + P2)].
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v w max

v s(v, v) s(w, v) max{s(v, v), s(w, v)}
w s(v, w) s(w,w) max{s(v, w), s(w,w)}

Figure 2: Satisfaction indices when P = (ϕ), [ϕ] = [µ] = {v, w}. The models of
ϕ are written on the top row; the columns indicate models of µ.

For postulate IC6 notice that if one of the inequalities 2 or 3 is strict, then
inequality 4 is also strict. Thus, if interpretation w′ does not provide maximal
satisfaction with respect to P1 or P2, then it does not provide maximal satisfac-
tion with respect to P1 + P2 either. In other words, if w′ /∈ [∆s

µ(P1) ∧∆s
µ(P2)],

then w′ /∈ [∆s
µ(P1 + P2)], which proves the claim.

For postulate IC7, we have that if w ∈ [∆s
µ1

(P )∧µ2], then s(P,w) ≥ s(P,w′),
for any w′ ∈ [µ1]. Since [µ1 ∧ µ2] ⊆ [µ1], it is straightforward to conclude from
here that s(P,w) ≥ s(P,w′), for any w′ ∈ [µ1 ∧ µ2], i.e., if w provides maximal
satisfaction when the available options are the models of µ1, it will also provide
maximal satisfaction when we restrict the available options to the models of
µ1 ∧ µ2. Since w ∈ [µ2] as well, it follows that w ∈ [∆s

µ1∧µ2
(P )].

Conversely, for postulate IC8, suppose w ∈ [∆s
µ1∧µ2

(P )] and suppose w /∈
[∆s

µ1
(P ) ∧ µ2]. This means that w /∈ [∆s

µ1
(P )]. Since ∆s

µ1
(P ) ∧ µ2 is consis-

tent, there exists w′ ∈ [∆s
µ1

(P ) ∧ µ2], which, together with the finding that
w /∈ [∆s

µ1
(P )], implies that s(P,w′) > s(P,w). However, from the assump-

tion that w ∈ [∆s
µ1∧µ2

(P )] we obtain that s(P,w) ≥ s(P,w′), which leads to a
contradiction.

Theorem 1. A satisfaction-based merging operator ∆s satisfies postulate IC2

iff s satisfies properties S1−3.

Proof. (“⇒”) Take a satisfaction-based merging operator ∆s that satisfies pos-
tulate IC2. We will show that s satisfies property S1−3.

For property S1, take interpretations v and w such that v 6= w. Consider,
now, formulas ϕ and µ such that [ϕ] = {v} and [µ] = {v, w}, and the profile
P = (ϕ). applying postulate IC2, we have that [∆s

µ(P )] = [ϕ ∧ µ] = {v}. This
implies that v ∈ argmaxu∈[µ]s(P, u) and w /∈ argmaxu∈[µ]s(P, u), which leads to
s(ϕ, v) > s(ϕ,w). This, in turn, implies that s(v, v) > s(v, w).

For property S2, suppose there exist interpretations v and w such that v 6= w
and s(v, v) ≤ s(w, v). Take, now, a formula ϕ such that [ϕ] = {v, w} and µ
as before, with [µ] = {v, w} (see Figure 2). Our assumptions, together with
property S1, proven above, allow us to conclude that:

s(v, w) < s(v, v) ≤ s(w, v) < s(w,w).

In other words, max{s(v, v), s(w, v)} = s(w, v) and max{s(v, w), s(w,w)} =
s(w,w), which means that:

max{s(v, v), s(w, v)} < max{s(v, w), s(w,w)}.

26



[ϕ1] . . . [ϕn]
{v1, v2, . . . } . . . {v1, v2, . . . }

∑
v1 s(v1, v1) . . . s(v1, v1) ns(v1, v1)
v2 s(v2, v2) . . . s(v2, v2) ns(v2, v2)
w maxv∈[ϕ1] s(v, w) . . . maxv∈[ϕn] s(v, w)

∑n
i=1 maxv∈[ϕi] s(v, w)

Figure 3: Satisfaction indices when P = (ϕ1, . . . , ϕn), v1, v2 ∈ [(
∧
ϕi∈P ϕi) ∧ µ]

and w ∈ [µ] but w /∈ [
∧
ϕi∈P ].

But, by postulate IC2, we have that [∆s
µ(P )] = {v, w} and thus it holds that

max{s(v, v), s(w, v)} = max{s(v, w), s(w,w)}, which leads to a contradiction,
and to the conclusion that property S2 holds.

Finally, taking ϕ and µ as in the proof for property S2, and using the re-
sult derived there, we conclude that max{s(v, v), s(w, v)} = s(v, v) and that
max{s(v, w), s(w,w)} = s(w,w). Postulate IC2, now, implies that s(v, v) =
s(w,w) and hence property S3 is satisfied.

(“⇐”) Conversely, we want to show that if s satisfies properties S1−3, then
∆s satisfies postulate IC2. To that end, take a profile P = (ϕ1, . . . , ϕn) and a
formula µ such that (

∧
ϕi∈P ϕi)∧µ is consistent. We will prove the claim in two

steps. First, we show that for any interpretations v1, v2 ∈ [(
∧
ϕi∈P ϕi) ∧ µ], we

have that sΣ(P, v1) = sΣ(P, v2). Then, we show, that if w is an interpretation
such that w ∈ [µ] but w /∈ [

∧
ϕi∈P ϕi], then s(P,w) < s(P, v1) = s(P, v2).

Indeed, if v1 = v2, then the first claim is immediate. If v1 6= v2, then we
reason as follows. Take a formula ϕi ∈ P . Using the fact that v1 ∈ [ϕi] and
property S2, we get that s(v1, v1) > s(vj , v1), for any vj ∈ [ϕi] such that vj 6= v1.
Thus, s(ϕi, v1) = s(v1, v1), for any ϕi ∈ P , and it follows that s(P, v1) =
ns(v1, v1) (see Figure 3). Analogously, we get that s(ϕi, v2) = s(v2, v2), for any
ϕi ∈ P and s(P, v1) = ns(v2, v2). By property S3, we have that s(v1, v1) =
s(v2, v2). This, in turn, implies that s(P, v1) = s(P, v2).

For the second claim, we have that s(ϕi, w) = maxv∈[ϕi] s(v, w), for any
ϕi ∈ P . By property S1, we have that maxv∈[ϕi] s(v, w) ≤ s(v1, v1) Equality is
achieved if w ∈ [ϕi]: however, we have assumed that w /∈ [

∧
ϕi∈P ], and thus

there exists at least one ϕi ∈ P such that w /∈ [ϕi]. In other words, at least
one of the inequalities is strict. Hence, when we add up all the satisfaction
indices for w, we get that

∑n
i=1 maxv∈[ϕi] s(v, w) < ns(v1, v1). In conclusion,

s(P,w) < s(P, v1) = s(P, v2).

Theorem 2. If a satisfaction-based merging operator ∆s satisfies postulate IC2,
then ∆s satisfies postulate IC4 if and only if s also satisfies property S4 (i.e., is
symmetric).

Proof. Take a merging operator ∆s that satisfies postulate IC2. By Theorem 1,
this implies that the satisfaction measure s satisfies properties S1−3.

(“⇒”) Suppose that ∆s satisfies postulate IC4 but that s is not symmetric,
i.e,. there exist interpretations v1 and v2 such that s(v1, v2) 6= s(v2, v1), Take,
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then, a profile P = (ϕ1, ϕ2), with [ϕ1] = {v1} and [ϕ2] = {v2}, and a constraint
µ such that [µ] = {v1, v2}. We get that s(P, v1) = s(v1, v1) + s(v2, v1) and
s(P, v2) = s(v1, v2) + s(v2, v2). From property S3 we have that s(v1, v2) =
s(v2, v2), and by postulate IC4 we get that s(P, v1) = s(P, v2). Thus, s(v1, v2) =
s(v2, v1), which is a contradiction.

(“⇐”) We assume that s is symmetric and set out to show that ∆s satisfies
postulate IC4. First of all, notice that if s satisfies property S4, then properties
S1 and S2 coincide. Second, we have that s satisfies property S3, and thus the
satisfaction of an interpretation with itself is the same across the entire universe.
Let us denote s(v, v) = k, for v ∈ U .

Suppose now that ∆s does not satisfy postulate IC4. This implies that
there exist two formulas ϕ and ϕ′, and an interpretation v∗ ∈ [ϕ] such that
s((ϕ,ϕ′), v∗) > s((ϕ,ϕ′), vj), for all vj ∈ [ϕ′], which is further unpacked as
saying that:

s(ϕ, v∗) + s(ϕ′, v∗) > s(ϕ, vj) + s(ϕ′, vj), (5)

for all vj ∈ [ϕ′].
Next, we have that s(ϕ, v∗) = maxvi∈[ϕ] s(vi, v

∗). But, since v∗ ∈ [ϕ] and
s satisfies property S2, we get that s(ϕ, v∗) = s(v∗, v∗) = k. Analogously, we
have that s(ϕ′, vj) = s(vj , vj), for all vj ∈ [ϕ2]. Plugging this into Inequality 5
and simplifying, we have that:

s(ϕ′, v∗) > s(ϕ, vj),

for all vj ∈ [ϕ′]. This means that:

max
vi∈[ϕ′]

s(vi, v
∗) > max

vi∈[ϕ]
s(vi, vj),

for all vj ∈ [ϕ′]. Suppose maxvi∈[ϕ′] s(vi, v
∗) = s(v∗∗, v∗), for some v∗∗ ∈ [ϕ′].

Then we get that:
s(v∗∗, v∗) > max

vi∈[ϕ]
s(vi, vj),

for all vj ∈ [ϕ′], which implies that:

s(v∗∗, v∗) > s(v∗, v∗∗),

which is a contradiction, since we have assumed that s is symmetric.

Corollary 1. The operators ∆hH and ∆hD satisfy postulates IC0−8.

Proof. For ∆hD, Proposition 1 gives us that it is equivalent to the distance-based
operator ∆D, known to satisfy postulates IC0−8 [19, 18].

For operator ∆hH, it already follows from Proposition 2 it satisfies postulates
IC0−1,3,5−8. For postulates IC2 and IC4, notice that the satisfaction measure shH

satisfies properties S1−4. This implies, by Theorems 1 and 2, that ∆hH satisfies
postulates IC2 and IC4.

Theorem 3. If s is a counting index, the satisfaction-based merging operator
∆s does not satisfy postulate IC2.
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Proof. Take a counting index s and the satisfaction-based merging operator ∆s

defined on the basis of it. Assume, towards a contradiction, that ∆s satisfies
postulate IC2. Let σ : N × N → R witness that s is a counting index. For the
alphabet A = {x, y}, consider the profile P = (ϕ), where ϕ = x ↔ y, and the
constraint µ = x → y. We have that [ϕ] = {∅, xy}, [µ] = {∅, x, xy} and, by
postulate IC2, we get that [∆s

µ(P )] = {∅, xy}.
Observe, first, that s(P, ∅) = σ(0, 0), s(P, x) = max{σ(0, 1), σ(1, 1)}, and

s(P, ab) = max{σ(0, 2), σ(2, 2)}. From the facts that ∅ ∈ [∆s
µ(P )] and xy ∈

[∆s
µ(P )] but x /∈ [∆s

µ(P )] we infer, respectively, that s(P, ∅) > s(P, x) and
s(P, xy) > s(P, x). This, in turn, means that:

σ(0, 0) > max{σ(0, 1), σ(1, 1)}, (6)

max{σ(0, 2), σ(2, 2)} > max{σ(0, 1), σ(1, 1)}. (7)

Take, now, P ′ = (ϕ′), where ϕ′ = x → y. By postulate IC2 we get
that [∆s

µ(P ′)] = [ϕ′ ∧ µ] = {∅, x, xy}. Observe now that s(P ′, ∅) = σ(0, 0),
s(P ′, a) = max{σ(0, 1), σ(1, 1)} and s(P ′, xy) = max{σ(0, 2), σ(1, 2), σ(2, 2)}.
With inequation (6) this implies that:

s(P ′, ∅) > s(P ′, x).

Using inequation (7), we have that:

max{σ(0, 2), σ(1, 2), σ(2, 2)} ≥ max{σ(0, 2), σ(2, 2)}
> max{σ(0, 1), σ(1, 1)},

which implies that:
s(P ′, xy) > s(P ′, x).

Hence x /∈ [∆s
µ(P ′)], which contradicts the fact, derived by using postulate IC2,

that [∆s
µ(P ′)] = {∅, x, xy}.

Theorem 4. If ∆s is a satisfaction-based merging operator such that s is a
counting index with σ as witness, extends PAV and satisfies postulate IC4, then
σ(x, y) = 2h(x)− h(y), for any x, y ∈ R.

Proof. For any sets of atoms X ⊆ Y ⊆ A with |X| = x and |Y | = y, consider
the profile P = (X,Y ), i.e., a profile consisting of two complete formulas whose
models consist only of the interpretations X and Y , respectively. Take, then,
a constraint µ such that [µ] = {X,Y }. Using postulate IC4, we obtain that
[∆s

µ(P )] = {X,Y } and hence σ(x, x) + σ(x, x) = σ(x, y) + σ(y, y). We obtain
that:

σ(x, y) = 2σ(x, x)− σ(y, y), for all x, y. (8)

Since ∆s extends PAV, it has to hold that σ(x + 1, y) − σ(x, y) = 1
x+1 . By

induction, there exist functions c and d such that:

σ(x, y) = c(y) · h(x) + d(y), for all x, y. (9)
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By Equation (8) we see that σ(0, y) = −σ(y, y). Furthermore, by Equation (9),
it holds that σ(0, y) = d(y) and σ(y, y) = c(y) · h(y) + d(y). Hence, we have
that:

d(y) = −1

2
c(y) · h(y),

and consequently:

σ(x, y) = c(y)(2h(x)− h(y)). (10)

Let us now prove that c(x) = c(y), for all x, y. For any X,Y ⊆ A with |X| =
x, |Y | = y and |X ∩ Y | = 1, consider the profile P = (X,Y ). Take a constraint
µ such that [µ] = {X,Y }. By postulate IC4, we obtain that [∆s

µ(P )] = {X,Y },
and hence:

σ(x, x) + σ(1, x) = σ(y, y) + σ(1, y).

By Equation (10), we have that:

c(x)
(
2h(x)− h(x) + 2− h(x)

)
= c(y)

(
2h(y)− h(y) + 2− h(y)

)
,

i.e., c(x) = c(y). We conclude that the factor c(x) is a multiplicative constant
and thus can be ignored.

Theorem 5. If all models of the constraint µ have some fixed size k, then the
approval-based merging operators ∆AV, ∆PAV and ∆bPAV satisfy all postulates
IC0−8.

Proof. It already follows from Proposition 2 that the operators ∆s, for s ∈
{AV,PAV,bPAV} satisfy postulates IC0−1,3,5−8 when the models of µ have fixed
size k. All that is left to show is that these operators also satisfy postulates
IC2 and IC4. The simplest way to see this is to notice that if we restrict the
satisfaction function to take only interpretations of fixed size k in the second
position, then the satisfaction functions s, for s ∈ {AV,PAV,bPAV}, satisfy
properties S1−4. Therefore, by Theorems 1 and 2, they also satisfy postulates
IC2 and IC4.

Proofs of Section 6

Theorem 6. The merging operators ∆PAV and ∆bPAV satisfy postulate ICcp,
∆hH satisfies postulate ICbp, while ∆H,Σ, ∆H,gmax, ∆hD and ∆AV satisfy neither
ICcp nor ICbp.

Proof. The proportionality of ∆PAV and ∆bPAV follows from more general pro-
portionality statements about PAV, e.g., that PAV satisfies D’Hondt proportion-
ality (see, e.g., [5]). For the sake of completeness and readability, we directly
prove that ICcp is satisfied.

Assume for the sake of a contradiction that the merging operator ∆PAV does
not satisfy ICcp. Then there is a k ∈ {1, . . . ,m} and w ∈ [∆PAV

µk
(P )] with an
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l-simple profile P = (vp11 , . . . , vpll ) that is k-integral such that there is a vx with

|vx ∩ w| 6= k·px
n . First, some observations. It holds that:∑

1≤i≤l

k · pi
n

= k,

since: ∑
1≤i≤l

pi = n.

Further, it holds that: ∑
1≤i≤l

|vi ∩ w| ≤ k,

since w assigns at most k many atoms to true, and each complete formula assigns
disjoint variables to true. Without loss of generality we can assume that the
union of all vi’s cover all atoms: otherwise, if there are uncovered atoms, these
are not constrained and in the non-trivial case of k < n one can always assign
those atoms to false without lowering satisfaction.

This implies that: ∑
1≤i≤l

|vi ∩ w| = k.

Because of these observations, we can infer that:

∃i s.t.
k · pi
n

< |vi ∩ w| implies ∃j s.t.
k · pj
n

> |vj ∩ w|

since the sums of terms k·pi
n and |vi ∩w| both add up to k, and it cannot be the

case that if one is strictly smaller that all others are smaller or equal. Likewise,
we get that:

∃i s.t.
k · pi
n

> |vi ∩ w| implies ∃j s.t.
k · pj
n

< |vj ∩ w|.

By assumption, we have |vx ∩ w| 6= k·px
n . This implies that there is an i and j

such that:

|vi ∩ w| >
k · pi
n

,

and:

|vj ∩ w| <
k · pj
n

.

Consider now an interpretation w′ that is equal to w, except for the fact that
one atom assigned true in vi is switched to false and one atom assigned false in
vj is assigned true (i.e., we satisfy i less and j more with still having k many
atoms assigned to true). The interpretation w′ has a higher score than w if
sPAV(P,w′) > sPAV(P,w). Since satisfaction for all agents except i and j remain
the same (recall disjointedness of formulas), we get that satisfaction increases if
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pi · h(|vi ∩w′|) + pj · h(|vj ∩w′|) > pi · h(|vi ∩w|) + pj · h(|vj ∩w|). These terms
are, in fact, close: h(|vi∩w′|+1) = h(|vi∩w|) and h(|vj ∩w′|−1) = h(|vj ∩w|).
That means we get increased satisfaction if:

pi ·
1

|vi ∩ w|
< pj ·

1

|vj ∩ w|+ 1
,

since we lessen the satisfaction for each agents i by 1
|vi∩w| (the last term of

the calculcation of the harmonic number) and increases for each agent in j by
1

|vj∩w|+1 (term added via the harmonic function). By assumption, we have:

pi ·
1

|vi ∩ w|
< pi ·

1
pi·k
n + 1

,

since |vi ∩ w| > pi·k
n and, by assumption of each of these being an integer, we

get |vi ∩w| ≥ pi·k
n + 1, and, in turn, the denominator can only decrease (or stay

the same). Likewise, we get:

pj ·
1

|vj ∩ w|+ 1
> pj ·

1
pj ·k
n − 1 + 1

.

In turn, satisfaction increases if the following inequality holds:

pi ·
1

pi·k
n + 1

< pj ·
1

pj ·k
n − 1 + 1

.

Equivalently, if the following inequality holds:

pi ·
n

pi · k + n
<
n

k
.

This holds because pi ≥ 0 and k, n > 0.
The same proof can be used for ∆bPAV, since when fixing models of the

integrity constraint to have the same cardinality, reasoning under PAV and
bPAV coincides.

For ∆hH, an analogous proof can be applied. Assume ∆hH does not satisfy
ICbp. Then there is a 2-simple profile P = (vp11 , vp22 ) that is m-integral and an
interpretation w∗ ∈ [∆hH

µ (P )] such that:

m− dH(vi, w
∗) =

m · pi
n

for i ∈ {1, 2}, (11)

but Equality (1) does not hold for all models of ∆µ(P ). In particular, this
means that there is an interpretation w ∈ [∆µ(P )] such that there is a vx with
|vx ∩ w| 6= m·px

n . Similarly as above, it holds that:

m · p1

n
+
m · p2

n
= m.
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By definition, it holds that v1 and v2 cover all atoms m. It holds that:

m− dH(v1, w) +m− dH(v2, w) = 2m−
(dH(v1, w) + dH(v2, w))

= m,

since if an atom is assigned true it contributes exactly to one of the distances,
similarly for assignments to false. As above, we get that:

m · p1

n
< m− dH(v1, w)

implies that:
m · p2

n
> m− dH(v2, w),

and vice versa. The remaining proof is the same as above: just replace |vy ∩w|
with m − dH(vy, w), and consider a w′ that increases satisfaction of j by one
and decreases satisfaction of i by one, by simply switching the truth value of
one atom that j is not fully satisfied with. Note that such a w′ exists since w∗

increases satisfaction of j and decreases satisfaction of i by at least one each
(i.e., one can direct the change of w′ by w∗). If w′ /∈ [µ], then apply the same
reasoning iteratively, until w∗ is reached (at each step either we arrive at w∗

satisfying with equality, or have the same assumption that j is less satisfied and
i is more satisfied than required by proportionality).

What is left to be shown is that ∆H,Σ, ∆H,gmax and ∆AV do not satisfy
either of postulates ICcp and ICbp. For that, take A, P and µ as in Example 6.
It is easy to see that P is a 2-simple profile. In fact, we can write P = (v4

1 , v
1
2),

where v1 = x1x2x3x4x5 and v2 = y1y2y3y4y5. It is, moreover, straightforward
to check that P is 5-integral and 10-integral (10 is the number of atoms in A).
We can now ask what satisfaction of ICcp and ICbp would entail. Given a merging
operator ∆ that satisfies ICcp and an interpretation w ∈ [∆µ(P )], postulate ICcp

requires that:

|v1 ∩ w| =
5 · 4

5
= 4,

and:

|v2 ∩ w| =
5 · 1

5
= 1.

In other words, an optimal outcome needs to contain four atoms from X and
one from Y . Such an outcome is, for instance, x1x2x3x4y1.

Similarly, given a merging operator ∆ that satisfies ICbp and an interpreta-
tion w ∈ [∆µ(P )], postulate ICbp requires that if there is an interpretation w
such that:

10− dH(v1, w) =
10 · 4

5
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= 8,

and:

10− dH(v2, w) =
10 · 1

5
= 2,

then these equalities hold for any other interpretation in [∆µ(P )]. One inter-
pretation in [µ4] that satisfies these equalities is x1x2x3x4y1. Now, postulate
ICbp tells us that all models of ∆µ(P ) need to be of this type, i.e., contain four
atoms from X and one from Y .

Note now that, as Example 6 illustrates, none of the operators ∆H,Σ, ∆H,gmax

and ∆AV selects such interpretations. Thus, none of these operators satisfies
either of postulates ICcp and ICbp.

Theorem 7. There is no merging operator that satisfies IC1 and both ICcp and
ICbp.

Proof. Assume the contrary, and take the same instance as in Example 5. By
IC1 it follows that at least one interpretation is selected by the presumed merg-
ing operator. By ICcp we get that if an interpretation w is selected, it holds that
three atoms out of {x1, . . . , x6} are assigned true, and one of {x7, x8} (otherwise
the postulate is violated). Since µ may be chosen arbitrarily for ICbp, and there
is a w′ with assigning four atoms of {x1, . . . , x6} to true that satisfies µ4 and the
remaining conditions of ICbp, it holds that all outcomes of the presumed merging
operator satisfy the implied condition of ICbp. Since none of the interpretations
assigning three xi atoms and one yj atom to true satisfies the conditions pre-
scribed by ICbp, it follows that the presumed merging operator does not exist
(since one interpretation of the type of w must be part that violates ICbp).

Proofs of Section 7

In this section we prove the formal results of Theorem 8. In order to do achieve
that, we show a series of intermediate and auxiliary results.

Proposition 5. The problem of deciding whether a formula is entailed by the
result of merging a profile w.r.t. satisfaction-based merging operators ∆x is

• in ΘP
2 for x = AV, and

• in ∆P
2 for x ∈ {PAV,bPAV,hH}.

Proof. Let P = (ϕ1, . . . , ϕn) be a profile over vocabulary |A| = m, µ an in-
tegrity constraint (a formula), and x ∈ {AV,PAV,bPAV,hH}. Consider the
following non-deterministic algorithm. Non-deterministically construct n + 1
interpretations v1, . . . , vn, and w. Check, in polynomial time, whether w ∈ [µ]
and vi ∈ [ϕi] for 1 ≤ i ≤ n. Compute z =

∑
1≤i≤n sx(vi, w). This computa-

tion is feasible in polynomial time: computing (cardinalities of) intersections is
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achievable in polynomial time, and applying the harmonic function to natural
numbers is achievable in polynomial time whenever its argument is polynomi-
ally bounded by the input size (in our case the number is at most the size of
the vocabulary of the profile). It holds that z ≤ sx(P,w) (i.e., the satisfaction
of the profile regarding w is bounded from below by z). This holds, because
sx(vi, w) ≤ max{sx(v, w) | v ∈ [ϕi]} = sx(ϕi, w) (i.e., satisfaction by vi provides
a lower bound to maximum satisfaction). Complete the algorithm by a binary
search over the values Vx(n′,m′) = {sx(P ′, w′) | ∃P ′ = (ϕ′1, . . . , ϕ

′
n′) s.t. P ′

and w′ are over vocabulary A′ with |A′| = m′}. That is, Vx(n′,m′) contains all
possible values for satisfaction index x over profiles of size n′ and vocabulary of
size m′. We approximate Vx(n,m) depending on x.

(x = AV) By definition, sAV(a, b) = |a ∩ b|. This intersection is lowest if
|a ∩ b| = 0 and largest, for a profile of size n over vocabulary of size m, if
|a∩ b| = m. Aggregating n values of integers in [0,m] results in integer interval
[0,m ∗ n]. A binary search over VAV(n,m) requires log(VAV(n,m)) many oracle
calls, and, in turn, logarithmically many calls w.r.t. the input. Thus, it holds
that the problem is in ΘP

2 for x = AV.
(x ∈ {PAV,hH}) For both satisfaction indices it holds that the satisfaction is

bounded from below by 0 and by h(a) for some a ≤ m. For PAV, the intersection
is at most m, for hH if the Hamming distance is 0 we obtain the maximum of m.
In contrast to AV, we have to include certain rational numbers to approximate
Vx(n,m).

First, an upper bound for satsfaction of an interpretation regarding a profile
is:

h(m) + · · ·+ h(m)︸ ︷︷ ︸
n times

≤ n · h(m).

For one harmonic number, i.e., for 0 < a ≤ m we have:

h(a) =

a∑
i=1

1

i
= 1 +

1

2
+ · · ·+ 1

a

and in turn:

h(a) ·m! = m! +
m!

2
+ · · ·+ m!

a
≤ m ·m!

with h(a) · m! being an integer (each m!
b is an integer since b occurs in the

sequence of factors in m!). This means we can represent the set Vx(n,m) by
integers from 0 to:

n ·m ·m!

and in the binary search scheme the number of oracle calls we can consider is:

log(n ·m ·m!) ≤ log(n ·m ·mm)
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≤ log(g · g · gg)
= log(gg+2)

= (g + 2) · log(g)

= α,

where g = max{n,m}. The last term is polynomial in the input (since g is
bounded polynomially by the input). That is, apply binary search by choosing,
initially, α

2 and check whether there are interpretations v1, . . ., vn, and w such
that sx(P,w) ≥ sx(v1, w) + · · · + sx(vn, w) = β and β ·m! ≥ α

2 . If successful,
continue the binary search above α

2 , otherwise below α
2 .

(x = bPAV) By definition, we have sbPAV(v, w) = 2 · h(|v ∩ w|) − h(|w|).
The lowest value is when the intersection is empty (e.g., v = ∅) and |w| = m
is maximal. Then we have −h(m) as the lowest value. The maximal value is
approximated by 2 · h(m). This means, we can represent the approximated set
VbPAV(n,m) by the integer set [−α, (α+ log(2))]. Using the same idea as above
for the binary search, we arrive at an algorithm using polynomial many oracle
calls.

For the convenience of the reader, we recall the standard distance-based merg-
ing operator ∆dH,Σ defined via symmetric difference (Hamming distance) and
summation aggregation function.

Definition 1. Let P = (ϕ1, . . . , ϕn) be a profile and µ an integrity constraint.
Define distance-based merging operator ∆H,Σ by [∆H,Σ

µ (P )] = {w ∈ [µ] | dH(P,w) ≤
dH(P,w′),∀w′ ∈ [µ]}, with dH(P,w) =

∑
ϕ∈P min{dH(v, w) | v ∈ [ϕ]} and

dH(v, w) = |v4w|.

A complexity result of this operator has been established already as Propo-
sition 4 in [20], and is reproduced here.

Proposition 6. Deciding whether a formula is entailed by the result of distance-
based merging operator ∆H,Σ for a given profile is ΘP

2 -complete. Hardness holds
even in the case when the profile consists of a single formula that consists of a
conjunction of atoms.

The hardness for the fragment of a single formula consisting of a conjunction of
atoms in the profile is stated in the proof of [20, Proposition 4].

Lemma 3. Let P = (ϕ) be a singleton profile over vocabulary A s.t. ϕ =
∧
y∈Y y

is a conjunction of positive literals over Y ⊆ A. It holds that [∆H,Σ
µ (P )] =

[∆AV,Σ
µ (P )] for any µ (see Definition 1).

Proof. For an interpretation w ∈ U , let vw be the interpretation defined by
vw(x) = w(x) for x ∈ A \ Y and vw(y) is true for any y ∈ Y . It holds that:

w ∈ [∆H,Σ
µ (P )] iff w ∈ argminw′∈[µ](dH(ϕ,w′))

iff w ∈ argminw′∈[µ](dH(vw′ , w′)) (∗)
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iff w ∈ argminw′∈[µ](|Y \ w′|)
iff w ∈ argmaxw′∈[µ](|Y ∩ w′|)
iff w ∈ argmaxw′∈[µ](|v′w ∩ w′|)
iff w ∈ argmaxw′∈[µ](sAV(vw′ , w′))

iff w ∈ argmaxw′∈[µ](sAV(ϕ,w′)) (∗∗)

iff w ∈ [∆AV
µ (P )].

It holds that dH(ϕ,w′) is equal to dH(vw′ , w′) (∗), since one can always choose
a model vw′ ∈ [ϕ] that has an equal assignment on all atoms as w′, except for
atoms in Y , which must be all assigned to true. The same holds for (∗∗).

The following definition can be used to express when two satisfaction indices
behave “the same”, in particular, in the case of a single voter. This is useful
for transferring complexity known for belief revision to our setting to obtain
complexity (hardness) results.

Definition 2. The satisfaction indices s and s′ are order preserving w.r.t. set
of interpretations W ⊆ U if for all v, w, v′, w′ ∈ W and all ◦ ∈ {<,=, >} we
have

s(v, w) ◦ s(v′, w′) iff s′(v, w) ◦ s′(v′, w′).

Lemma 4. Let P = (ϕ) be a singleton profile, and µ an integrity constraint. If
s and s′ are order preserving for [µ], then [∆s,Σ

µ (P )] = [∆s′,Σ
µ (P )].

Proof. It holds that:

w ∈ [∆s
µ(P )] iff w ∈ [µ],∃v ∈ [ϕ] s.t.@w′ ∈ ([µ] \ {w}),

@v′ ∈ [ϕ] with s(v, w) < s(v′, w′)

iff w ∈ [µ],∃v ∈ [ϕ] such that

@w′ ∈ ([µ] \ {w}),@v′ ∈ [ϕ]

with s′(v, w) < s′(v′, w′)

iff w ∈ [∆s′,Σ
µ (P )].

Lemma 5. Satisfaction indices sAV and sPAV are order preserving for any
W ⊆ U .

Proof. Recall that sAV(v, w) = |v ∩ w| and that sPAV(v, w) = h(|v ∩ w|). For
any v, v′, w, w′ ∈ U it holds that sAV(v, w) = sAV(v′, w′) iff |v ∩ w| = |v′ ∩ w′|.
Similarly, h(x) = h(y) iff x = y, and, thus, sPAV(v, w) = sPAV(v′, w′) iff |v∩w| =
|v′ ∩ w′|. The proof is completed by considering:

sAV(v, w) < sAV(v′, w′) iff |v ∩ w| < |v′ ∩ w′|
iff h(|v ∩ w|) < h(|v′ ∩ w′|)
iff sPAV(v, w) < sPAV(v′, w′).

The reasoning is analogous for >.
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Lemma 6. The satisfaction measures shH and the one defined as s(v, w) =
m− dH(v, w) are order preserving, for any W ⊆ U .

Proof. It holds that, for any v, v′, w, w′ ∈ U , we have:

shH(v, w) = shH(v′, w′) iff h(m− dH(v, w)) =

h(m− dH(v′, w′))

iff m− dH(v, w) =

m− dH(v′, w′)

iff s(v, w) = s(v′, w′).

The proof for ◦ ∈ {<,>} is analogous.

Lemma 7. Satisfaction indices sAV, sPAV, and sbPAV are order preserving for
W ⊆ U if ∀w,w′ ∈W we have |w| = |w|′.

Proof. First, recall that sAV and sPAV are order preserving, for any W ′ ⊆ U
(due to Lemma 5). Let v, v′, w, w′ ∈ W . By assumption, we have |v| = |v′| =
|w| = |w′|. It holds that

sPAV(v, w) < sPAV(v′, w′) iff h(|v ∩ w|) < h(|v′ ∩ w′|)
iff 2 · h(|v ∩ w|) < 2 · h(|v′ ∩ w′|)
iff 2 · h(|v ∩ w|)− h(|w|) <

2 · h(|v′ ∩ w′|)− h(|w′|) (∗)
iff sbPAV(v, w) < sbPAV(v′, w′).

Note that h(|w|) = h(|w′|), due to presumption of same cardinality of interpre-
tations in W (∗). For ◦ ∈ {=, >}, the proof is analogous.

Proposition 7. Deciding whether a formula is entailed by the merging result
of merging operator ∆bPAV is ΘP

2 hard. Hardness holds even when the profile is
a singleton and all models of the integrity constraint have the same cardinality.

Proof. We show a reduction from the ΘP
2 hard problem of UCOSat that is an

adaptation of [7, Theorem 6.9]. Let an instance of UCOSat be given by the
formula ψ = {C1, . . . , C`} with Ci propositional clauses, and Vψ be the propo-
sitional variables of ψ. That is, ψ is in conjunctive normal form. An instance
is a “yes” instance iff it holds that each satisfiable set S ⊆ ψ of maximum car-
dinality satisfies exactly the same clauses. That is, the problem asks whether
each satisfiable set of clauses that has maximum cardinality satisfies the same
clauses.

We construct a merging instance with a single knowledge base as follows.
Let V ′ = {z, c1, . . . , c`, c′1, . . . , c′`} and V ′ = {c1, . . . , c`, c′1, . . . , c′`} be two sets
of new variables such that Vψ ∩ V ′ = Vψ ∩ V ′ = ∅. Further, let Vψ = {x |
x ∈ Vψ}. As in the proof of [7, Theorem 6.9] we define T1 = {c1, . . . , c`},
p1 = (C1 ∨ ¬c1) ∧ · · · ∧ (C` ∨ ¬c`), T ′1 = {c′1, . . . , c′`}, and p′1 = (C ′1 ∨ ¬c′1) ∧
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· · · ∧ (C ′` ∨ ¬c′`). We set A = Vψ ∪ Vψ ∪ V ′ ∪ V ′, P = (ϕ), ϕ = T1 ∧ T ′1,
and µ = p1 ∧ p′1 ∧ ϕD ∧ z ↔ ((c1 ↔ c′1) ∧ · · · ∧ (c` ↔ c′`)), where ϕD = {(x ↔
¬x) | x ∈ Vψ ∪ V ′}. Observe that µ, more specifically the subformula ϕD,

enforces that for all solutions w ∈ ∆bPAV,Σ
µ (P ), |w| = |U|

2 . As a consequence,
the term h(|w|) of the sbPAV satisfaction index becomes constant for all such
w, and hence sbPAV(v, w) is order preserving w.r.t. sAV(v, w). Nevertheless,
the Hamming distance between [T1] and w (as well as [T ′1] and w) remains
the same. By Lemma 3, it follows that computing the merging results with
respect to Hamming distance and sum aggregation function coincides with the
result by the satisfaction-based merging operator using AV. It remains to show
that ∆bPAV,Σ

µ (P ) |= z iff ψ is a yes-instance of UOCSat, which can be done
analogously to the original proof [7, Theorem 6.9].

Corollary 2. Deciding whether a formula is entailed by the merging result of
merging operators ∆s

µ for s ∈ {AV,PAV,bPAV,hH} is ΘP
2 hard.

For the complexity of the standard merging operators ∆H,gmax and ∆D, we will
introduce a new notion and an intermediary result. A knowledge-base K is a set
of propositional formulas. The set of models of K is defined as [K] =

⋂
ϕ∈K [ϕ].

We say that K is consistent if [K] 6= ∅. We recall now that, given a pseudo-
distance d, a formula ϕ and an interpretation w, the distance d(ϕ,w) between
ϕ and w is defined as d(ϕ,w) = minv∈[ϕ] d(v, w).

Lemma 8. If K is a consistent knowledge-base, d is a pseudo-distance and w
is an interpretation, then it holds that:

max
ϕ∈K

d(ϕ,w) = d(
∧
ϕ∈K

ϕ,w).

In other words, the maximal distance between formulas in K and w is the
same as the distance between the formula

∧
ϕ∈K and w. Lemma 8 allows us

to identify the operators ∆H,gmax and ∆D with the operators ∆H,max,lex and
∆D,max,Σ from [20], where the former operator was shown to be ∆P

2 -complete,
while the latter operator was shown to be ΘP

2 -complete. This justifies the entries
in Table 3.

C Thoughts on the Bounded PAV operator

The satisfaction index sbPAV (and in consequence also the merging operator
∆bPAV) exhibit an interesting behavior: In general it is possible that an inter-
pretation gets a negative score assigned by sbPAV (w.r.t. some w). As the size
of w increases, the larger the total “penalty” becomes. The penalty added for
increasing the size of |w| by one, however, decreases according to the harmonic
function. Such a behavior is intended if increasing the size of, e.g., a committee,
is costly but eventually there is an amortization of the size. Thus, the merg-
ing operator needs to find a balance between the cost for the committee and
preferences of minorities.
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[ϕ1] = [ϕ2] = [ϕ3] [ϕ4]
{a} {b}

∑
∅ 3 · 0 0 0
a 3 · 1 −1 2
b 3 · −1 1 −2
ab 3 · 0.5 0.5 2

Table 8: Satisfaction indices with respect to bPAV when P = (ϕ1, . . . , ϕ4),
[ϕ1] = [ϕ2] = [ϕ3] = {a}, [ϕ4] = {b}, and µ = >.

An example where such a behavior might be desirable is the process of find-
ing new hardware for the institute. In such a setting usually not all details
regarding the hardware configurations are known upfront, but they are only
known after a concrete offer has been received from the supplier. So the can-
didates represent different possible hardware configurations (without knowing
all details) and the members of the institute reveal their (a-priori) preferences
regarding this options. As requesting a concrete offer from the suppliers can
be time-consuming the technician only wants to request an offer if there is a
significant support for the respective alternative. Hence, adding another alter-
native to the list of possible options must have a large enough support from the
members. Still, if requesting a high number of offers is necessary at some point
the additional cost for each offer usually show effects of amortization.

Furthermore, we want to highlight that the empty solution w = ∅ trivially
has sbPAV(v, w) = 0 for any v ∈ U . Thus, the empty solution gives us a
natural baseline to assess the quality of other interpretations. Notice that this
immediately rules out all solutions with negative score as they are trivially
dominated by the empty solution.

Next we present an example for this merging operator in Table 8. As already
discussed above the empty committee indeed scores the baseline of 0. The
interpretation b yields a negative score of −2 caused by the fact that b has only
very weak support (namely by ϕ4) but a cardinality of one resulting in a quite
large penalty, and hence this solution is always withdrawn. Interestingly both
interpretations a and ab are tied with a score of 2. This is because there is a
balance between the penalty for adding another candidate to the solution and
the gain for satisfying ϕ4 as well.

In the next two results we describe this balance more in detail. Thereby,
as a side result, we also establish an relation between sbPAV and sPAV. In a
first step we characterize the gain for increasing the committee size by one for
an arbitrary interpretation v. After that we move on to lift this statement to
arbitrary profiles.

Lemma 9. Let v, w, and w′ be interpretations such that |w|+ 1 = |w′|. Then
the gain of v with respect to sbPAV for increasing the size of the committee by
one is positive if sPAV(v, w′)− sPAV(v, w) > 1

2(k+1) .
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Proof. This can be seen by transforming the difference of the scores for w and
w′, i.e., sbPAV(v, w′)− sbPAV(v, w), as follows:

sbPAV(v, w′)− sbPAV(v, w) = (2h(|v ∩ w′|)− h(w′))

− (2h(|v ∩ w|)− h(|w|))
= (2h(|v ∩ w′|)− 2h(|v ∩ w|))
− h(w′) + h(|w|)

= 2 (h(|v ∩ w′|)− h(|v ∩ w|))

− 1

k + 1

Thus the gain for v is positive if:

h(|v ∩ w′|)− h(|v ∩ w|) > 1

2(k + 1)
,

or, equivalently:

sPAV(v, w′)− sPAV(v, w) >
1

2(k + 1)
,

which concludes the proof.

Observe that this result indeed relates the notions of sbPAV to sPAV. In a next
step we lift the result to arbitrary profiles.

Lemma 10. Let P be a profile, and w,w′ be interpretations such that |w|+1 =
|w′|. Then the total gain of P with respect to sbPAV for increasing the size of
the committee by one is positive if sPAV(v, w′)− sPAV(v, w) > 1

2(k+1) .

Proof. In this proof we directly use the definition of sbPAV and sPAV to obtain
the desired inequality. It holds that:∑

ϕ∈P
sbPAV(ϕ,w′)−

∑
ϕ∈P

sbPAV(ϕ,w)

is equal to:∑
ϕ∈P

(2sPAV(ϕ,w′)− h(w′))−
∑
ϕ∈P

(2sPAV(ϕ,w)− h(|w|)) ,

which is in turn equal to:

2
∑
ϕ∈P

(sPAV(ϕ,w′)− sPAV(ϕ,w)) + n (−h(w′) + h(|w|)) .

Thus the total gain is positive if:∑
ϕ∈P

(sPAV(ϕ,w′)− sPAV(ϕ,w)) >
n

2(k + 1)
,

which concludes the proof.
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