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Abstract 

In the context of the ongoing deregulation of the electricity industry, we revisit the 
commonly held assumption that, under the condition of perfect information, a 
decentralized unit commitment would lead to the same power quantities traded and the 
same optimal social welfare as centralized unit commitment. Taking fixed operating costs 
into account, we show that meeting decentralized performance objectives of the 
individual market participants can lead to a lower efficiency than minimizing total 
operating cost in a decentralized way. This result concerns short-term optimization, and 
does not consider long-term investment issues. 

Next, the task of optimally self-scheduling generators to maximize profits in a 
deregulated electricity market is investigated from the standpoint of an individual market 
participant. We show how a generator owner can improve his scheduling tactics by using 
stochastic dynamic programming and assuming a Cauchy error distribution of forecast 
prices. 

Power auction markets require power producers to internalize start-up / shut-down costs 
of their units when submitting their bids. With the help of an abstract example, we finally 
show that a generator owner’s optimum bid sequence for a centralized auction market is 
above marginal cost even where is no market power-related strategic bidding. We 
conclude that marginal production costs cannot be used as baseline for the assessment of 
market power in electricity markets. 

 

Thesis Supervisor: Dr. Marija D. Ilić 
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Symbol Meaning 
k  Hour 
m

kp  Price forecast for hour k 
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kε  Deviation between price forecast and actual price in hour k 
that is not explained by correlation 
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ku  Decision to turn the generator on or off during hour k 

( , )k kf x u  State equation 

kU  Set of possible choices for ku  for hour k given the state xk  

{ }E
kp

X
Δ

 Expected value of X with regard to random variable kpΔ  

π  Hourly profit 
d  Size of an interval for discretization 
s  Number of different values used for discretization  

ip  Discretized probability distribution (chapter 3.2.1) 

i,jp  
Discretized probability distribution (chapter 3.2.2) 

Φ  Standard Normal cumulative distribution function 
 F Cumulative Cauchy distribution 
 b Parameter for Cauchy distribution 
 i,j Indices for discretization of probability distributions 
C(Q) Production costs as a function of output 
Q Output quantity 
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1 Introduction 

1.1 Research Objective 

The electric power industry in the US has undergone a major transition in recent years. 
Historically, wholesale electricity provision is managed by vertically integrated utilities 
granted monopoly franchise service territories. Regulators judged both, the economic 
efficiency and reliability, and approved tariffs charged to the customers.  

In the deregulated industry, competition between market participants should improve 
economic efficiency and lower prices for customers. Tasks that were performed in a 
centralized, coordinated fashion, are now performed by market participants and questions 
arise as to how much of the control and planning should remain in the hands of a 
centralized organization, and how much should be taken care of by “the market,” in 
which each market participant will try to commit its resources in such a way as to 
maximize his profits. 

This thesis contributes to current debates in the context of deregulation by supporting the 
following points: 

• A centralized unit commitment can be economically more efficient in the short 
run than a decentralized unit commitment under the assumption of complete 
knowledge about demand and the generators’ marginal cost and neglecting the 
differences with respect to capacity investments. 

• Higher than marginal cost bids in electricity auctions do not necessarily indicate 
the exercise of market power, but can be explained by the fact that rational 
market participants have to internalize the cost of being on when not selling and 
the uncertainties of market outcomes into their market bids. 

In addition, we will show how a self-scheduling generation owner can use stochastic 
dynamic programming for determining the hours for which it is most profitable to switch 
the unit on. Price uncertainties are simulated with Gaussian and non-Gaussian 
probability distributions. 

1.2 Data Set Used 

The example data for calibrating the bidding algorithms using stochastic dynamic 
programming come from daily announcements by the independent System Operator of 
New England [ISO-NE-www]. 
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1.3 Organization of the Thesis 

Chapter 2 compares theoretical efficiencies of a centralized economic unit commitment, 
such as in the PoolCo type markets, with those of a decentralized commitment, such as in 
a Power Exchange, for which individual generators schedule themselves. The chapter 
shows examples in which a decentralized unit commitment is economically more 
efficient than a centralized unit commitment, even in the presence of complete knowledge 
about demand and all generators’ marginal costs, and thereby adds to current literature on 
power systems restructuring [Ilic98], [Christie01], [Day02], [Stoft02]. 

Chapter 3 shows how stochastic dynamic programming can be used to determine the 
optimal hours to turn a generator on if the generator is able to self-schedule its unit. Only 
recently have variations of stochastic dynamic programming been proposed for optimal 
unit commitment in a deregulated market [Takriti97], [Allen99], [Tseng99], 
[Valenzuela01]. This chapter uses actual price forecast data and observed correlations 
between hourly prices from the ISO New England Market to solve the optimal 
commitment problem and shows the difference in efficiencies when a generator self-
schedules its units at different points in time. 

Chapter 4 addresses the issue of assumed market power when bids in energy markets 
exceed marginal cost. By using a simple example, it will be shown that in energy auctions 
observed bidding prices above marginal cost are not a consequence of market power, 
such as commonly assumed [Borenstein00], but of the rational internalization of 
uncertainties and intertemporal constraints of electricity units into the bid sequences. 

Chapter 5 sums up the major conclusions of the thesis, and the Appendices contain an 
overview of dynamic programming, source codes and numerical examples for the 
simulations.  
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2 Centralized versus Decentralized Unit 
Commitment and Economic Dispatch 

2.1 Background 

This chapter investigates the day-ahead unit commitment problem for the deterministic 
case in which demand is inelastic and known. We formulate a model for the generators 
that considers linear marginal cost curves, fixed costs, switching costs and intertemporal 
time constraints.  

Two market structures are compared: the decentralized case in which individual 
generators schedule themselves (DC), and the centralized version of a PoolCo type 
market in which an Independent System Operator (ISO) determines which generators are 
on during the 24 hours given the knowledge about each generator’s constraints.  

The model is implemented in Matlab assuming a simple forecast methodology for the 
resulting prices of the individual generators in the decentralized version. An interesting 
example for deviations between DC and ISO is singled out and mathematically 
generalized for the unconstrained problem. The commonly held belief that a competitive 
market process and an unconstrained economic dispatch lead to the same optimal social 
welfare [Oren95] is argued against and disproved by examples; general boundaries for 
deviations are established in the case of quadratic cost curves and two generators. 

2.2 Unit Commitment and Economic Dispatch 

Unit commitment is the process of deciding in advance whether to turn on or off each 
generator on the power grid at a given hour. It becomes an intricate mathematical 
decision process because the hourly decisions are interdependent. A power plant, for 
example, has to stay on line or remain switched off a given number of hours after startup 
/ shutdown due to thermal stress or nuclear concerns. We include these constraints in our 
model. Economic Dispatch is the process of allocating the required load demand between 
the available generation units such that the cost of operation is minimized. 

We will compare two markets. The first type is an outgrowth of the centralized power 
pools in the Northeast US, such as ISOs of New England (NE), New York, and 
Pennsylvania-New Jersey-Maryland (PJM). Here the bidders explicitly provide 
generation specific constraints and costs, and the ISO uses centralized unit commitment 
to select bids so that total cost is minimized subject to operating constraints and costs and 
determines the quantities each unit should produce. 

The second market is California style in which market rules require specification of 
convex supply functions, independent of the type of generation technology. The bids 
assume that the plants would be available at the hour for which the supply function is 
specified. It is up to the bidders to account for these constraints for bidding day ahead; 
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this decision making process at a bidder’s level could be viewed as a decentralized unit 
commitment. 

2.3 The Basic Economic Argument Assuming Perfect Information 

In the following equations Ci is the cost function and Qi the quantity produced by 
generator i. QD is the total demand, n the total number of available generators, and ui a 
binary variable that states whether a generation unit i is turned on or off at a given 
moment. 

2.3.1 Conventional Economic Dispatch 

Mathematically, a centralized economic dispatch is the problem of minimizing the total 
generation cost, using the quantities produced by each of the possible generators as 
decision variables [Ilic98], 

 
1

min ( )
n

i iQ i
C Q

=
∑ , (2.1) 

such that total generation equals total load: 

 
1

.
n

i D
i

Q Q
=

=∑  (2.2) 

This basic version of an unconstrained economic dispatch finds a solution to this 
optimization problem for a system of arbitrary size. A necessary condition for solving 
this basic economic dispatch problem is: 

 1

1

... .n

n

C C
Q Q

δ δ λ
δ δ

= = =  (2.3) 

This condition defines the least generation cost for meeting given demand. The term λ is 
known as the short-run marginal cost (SRMC) and, at the optimum, all unit marginal 
costs are equal to it. 

2.3.2 Conventional Centralized Unit Commitment 

The basic unit commitment problem (without start-up costs or minimum up/down time 
constraints) is as follows [Ilic98] 
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, 1

min ( )
i

n

i i iu Q i
u C Q

=
∑ , (2.4) 

subject to  

 
1

,
n

i D
i

Q Q
=

=∑  (2.5) 

where ui equals 0 or 1 depending on whether the unit if off or on. Following the 
Lagrangian relaxation method, one first forms the Lagrangian function, 

 ( )
1

( , , ) ( )
n

i i i i D
i

L u Q u C Q Q Qλ λ λ
=

= − +∑ . (2.6) 

By minimizing (2.6) over Q first, one obtains the conventional economic dispatch equal 
incremental condition, that is, 

 1

1

... .n

n

C C
Q Q

δ δ λ
δ δ

= = =  (2.7) 

which permits one to solve for Q in terms of λ , the system incremental cost. The 
Lagrangian can be written as 

 ( )( )
1

( , ) ( ) ( )
n

i i i i D
i

L u u C Q Q Qλ λ λ λ λ
=

= − +∑ . (2.8) 

Finally, the Lagrangian method minimizes ( , )λL u  with respect to u giving the switching 
curve law 

 
0    if  0
1    if  0,

i i
i

i i

C Q
u

C Q
λ
λ

− >⎧
= ⎨ − <⎩

 (2.9) 

that is, the unit is off if the average cost /i iC Q λ>  and on otherwise. Once on, a 
conventional economic dispatch is used to adjust to demand changes if these are 
monitored more frequently. 
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2.3.3 Decentralized Economic Dispatch  

When competitive bilateral transactions take place, each party’s objective is to maximize 
its profit, 

 max ( ),
i

i iQ
Qπ  (2.10) 

where ( )i i i iPQ C Qπ = −  stands for the profit made by the market participant i through 
some sort of trading process, given known price P. In the above equations Ci is the cost 
function and Qi the quantity produced by generator i. Thus, under perfect conditions, 
when the market converges to a single electricity price, one can maximize iπ  to yield:  

 1

1

... .n

n

C C P
Q Q

δ δ
δ δ

= = =  (2.11) 

This is simply obtained by each market participant optimizing its own profit for the 
assumed exogenous market price P. The process of bilateral decisions will stabilize P  at 
the systemwide economic equilibrium under a perfect information exchange among all 
market participants. 

2.3.4 Decentralized Unit Commitment  

We assume a generator owner to be a price taker in a competitive market place. He must 
make a unit commitment decision typically by certain time day ahead, before actually 
knowing the spot price of the next hour. After the spot price is known, the generator 
decides how much power to sell in order to maximize profit. The only control for the 
problem is uk whether to turn on or off at stage k. The expected generation level mkQ may 

be regarded as a function of the control uk  and the expected price lp . 

In the case of assuming deterministic price, and ignoring start-up costs, must-run time 
constraints, etc. it can be shown that an individual decision maker would arrive at the 
same average cost versus market price decision rule as the rule often used by a system 
operator scheduling plants in a coordinate way. The proof for this goes as follows 
[1Ilic98]: 

Given a generator i, its profit while on is  

 m l l l( )on i i ip Q C Qπ = ⋅ −  (2.12) 

The generator will turn on only if m 0onπ > , which is equivalent to 
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 l l
l
( )i i

i

C Qp
Q

>  (2.13) 

which is the average cost rule used for coordinated unit commitment.  

Based on this derivation, one could conclude that under perfect market assumptions and 
when neglecting minimum run time constraints, startup costs, etc. a system operator 
would schedule the same units as the individual power producers would in a 
decentralized way. Thus, both a centralized and a decentralized commitment process 
should lead to the same power quantities traded, and to the same total social welfare 
optimum. Most importantly, in this case the optimal electricity price is reached under the 
same conditions as the social welfare is maximized. The performance objectives of the 
individual market participants (to maximize profits) and the objective of a centralized 
entity (to minimize total operating cost) are considered to be equivalent. 

2.4 The Model 

In what follows, we will describe and simulate the optimal unit commitment for 
generators with intertemporal time constraints both in a centralized and decentralized 
way. We will show that a decentralized and a centralized commitment process can 
actually lead to different outcomes. To do so, we will introduce a simplified state model 
of a generator. 

2.4.1 Model of a Generator 

We assume as the only intertemporal constraint on the generator the fact that once turned 
on/off, it has to remain turned on/off for at least two hours. Each generator can therefore 
be in one of 4 states in every hour k. State j

kx  contains information about generator j in 
the previous hour: 

 

1   if     1       -1
2   if      2       -1

=
3   if     1       -1
4   if     

j
k

shut on for exactly hour at the end of hour k
shut on for at least hours at the end of hour k

x
shut off for exactly hour at the end of hour k
shut off for at le 2       -1.ast hours at the end of hour k

⎧
⎪
⎪
⎨
⎪
⎪⎩

 (2.14) 

The constraints on the ability to turn on or off for a specific hour k can be formulated as a 
constrained control space j

kU  at each stage: 
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{ }
{ }
{ }

0      if 3

( ) 1       if 3

0,1    else.

j
k

j j j
k k k

x

U x x

⎧ =
⎪⎪= =⎨
⎪
⎪⎩

 (2.15) 

The state of the generator evolves according to: 

 

1 1

1 1 1
1

1 1

1 1 1

1   if ( 4 1)

2   if ( 1) ( 2 1)
=f( , )

3   if ( 2 0)

4   if ( 3) ( 4 0).

j j
k k
j j j

k k kj j j
k k k j j

k k
j j j

k k k

x u

x x u
x x u

x u

x x u

+ +

+ + +
+

+ +

+ + +

⎧ = ∧ =
⎪

= ∨ = ∧ =⎪= ⎨
= ∧ =⎪

⎪ = ∨ = ∧ =⎩

 (2.16) 

We model marginal cost as proportionally increasing with the generator's output jQ : 
jMC (Q )j j ja Q= . This is not necessarily a realistic assumption, but simplifies the 

implementation of the model. We will later extend the result to a quadratic cost function. 
Given the price of electricity kP  for hour k, generator j decides to adjust his unit’s output 

 so that ( )j j j
k k kQ P MC Q= if it is on during the considered hour. Taking the maximum 

output max
jQ into account, its output becomes: 

 maxmin[ , ]   if 1
( , )=

0                       if 0.

j jk
kjj j

k k k
j

k

PQ u
aQ u P

u

⎧ =⎪
⎨
⎪ =⎩

 (2.17) 

Given chosen output j
kQ , the variable costs incurred during one hour become: 

 2
, (Q ) .

2

j
j j j

V k k k
aC Q=  (2.18) 

If the generator is turned on during a given hour, it incurs fixed costs j
FC : 

 ,

  if 1
( )=

0      if 0.

j j
F kj

F k k j
k

C u
C u

u

⎧ =⎪
⎨

=⎪⎩
 (2.19) 
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Together, these two cost components represent a quadratic cost function 
2( )C Q aQ bQ c= + +  with the linear coefficient b equal to zero. In addition to the above 

described hourly costs, the generator incurs "switching costs" every time it changes its 
state from on to off or v.v.: 

 ,

   if  ( 4 1)

(x , )=    if  ( 2 0)

0        else.

j j j
Son k k
j j j

S k k k Soff k k

C x u

C u C x u

⎧ = ∧ =
⎪

= ∧ =⎨
⎪
⎩

 (2.20) 

Together with revenues ( , )j j j
k k k k kR P Q P Q= , the profit for each hour can be written as: 

 , , ,(x , , ) (P , ) (u ) (x , ) (Q ).j j j j j j j j
k k k k k k k F k k S k k k V k kG u P R Q C C u C= − − −  (2.21) 

2.4.2 The Decentralized Commitment Process 

In order to decide ahead on which of the 24 hours of the next day the generator should 
schedule its unit, he has to make an assumption of how prices will develop given the 
known electricity demand. Generator j has to use a methodology to map the vector Q into 
the vector of forecast prices P

�
. 

Our model assumes global knowledge of the marginal cost curves of all generators 
participating in the market. This assumption is backed by the fact that market participants 
are publicly known and marginal cost functions can easily be estimated for all 
technologies used. 

Hence, generator j can calculate a forecast market price for a given hour, assuming all 
generators are committing their units. In our model, we assume that all generators base 
their decisions on the above defined ( )P Q

�
. 

The objective of generator j is to find an optimal decision vector 1 2 24( , ,..., )j j ju u u for a 
given initial state 1

jx  that maximizes the profit over a given 24-hour time frame: 

 
24

1
1

(x ) max (x , , ).
j

k

j j j j j
k k k k

u k
J G u P

=

= ∑  (2.22) 

It follows that, under these assumptions, the actual price kP  during one hour can never be 
smaller than the forecast price ( )P Q

�
as the market supply curve can only be shifted 

upwards by generators deciding not to participate during hour k. 
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The optimal strategy can be formulated as one that solves a dynamic programming 
problem. Given the forecast prices P

�
, the optimal commitment policy 

{ }1 2 24, ,...,j j j ju u uπ =  leading to the maximum profit 1 1 1( ) ( )j j j jJ x J x= is calculated by the 
DP-Algorithm 

 
( )1

25

(x ) max (x , , ) f(x , ) ,

= 0.

j
k

j j j j j j j
k k k k k k k k k

u

j

J G u P J u

J

+
⎡ ⎤= +⎣ ⎦  (2.23) 

In our notation, kx  describes the physical state of the generator at the end of the previous 
period and constrains the possible decisions for the same hour k. 

We have implemented the commitment process in Matlab. The basic structure of the 
program is shown in Table 2-1 and the source code is printed in Appendix B  
 

Calculate kP
�

given deterministic demand kQ  for each hour k. 
Apply DP-algorithm for each of the generators to calculate optimal cost-to-go matrices 
for each stage and state 
Calculate matrices for decisions and states in function of stage and state 
Calculate actual market prices kP determined by the market supply function of scheduled 
generators during hour k 
Calculate profits and outputs for each generator and total costs incurred by all generators 
to supply given demand 

Table 2-1. Structure of program mainDC.m 

2.4.3 The Centralized Commitment Process 

The objective of the centralized commitment process becomes to schedule generation 
units in such a way as to minimize the total cost necessary for supplying the given 
inelastic demand Q and thereby to maximize welfare. Higher prices than necessary make 
customers worse off, but generators better off by the same amount. Hence, under given 
assumptions maximum welfare is achieved by minimizing only costs incurred by 
generators: 

 
24

j
, , k ,

, 1
min ( ) (x , ) ( ).

j j
k k

j j j j j j
F k k S k k V k k

x u k j
C u C u C Q

=

+ +∑∑  (2.24) 

Constraints are the intertemporal ones described in Section 2.4.1. The constraint of total 
output equaling given demand is intrinsically taken care of by the formulation and does 
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not have to be explicitly formulated. This implies that there is enough supply capacity for 
the solution to exist. 

The centralized unit commitment process requires a DP-Algorithm with the variable size 
of the state and decision spaces depending exponentially on the number of generators. In 
the decentralized commitment, each generator can be in 4 states and choose from at most 
2 decisions at 24 stages. Calculating the total decision matrix for all l generators requires 
an amount of calculation proportional to 

 ( )4 2 24.calct l⋅ ⋅ ⋅∼  (2.25) 

The centralized DP-Algorithm compares all possible states and decision combinations of 
all generators. E.g., in a calculation with 3 generators, the algorithm has to compare 43 
states combined with 22 decisions. With l generators, the amount of calculation is 
proportional to 

 ( )4 2 24.l
calct ⋅ ⋅∼  (2.26) 

 

Use DP-algorithm to calculate optimal cost-to-go matrix for each of 4l states and 
24 stages, considering 2l choices at each stage 
Calculate optimal state and decision matrices 
Calculate actual market prices P determined by the generators that are scheduled 
during each hour 
Calculate profits and outputs for each generator and total costs incurred by all 
generators to supply given demand 

Table 2-2. Structure of program mainISO.m 

2.5 Limits of the Model 

The model will deliver unrealistic results for the decentralized case in the following 
scenario: high fixed costs, flat total supply function, similar generators. If the anticipated 
total market supply function is so flat that it leads to such small prices that no generator 
assumes being able to cover the fixed costs for being on, no generator schedules and the 
system breaks down. This result is a direct outcome of the assumption of linear marginal 
costs with no intercept. We will change this assumption in Subsection 2.7.3 where we 
consider marginal cost functions with positive intercept. 

This scenario can be prevented by using different parameters for the generators. One can 
interpret this limit of the model as an indication of why a market with heterogeneous 
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market participants works best by leading to less variability. The actions of participants 
are less correlated and hence tend to equal out. 

The model is also limited with regard to the forecast methodology in general. Assuming 
that all other market participants enter into the auction at each hour does not contain any 
learning effects. Keeping this obvious limit in mind, the model nevertheless delivers 
interesting results. 

2.6 Examples and Results 

The model was run with different numbers of generators, different load patterns, and 
different marginal, fixed and switching costs. Most of the simulations behave like the first 
example printed in Appendix C. Centralized and decentralized unit commitment lead to 
the same generators scheduled at each hour and the same amounts of power traded at 
each hour. The interesting result of Example 2, however, violates the assumption that 
decentralized and centralized unit commitments result in the same outcome. We will later 
show that this result can be generalized to the unconstrained case, and that it is, therefore, 
not a result of the modeling process. 

A qualitative explanation for the difference in example 2 is the fact that the given demand 
can be supplied at less overall cost if generator 3 is switched on during hours 13 and 14. 
Because of the resulting low prices, however, generator 3 would incur loss over the 
periods in which it is switched on. If it can choose, as in the decentralized case, generator 
2 remains shut off and incurs no loss. Figure 2-1 shows the market supply curves for each 
of the generators and the market supply function if all generators are scheduled. 
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Figure 2-1. Example 2: individual and aggregate market supply functions 
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2.6.1 Analysis of Example 2 

In order to compare the two results, we aggregate the market participants into groups and 
focus on key variables for the two markets. We regard as groups: consumers (welfare = - 
costs for electricity), generators 1+2 (profits and costs), generator 3 (profits and costs), 
and generator 1+2+3 (profits and costs). ISO and DC-markets differ only in hours 13 and 
14. Table 2-3 shows the difference between centralized and decentralized optimization 
for these key variables: 

 

Wcons Ggen 1+2 Cgen 1+2 Ggen 3 Cgen 3 Ggen 1+2+3 Cgen 1+2+3 
+144.3 -130.8 -70.82 -13.33 70.67 -144.1 -0.145 
Table 2-3. Differences between centralized and decentralized outcomes, example 2 

The consumers are obviously better off in the ISO-version with generator 3 switched on. 
More generators supplying demand results in a flatter supply function and hence in lower 
prices. 

But the welfare of the consumers was not the primary target of ISO choosing this 
schedule. Lower prices result in lower costs for consumers, but also lower income for 
generators. The target of ISO is to minimize the costs necessary for supplying the 
demand. Cgen 1+2+3 is lower in the centralized version. 

Generator 3 prefers not to be scheduled because it otherwise loses money. Generators 
1+2 also prefer generator 3 to remain shut off, as they can then see their share in supply 
and their profit increased. An entity owning generators 1+2+3 also prefers generator 3 to 
remain shut off. If generators 2+3 belonged to the same entity, the owner would prefer 
generator 3 to be shut off even if the numbers were slightly different and generator 3 
were making some profit when switched on. Another numerical example could easily be 
constructed. 

2.7 Differences in the Outcomes Generalized 

What follows is a mathematical investigation of when a centralized and a decentralized 
commitment process differ if intertemporal constraints are neglected. Demand is 
considered to be given, and we regard only one special hour. First, we again assume 
linear increasing marginal costs and fixed costs for being scheduled.  

2.7.1 Aggregation into Two Generators 

We will construct a situation in which an ISO would schedule a generator g for 
minimizing costs, but the generator would prefer not to be scheduled in order to prevent a  
loss. In the following derivation, subscript g stands for the special generator, r for the 
aggregation of other generators (rest), and t for the aggregation of all generators (total). 
Parameter a describes the coefficient for the linear marginal cost curves such as those 
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shown in Figure 2-2. Pt and Pr are the market prices obtained respectively when generator 
g is scheduled or not. The slope of the total supply function at is calculated as 

 .g r
t

g r

a a
a

a a
=

+
 (2.27)
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Figure 2-2. General example: market supply functions, aggregation in 2 generators 

We introduce a new dimensionless parameter ν which describes the share of the power 
that is delivered by generator g in case it participates in the market. Basic economic 
theory holds that g will deliver energy proportionally to the inverse of its marginal cost 
slope: 

 

1

.1
g r

g r

t

a a
a a

a

ν = =
+

 (2.28) 

The situation we look for is created if two inequalities hold at the same time. First, 
generator g has to incur loss if scheduled, and second, the total cost necessary to supply 
given demand Q have to be smaller if generator g is scheduled. The first inequality holds 
if costs are larger than revenues for g: 
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The second inequality holds if the reduction in variable costs by scheduling g outweighs 
the additional fixed costs: 
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Together these inequalities determine a possible range for the parameters: 
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 (2.31) 

The last inequality gives a straight-forward rule as to when the results of a decentralized 
and a centralized unit commitment process deviate from each other due to the differences 
in the optimization objectives of individual participants and the overall objectives. 
Neither reference to different levels of knowledge nor numerical rounding errors have to 
be used for explanation. However, the inequality also shows that the situation under 
scrutiny is a rather rare one. The parameter ν  is an indicator as to what percentage of the 
total production capacity generator g holds. Under normal conditions, each generator 
should not hold more than a small share of the total market supply, which makes both the 
factor (1 )ν−  and hence, the range of values for which the effect can occur, rather small. 
Nevertheless, the above described discrepancy can happen and Table 2-1 shows several 
possible combinations of parameters which would lead to it. 

 

ν  ga  ,F gC  Q 
1/11 0.9 0.01 1.45 
1/11 0.9 1 19.2 
1/11 2.9 180 145 
1/11 3.09 0.1 14.5 
1/3 4 0.01 0.4 
1/3 1 1 4 
1/3 1 100 40 
1/3 0.6 9.1 4 

Table 2-4. Numerical examples, aggregation in 2 generators 
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2.7.2 Aggregation into Three Generators 

Next, we will construct a situation with 3 generators and more intricate issues. 

• Generator 1 always wants to be on, independent of other generators' decisions to  
participate during the hour. 

• Generators 2 and 3 do not want to be scheduled simultaneously. In other words, 
both lose money if the set of participating generators is {1,2,3}. 

• Each of the two generators 2 and 3 would make profit during the hour, if the other 
one does not participate. 

• ISO, pursuing its objective to minimize total costs necessary to supply given 
demand, would like to schedule all three generators. 

Generator 1 can be seen as an aggregation of several generators that have small enough 
fixed costs to always want to be on for the given demand. 

 

QDemand=3.74
Q

P, MC

P1,2,3

P1,2 =P1,3

a2=a3=2

a1,2,3=1/2

P1

a1,2=a1,3=2/3
a1=1

 

Figure 2-3. Market supply functions, aggregation in 3 generators 

In order to establish the general case, four inequalities have to be fulfilled. We will gain 
insight and almost the same level of understanding by considering the special case in 
which generators 2 and 3 use the same technology, and hence have the same MC and CF . 
In that case, the inequalities will reduce to two. We calculate: 
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ISO wants to schedule all three generators in order to minimize costs. Therefore, it must 
hold: 

 { } { }1,2,3 1,2C C<  (2.33) 

and 

 { } { }1,2,3 1 .C C<  (2.34) 

The last inequality (2.34) can be shown to hold automatically if the previous one, (2.33), 
is fulfilled, which can be written as: 
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Generators 2 and 3 lose money if all three generators are scheduled, but either generator 2 
or 3 makes a profit, if the other one is not scheduled: 
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These two inequalities become respectively 
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and 
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The last inequality (2.38) can be shown to hold automatically if inequality (2.37) is 
fulfilled. We again introduce a dimensionless parameter ν describing the share of the 
power that is delivered by generator 2 in case it participates in the market: 
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Inequalities (2.35) and (2.37) can now be combined to 
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Together with 
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we retrieve the same formula as in the previous section: 
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Because of its definition, ν  now has to be smaller than ½. Figure 2-4 and Table 2-5 show 
examples for numerical values for this situation. 

 

ν  ga  ,F gC  Q 
1/11 0.9 0.01 1.45 
1/11 0.9 1 19.2 
1/11 2.9 180 145 
1/11 3.09 0.1 14.5 
1/3 4 0.01 0.4 
1/3 1 1 4 
1/3 1 100 40 
1/3 0.6 9.1 4 

Table 2-5. Numerical examples, aggregation into 3 generators 
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Figure 2-4. Numerical example: aggregation into 3 generators 

2.7.3 Quadratic Cost Curves 

In what follows we extend the previous results for two generators to the more realistic 
case with quadratic cost curves that include a linear term. We again consider fixed 
operating costs for being scheduled, but no intertemporal constraints. Demand is given 
for the hour. We will construct a situation with two generators in which the given demand 
can be satisfied at least cost with both generators scheduled, but in which one generator 
would prefer not to be scheduled because it would incur loss otherwise. A PoolCo-type 
market would schedule generator 2 to minimize costs and pay it the fixed operating costs 
to prevent it from loss. We assume generators bid true marginal cost curves. 
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2.7.3.1 Derivation 

In the following derivation, subscript 2 stands for the special generator g, 1 for one or an 
aggregation of other generators. The total cost of each generator i is described by 

 2( ) .= + +i i i i i i iC Q a Q b Q c  (2.42) 

The marginal costs are linear functions as shown in Figure 2-5. 
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Figure 2-5. Generator supply functions 

If both generators participate, the slope of the supply function becomes 

 1 2
1 2

1 2

2 ,a aa
a a+ =

+
 (2.43) 

for 
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.
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b bQ Q
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1 2P+ and 1P  are the market prices obtained when generator 2 does or does not participate 
respectively with 
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 (2.44) 

Three conditions must hold simultaneously: 

• Generator 1 always wants to be on, independent of generator 2's decisions to 
participate during the hour: 

 2
1 1 1 1 1 1 2 1.a Q b Q c P Q++ + <  (2.45) 

• Generator 2 incurs loss if it is scheduled and does not receive extra payment: 

 2
2 2 2 2 2 1 2 2.a Q b Q c P Q++ + >  (2.46) 

• The total cost for supplying the given demand is smaller if generators 1 and 2 are 
scheduled than if only generator 1 supplies electricity: 

 2 2 2
1 1 1 1 1 1 1 1 2 2 2 2 2.+ + > + + + + +a Q b Q c a Q b Q c a Q b Q c  (2.47) 

In addition, we know 

 1 2 ,Q Q Q+ =  (2.48) 

and 

 1 1 1 2 2 22 2 .a Q b a Q b+ = +  (2.49) 

2.7.3.2 Generator 1 

We introduce new dimensionless parameters 1
1

Q
Q

ν =  and 2
2

Q
Q

ν = . We write them as: 
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and 
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Using the formula for 1 2P+ , (2.44), inequality (2.45) can be written as 

 2 2 21 2 2 1 1 2
1 1 1 1 1 1 1

1 2 1 2

2 .ν ν ν ν+
+ + < +

+ +
a b a b a aa Q b Q c Q Q

a a a a
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Further using the formula for 1ν , (2.50), we obtain after some transformations the 
condition 
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2.7.3.3 Generator 2 

Using the formula for 1 2P+ , (2.44), we write inequality (2.46) as 

 2 2 21 2 2 1 1 2
2 2 2 2 2 2 2

1 2 1 2

2 ,ν ν ν ν+
+ + > +

+ +
a b a b a aa Q b Q c Q Q

a a a a
 (2.54) 

and obtain after using the formula for 2ν  and some transformations:  
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2.7.3.4 Total Costs 

We use the formula for 1ν , (2.50), to rewrite inequality (2.47) as 

 ( )2 2 2 2
1 1 1 1 1 2 1 1 1 2 1 1 2(1 ) (1 ) ,a Q b Q c a a Q b Q b Q c cν ν ν ν+ + > + − + + − + +  (2.56) 

and obtain after some transformations the inequality 
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2.7.3.5 Numerical Example 

If all of the three above deduced inequalities hold, a centralized and a decentralized 
commitment would lead to different results. The following tables and graphs show a 
numerical example for this situation. 

 1G  2G  
a 1 2 
b 1 1.6 
c 1.1 0.7 
Q 2 

Table 2-6. Parameters for quadratic cost curves example 
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Figure 2-6. Quadratic cost curves of numerical example 
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Figure 2-7. Market supply functions for quadratic cost curve example 
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 ver 1G ver 1G and 2G  
P 5 3.87 
 1G  1G + 2G 1G  2G  
ν  100% 100% 72% 28% 
C 7.1 6.84 4.59 2.25 
Rev 10 7.73 5.54 2.19 
π  2.9 0.9 0.95 -0.06 

Table 2-7. Outcomes of quadratic cost curves example  

2.8 Interpretation 

The literature gives several examples of cases in which individual objective functions are 
not aligned with those of the overall societal welfare. The most famous example was 
given by Hardin in The Tragedy of the Commons [Hardin68]. Another one is Braess' 
article on traffic networks [Braess69] in which he gives an example in which drivers’ 
attempt to minimize their transit times leads to increased congestion and increased traffic 
times for all participants. Braess' paradox has become an important issue in the context of 
queuing networks [Cohen90]. Wolpert and Tumer use the term COIN (Collective 
Intelligence) for their research in how to configure a system and assign private goals to 
individual agents, so that simple pursuit of them by the associated agents leads to a 
globally desirable solution [Wolpert99]. 

In power systems, however, the commonly held assumption is still that, at least in theory, 
a centralized and a decentralized commitment should lead to the same power quantities 
traded, and to the same optimal social welfare. The performance objectives of the 
individual market participants are considered equal to the one of minimizing total 
operating cost [Oren95], [Ilic98], [Christie01], [Day02].  

The important implication of the examples given in this chapter is that, even in the 
absence of load uncertainties and intertemporal constraints, decentralized decision 
making, by which the market participants schedule themselves, need not necessarily lead 
to the same maximized welfare as centralized decision making. The reason is that, under 
certain circumstances, several generators can supply the load at a lower overall cost than 
the subset of generators that would make positive profits in a market setting if switched 
on during the hour.  

In PJM, New York, the ISO offers a voluntary unit commitment service, based on three-
part bids, allowing generators to bid actual operating costs more precisely and permitting 
a more efficient unit commitment. Generators may also self-schedule their own units, but 
they may also allow the ISO to determine the most economic unit commitment for their 
plants. Participating generators are guaranteed recovery of their start-up and minimum 
generation costs in the event they fail to recover these costs from the prices received in 
the ISO-coordinated markets [Chandley01], [O’Neill01]. This mechanism eliminates the 
uncertainty of whether a generator will be committed only to lose money, and it allows 
for a more efficient dispatch. The quadratic cost curve example shows how a PoolCo-
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type market would work more efficiently than a power exchange (for which the one-part 
bids result in some inefficiency).  

The 3-generator example is slightly richer in modeling problems than the 2-generator 
one. From the perspective of generators 2 and 3, we can perceive the situation as that of a 
coordination game. If both schedule at the same time, they both lose money. If both 
refrain from scheduling, both lose the opportunity of making money, given the fact that 
the other generator did not participate. Trying to figure out an optimal strategy for each 
player, the reasoning process winds up in infinite regress as each of the players tries to 
anticipate the behavior of the other one, which itself tries to anticipate the first one's 
behavior and so on. Players have to play mixed strategies, randomize in particular ways 
(i.e., choose certain probabilities rather than others), and use outside information 
[Foss99], which frustrates any simple mathematical treatment and simulation of the 
problem. The "El Farol Bar" problem [Arthur94] has become a well-known example of 
how any model of such a problem that is shared by most of the agents is self-defeating. 
Recent simulations [Edmonds99] introduce heterogeneity into the models by using 
creative artificial agents. Evolutionary processes act upon a population of strategies 
inside each agent, so that after several runs, agents have taken on qualitatively different 
roles. 

2.8.1 Arguments against Centralized Unit Commitment 

It is important to state at this point, that the conclusions from this chapter focus on the 
short run, in that they do not take into account the long-term motivational effects of a 
decentralized commitment on investment decisions and the possible entry of new firms or 
generating plants. The literature gives several qualitative arguments why a decentralized 
commitment process might be preferable, despite the better overall efficiency of the 
centralized process. 

According to [O’Neill01], a centralized unit commitment has the following problems in a 
competitive environment: 

• Generators must submit start-up cost bids, as well as minimum run time, 
minimum down time, etc. This has lots of potential for strategic bidding, i.e. 
exercise of market power via technical means. 

• The process lacks transparency, i.e. a generator cannot determine if the result of 
the unit commitment is “fair” with respect to the generator’s bids. 

• Because of the flat optimum in the unit commitment, major changes in the 
commitment pattern create only small changes in total cost. [Oren95] 

• Because of the near-optimality in practical unit commitment solutions, two 
different programs, even with the same algorithm, but different “tuning” (e.g., 
how many states are retained), arrive at different solutions to the same problem. 
The objective function will have nearly the same value, but unit schedules can 
vary quite a bit. This can have major implications for the profitability of a 
generator. 
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According to [Tabors00], market participants complain of domination of decision-making 
by transmission owners or even ISO staff. As ISOs typically have weak or non-existent 
incentives to be responsive to market needs, embodying any system of checks and 
balances is often difficult, and ISOs have been accused of becoming self-perpetuating 
bureaucracies, with built-in incentives to block eventual evolution of the industry 
structure. Generation owners “argue that they can commit and dispatch their resources 
more efficiently than a central system with bidding rules.” [Kirby99] states that because 
the fundamental goal of restructuring is to replace the highly regulated, centrally 
optimized and controlled system with one that is primarily market-based, generators can 
assume the responsibility (and associated financial risk) of performing the unit 
commitment function and deciding when to turn on and off.  

Another argument against a centralized unit commitment is the computational complexity 
of solving a centralized unit commitment for a day-ahead market. The difference in 
computer power needed is shown by equations (2.25) and (2.26). According to 
[Tabors00], these complex systems depend on software programs whose development has 
in several cases taken years and cost hundreds of millions of dollars. Also, it is difficult to 
determine the actual optimum, since several nearly as efficient optima might exist. 

Finally, the actual costs of generators are highly sensitive data. In order to fulfill its role, 
the PoolCo authority would have to know the exact cost structures of all power plants. 
Principal-agent problems might arise in this context, and it is still not clear how willing 
generators are to transfer this knowledge to a third entity and to give up decentralization 
in return for vast simplification. 
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3 Dynamic Programming Algorithms for Optimal 
Unit Scheduling  

3.1 Overview 

In a regulated market, a power generating utility solves the unit commitment problem by 
minimizing the production costs to supply the electricity demanded by its customers. The 
power generating utility has no option but to reliably supply the prevailing load. The 
price of electricity over this period is unchanging and, therefore, the decisions on the 
operation of the units have no effect on the firm’s revenues. 

Under deregulation, the unit commitment problem for an electric power producer 
includes the electricity market in the model, since the spot price of electricity is no longer 
predetermined but highly volatile. Modeling of the spot prices becomes very important as 
the expected revenue of the generator depends on the accuracy with which the stochastic 
nature of the price volatilities can be incorporated into the commitment decisions.  

We investigate an electricity producer’s problem of optimally scheduling its unit day-
ahead for an hourly market, taking into account intertemporal operating constraints of the 
unit. We will use a day-ahead forecast of hourly prices and a probability density function 
(PDF) of forecast errors to model the market clearing price (MCP) as a random variable 
instead of a predicted value and, thereby, incorporate the MCP uncertainties and bidding 
risks into the optimization algorithm.  

We develop price models and optimization algorithms that take into account the variance 
of forecast errors and correlation between successive hours. Using historical data from 
the ISO New England wholesale electricity market, we show how parameters can be 
statistically estimated, and then apply the algorithms to data previously not looked at. 

Knittel and Roberts conclude in their empirical investigation of California electricity 
prices [Knittel01] that large values of higher-order moments relative to a Gaussian 
distribution render price models based on Normality assumptions of questionable use in 
representing price behavior. Relaxing the Normality assumption should aid in better 
representing the stochastic properties of prices. We will therefore compare models that 
use truncated Normal distributions with fat-tail models that assume that price deviations 
behave according to truncated Cauchy distributions. 

A short overview of different approaches in the literature for stochastic unit commitment 
can be found in [Valenzuela01]: [Takriti97] introduces a stochastic model in which the 
uncertainty in the load and prices of fuel and electricity are modeled using a set of 
possible scenarios. [Allen99] proposes a stochastic model for unit commitment, assuming 
that the hourly prices at which electricity is sold are uncorrelated and normally 
distributed. [Tseng99] uses Ito processes to model the prices of electricity and fuel in the 
unit commitment formulation. [Valenzuela01] assumes the market-clearing price of 
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electricity to be the variable cost of the marginal unit and models the aggregate load as a 
Gauss-Markov process. 

3.2 Price Process 

The ISO New England electricity wholesale market opened on May 1, 1999. Each 
evening, ISO New England posts an hourly price forecast for electricity prices of the next 
day on its web page [ISO-NE-www]. We assume these forecasts to be the best available 
to a generator before making a unit commitment decision for the next day. 

A generator, which has to make a unit commitment decision about when to turn its unit 
on or off during the next day, will optimize its decision with regard to these forecasts. In 
what follows, we will improve the simple deterministic unit commitment by trying to 
model the dynamics between the historic hourly forecast prices mkp  and actual electricity 
prices kp . 

Figure 3-1. Prices and forecast prices: 2001 
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Figure 3-2. Prices and forecast prices: 2 weeks in Nov. 2001 

3.2.1 Independent Random Variables 

A logical first step is to assume that the hourly forecast errors behave like independent 
random variables. We can write 

 m
k k kp p e= +  (3.1) 

or 

 m ,k k k kp p p eΔ = − =  (3.2) 

with ke  being independent of ue  for any period u k≠ , and following an assumed 
probability distribution.  
 

Sample Data Mean e  Median e�  Variance l
2

σ  
01/01/2001-12/31/2001 2.94 0.25 1757 
09/01/2001-12/31/2001 -0.243 -0.125 59.8 
11/08/2001-11/26/2001 -2.10 -0.585 57.9 

Table 3-1. Test statistics for forecast errors for sample periods 
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Figure 3-1 and Figure 3-2 show that, especially during the strong winter 2001, prices 
regularly reached unexpected levels and created the huge sample variance for the whole 
year in Table 3-1. With new power plants being built and the reserve margin becoming 
larger, we use the sample from September to December 2001 for finding appropriate 
distributions for future calculations.  

3.2.1.1 Normal Distribution 

Most commodity, asset and electricity price models use the normal probability 
distribution for simulations. It is defined as 

 
2

22
2

1( ) ,
2

x

f x e σ

πσ

−
= ⋅  (3.3) 

 

Figure 3-3. Gaussian approximations for the forecast error distribution 

In order to run the algorithms explained in Section 3.4, the continuous distribution of kpΔ  
has to be discretized. The interval between two values ipΔ  will be denoted as d and the 
number of different intervals or values s, with s being an odd number. The discretized  
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probability distribution of kpΔ  is then defined as ip p  
2i k
dp p⎛ ⎞= Δ − Δ <⎜ ⎟

⎝ ⎠
, with i the 

index { }1,2,...s∈ , and 1
2i

sp d i +⎛ ⎞Δ = ⋅ −⎜ ⎟
⎝ ⎠

. Values outside the range 

1 1,  
2 2

s sd d+ +⎡ ⎤− ⋅ ⋅⎢ ⎥⎣ ⎦
 are possible but considered to have negligible impact on the optimal 

decision.  

For the discretized normal random distribution with variance σ  we calculate  

{ }i

2
2 2 2 2p    for i 1,s ,

i i
d d s sp p d i d i

σ σ σ σ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞Δ − Δ + − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟= Φ − Φ = Φ − Φ ∉
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (3.4) 

and 

 

1

s

2 2p

2
2 2p 1 1 .

i

s

d sp d i

d sp d i

σ σ

σ σ

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞Δ − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟ ⎜ ⎟= Φ = Φ
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞+⎛ ⎞ ⎛ ⎞Δ + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟ ⎜ ⎟= − Φ = − −Φ
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (3.5) 

Table 3-2 shows typical numerical values, that we will use for the optimization in a later 
section. 

Sample Data d s l 2
σ ′  l 2

σ ′′  
09/01/2001-12/31/2001 1 61 59.8 25 

Table 3-2. Normal approximation for period 09/01/2001-12/31/2001 
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3.2.1.2 Cauchy Distribution 

The superimposed Gaussian distributions do not seem to fit the sample well as they do 
not give enough credit to the heavy tails. Looking for a more representative distribution,  
we use a variant of the Cauchy distribution, which is generally defined as 

 2
1 1( ) ,

1
f x

m x
m

π
= ⋅

⎛ ⎞+ ⎜ ⎟
⎝ ⎠

 (3.6) 

with m being the scale parameter. The expected value, variance and higher moments are 
undefined since the corresponding integrals diverge. We use a truncated distribution that 
is discretized in s values. In contrast to the Normal distribution, the integral of the 
densities outside of the specified range do represent a non-negligible part, which is why 
we have to normalize the probabilities:  

 2
1 ,

1
ip

x
m

′ =
⎛ ⎞+ ⎜ ⎟
⎝ ⎠

 (3.7) 

and normalizing factor f: 

 1 .s

i
i

f
p

=
′∑

 (3.8) 

The discrete probabilities then become: 

 .i ip f p ′= ⋅  (3.9) 
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Figure 3-4. Cauchy approximation for the forecast error distribution 

Figure 3-4 shows the approximation of the density function by the Cauchy distribution 
with parameters from Table 3-3. It seems to approximate the forecast error distribution to 
a better extend than the Gaussian distribution. 

 

Sample Data s lm  lf  m2
cσ  

09/01/2001-12/31/2001 61 3 0.883 53.1 
Table 3-3. Cauchy approximation for period 09/01/2001-12/31/2001 

An alternative approach for discretizing the Cauchy distribution is to use its cumulative 
density function 

 1( ) 0.5 arctan ,xF x
mπ

⎛ ⎞= + ⋅ ⎜ ⎟
⎝ ⎠

 (3.10) 

and assure the normalization by appropriately defining 1p  and sp . We again define d as 
the interval between two values ipΔ , and s as the number of different intervals. For the 
discretized Cauchy distribution with parameter s we calculate  
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{ }ip    for i 1,s ,
2 2 2 2i i
d d s sF p F p F d i F d i⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= Δ − − Δ + = − − + ∉⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 (3.11) 

and 

 
1

s

p  
2 2

p 1  1  . 
2 2

i

i

d sF p F d i

d sF p F d i

⎛ ⎞⎛ ⎞ ⎛ ⎞= Δ − = −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞ ⎛ ⎞= − Δ + = − +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 (3.12) 

3.2.2 Correlated Random Variables 

It is reasonable to assume some correlation in the forecast errors between different hours 
of a day. Further making the assumption that the mean of the errors should actually be 
zero, the price process is characterized by a zero-mean-reverting process: 

 1 .k k kp pα ε−Δ = ⋅ Δ +  (3.13) 

Under this assumption, the prices kp  behave according to a first-order autoregressive 
moving-average with exogenous input (ARMAX) discrete time model: 

 m n( )1 1 .k k k k kp p p pα ε− −= + ⋅ − +  (3.14) 

The coefficient α  in the linear regression 1k k kp pα ε−Δ = ⋅ Δ +   for minimizing mean 
square error of kε  is equal to the correlation between the forecast errors of different hours 

 1( , )k kCov e eδ
σ

−= .  (3.15) 

Given a sample of n pairs of prices and price forecasts, the sample variance n 1( , )k kCov e e −  
can be calculated as 

 n
1

2
1( , )

2

n

i i
i

k k

e e
Cov e e

n

−
=

− =
−

∑
 (3.16) 
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and the mean square error or residual errors of the model kε , not explained by correlation: 

 ( ){ } ( )22 2 2
1E 1 .k kp pεσ δ σ δ−= Δ − ⋅ Δ = −  (3.17) 

Sample Data n
1( , )k kCov e e −  2

εσ  
09/01/2001-12/31/2001 0.705 42.5 

Table 3-4. Correlation parameters for period 09/01/2001-12/31/2001 

Given the forecast deviation of a particular hour k, the model predicts expected future 
deviations according to: 

 n .n
k n kp pδ+Δ = ⋅ Δ  (3.18) 

Figure 3-5 shows the forecast deviations for 11/16/2001 and the superimposed expected 
deviations from the perspective of hours 3 and 12. 

 

Figure 3-5. Intraday forecast errors 

Like in Section 3.2.1, we will approximate the residual error with a random variable with 
either a Normal or a Cauchy Distribution. 
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3.2.2.1 Normal Distribution 

Figure 3-6 shows the histogram for the residual forecast errors kε  of our model and 
approximated normal random distribution with the parameters from Table 3-5.  

Figure 3-6. Gaussian approximations for the residual forecast error distribution 

 

Sample Data l 2
εσ ′  l 2

εσ ′′  
09/01/2001-12/31/2001 42.5 10 

Table 3-5. Normal approximation for period 09/01/2001-12/31/2001, correlation 

We approximate the continuous probability distribution of k k kp pε = Δ − Δ  with a normal 
distribution with 0 mean, and discretize with an odd number s intervals of size d. With 

1k kp pδ −Δ = ⋅ Δ , we then write 

 i,j 1p p   
2 2i k j k
d dp p p p −

⎛ ⎞
= Δ − Δ < Δ − Δ <⎜ ⎟

⎝ ⎠
 (3.19) 
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for the conditional probability distribution of the forecast deviations for this hour based 

on the difference in the last hour. We have 1
2i

sp d i +⎛ ⎞Δ = ⋅ −⎜ ⎟
⎝ ⎠

, and i and j as the indexes 

{ }1,2,...s∈ . Given the assumed variance εσ , we can write 

{ }

i,j
2 2p   

1 1
2 2 2 2   , for i 1,s

i j i j
d dp p p p

s s s sd i d j d i d j

δ δ

σ σ

δ δ

σ σ

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞Δ − − ⋅ Δ Δ + − ⋅ Δ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟ ⎜ ⎟= Φ − Φ
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞+ +⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − ⋅ − + − ⋅ −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎜ ⎟ ⎜ ⎟= Φ − Φ ∉
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (3.20) 

and 

 1,j

1
2 2 2p

i j
d s sp p d i d jδ δ

σ σ

⎛ ⎞ ⎛ ⎞+⎛ ⎞ ⎛ ⎞ ⎛ ⎞Δ − − ⋅ Δ − − ⋅ −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎜ ⎟ ⎜ ⎟= Φ = Φ
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

  

 s,j

2 1
2 2 2p 1 1 .

s j
d s sp p d i d jδ δ

σ σ

⎛ ⎞ ⎛ ⎞+ +⎛ ⎞ ⎛ ⎞ ⎛ ⎞Δ + − ⋅ Δ − − ⋅ −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎜ ⎟ ⎜ ⎟= − Φ = − Φ
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (3.21) 

3.2.2.2 Cauchy Distribution 

We again formulate kpΔ  evolving according to a conditional probability distribution 
approximated by a Cauchy distribution, before we discretize for the computer 
calculations in the next section. 

Figure 3-7 shows the histogram for the residual forecast errors kε  of our mean-reverting 
model and an approximated Cauchy distribution with the parameters from Table 3-6, as 
defined in Section 3.2.1.2. 
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Figure 3-7. Cauchy approximations for the residual forecast error distribution 

 

Sample Data n mmε  lfε  2
,cεσ  

09/01/2001-12/31/2001 61 2 6.02 36.5 
Table 3-6. Cauchy approximation for period 09/01/2001-12/31/2001, correlation 

The cumulative Cauchy distribution for kε  and kpΔ  is: 

 1( ) 0.5 arctan ,
k

xF x
mε π

⎛ ⎞= + ⋅ ⎜ ⎟
⎝ ⎠

 (3.22) 

and becomes discretized: 

 1( ) 0.5 arctan
k

k
p

x pF x
mπΔ

⎛ ⎞− Δ
= + ⋅ ⎜ ⎟

⎝ ⎠
. (3.23) 

Using the definitions from Section 3.2.2.1, we can write: 
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{ }

i,jp
2 2

1 1   , for i 1,s
2 2 2 2

i j i j
d dF p p F p p

s s s sF d i d j F d i d j

δ δ

δ δ

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= Δ − − ⋅ Δ − Δ + − ⋅ Δ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞+ +⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − − ⋅ − − + − ⋅ − ∉⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 (3.24) 

and 

 
1,j

s,j

1p
2 2 2

1p 1 1 .
2 2 2

i j

i j

d s sF p p F d i d j

d s sF p p F d i d j

δ δ

δ δ

⎛ ⎞ ⎛ ⎞+⎛ ⎞ ⎛ ⎞ ⎛ ⎞= Δ − − ⋅ Δ = − − ⋅ −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞+⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − Δ + − ⋅ Δ = − + − ⋅ −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 (3.25) 

3.3 The Model of the Generator 

We assume as only intertemporal constraints on the generator the fact that once turned 
on/off, it has to remain turned on/ off for at least upt / downt  hours. Each hour, the generator 

can therefore be in one of  up downt t+ states. In a variant of the formulation in [Shaw95], 
we define the state in such a way, that it refers to the number of hours the unit has been 
on (1 k upx t≤ ≤ ) or off ( 1up k up downt x t t+ ≤ ≤ + ) at the beginning of time period k with the 

addition that the state does not change, once the unit has been on/ off for upt / downt  hours: 

 

1                if     1       -1
                                        

             if             -1
=

+1         i
up up

k
up

shut on for exactly hour at the end of hour k

t shut on for at least t hours at the end of hour k
x

t

#

f     1       -1

                                        
   if             -1.up down down

shut off for exactly hour at the end of hour k

t t shut off for at least t hours at the end of hour k

⎧
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪

+⎪⎩

#

 (3.26) 

The on/off constraints on the ability to turn on or off for a specific hour k can be 
formulated as a constrained control space kU  at each stage [Bertsekas00]: 
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{ }
{ }
{ } { }

0         if  1

( ) 1          if  1

0,1       if  , , .

up k up down

k k k up

k up up down

t x t t

U x x t

x t t t

⎧ + ≤ < +
⎪⎪= ≤ <⎨
⎪

∈ +⎪⎩

 (3.27) 

The state of the generator evolves according to the state equation: 

 1

1                   if ( 1)

     if ( 0)

=f( , ) +1            if ( 0)

                if ( 1)

1           else.

k up down k

up down k up down k

k k k up k up k

up k up k

k

x t t u

t t x t t u

x x u t x t u

t x t u

x

+

⎧ = + ∧ =
⎪

+ = + ∧ =⎪
⎪⎪= = ∧ =⎨
⎪

= ∧ =⎪
⎪ +⎪⎩

 (3.28) 

We use a quadratic function to model the cost function of the generator: 

 2( ) .k k kC Q aQ bQ c= + +  (3.29) 

If the generator is on during hour k with price kp  then the output variable kQ  is set to 
maximize the variable profit 

 ( ) ( ).k k k k kQ p Q C Qπ ′ = −  (3.30) 

Taking the derivate of profit with respect to kQ leads to 

 ( ) 2 .k k
k k

k

Q p aQ b
Q

δπ
δ
′

= − −  (3.31) 

Setting this derivative to zero, we find the value of kQ which maximizes profits for stage 
k: 

 .
2
k

k
p bQ

a
−′ =  (3.32) 
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If the generator has minimum and maximum operating constraints minQ  and maxQ , then 
the optimal amount of power produced is 

 min maxmin[max[ , ], ].k kQ Q Q Q′′′ =  (3.33) 

Each time the generator starts up or shuts down, it incurs costs S or T : 

 ,

S      if  ( 1)

(x , )= T      if  ( 0)

0      else.

k up down k

S k k k k up k

x t t u

C u x t u

⎧ = + ∧ =
⎪⎪ = ∧ =⎨
⎪
⎪⎩

 (3.34) 

Defining 

 
( )     if  1

( , )=
0                         if  0,       

k k k k
k k k

k

p Q C Q u
p u

u
π

′ ′⎧ − =⎪′′ ⎨
=⎪⎩

 (3.35) 

we can write the total profit for each hour as: 

 ,(x , , ) ( , ) (x , ).k k k k k k k S k k ku p u p C uπ π ′′= −  (3.36) 

 

3.4 Optimization Algorithms for Day-Ahead Decisions 

The objective of this section is to formulate three approaches for calculating the optimal 
unit commitment decisions in a day-ahead market. The inputs are price forecasts and 
knowledge of the pattern by which price forecasts deviate from the actual price. In this 
formulation, the producer makes a unit commitment decision before deciding how much 
power to sell in the market. 

The first algorithm just uses the price forecasts and optimizes the generator’s scheduling 
strategy in a deterministic fashion. The second algorithm takes the observed past errors 
between forecasts and actual prices into account, and the third algorithm uses the 
observed correlations between subsequent hours in addition.  
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3.4.1 Deterministic DP - Forecast Prices  

The first approach optimizes only with regard to the forecast prices mkp for each hour. The 
prices are assumed to be the real-time prices and a deterministic version of dynamic 
programming can be formulated as 

 
m ( )1(x ) max (x , , ) f(x , )

(x ) 0,
k k

k k k k k k k k
u U

N N

J u p J u

J

π +
∈

⎡ ⎤= +⎣ ⎦

=
 (3.37) 

subject to the state equation (3.28). 

3.4.2 Stochastic DP - Forecast Prices and Variance 

In Section 3.2, we have observed that the deviations between forecast prices and real-time 
prices m

k k kp p pΔ = −  can be approximated by different probability distributions. Given 
this additional assumption, we can formulate a stochastic dynamic programming 
algorithm in the attempt to improve our expected daily profit: 

 
m{ } ( )1(x ) max E (x , , ) f(x , )

(x ) 0.
kk k

k k k k k k k k kpu U

N N

J u p p J u

J

π +Δ∈

⎡ ⎤= + Δ +⎢ ⎥⎣ ⎦
=

 (3.38) 

In order to use the algorithm, the continuous distribution of kpΔ  has to be discretized. 
The interval between two values will be denoted as d and the number of different 
intervals or values kpΔ  as s. Values outside this range are possible, but are considered to 
have negligible impact on the optimal decision. We can now write: 

 ( ) m( ) ( )1(x ) max p (x , , ) f(x , ) ,
k k

i

k k k i k k k i k k ku U p

J p p u p p J uπ +∈ Δ

⎡ ⎤⎛ ⎞
= Δ = Δ ⋅ + Δ +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑  (3.39) 

or, with regard to the computer implementation,  

 m ( )i 1
1(x ) max p x , , ( ) f(x , ), ,

2k k
k k k k k k k ku U i

sJ u p d i J u iπ +∈

⎡ ⎤⎛ ⎞+⎛ ⎞= ⋅ + ⋅ − +⎢ ⎥⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎣ ⎦
∑  (3.40) 
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with ip p  
2i k
dp p⎛ ⎞= Δ − Δ <⎜ ⎟

⎝ ⎠
 being the discretized probability distribution of kpΔ , i the 

index { }1,2,...s∈ , and 1
2i

sp d i +⎛ ⎞Δ = ⋅ −⎜ ⎟
⎝ ⎠

. We will use the formulas of Section 3.2.1 for 

assuming either a Normal or a Cauchy distribution. 

3.5 Optimization Algorithm for Hour-Ahead Decision 

Next, we assume that the generator does not have to commit its unit for each hour on the 
previous day, but can decide up until the actual hour whether to switch it on or not. Based 
on the current price, the original price forecasts and assumptions about the price behavior, 
the generator will make hourly commitment decisions.  

If the generator assumes no correlation between hourly forecast errors, then the optimal 
bidding strategy will be same as either the one in Sections 3.4.1 or 3.4.2 because the 
knowledge of the current price does not provide additional knowledge to forecast prices 
in the future. 

Now, we assume that the deviations between forecast and actual hourly prices behave 
according to the first-order autoregressive moving-average with exogenous input 
(ARMAX) discrete time model of Section 3.2.2. The additional assumption of a 
correlation δ  in the optimization scheme should improve the average daily profit. At 
each hour z, the generator observes the actual forecast error zpΔ  and will update the 
revised forecast prices for the next hours { }1,2,... k n∈  according to  

 n ,k
k zp pδ′Δ = ⋅ Δ  (3.41) 

or 

 m m .k
k k zp p pδ′ = + ⋅ Δ  (3.42) 

The red line in Figure 3-5 shows the anticipated forecast deviations nkpΔ  at hour z=3 of 
11/16/2001. 

The generator can now optimize its decision 1u  to turn on / off its unit for the next hour 
by using the algorithm: 
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j m ( )
j

1 1 1(x , ) max E (x , , ) f(x , ),

(x , ) 0,
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k k k k k k k k k k k kpu U

n n n

J p u p p J u p p
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Δ =

 (3.43) 

and assigning 0 to 0pΔ  and the current state to 1x . 1kp −Δ  has now become part of the 
state, and has to be discretized in order to perform the calculation. Parameters d and s are 
defined as in the previous sections. The iteration can be written as 

( ) m ( )1 1 1(x , ) max p (x , , ) f(x , ), ,
k k

i

k k k k i k k k k i k k k iu U p
J p p p p u p p J u pπ− − +∈ Δ

⎡ ⎤⎛ ⎞′Δ = Δ = Δ | Δ ⋅ + Δ + Δ⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

∑ (3.44) 

or for the implementation  

 m ( )i,j 1
1(x , ) max p x , , ( ) f(x , ), ,

2k k
k k k k k k k ku U i

sJ j u p d i J u iπ +∈

⎡ ⎤⎛ ⎞⎛ + ⎞′= ⋅ + ⋅ − +⎢ ⎥⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎣ ⎦

∑  (3.45) 

with  

 i,j 1p p   
2 2i k j k
d dp p p p −

⎛ ⎞
= Δ − Δ < Δ − Δ <⎜ ⎟

⎝ ⎠
 (3.46) 

being the conditional probability distribution of the forecast deviations for this hour, 
based on the difference in the last hour, i and j the indexes { }1,2,...s∈ , and  

 1
2i

sp d i +⎛ ⎞Δ = ⋅ −⎜ ⎟
⎝ ⎠

. 

Table 3-7 shows an overview of the different approaches considered. 
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Deterministic Forecast (3.4.1) 1 Deterministic Unit Commitment for given 
forecast prices  

Stochastic DA (3.4.2) - Normal 2A Normal 
Distribution  

Stochastic DA (3.4.2) - Cauchy 2B 

Stochastic Dynamic 
Programming in a Day-
Ahead Market; Forecast 
errors behave accord. to: 

Cauchy 
Distribution  

Stochastic HA (3.5) - Normal 3A Normal 
Distribution  

Stochastic HA (3.5) - Cauchy 3B 

Stochastic Dynamic 
Programming in an Hour-
Ahead Market; Forecast 
errors behave according to: 

Cauchy 
Distribution  

Deterministic Real Prices 
(3.4.1) 

4 Optimal Unit Commitment if real prices 
were known 

Table 3-7. Methods for calculating commitment decisions 

3.6 Simulations and Results - 2001 Data 

Table 3-8, Table 3-9 and Figure 3-8 show the outcomes of the proposed algorithms and 
price models for generators with the same parameters, except for the minimum up/ down-
times, tested on the sample data from 09/01/2001-12/31/2001. 

Based on the results, we make following observations: 

• The day-ahead stochastic optimization (method 2) would have permitted both 
generators to improve their expected profits by around 3-8% as compared to the 
deterministic optimization (method 1). 

• The more flexible generator 2 could have achieved a higher expected profit than 
generator 1. However, the difference is only in the order of 1% with method 1 and 
2% with method 2. 

• Deciding whether to switch one’s unit at the last moment and using the hour-
ahead algorithm could have increased the profits by around 17-18%. 

• The Cauchy approximation has performed by 4% better the Normality 
approximation for method 2 and by 1% for method 3.  

Calculations were performed on several machines in parallel. Due to the increased 
number of necessary calculations, method 3 is too costly to use the same fine 
discretization as for method 2. The algorithm for method 3B  with s=11 and 6 periods 
looked into the future at each step took 3243 seconds on a Sun Sparc5 in Matlab. 
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Parameters a  b  c  minQ  maxQ  upt  downt  S T 
Values 2 20 18 1 10 3 2 1 1 
Method  Profit (in k$) 
1 28285 
2A 29099 (s=31, d=1, σe

2=25), 29099 (s=31, d=2, σe
2=25),  

29099 (s=61, d=1, σe
2=25),  29645 (s=31, d=2, σe

2=85), 
30330 (s=31, d=1, σe

2=60),  30412 (s=31, d=2, σe
2=60),  

30550 (s=61, d=1, σe
2=60), 29412 (s=121, d=0.5, σe

2=60), 
31064 (s=31, d=2, σe

2=100) 
31111 (s=31, d=2, σe

2=120),  30084 (s=31, d=2, σe
2=200), 

30722 (s=31, d=2, σe
2=140),  30943 (s=31, d=2, σe

2=110), 
2B 28308 (s=5, d=1, m=3),  29099 (s=31, d=1, m=3),  

30182 (s=121, d=0.5, m=3),  30192 (s=31, d=2, m=3),  
30386 (s=61, d=1, m=3),  30134 (s=5, d=5, m=3), 
31012 (s=31, d=2, m=5), 31121 (s=31, d=2, m=6), 
30939 (s=31, d=2, m=7), 31098 (s=121, d=0.5, m=6), 
30318 (s=5, d=5, m=4), 

3A 31341 (s=5, d=2, σε2=60), 33030 (s=11, d=3, σε2=10), 
32584 (s=11, d=3, σε2=40), 33139 (s=11, d=3, σε2=60), 
33139 (s=5, d=5, σε2=40), 33238 (s=5, d=5, σε2=60), 
33203 (s=5, d=5, σε2=80), 33196 (s=5, d=5, σε2=100), 
32980 (s=5, d=5, σε2=40, δ=0.65), 32968 (s=5, d=5, σε2=60, δ=0.65), 
33275 (s=5, d=5, σε2=40, δ=0.75), 33147 (s=5, d=5, σε2=60, δ=0.75), 

3B 29989 (s=5, d=1, mε=3),  32212  (s=5, d=5, mε=1), 
33155 (s=5, d=5, mε=3), 33108 (s=5, d=5, mε=4), 
33227 (s=11, d=3, mε=2), 33096 (s=11, d=3, mε=3), 

4 38166 
Table 3-8. Profits generator 1 during 09/01/2001-12/31/2001 
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Parameters a  b  c  minQ  maxQ  upt  downt  S T 
Values 2 20 18 1 10 2 1 1 1 
Method  Profit (in k$) 
1 28447 
2A 29597 (s=61, d=1, σe

2=25), 30373 (s=61, d=1, σe
2=60), 

30790 (s=31, d=2, σe
2=60), 29861 (s=31, d=2, σe

2=120), 
29198 (s=31, d=2, σe

2=150), 
2B 30069 (s=61, d=1, m=3),  30878 (s=31, d=2, m=3), 

30576 (s=31, d=2, m=4), 30348 (s=31, d=2, m=5), 
29773 (s=31, d=2, m=7), 

3A 33352 (s=11, d=3, σε2=10), 33442 (s=11, d=3, σε2=40), 
33888 (s=11, d=3, σε2=60), 33944 (s=11, d=3, σε2=80), 
33662 (s=5, d=5, σε2=40, δ=0.65), 33785 (s=5, d=5, σε2=60, δ=0.65), 
33635 (s=5, d=5, σε2=40, δ=0.75), 33691 (s=5, d=5, σε2=60, δ=0.75), 

3B 33734 (s=5, d=5, mε=2), 33717 (s=5, d=5, mε=3), 
33746 (s=5, d=5, mε=4), 33638 (s=5, d=5, mε=1), 
32492 (s=5, d=5, mε=2, δ=0.65), 32470 (s=5, d=5, mε=3, δ=0.65), 
32560 (s=5, d=5, mε=2, δ=0.75), 32563 (s=5, d=5, mε=3, δ=0.75), 

4 38469 
Table 3-9. Profits generator 2 during 09/01/2001-12/31/2001 

 
 

Figure 3-8. Profits under different assumptions, 09/01/2001-12/31/2001 
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3.7 Simulations and Results - 2002 Data 

In Section 3.6, we estimated parameters for the stochastic optimization for data from 
2001. We estimated the parameters for the same sample data on which we later ran the 
optimization algorithms, which means we used data we would not have had at the time of 
interest. Now, we assume that the underlying price mechanisms and forecast tools remain 
the same and try the same optimization methods for the first two months of 2002, using 
the parameters estimated for the 2002 prices. Table 3-10 and Figure 3-9 show the results. 

Generator G1 G2 
Method Profit (in k$) 
1 4072 4033 
2A (s=31, d=1, σe

2=40) 
     (s=31, d=1, σe

2=25) 
     (s=31, d=1, σe

2=10) 

3808 
3851 
4025 

3751 
3880 
4016 

2B (s=31, d=1, m=3)  
     (s=31, d=1, m=2) 
     (s=31, d=1, m=1) 

3851 
3961 
4027 

3880 
3945 
4016 

3A (s=5, d=3, σe
2=10) 4393 4451 

3B (s=5, d=3, m=2) 4423 4492 
4 6146 6283 

Table 3-10. Profits generator 1 and 2 during 01/01/2002-02/28/2002 
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Figure 3-9. Profits under different assumptions, 01/01/2002-02/28/2002 
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The results were partly different from the ones of the previous section: 

• Each of the day-ahead stochastic optimization algorithms (method 2) performed 
worse than the deterministic one on the forecasts (method 1). 

• The more flexible generator 2 would have made less profit during the two months 
had it deterministically optimized with regard to the public price forecast 
(method 1).  

• Committing one’s unit only every hour by using the hour-ahead algorithm, could 
have again increased the profit by around 17-18%. 

• The algorithm based on the Cauchy approximation would have given the same 
result as the one using the normality assumption for the day-ahead optimization 
and would have performed better for method 3 by around 1.5%. 

To see why the stochastic optimization performed worse than the deterministic one, we 
examine the hours in which the scheduling sequences deviate from each other. For the 
stochastic algorithm from method 2B with (s=31, d=1, m=1), the bid sequences differ in 
only 2 periods, one of which is depicted in Figure 3-10. 

Figure 3-10. Difference between deterministic and stochastic DP 

During hours 1259 to 1261, method 2B recommended the unit start-up (blue scheduling 
sequence) as compared to method 1 (red scheduling sequence). As the actual prices were 
lower than the forecast prices the unit would have lost around  48 K if switched on. If the 
actual prices had exactly been the same as the forecast prices, the stochastic scheduling 
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sequence would have still led to a smaller profit by around 3.2 K. However, according to 
the statistical model, this stochastic sequence would lead to an average higher profit of 
around 1.2 K. 

 

Figure 3-11. Hourly profit as function of price; start-up cost not considered 

The reason comes from the unit’s convex profit function (Figure 3-11). Assuming an 
unbiased probability distribution for deviations between forecast and actual prices, the 
expected profit would be higher for switching the unit on, because the potential increase 
in profits from a higher price is greater than the potential decrease from a lower price. 
The expected profit distribution is, therefore, skewed upwards (Figure 3-12). 
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Figure 3-12. Probability distribution of profit difference, example 2002  

3.8 Conclusions 

We draw following conclusions: 

• With concrete examples, we have shown how stochastic price models and 
stochastic dynamic programming algorithms can be used to improve the profits 
generators make on average when self-scheduling their units. 

• We have also shown that the stochastic optimization does not necessarily lead to 
increased profits in all circumstances. The uncertain nature of the prices makes it 
also possible that a change in the optimal scheduling sequence actually decreases 
the profits. 

• More flexible units with the same costs should on average be able better to 
optimize their schedules with regard to the uncertain prices. However, because of 
the uncertainties involved, it is possible as well that the seemingly optimal bid 
sequence for the more flexible unit actually leads to a lower profit.  

• Assuming that a unit can postpone its decision to be on or off until only shortly 
before the hour, it can actually increase its expected profit by using the daily price 
forecast and observing the actual prices. 

• We have found that a Cauchy distribution better represents the stochastic nature 
of the price deviations than a Normal distribution. The use of the Cauchy 
distribution in the bidding algorithms can on average improve the profits. 

• Rougher discretization for the computer calculations does not notably decrease 
the efficiency of the algorithm. 
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3.9 Reservations and Open Questions  

The price models described can be extended in several ways: 

• Trying to fit a complicated statistical model that can describe the expected 
behavior of market prices accurately may require many years worth of data. 
Deregulated markets have been in operation for just a few years and not much 
data is yet available. In order to draw solid conclusions, more data would have to 
be used. 

• During the transition phase, the variability of prices and accuracy of price 
forecasts might change drastically. We observe huge price spikes in the New 
England market at the beginning of 2001, and the patterns for the price forecast 
deviations at the beginning of 2002 seem to deviate from the ones at the end of 
2001. 

• In the optimization for September to December 2001, we estimated the 
parameters on the same sample data on which we later ran the optimization. We, 
therefore, used information we would not have had at the time of commitment. 
For an actual implementation of this strategies, we would have to use online-
estimation, e.g. a sliding horizon. We assume that seasonal volatility depends on 
exogenous factors, that can be observed by the unit on regular basis and used in 
separate models not treated in this thesis, e.g. cold winter 2001/2002. 

• Our model assumes homoskedasticity for the price variations, which means that 
the volatility was assumed to be constant during each day. As the price forecast is 
updated once per day, and the prediction accuracy decreases with the time 
difference between the forecast and the respective hour, the volatilities actually 
vary with the time of the day. The variance of price forecast deviations ranges 
from 10 to 114 for different hours of the day in the period of 09/01/2001-
12/31/2001. 

• The accuracy of the algorithms can be possibly improved by using intervals of 
different sizes for the discretization. 
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4 Market Power and Optimal Bidding Strategies 
It is a fundamental concept in economic theory that the exercise of market power by 
suppliers of goods decreases social welfare by reducing economic efficiency and causing 
inefficient transfer of wealth from the consumers to the producers. With the main goal of 
deregulation being to decrease the cost of energy and, hence, to increase the overall 
consumer welfare, much attention has been given to the topic of market power in the 
process of deregulating energy markets in the past few years.  

Methods for evaluating market power often compare the prices in the market to a 
competitive price level, and much of the literature uses the marginal costs of producing 
another unit of output as the competitive price. This chapter shows why equating the 
competitive price level to marginal production costs is wrong in the context of power 
markets, which neglects the peculiarities of the electricity industry. 

4.1 Economic and Legal definitions of Market Power 

Market power in economic terms is generally considered the ability of a market 
participant to change the price of a good: 

• “Market Power: The ability of a seller or buyer to affect the price of a good.” 
[Pyndick01] 

• “The ability to alter profitably prices away from competitive levels.” 
[Mas-Colell95]  

• “Market power to a seller is the ability profitably to maintain prices above 
competitive levels for a significant period of time.” [DOJ-www] 

Both last definitions refer to the competitive level, which is implicitly assumed to be the 
price level if both the supply and demand side of the market behaved competitively. 
Marginal analysis of profit maximization in economics states that competition drives 
price to marginal costs if there are many producers and consumers. For electricity, this 
means that competitive prices for generation services would be based on the costs of 
producing the last kilowatt hour of electricity. The application of marginal costs as the 
basis of prices assumes that no supplier or consumer exercises market power. [DOE97] 
states that “Market power exists when a supplier or consumer influences prices by virtue 
of size or control over important aspects of the market, such as access to transmission 
lines. If suppliers exercise market power, prices could be higher than marginal costs.”  

In the context of the antitrust analysis of joint ventures, the regulatory body of the US, 
uses the following three definitions of market power according to [McFalls97]: 

• The Supreme Court has defined market power as the ability to raise prices "above 
the levels that would be charged in a competitive market." 
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• The US Government agencies have defined market power as "the ability to 
maintain prices above competitive levels for a significant period of time." 

• The Intellectual Property Guidelines have made explicit that the price increase 
must be profitable. 

Thus, three questions are commonly answered during the market power inquiry: (1) 
Could a firm increase prices by restricting its output; (2) Would increasing prices be 
profitable for that firm; (3) Could the prices be maintained above competitive levels for a 
significant period of time. 

4.2 Measures for Market Power 

The three most common proxies used by courts and agencies to determine whether a firm 
(or group of firms) has the ability and incentive to raise or maintain prices above 
competitive levels are [McFalls97]: 

• the Lerner Index, which measures the extent to which the price exceeds marginal 
cost; 

• market share, which is the percentage of sales or capacity a firm controls in a 
relevant market; and 

• the Herfindahl-Hirschman Index (HHI), which turns market shares into a measure 
of market concentration. 

Courts and agencies most typically employ market concentration analysis (market share 
and HHI), due to the simplicity of its use, whereas economists prefer to analyze the actual 
price levels (Lerner Index and similar price markup ratios). 

Next, we introduce standard economic monopoly and oligopoly pricing models, calculate 
the Lerner Index, and explain the HHI. 

4.2.1 Monopoly Pricing and Lerner Index 

According to general economic theory, the equilibrium between demand and supply of a 
good leads to prices equaling the marginal production cost of the last unit of output 
(Figure 4-1). 
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Figure 4-1. Competitive pricing 

 

Like any competitive supplier, a monopolist rationally wants to maximize its profit and 
realizes that in comparison with a competitive price taker, it can affect the price by 
cutting back on the supply. The monopolist’s short-run profit function is 

 ( ) ( )P Q Q C Qπ = − . (4.1) 

Pm

Q

P

D=AR

MR

MC

Qm

MCm

 

Figure 4-2. Monopoly pricing 

Q represents market supply, which is the monopolist’s output, and equals market demand 
in equilibrium. The objective of profit maximization for a monopolistic supplier facing 
competitive buyers leads to the following pricing rule of thumb: 
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The price responsiveness or elasticity of demand ED measures the percentage by which 
demand increases when price increases by 1%. It is usually a negative number and is 
defined as 

 D

dQ
dQ PQE dP dP Q

P

= = . (4.4) 

One measure for monopoly power is the extent to which the profit-maximizing price of 
the monopolist exceeds marginal cost by using the markup ratio of price minus marginal 
cost to price. This index, introduced by economist Abba Lerner in 1934, is called the 
Lerner Index of Monopoly Power and is defined as 

 P MCL
P

−
= . (4.5) 

Using the above defined elasticity of demand, L can be written as 

 1

D

P MCL
P E

−
= = − . (4.6) 

In order to maximize its profit, the monopolist withholds output, causing a price-cost 
markup equal to the reciprocal of the demand elasticity.  
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Figure 4-3. Pricing and Lerner Index  

Monopoly pricing is restrained by the response of customers. The more they respond to a 
price increase by cutting back their demand, the less profitable it becomes for a 
monopolist to raise prices. Because the demand in power markets shows almost no short-
term price responsiveness, suppliers in power markets can have enormous market power 
[Stoft02], [Pyndick01]. 

A similar criterion for the estimation of market power is the Price-Cost Margin Index 
(PCMI) which is defined as  

    
  

actual price perfectly competitive pricePCMI
perfectly competitive price

−
= . (4.7) 

Here, the perfect competitive equilibrium price is the baseline from which the degree of 
market power abuse can be evaluated. [Kumar01] 

4.2.2 Oligopoly and Cournot Equilibrium 

The Cournot model describes the exercise of market power by a group of non-colluding 
suppliers and explains much about the role of market share in the determination of market 
power. The essence of the Cournot model is that each firm treats the output level of its 
competitors as fixed and then decides how much to produce. Price is determined by total 
supply and the consumers’ demand curve. The model assumes that all suppliers have the 
same complete information about the market demand function and the production cost 
functions of all other suppliers. It is a strong assumption, but can be justified by the fact 
that suppliers are long-term players in the market and learn a great deal about their 
competitors. 

What the model tells us about pricing in oligopolistic markets is that prices can be 
expected to fall between the extremes of a perfectly competitive market at the low end 
and an unregulated monopoly market at the high end. 
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The Lerner Index, above defined for a monopoly, can be generalized to a Cournot 
oligopoly by distinguishing the supply of an individual supplier Qi from the market 
supply Q and defining a supplier’s market share as 

 i
i

Qs
Q

= . (4.8) 

The markup of the oligopolistic suppliers is not only determined by demand elasticity, 
but also by its market share. The Lerner Index for supplier i for the Cournot Oligopoly is 
then defined as 

 i
i

D

sL
E

= . (4.9) 

Profit maximization for one supplier leads to 

 0,i i
i

i i i

d dP dCQ P
dQ dQ dQ

π
= + − =  (4.10) 

with idQ dQ= . We calculate 

 
1 , and

i
i

i
i

D

dP Q Q P MC P
dQ P Q

MC Ps
E P
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−
=

 (4.11) 

 i i
i

D

MC P sL
P E

−
= = . (4.12) 

Whereas in the Cournot solution each firm is assumed to treat all of the other firm’s 
decisions as fixed in determining its own pricing strategy, more complex “conjectural 
variations” models involve strategic assumptions about how the other firms’ behavior 
will change [Stoft02]. 

4.2.3 Hirschman-Herfindahl Index (HHI) 

The HHI is a way of measuring the concentration of market share held by particular 
suppliers in a market. It is the sum of squares of the market shares held by the firms in a 
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market. Market shares are usually measured in percentage.  If there is a monopoly −  one 
firm with all sales − the HHI is 100^2=10,000. If there is perfect competition, with an 
infinite number of firms with near-zero market share each, the HHI is approximately 
zero. Other industry structures will have HHIs between zero and 10000. Jean Tirole's 
version is bounded between zero and one because each of the market shares is not 
measured in percentage, but described between zero and one. [Tirole88]. 

 2( )iHHI s= ∑  (4.13) 

The relevance of HHI as a measure for market power and its connection to the Learner 
Index of the Cournot model is described in [Stoft02]. For Cournot suppliers, we can write 

 
2( )

,
i i i D D i i

D

HHI s s L E E s L

HHI E L

= = =

=

∑ ∑ ∑  (4.14) 

with L  being the average Learner Index. Put in another way, the average price-cost 
markup (weighted by market share) in a Cournot oligopoly is equal to the HHI divided by 
the demand elasticity at the equilibrium price and output level. Therefore, the level of 
concentration in the industry by itself does not determine market power. Demand 
elasticity is equally important and two markets that have the same HHI may well have 
different levels of market power. 

Another fact that diminishes HHI as a measure for market power is the underlying 
assumption of Cournot competition as described before. For this reason, economists tend 
not to rely on HHI as an indicator of market power. Despite its shortcomings, its 
relatively simple calculation makes it popular with regulators. DOJ, and even more 
heavily, FERC use it in evaluating the effect of mergers on market power. 

4.3 The Exercise of Market Power in the Electricity Industry 

Market power in the electricity industry can be generally classified into two categories: 
vertical and horizontal. Vertical market power exists when a competitor has the ability to 
favor its own generation due to joint control of production and transmission or joint 
control of production and the utility purchasing function. Because the electricity industry 
has historically been dominated by vertically integrated regulated monopolies, 
policymakers and regulators have primarily been concerned with vertical market power. 
Therefore, the major policy initiatives with regards to electricity restructuring in the US 
have focused on providing transmission access to potential entrants in the generation 
sector (FERC Order No. 888). 

With the formation of ISOs, which are charged with operating the transmission networks 
in a non-discriminatory manner, the focus has now shifted to the analysis of horizontal 
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market power, which exists when a competitor has the ability to influence production 
prices due to the concentration of generation ownership. 

In the regulatory area, heavy emphasis has been placed on concentration measures, such 
as those mentioned in the previous section. Unfortunately, several characteristics of the 
electricity industry make concentration measures a poor indicator for the potential of 
market power according to [Borenstein99]. Factors beyond the number and size of firms 
in a market that impact the degree of competition within an industry include: 

• The price-responsiveness (elasticity) of demand: In markets where customers can 
easily choose not to consume a product, or to consume a substitute instead, 
producers cannot raise prices far above costs without significantly reducing sales. 
Conversely, a producer that knows that its product is absolutely needed can 
profitably raise prices to very high levels. 

• The potential for expansion of output by competitors and potential competitors: 
Just as a producer with very price responsive customers cannot exercise much 
market power, neither can a producer faced with many price-responsive 
competitors. Transmission capacity into a region and available competitive 
generation capacity are the main factors in determining the potential for short-run 
competitive entry. 

• The storage cost: If a commodity can be easily stored and released, than a tertiary 
market can develop that takes on the role of temporary buffer for the periods of 
temporary unbalance between demand and production. Energy cannot be stored 
and released as easily as other commodities and, therefore, has to be produced at 
the same time as demanded. 

Even though one firm may have a relatively small market share at a given demand level, 
it may be the case that if that firm reduces output, no other firm will be able to replace 
that supply because of cost, capacity or transmission constraints. This withholding of 
output can be accomplished by either bidding a high price, or not bidding at all. 

FERC Discussion Paper E-47 [FERC01] states as follows: “Anticompetitive behavior or 
exercises of market power include behavior that raises the market price through physical 
or economic withholding of supplies [...] Physical withholding occurs when a supplier 
fails to offer its output to the market during periods when the market price exceeds the 
supplier’s full incremental costs [...] Economic withholding occurs when a supplier offers 
output to the market at a price that is above both its full incremental costs and the market 
price (and thus, the output is not sold).” 

Harvey and Hogan define market power in the electricity industry as “the ability to 
withhold production on some units in order to increase market prices and profit more 
from production on other units” [Harvey01a], and extend this definition to “reduce profits 
from production on some units in order to change market prices and profit more from 
production on other units” [Harvey01b]. This latter definition encompasses the fact that, 
in the presence of constrained electricity networks or during shortage conditions, power 
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producers can strategically opt to inject more electricity at certain points of the network, 
and thereby change locational marginal prices in a way favorable to them. 
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Figure 4-4. Competitive price 

Figure 4-4 illustrates how a utility company owning units B, C and E can exercise 
economic withholding. According to general economic theory, every power generator in 
the system bids its actual cost until the total load is satisfied. In this case, the market 
clearing price is the marginal cost of unit F, and unit G is pushed out of operation because 
of its high cost and bidding price. However, this outcome is not the best for the utility 
owning units B, C and E. In Figure 4-5, unit E raises its bidding price so that unit G sets 
the margin. Despite unit E being pushed out of operation in this scenario, the utility has 
more than proportionally increased its revenue from units B and C. According to Yang 
and Jordan, this demonstrated ability of one utility to increase market price profitably for 
a sustained period of time is a sign of market power [Yang00]. 
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Figure 4-5. Manipulated price through withholding 
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A comprehensive review of market power related issues in electricity markets can be 
found in [Kumar01]. Visudhiphan, Ilic and Mladjan propose to compare the actual prices 
to benchmark prices, that take into account several factors unique to electricity markets, 
when assessing market power [Visduhiphan02]. 

4.4 Optimum Bidding Strategies for Single Auction Markets 

This chapter addresses the optimization problem that generators with intertemporal 
constraints face when bidding into wholesale markets that require the generator to 
internalize start-up costs. Prices are assumed to be exogenous random variables with 
known probability distributions. The concepts are described by means of a concrete 
theoretical situation. Three different approaches for calculating an optimal bidding 
strategy for the generator are proposed and their effectiveness compared under two 
different assumptions. It is shown that the optimal bidding strategy is to bid higher than 
marginal costs despite the generator’s lacking market power, and that different 
assumptions of price correlation and the time of commitment change the optimal bidding 
behavior. 

4.4.1 Example 

We consider a generator whose marginal costs (MCs) are constant over the output range. 
The owner can offer his electricity by submitting a bid to a centralized market for each 
hour and is scheduled if the bid price turns out to be lower than or equal to the market 
price. We neglect the case of the generator being the marginal unit and scheduled for less 
than full output. Because of the constant MC, the most efficient way to operate the 
generator is to either produce full output or nothing, and to use a flat bid curve. 

In addition to variable costs, the generator incurs hourly fixed cost (HFC) for every hour 
of operation regardless of whether it is producing electricity or not, and also start-up (SU) 
and shut-down (SD) cost. Once the generator is switched on, it has to remain in that state 
for at least 2 hours, during which it incurs the HFC. If the generator gets scheduled for 
one hour, but not for the other, it still incurs the HFC for the second hour as well. Hence, 
the generator has to internalize these intricacies when it is bidding into an hourly market 
as described in Section 2.3.3. 

The generator does not know the market prices when bidding, but has some knowledge 
about the probability distribution of the prices, which are considered to be exogenous 
variables, not influenced by the behavior of the generator (Figure 4-6).  
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Figure 4-6.  Marginal cost and hourly predicted prices for the next day 

We now consider the specific situation in which only 2 successive hours have price 
distributions above MC. The problem of finding the optimal bids is drastically simplified 
and can be solved in a closed form. 

In this special example, the costs of SU, SD, and 2 hours of HFC can be united into one 
constant term FOC (fixed operating cost) which will be incurred once the generator starts 
up. This aggregation does not change the optimal strategy, but simplifies the formulation. 
Fixed costs, such as capital costs, which are incurred regardless of the generator 
producing output or not during one hour, do not affect the optimal decision. For the 
numerical calculation, we assume that prices can have only a limited number of discrete 
values during the two hours (Figure 4-7). 
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Figure 4-7. Assumed price distribution of two relevant hours 
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We consider 3 different basic approaches to optimizing the generator's bids for 
maximizing profits. 

• Variant 1: For each hour, the generator either bids MC or not at all. It optimizes 
with regard to the hours in which to participate in the market. 

• Variant 2: The generator also first decides on the hours in which it wants to 
participate, but then bids low or high enough to be reliably scheduled or not. 

• Variant 3: The generator optimizes with regard to the height of the bid-price. 

We will compare these three different approaches with regard to two different 
assumptions 

4.4.1.1 Simultaneous / Sequential 

In the simultaneous variant (A), the generator submits bids for both hours at the same 
time, which corresponds to a day-ahead market, in which the generator has to decide on 
bids for several hours simultaneously.  

If it does not get scheduled in any of the two hours, the generator will not start up. We 
assume that if it gets scheduled in only one of the two hours, it nevertheless has to 
provide the energy and will incur the total FOC, which incorporates SU, SD and HFC for 
running two hours. It can, however, sell its energy only during one of the two hours in 
which it makes positive revenue if the accepted bid was above its MC. 

In the sequential variant (B), the generator submits a bid only for the first hour. After 
learning about the prices and the fact of being scheduled for hour 1, it submits the bid for 
the second hour. Even if it has not started up for hour 1, it can still decide to submit a bid 
for the second hour. If accepted then, it runs and incurs costs during hours 2 and 3, but 
delivers energy only in hour 2. 

4.4.1.2 Uncorrelated / Correlated Prices 

In the basic variant, we assume that the probability distribution of the prices of the second 
hour does not change with the additional information of the first hour's price. Hence, the 
two hours are uncorrelated. 

In version c, the hourly prices are correlated and knowledge of the first hour’s prices 
changes the probability distribution for hour 2 (Figure 4-7). In order to compare the 
results, the unconditional probability distribution of the second hour is the same as in the 
uncorrelated variant. Table 4-1 shows the matrix of different approaches. 
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Figure 4-8. Version c: prices between periods are correlated 

 

 Simultaneous Sequential 
On/ Off decision; 
Bids MC 

1A 1B 

On/ Off decision; 
Bids to participate

2A 2B 

Prices 
independent 

Bid height; 
Optimal bid 

3A 3B 

On/ Off decision; 
Bids MC 

1Ac 1Bc 

On/ Off decision; 
Bids to participate

2Ac 2Bc 

Prices 
correlated 

Bid height; 
Optimal bid 

3Ac 3Bc 

Table 4-1. Approach matrix  

4.5 Mathematical Formulation 

In Chapter 3, we assumed that the generator was able to self-schedule its unit. The 
problem of optimizing the bid decisions for different hours could then be solved by using 
Dynamic Programming as long as we did not include the correlation between hourly 
prices in the algorithm. This tool is used to solve problems that can be structured in a 
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sequential way. DP cannot be used for our formulations 1A and 3A, since the decision 
making process is not a sequential one. At the time when the optimal bid for one hour is 
considered, the  generator’s state of the previous hour (whether or not it got scheduled 
during and, therefore, started up) is not yet known. As a result, the optimum solution has 
to take all different possibilities of combinations into account and the problem does not 
increase linearly with the numbers of hours considered as in DP, but exponentially. 

Variant 1A: Generator bids MC, simultaneously, prices independent 

The bids for the maximum expected profit are the ones that maximize profits among the 4 
possible bid combinations { }{ }1 2 1 2( , ) , 0,1u u u u ∈ : 

 [ ]
1 2

1 2,
max ( , ) .
u u

J J u u=  (4.15) 

The expected profit for each bid sequence is calculated either by: 
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or by 
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Variant 2A: Generator bids to participate, simultaneously, prices independent 

This is the standard situation for which Dynamic Programming would be used. In the 
case that the generator had linear increasing MC in such a way that bidding its true costs 
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would always lead it to be scheduled, the states (on/off) for each period become certain 
for a certain sequence of biddings. That is why the decision process can be structured 
sequentially even though the bidding process occurring simultaneously. Therefore, the 
mathematical formulation is either the same as in 1A with minP  replacing MC, or in the 
form of a DP-algorithm: 
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and 
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Variant 3A - Generator bids optimally, simultaneously, prices independent 

In order to find the optimal bidding behavior, the profits for all possible combinations of 
bid heights have to be compared:  
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with { }1 2 1 2( , ) ( , ) ( , )i jb b b b P P=  and ( , )i jP P  being possible prices for the respective hours. 

In order to calculate the expected profit for a bid combinations, all possible price 
outcomes have to be compared: 
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An alternative formulation is: 
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Whereas finding the optimal bidding sequence in our example is still possible, the same 
task becomes computationally infeasible when optimizing for more periods. The time for 
calculation increases exponentially with the number of periods. 

Variant 1B: Generator bids MC, sequentially, prices independent 

All problems for sequential decision making can be formulated using a DP-algorithm. 
The generator learns at each hour whether it was scheduled, and only then decides on 
whether to start up or not. 

Variant 1B uses: 
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and 
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Variant 2B: Generator bids to participate, sequentially, prices independent 

The formulation is the same as the one for variant 2A. 

Variant 3B: Generator bids optimally, sequentially, prices independent 

The generator decides on the optimal bid height at each hour. We write: 
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and 
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Variant 1Ac: Generator bids MC, simultaneously, prices dependent 

The formulation for this variant is the same as the one for variant 1A with the only 
difference being the conditional probability distributions of the prices for the second 
hour, 2 1p( )j iP P P P= | = : 
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Variant 2Ac: Generator bids to participate, simultaneously, prices dependent 

This variant uses the same formulation as variant 2A, because the unconditional price 
distributions for each hour are assumed to be the same. 

Variant 3Ac: Generator bids optimally, simultaneously, prices dependent 

Like with variant 1Ac, the formulation for this variant is the same as for variant 3A with 
the only difference being the conditional probability distributions for the second hour: 
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Variant 1Bc: Generator bids MC, sequentially, prices dependent 

The formulations for variants 1Bc to 3Bc differ from 1B to 3B only through the usage of 
conditional probability distributions. At each hour, the generator observes the current 
prices and, thereby, concludes the probability distribution for prices in the next hour. In 
1Bc, the generator decides at each hour whether to bid its MC for the next hour or not: 
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Variant 2Bc: Generator bids to participate, sequentially, prices dependent 

The generator decides at each hour whether it wants to be scheduled at the next hour or 
not, and either bids a very low price or does not bid at all: 
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Variant 3Bc: Generator bids optimally, sequentially, prices dependent 

The generator optimizes the bid height for the next hour so as to maximize the expected 
profit: 
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and 
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4.6 Numerical Example  

We compare the expected profits of different optimization methods for different 
numerical values of the parameters. We use one example to illustrate our conclusions. 
Parameters are listed in 3Appendix E E; Table 4-2 contains the numerical results. Bold 
numbers are expected profits for each of the optimization methods and assumed 
dependencies. The values in brackets are the optimal bid decisions (on/off for variants 1 
and 2, bid heights for variant 3). For the sequential decision-making variants, the symbols 
[x] signify that the decision of the second period depends on the prices from the first 
period. 
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 Simultaneous Sequential 
On/ Off decision; 
Bids MC 

(on, on) 
1.0798 

(on,[on])  
1.0798 

On/ Off decision; 
Bids to participate

(on, on) or (off, off) 
0 

(on,[x]) or (off,[x]) 
0  

Prices 
independent 

Bid height; 
Optimal bid 

(58,52) or (60,54) 
1.1720 

(60, [x]) 
1.7804 

On/ Off decision; 
Bids MC 

(on, on) 
1.0798 

(on,[x]) 
1.0798 

On/ Off decision; 
Bids to participate

(on, on) or (off, off) 
0 

(on,[x]) 
0.5399 

Prices 
correlated 

Bid height; 
Optimal bid 

(60,52) 
1.7650 

(60, [x]) 
2.0503 

Table 4-2. Optimal bids and expected profits, numerical example 

4.7 Interpretations 

This simple numerical example allows us to draw several conclusions: 

4.7.1 Market Power 

Many of the recent papers on assumed market power abuse in deregulated electricity 
markets assume that market participants bid their true marginal costs in a competitive 
market if no market power is exerted. However, in the context of bidding decisions of 
power plants, which not only incurs MC, but also start-up, shut-down costs and minimum 
commitment constraints, these assumptions lose their basis. Generators bid higher than 
MC not because they can exercise market power, but because of intertemporal constraints 
and uncertainties about prices of consecutive hours. 

The literature disagrees as to what exactly constitutes market power, but generally agrees 
that it has to do with actively raising the prices at which one is willing to sell output 
(one’s price offer) above MC in order to change the market price [DOE97]. MC include 
both the variable costs due to fuel and the other variable operating and maintenance costs. 
E.g., [Borenstein00] states that "Offering power at a price significantly above marginal 
production (or opportunity) cost, or failing to generate power that has production costs 
below the market price, is an indication of the exercise of market power [...] the offer 
price of a competitive firm, one without market power, will always be its marginal cost, 
which will be the greater of marginal production cost or its opportunity cost of selling the 
power elsewhere." 

In the formulation of this paper, the power producer is modeled as price taker. He has 
assumptions about the probability distributions of prices for certain hours. Its bidding 
decision does not affect the prices and, hence, it has no market power. Nevertheless, its 
optimum bids deviate from MC. It is, therefore, not market power that creates prices 
above MC, but the necessity to incorporate start-up and shut-down constraints in the 
presence of uncertain prices. The generator in this example responds to the simple 
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economic incentive of maximizing profits given uncertain prices. As a result, the 
competitive price does not equal marginal cost at peak periods under competition, and 
therefore simple price-cost margin studies cannot necessarily confirm the exercise of 
market power.  

We state as a conclusion that above MC bids of generators do not indicate the exercise of 
market power. Especially in times when prices are very volatile, generators have to bid 
above marginal costs in order to take account of the possibility of being scheduled for one 
hour and not the following one. The thesis, therefore, comes to the same conclusion as 
[Visduhiphan02]. 

4.7.2 Knowledge about Correlation 

If prices have the same unconditional probability distribution, but correlation between 
successive hours exists, then the optimal bid decisions are different. In our numerical 
example, the optimal bid sequence in the independent case is either (58,52) or (60,54), 
whereas it is (60,52) in the case that the prices of each hour are correlated (Table 4-3).  
Figure 4-9 shows the difference in expected profits for possible bids under the 
assumption of uncorrelated prices (solid lines) or correlated prices (dashed lines). 
Applying either of the optimal bidding sequences to the other variant leads to suboptimal 
profit maximization. In order to calculate the most effective bidding strategy, it is 
therefore important to take the price correlation between different hours of the day into 
account. 

Figure 4-9. Expected profits for correlated and uncorrelated prices 
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 Bid Sequence Expected Profit 
(58,52), (60,54) 1.1720 
(58,54) 1.1538 
(56,50),(56,52), 
(60,56),(62,56) 

1.0798 

Prices independent 
variant 3A 

(60,52) 0.9266 
(60,52) 1.7650 
(58,52) 1.6838 

Prices correlated 
variant 3Ac 

(60,54) 1.6834 
Table 4-3. Optimal bids for independent or correlated prices,  numerical example 

4.7.3 Dynamic Programming for Optimization 

In Section 3.4 on the DP optimization for the day-ahead market we have assumed that the 
power producer self-schedules its generator by deciding on which hours to turn on the 
unit. The DP formulation permits to calculate an optimal schedule, assuming that the 
prices of each hour are uncorrelated, so that the unit commitment decision can be made 
before deciding how much power to sell [Allen99]. However, the DP formulation does 
not permit to include the derived correlation between hourly prices into account, as the 
state space can only include random variables for a problem in which the decisions for all 
stages have to be made at once.  

In this section we assumed that the generator submits hourly bids into a centralized 
auction market and does not know in advance the hours in which it gets scheduled. DP 
cannot be used anymore in this formulation as the state of the generator in each hour is a 
random variable. The mathematical formulation for calculating the expected profit given 
a certain bid sequence 1 2 24b ( , ,..., )b b b= , becomes 

 
( )( )( )1 22

1 2 2(b) ... p( ) p( ) ... p( ) (b P)
i zj

i j z
P P P PP P

J P P P P P P G
= ==

= = ⋅ = ⋅ ⋅ = ⋅∑ ∑ ∑  (4.37) 

with P ( , ,..., )i j zP P P=  being the random price sequence, and (b P)G  the profit of the 
generator given b and P. 

4.7.4 Simultaneous versus Sequential Bidding 

The expected profit is higher if a generator does not have to decide on all 24 hours in 
advance, but can instead base his bidding decision for one hour on whether his unit was 
scheduled for the previous hour or not, and in the correlated version on the price as well.  
This result is coherent with the results from Chapter 3. 

The New England Market is a Single-Settlement Market, in which, the day-ahead bids are 
used for scheduling, but prices are determined ex post based on real-time dispatch.  Those 
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power producers that fail to perform as originally scheduled are charged compliance 
penalties in varying magnitude. Therefore, this persistent correlations of forecast 
deviations between hours can exist, and are not arbitraged by generators with excess 
capacity. 

Another proposed method to structure a wholesale market is to determine different prices 
for different times of commitment [Crampton98]. In such a multi-settlement market, a 
unit can commit part of its output in the forward market and sell the rest in the real-time 
market. The actual dispatch determines real-time spot prices, which are used to price only 
the deviations from the day-ahead schedules (second settlement). According to Crampton 
and Wilson, such a settlement system is favorable to a single-settlement system, in which 
bidders can take advantage of short-term inelasticities in supply and demand schedules to 
reap excess profits. Knowing how to do this is complex, and can be best exploited by 
large market participants with sufficient size to the efforts worthwhile. On the long run, 
this added complexity and risk tend to discourage entry and participation by small bidders 
whose net revenues might be whipsawed by price volatility in the real-time market. 
Figure 4-10 shows the pattern of price and load volatility of a typical day in October 
2001. The price differences between forecast and actual price of 100% cannot be 
explained in any way by load changes, and are therefore due to changes in the supply 
schedules.  
 

Figure 4-10. Price and Load volatility on 10/04/2001 

Load - Price Pattern

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

hours

Lo
ad

0

10

20

30

40

50

60

70

Pr
ic

e

Predicted Load Actual Load Predicted Price Actual Price



  87

In a multi-settlement market, the price for a certain hour in the day-ahead market should 
be an unbiased estimator for the real-time price in the same way as the forecast price is an 
unbiased estimator for the actual price in the single settlement market, assuming risk-
neutrality of market participants. Because market participants can observe the real time 
price at each hour and react to a higher price in one hour by bidding an additional amount 
of energy in the following hour, a possible correlation factor between ahead- and real-
time-prices of subsequent hours has to be lower than the in the single-settlement market, 
e.g. δ < 0.7 in New England. This is a consequence of the observed possibility that we 
can increase the average profits when we observe correlation between hours and actually 
are able to take advantage of this dynamics (Chapter 3.5). 
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5 Conclusions and Open Questions 

5.1 Conclusions 

We have shown that decentralized and centralized commitment do not lead to the same 
amounts of power traded, even in the theoretical case of absence of uncertainties. 
Neglecting the influence of long-term capacity effects, we could show that the 
performance objectives of the individual market participants are not equal to the one of 
minimizing total operating cost: a centralized unit commitment can achieve an overall 
higher economic efficiency in the short run. We draw the analogy to The Tragedy of the 
Commons [Hardin68], which became famous for exemplifying how  individual objective 
functions are not necessarily aligned with those of the overall societal welfare.  

Second, we proved that market power in electric power auctions cannot be measured by 
referring to the marginal production cost as the baseline of competitive prices. In order to 
incorporate intertemporal constraints dominating the operation of electric power plants,  
generation owners have to bid higher than a simple marginal cost analysis would predict. 
Market power measures like the Lerner Index are, therefore, not able to measure level of 
market power exerted in electric power auctions. 

Third, we showed how a generator owner can improve his scheduling tactics and increase 
expected profits by using stochastic dynamic programming and observing past price 
volatility. We relaxed the Normality assumption commonly used in price models and 
found that a Cauchy error distribution of forecast prices more accurately represents their 
stochastic nature permitting to more profitably schedule a unit. 

5.2 Future Research 

We have listed several qualitative arguments of the literature against a centralized 
market: lack of transparency, difficulty to find the efficient optimum, huge computational 
complexity, potential for strategic bidding, unresponsiveness to market needs, increased 
indirect and bureaucratic costs, sensitive price data. To the knowledge of the author, no 
quantitative study or simulation has been done that compared the long-run effects on 
economic efficiency of centralized and decentralized auction markets.  

The detection of abused market power plays an especially important role in a deregulated 
electric power industry. With marginal costs not being a reliable estimate of the 
competitive price level, criterions have to be used that take the specificities of power 
production into account. 

With more price data becoming available over time, stochastic models more accurately 
representing of the underlying price dynamics can be developed. As we showed, the 
profit of individual market participants will rise and fall with the quality of the algorithms 
used for scheduling units, and we expect that much effort will be concentrated in the 
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future to improve such models. We have listed several possible directions and believe 
that this field will make challenging and possibly lucrative future research.  
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Appendix A - The Dynamic Programming Algorithm 
 
Mathematically, commitment decision problems can be expressed as dynamic 
programming (DP) problems, including control inputs, system states, and uncertain 
quantities [Shaw95], [Allen99]. Time is broken down into a series of stages, and a control 
decision is made at the beginning of each stage. The system can be described by the 
following equation [Bertsekas0033]: 

 1x f (x ,u ,w )k k k k+ =  (2.1) 

where k = 0, 1, ... is the time index, xk is the state vector at time k, uk is the control input at 
time k, and wk is a random disturbance. The control uk is constrained to be in the set of 
admissible controls (x )k kU  and is usually chosen as a function of xk:  

 u μ (x )k k k=  (2.2) 

A set of functions μ (x )k k  for all k is defined as a control policy. At each stage, there is a 
cost to be paid. This cost may be negative, meaning that a reward is received. The 
problem is to determine a control policy that minimizes the cost (or maximizes the 
reward). The exact definition of minimal cost depends on whether the planning horizon is 
finite or infinite. 

The problems covered in this thesis are all of finite horizon, meaning that the total cost 
over a specified number of stages is to be minimized. The number of stages is denoted by 
N. At each stage k, a cost (x ,u ,w )k k k kG  is incurred. Additionally, there is a terminal cost 

(x )N NG  which depends on the final value of the state vector. The object of the problem 
is to find the control policy that minimizes the total expected cost over N stages; this is 
known as the optimal policy. Dynamic programming is an algorithm to find the optimal 
policy; the algorithm is expressed mathematically as: 

 
( ){ }1 kwu (x )

(x ) min   E  (x ,u ,w ) f (x ,u )

(x ) (x )
kk k k

k k k k k k k k k
U

N N N N
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J G

+
∈

= +

=
 (2.3) 

where E
kw
denotes the expected value operator with respect to the random variables wk, and 

(x )k kJ  the optimal expected cost when beginning at stage k. The DP algorithm begins by 
finding the optimal cost-to-go for the last stage and then iterates backwards in time to 
calculate (x )k kJ  having already calculated 1 1(x )k kJ + + , and the iteration continues until 
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stage 0 (the current stage) is reached. An optimal policy is obtained as a set of functions 
*μ (x )k k  such that  * *u (x ) μ (x )k k k k=  attains the minimization in equation (2.3) for each xk 

and k. The optimal policy need not be unique. 
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Appendix B - Code for Chapter 2.4 
 
%MainDC.m 
%given Q -> calculates assumed PPP 
%given PPP -> calculates states and decisions [x,u] of generators  
%given u -> calculates the actual prices P 
%----------- 
%output: array of Variables for each stage: 
%[Q PPP P x1 u1 x2 u2 x3 u3] 
 
clear;  
 
Parameters 
 
for k=1:length(Q)        
    PPP(k)=PP(MCm(L),Qm(L),a(L),Q(k));  
end;       %L=list of generators, k=stage 
 
stage 
for j=1:length(L) 
   [x(:,j),u(:,j)]=DecisionG(PPP,Qm(j),a(j),CF(j),CSon(j),CSoff(j));   
end; 
 
for k=1:length(Q) 
   LL{k}=[]; 
   for j=1:length(L) 
      if u(k,j)==1 
         LL{k}=[LL{k} j]; 
      end; 
   end; 
   %LL{k}  
end; 
 
 
%calculates P - actual price, given the list of participating generators at each 
hour 
 
for k=1:length(Q)        
    P(k)=PP(MCm(LL{k}),Qm(LL{k}),a(LL{k}),Q(k)); %P market price depends on 
which generators are on 
end;             
 
for j=1:length(L) 
 [Gg(:,j),Qg(:,j)]=OutcomeG(x(:,j),u(:,j),P,Qm(j),a(j), CF(j),CSon(j),CSoff(j)); 
end; 
 
for k=1:24 
  Ct(k)=Cost(x(k,:),u(k,:), P(k),Qm(1:l),a(1:l),CF(1:l),CSoff(1:l), CSon(1:l)); 
end; 
 
fid = fopen('D:\matlab\MainDC.txt','w'); 
fprintf(fid,'MainDC\n'); 
 
fprintf(fid,'   k    Q     P^     P     C_tot'); 
for j=1:l 
   fprintf(fid,' x(%1.0f) u(%1.0f)  G(%1.0f)   Q(%1.0f)',[j,j,j,j]); 
end; 
fprintf(fid,'\n'); 
 
for k=1:24 
   fprintf(fid,'%4.0f %6.2f %6.2f %6.3f %6.3f',[k, Q(k), PPP(k), P(k), Ct(k)]); 
   for j=1:l 
      fprintf(fid,'%4.0f %4.0f %6.3f %6.3f',[x(k,j),u(k,j),Gg(k,j),Qg(k,j)]); 
   end; 
   fprintf(fid,'\n'); 
end; 
 
fclose(fid); 
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%MainISO.m 
%given Q -> calculates central dispatch for states and decisions [x,u] of 
generators  
 
clear;  
 
Parameters 
 
J_opt = zeros(25,4^l);    %J*(k,x) 
 J_opt(1:24,:)=10000; %initial 
u_opt = zeros(24,4^l);  %u*(k,x) 
 
for i=1:4^l 
   X{i}=[]; 
   for j=1:l 
  y=  floor(   mod((i-1)/4^(j-1),4)   ) +1; 
      X{i}=[X{i}, y]; 
   end; 
end;       
 
for i=1:2^l-1 
   U{i}=[]; 
   U_list{i}=[]; 
   for j=1:l 
      y=  floor(  mod(i/2^(j-1),2)  ); 
      U{i}=[U{i}, y]; 
      if y == 1   U_list{i}=[U_list{i}, L(j)];     end; 
   end; 
end; 
 
for k=24:-1:1        %stage 
   for x=1:4^l        %state 
      for u=1:2^l-1       %possible decisions 
          
         if sum(Qm(U_list{u})) >= Q(k) 
             
            P_temp = PP(MCm(U_list{u}),Qm(U_list{u}),a(U_list{u}),Q(k)); 
            C_temp = Cost(X{x},U{u},P_temp,Qm, a,CF,CSoff,CSon ); 
            x_next = x_new(X{x},U{u}); 
            J_temp = C_temp + J_opt(k+1, x_new(X{x},U{u})); 
             
            %[X{x},U{u}, C_temp, J_temp, J_opt(k,x)] 
             
            if J_temp < J_opt(k,x) 
               J_opt(k,x) = J_temp; 
               u_opt(k,x) = u; 
            end; 
             
         end; 
      end; 
   end; 
   fprintf(1,'%4.0f',k);    
end; 
fprintf(1,'\n');    
 
x_k = zeros(25,1); 
u_k = zeros(24,1); 
x_k(1) = 4^l;         %initial condition is all shut off 
for k=1:24 
   u_k(k)=u_opt(k,x_k(k)); 
   x_k(k+1)=x_new(X{x_k(k)},U{u_k(k)}); 
end; 
x_k=x_k(1:24); 
 
 
for k=1:24 
   x_kj(k,:)=X{x_k(k)}; 
   u_kj(k,:)=U{u_k(k)};    
end; 
 
for k=1:24  
   P_k(k)=PP(MCm(U_list{u_k(k)}),Qm(U_list{u_k(k)}), a(U_list{u_k(k)}),Q(k)); 
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end;            
     
for j=1:l 
 [Gg(:,j),Qg(:,j)]=OutcomeG(x_kj(:,j),u_kj(:,j), 
P_k,Qm(j),a(j),CF(j),CSon(j),CSoff(j)); 
end; 
 
%calculates actual total costs 
 
for k=1:24 
   C_tot(k) = Cost(X{x_k(k)},U{u_k(k)},P_k(k),Qm, a,CF,CSoff,CSon ); 
end; 
 
 
fid = fopen('D:\matlab\MainISO.txt','w'); 
fprintf(fid,'MainISO\n'); 
 
fprintf(fid,'   k    Q            P     C_tot'); 
for j=1:l 
   fprintf(fid,' x(%1.0f) u(%1.0f)  G(%1.0f)   Q(%1.0f)',[j,j,j,j]); 
end; 
fprintf(fid,'\n'); 
 
for k=1:24 
   fprintf(fid,'%4.0f %6.2f %13.3f %6.3f',[k, Q(k), P_k(k), C_tot(k)]); 
   for j=1:l 
      fprintf(fid,'%4.0f %4.0f %6.3f %6.3f',[x_kj(k,j),u_kj(k,j), 
Gg(k,j),Qg(k,j)]); 
   end; 
   fprintf(fid,'\n'); 
end; 
 
fclose(fid); 
 
 
 
%Parameters.m 
 
%DEMAND - known deterministic 
Q=[25 25 25 25 25 25 15 15 15 15 15 15 26 27 25 25 15 15 25 15 15 15 15 15]'; 
 
%PARAMETERS known by generators; ordered with increasing MC_max for function 
PP.m !! 
L=[1,2,3];    %LIST of all considered generators;  
MCm=[5,10,15]; %max. MC at max. output 
Qm=[20,10,30]; %max. OUTPUT Q of generators 
a=MCm./Qm;  %slope of MC with Q, =2a in typical total cost function 
 
%secrete PARAMETERS 
CF = [1,0,20];     %FIXED costs if on in respective hour 
CSon = [1,1,1];  %SWITCHING costs off -> on  
CSoff = [1,1,1];  %SWITCHING costs on  -> off  
 
l=length(L); 
 
 
 
function P=PP(MC_m,Q_m,A,Q) 
%determines market price for demand Q  
%arrays of max MC, max Q, and slopes a of generators 
%generators have to be ordered with increasing MC_m 
 
if Q>sum(Q_m)   %Q must be smaller than total capacity 
   P=[];    %P = empty if violated 
   %P=3*max(MC_m);  %P = big if violated 
   return 
end; 
 
if Q==sum(Q_m)   %special case 
   P=max(MC_m) ;       
   return 
end; 
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P=0; 
while 2>1 
   Q_b= min(MC_m) * sum(1./A);   % next "breakpoint" 
   if Q_b>=Q 
      P=P + Q/sum(1./A); 
      return 
   else 
      P=P + min(MC_m); 
      Q=Q-Q_b; 
       
      Q_m=Q_m-min(MC_m)./A;  %reduce remaining capacities 
      MC_m=MC_m-min(MC_m); 
       
      A(1)=[];    %clear the first entries 
      MC_m(1)=[]; 
      Q_m(1)=[];    
       
      end; 
end; 
        
 
 
function [GG,QQ] = OutcomeG(x,u,P,Qm,a,CF,CSon,CSoff) 
%hourly profits GG(k) and QQ(k) for one generator 
%given x(k), u(k), P(k), and parameters 
 
GG=[]; QQ=[]; 
L=length(u); 
 
for i=1:L 
   [GG(i),QQ(i)]=GQ(x(i),u(i),P(i),Qm,a,CF,CSon,CSoff); 
end; 
 
GG=GG'; QQ=QQ'; 
 
 
 
function [x_k,u_k] =DecisionG(Pk,Qm,a,CF,CSon,CSoff) 
% calculates optimal decision for given prices and parameters of a single 
generator 
 
J_k_x = zeros(25,4);   
 
for k=24:-1:1    %stage 
   x=1; %u=1; 
   J_k_x(k,x)= G(x,1,Pk(k),Qm,a,CF,CSon,CSoff)+J_k_x(k+1, f(x,1)); 
    
   x=2; %u=[0,1]; 
   J_k_x(k,x)= max( G(x,0,Pk(k),Qm,a,CF,CSon,CSoff) +  J_k_x(k+1, f(x,0)) ,   
... 
            G(x,1,Pk(k),Qm,a,CF,CSon,CSoff) +  J_k_x(k+1, 
f(x,1)) ); 
 
   x=3; %u=0; 
   J_k_x(k,x)= G(x,0,Pk(k),Qm,a,CF,CSon,CSoff)+J_k_x(k+1, f(x,0)); 
    
   x=4; %u=[0,1]; 
   J_k_x(k,x)= max( G(x,0,Pk(k),Qm,a,CF,CSon,CSoff) +  J_k_x(k+1, f(x,0)) ,  ... 
            G(x,1,Pk(k),Qm,a,CF,CSon,CSoff) +  J_k_x(k+1, 
f(x,1)) ); 
end; 
 
 
x_k = zeros(25,1); 
u_k = zeros(24,1); 
x_k(1) = 4;        %initial condition is shut off 
 
for k=1:24 
   if x_k(k) == 1   
      u_k(k) = 1; 
      x_k(k+1) = 2; 
   else 
      if x_k(k) == 3 
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         u_k(k)=0; 
         x_k(k+1) = 4; 
      else 
         if J_k_x(k,f(x,0)) > J_k_x(k,f(x,1)) 
            u_k(k)= 0; 
         else 
            u_k(k)= 1; 
         end; 
         x_k(k+1)=f(x_k(k),u_k(k)); 
      end; 
   end;    
end; 
 
x_k=x_k(1:24); 
 
 
 
function [f] =f(x,u) 
%calculates next state as f(x,u) 
%assumes x in {1,2,3,4}, u in {0,1} 
 
%not meaningful:  
% - and(x==1, u==0) 
% - and(x==3, u==1) 
 
if x==4 & u==1 
   f=1; 
end; 
 
if x==1 | and(x==2, u==1) 
   f=2; 
end; 
 
if x==2 & u==0 
   f=3; 
end; 
 
if x==3 | and(x==4, u==0) 
   f=4; 
end; 
 
 
 
function Cost = Cost(x,u,P,Qm,a,CF,CSoff,CSon) 
%total cost for all generators during one period 
%given states, decisions, parameters of generators 
 
l=length(x); 
Cost=0; 
for i=1:l 
   if or(x(i)==1 & u(i)==0, x(i)==3 & u(i)==1)  
      Cost = 20000;   %penalty for breaking of decision space 
constraints 
      break; 
   else 
      Cost = Cost + CostInd(x(i),u(i),P,Qm(i),a(i),CF(i),CSoff(i),CSon(i)); 
   end; 
end; 
 
%------------SUBFUNCTION----- 
 
function CostInd = CostInd(x,u,P,Qm,a,CF,CSoff,CSon) 
%cost in period 
%or(x==1 & u==0, x==3 & u==1) not allowed 
 
%FIXED costs if turned on 
if u==1   C_F = CF; 
else      C_F = 0;    end; 
 
%SWITCHING costs if state changed 
if (x==2 & u==0)       C_S = CSoff; 
else 
   if (x==4 & u==1)    C_S = CSon; 
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   else                C_S = 0;   end;end; 
 
%Output Q 
if u==1  Q=min(Qm,P/a); 
else   Q=0;    end; 
 
%"VARIABLE" costs 
C_V=a/2*Q^2; 
 
CostInd = C_V + C_S + C_F; 
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Appendix C - Examples 1 and 2 for Chapter 2.4 
Example 1 - 2 generators, ISO and DC the same 

%DEMAND - known deterministic 
Q=[25 25 25 25 25 25 15 15 15 15 15 15 26 27 25 25 15 15 25 15 15 15 15 15]'; 
 
%PARAMETERS known by generators; ordered with increasing MC_max for function 
PP.m !! 
 
L=[1,2];   %LIST of all considered generators;  
MCm=[5,10];   %max. MC at max. output 
Qm=[20,10];   %max. OUTPUT Q of generators 
a=MCm./Qm;   %slope of MC with Q, =2a in typical total cost 
function 
 
%secrete PARAMETERS 
CF = [1,0];      %FIXED costs if on in respective hour 
CSon = [1,1];  %SWITCHING costs for off -> on 
CSoff = [1,1];  %SWITCHING costs for on  -> off 
 
MainDC 
   k    Q     P^     P     C_tot x(1) u(1)  G(1)   Q(1) x(2) u(2)  G(2)   Q(2) 
   1  25.00   5.00   5.00  65.50   4    1  48.00  20.00   4    1  11.50   5.00 
   2  25.00   5.00   5.00  63.50   1    1  49.00  20.00   1    1  12.50   5.00 
   3  25.00   5.00   5.00  63.50   2    1  49.00  20.00   2    1  12.50   5.00 
   4  25.00   5.00   5.00  63.50   2    1  49.00  20.00   2    1  12.50   5.00 
   5  25.00   5.00   5.00  63.50   2    1  49.00  20.00   2    1  12.50   5.00 
   6  25.00   5.00   5.00  63.50   2    1  49.00  20.00   2    1  12.50   5.00 
   7  15.00   3.00   3.00  23.50   2    1  17.00  12.00   2    1   4.50   3.00 
   8  15.00   3.00   3.00  23.50   2    1  17.00  12.00   2    1   4.50   3.00 
   9  15.00   3.00   3.00  23.50   2    1  17.00  12.00   2    1   4.50   3.00 
  10  15.00   3.00   3.00  23.50   2    1  17.00  12.00   2    1   4.50   3.00 
  11  15.00   3.00   3.00  23.50   2    1  17.00  12.00   2    1   4.50   3.00 
  12  15.00   3.00   3.00  23.50   2    1  17.00  12.00   2    1   4.50   3.00 
  13  26.00   6.00   6.00  69.00   2    1  69.00  20.00   2    1  18.00   6.00 
  14  27.00   7.00   7.00  75.50   2    1  89.00  20.00   2    1  24.50   7.00 
  15  25.00   5.00   5.00  63.50   2    1  49.00  20.00   2    1  12.50   5.00 
  16  25.00   5.00   5.00  63.50   2    1  49.00  20.00   2    1  12.50   5.00 
  17  15.00   3.00   3.00  23.50   2    1  17.00  12.00   2    1   4.50   3.00 
  18  15.00   3.00   3.00  23.50   2    1  17.00  12.00   2    1   4.50   3.00 
  19  25.00   5.00   5.00  63.50   2    1  49.00  20.00   2    1  12.50   5.00 
  20  15.00   3.00   3.00  23.50   2    1  17.00  12.00   2    1   4.50   3.00 
  21  15.00   3.00   3.00  23.50   2    1  17.00  12.00   2    1   4.50   3.00 
  22  15.00   3.00   3.00  23.50   2    1  17.00  12.00   2    1   4.50   3.00 
  23  15.00   3.00   3.00  23.50   2    1  17.00  12.00   2    1   4.50   3.00 
  24  15.00   3.00   3.00  23.50   2    1  17.00  12.00   2    1   4.50   3.00 
 
MainISO 
   k    Q            P     C_tot x(1) u(1)  G(1)   Q(1) x(2) u(2)  G(2)   Q(2) 
   1  25.00          5.00  65.50   4    1  48.00  20.00   4    1  11.50   5.00 
   2  25.00          5.00  63.50   1    1  49.00  20.00   1    1  12.50   5.00 
   3  25.00          5.00  63.50   2    1  49.00  20.00   2    1  12.50   5.00 
   4  25.00          5.00  63.50   2    1  49.00  20.00   2    1  12.50   5.00 
   5  25.00          5.00  63.50   2    1  49.00  20.00   2    1  12.50   5.00 
   6  25.00          5.00  63.50   2    1  49.00  20.00   2    1  12.50   5.00 
   7  15.00          3.00  23.50   2    1  17.00  12.00   2    1   4.50   3.00 
   8  15.00          3.00  23.50   2    1  17.00  12.00   2    1   4.50   3.00 
   9  15.00          3.00  23.50   2    1  17.00  12.00   2    1   4.50   3.00 
  10  15.00          3.00  23.50   2    1  17.00  12.00   2    1   4.50   3.00 
  11  15.00          3.00  23.50   2    1  17.00  12.00   2    1   4.50   3.00 
  12  15.00          3.00  23.50   2    1  17.00  12.00   2    1   4.50   3.00 
  13  26.00          6.00  69.00   2    1  69.00  20.00   2    1  18.00   6.00 
  14  27.00          7.00  75.50   2    1  89.00  20.00   2    1  24.50   7.00 
  15  25.00          5.00  63.50   2    1  49.00  20.00   2    1  12.50   5.00 
  16  25.00          5.00  63.50   2    1  49.00  20.00   2    1  12.50   5.00 
  17  15.00          3.00  23.50   2    1  17.00  12.00   2    1   4.50   3.00 
  18  15.00          3.00  23.50   2    1  17.00  12.00   2    1   4.50   3.00 
  19  25.00          5.00  63.50   2    1  49.00  20.00   2    1  12.50   5.00 
  20  15.00          3.00  23.50   2    1  17.00  12.00   2    1   4.50   3.00 
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  21  15.00          3.00  23.50   2    1  17.00  12.00   2    1   4.50   3.00 
  22  15.00          3.00  23.50   2    1  17.00  12.00   2    1   4.50   3.00 
  23  15.00          3.00  23.50   2    1  17.00  12.00   2    1   4.50   3.00 
  24  15.00          3.00  23.50   2    1  17.00  12.00   2    1   4.50   3.00 
 
 
 

Example 2 - 3 generators, ISO and DC different 

 
%DEMAND - known deterministic 
Q=[25 25 25 25 25 25 15 15 15 15 15 15 26 27 25 25 15 15 25 15 15 15 15 15]'; 
 
%PARAMETERS known by generators; ordered with increasing MC_max for function 
PP.m !! 
 
L=[1,2,3];    %LIST of all considered generators;  
MCm=[5,10,15];   %max. MC at max. output 
Qm=[20,10,30];   %max. OUTPUT Q of generators 
a=MCm./Qm;    %slope of MC with Q, =2a in typical total cost 
function 
 
%secrete PARAMETERS 
CF = [1,0,20];     %FIXED costs if on in respective hour 
CSon = [1,1,1];  %SWITCHING costs for off -> on 
CSoff = [1,1,1];  %SWITCHING costs for on  -> off 
 
 
MainDC 
   k    Q     P^     P     C_tot x(1) u(1)  G(1)   Q(1) x(2) u(2)  G(2)   Q(2)  
   1  25.00   3.57   5.00  65.50   4    1  48.00  20.00   4    1  11.50   5.00  
   2  25.00   3.57   5.00  63.50   1    1  49.00  20.00   1    1  12.50   5.00  
   3  25.00   3.57   5.00  63.50   2    1  49.00  20.00   2    1  12.50   5.00  
   4  25.00   3.57   5.00  63.50   2    1  49.00  20.00   2    1  12.50   5.00  
   5  25.00   3.57   5.00  63.50   2    1  49.00  20.00   2    1  12.50   5.00  
   6  25.00   3.57   5.00  63.50   2    1  49.00  20.00   2    1  12.50   5.00  
   7  15.00   2.14   3.00  23.50   2    1  17.00  12.00   2    1   4.50   3.00  
   8  15.00   2.14   3.00  23.50   2    1  17.00  12.00   2    1   4.50   3.00  
   9  15.00   2.14   3.00  23.50   2    1  17.00  12.00   2    1   4.50   3.00  
  10  15.00   2.14   3.00  23.50   2    1  17.00  12.00   2    1   4.50   3.00  
  11  15.00   2.14   3.00  23.50   2    1  17.00  12.00   2    1   4.50   3.00  
  12  15.00   2.14   3.00  23.50   2    1  17.00  12.00   2    1   4.50   3.00  
  13  26.00   3.71   6.00  69.00   2    1  69.00  20.00   2    1  18.00   6.00  
  14  27.00   3.86   7.00  75.50   2    1  89.00  20.00   2    1  24.50   7.00  
  15  25.00   3.57   5.00  63.50   2    1  49.00  20.00   2    1  12.50   5.00  
  16  25.00   3.57   5.00  63.50   2    1  49.00  20.00   2    1  12.50   5.00  
  17  15.00   2.14   3.00  23.50   2    1  17.00  12.00   2    1   4.50   3.00  
  18  15.00   2.14   3.00  23.50   2    1  17.00  12.00   2    1   4.50   3.00  
  19  25.00   3.57   5.00  63.50   2    1  49.00  20.00   2    1  12.50   5.00  
  20  15.00   2.14   3.00  23.50   2    1  17.00  12.00   2    1   4.50   3.00  
  21  15.00   2.14   3.00  23.50   2    1  17.00  12.00   2    1   4.50   3.00  
  22  15.00   2.14   3.00  23.50   2    1  17.00  12.00   2    1   4.50   3.00  
  23  15.00   2.14   3.00  23.50   2    1  17.00  12.00   2    1   4.50   3.00  
  24  15.00   2.14   3.00  23.50   2    1  17.00  12.00   2    1   4.50   3.00  
 
 
   k  x(3) u(3)  G(3)   Q(3) 
   1   4    0   0.00   0.00 
   2   4    0   0.00   0.00 
   3   4    0   0.00   0.00 
   4   4    0   0.00   0.00 
   5   4    0   0.00   0.00 
   6   4    0   0.00   0.00 
   7   4    0   0.00   0.00 
   8   4    0   0.00   0.00 
   9   4    0   0.00   0.00 
  10   4    0   0.00   0.00 
  11   4    0   0.00   0.00 
  12   4    0   0.00   0.00 
  13   4    0   0.00   0.00 
  14   4    0   0.00   0.00 
  15   4    0   0.00   0.00 
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  16   4    0   0.00   0.00 
  17   4    0   0.00   0.00 
  18   4    0   0.00   0.00 
  19   4    0   0.00   0.00 
  20   4    0   0.00   0.00 
  21   4    0   0.00   0.00 
  22   4    0   0.00   0.00 
  23   4    0   0.00   0.00 
  24   4    0   0.00   0.00 
 
 
 
 
MainISO 
   k    Q            P     C_tot x(1) u(1)  G(1)   Q(1) x(2) u(2)  G(2)   Q(2)  
   1  25.00          5.00  65.50   4    1  48.00  20.00   4    1  11.50   5.00  
   2  25.00          5.00  63.50   1    1  49.00  20.00   1    1  12.50   5.00  
   3  25.00          5.00  63.50   2    1  49.00  20.00   2    1  12.50   5.00  
   4  25.00          5.00  63.50   2    1  49.00  20.00   2    1  12.50   5.00  
   5  25.00          5.00  63.50   2    1  49.00  20.00   2    1  12.50   5.00  
   6  25.00          5.00  63.50   2    1  49.00  20.00   2    1  12.50   5.00  
   7  15.00          3.00  23.50   2    1  17.00  12.00   2    1   4.50   3.00  
   8  15.00          3.00  23.50   2    1  17.00  12.00   2    1   4.50   3.00  
   9  15.00          3.00  23.50   2    1  17.00  12.00   2    1   4.50   3.00  
  10  15.00          3.00  23.50   2    1  17.00  12.00   2    1   4.50   3.00  
  11  15.00          3.00  23.50   2    1  17.00  12.00   2    1   4.50   3.00  
  12  15.00          3.00  23.50   2    1  17.00  12.00   2    1   4.50   3.00  
  13  26.00          3.71  70.29   2    1  26.59  14.86   2    1   6.90   3.71  
  14  27.00          3.86  73.07   2    1  28.76  15.43   2    1   7.44   3.86  
  15  25.00          5.00  64.50   2    1  49.00  20.00   2    1  12.50   5.00  
  16  25.00          5.00  63.50   2    1  49.00  20.00   2    1  12.50   5.00  
  17  15.00          3.00  23.50   2    1  17.00  12.00   2    1   4.50   3.00  
  18  15.00          3.00  23.50   2    1  17.00  12.00   2    1   4.50   3.00  
  19  25.00          5.00  63.50   2    1  49.00  20.00   2    1  12.50   5.00  
  20  15.00          3.00  23.50   2    1  17.00  12.00   2    1   4.50   3.00  
  21  15.00          3.00  23.50   2    1  17.00  12.00   2    1   4.50   3.00  
  22  15.00          3.00  23.50   2    1  17.00  12.00   2    1   4.50   3.00  
  23  15.00          3.00  23.50   2    1  17.00  12.00   2    1   4.50   3.00  
  24  15.00          3.00  23.50   2    1  17.00  12.00   2    1   4.50   3.00  
 
 
   k  x(3) u(3)  G(3)   Q(3) 
   1    4    0   0.00   0.00 
   2    4    0   0.00   0.00 
   3    4    0   0.00   0.00 
   4    4    0   0.00   0.00 
   5    4    0   0.00   0.00 
   6    4    0   0.00   0.00 
   7    4    0   0.00   0.00 
   8    4    0   0.00   0.00 
   9    4    0   0.00   0.00 
  10    4    0   0.00   0.00 
  11    4    0   0.00   0.00 
  12    4    0   0.00   0.00 
  13    4    1  -7.20   7.43 
  14    1    1  -5.12   7.71 
  15    2    0  -1.00   0.00 
  16    3    0   0.00   0.00 
  17    4    0   0.00   0.00 
  18    4    0   0.00   0.00 
  19    4    0   0.00   0.00 
  20    4    0   0.00   0.00 
  21    4    0   0.00   0.00 
  22    4    0   0.00   0.00 
  23    4    0   0.00   0.00 
  24    4    0   0.00   0.00 
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Appendix D - Code for Chapter 3.4 and 3.5 
%Algorithm3.m 
% INPUT  
% generator a, b, c, Qmin, Qmax, tup, tdown, S, T 
% prices P_, P, n 
% discretization d(=Interval-Size), s(=Number of Intervalls), q(=p_ij), 
DP(=Delta P) 
% initial values x0, j0 
% LOCAL 
% J,U,k,x,j,i,J0,J1 
% OUTPUT 
% decision u for first hour, next state x 
 
%---OPTIMAL COST-TO-GO--- 
 
J = zeros(n+1,tup+tdown,s); 
U = zeros(n,tup+tdown,s); 
 
for k=n:-1:1     %stage 
   for x=1:tup+tdown   %state x 
      for j=1:s    %state j (Delta P) 
         J0=0;J1=0; 
          
         if Possible(x,0,tup,tdown)==0 
            J0=-10000; 
         else 
            for i=1:s 
               J0=J0 + q(i,j) *  
(G(x,0,P_(k)+DP(i),tup,tdown,Qmin,Qmax,a,b,c,S,T) + J(k+1,f(x,0,tup,tdown),i)); 
            end; 
         end; 
          
         if Possible(x,1,tup,tdown)==0 
            J1=-10000; 
         else 
            for i=1:s 
               J1=J1 + q(i,j) *  
(G(x,1,P_(k)+DP(i),tup,tdown,Qmin,Qmax,a,b,c,S,T) + J(k+1,f(x,1,tup,tdown),i)); 
            end; 
         end; 
          
         if J0>J1 
            J(k,x,j)=J0; 
            U(k,x,j)=0; 
         else 
            J(k,x,j)=J1; 
            U(k,x,j)=1; 
         end; 
          
      end; 
   end; 
end; 
 
 
%---OPTIMAL DECISION + STATES--- 
 
u=U(1,x0,(j0+(s+1)/2)); 
x=f(x0,u,tup,tdown); 
 
 
%Algorithm2.m 
% INPUT 
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% generator a, b, c, Qmin, Qmax, tup, tdown, S, T 
% prices P_, n 
% s(=Number of Intervalls), p(=p_i), DP(=Delta P) 
% initial values x0 
% OUTPUT 
% decisions u, states x 
 
%---OPTIMAL COST-TO-GO--- 
 
J = zeros(n+1,tup+tdown); 
U = zeros(n,tup+tdown); 
 
for k=n:-1:1     %stage 
   if mod(k,5)==0 
      fprintf(1,'%4.0f',k); end; 
   for x=1:tup+tdown   %state x 
       
         J0=0;J1=0; 
          
         if Possible(x,0,tup,tdown)==0 
            J0=-10000; 
         else 
            for i=1:s 
               J0=J0 + p(i) * (G(x,0,P_(k)+DP(i),tup,tdown,Qmin,Qmax,a,b,c,S,T) 
+ J(k+1,f(x,0,tup,tdown)) ); 
            end; 
         end; 
          
         if Possible(x,1,tup,tdown)==0 
            J1=-10000; 
         else 
            for i=1:s 
               J1=J1 + p(i) * (G(x,1,P_(k)+DP(i),tup,tdown,Qmin,Qmax,a,b,c,S,T) 
+ J(k+1,f(x,1,tup,tdown)) ); 
            end; 
         end; 
          
         if J0>J1 
            J(k,x)=J0; 
            U(k,x)=0; 
         else 
            J(k,x)=J1; 
            U(k,x)=1; 
         end; 
   
   end; 
end; 
 
fprintf(1,'\n',k); 
 
%---OPTIMAL DECISION + STATES--- 
 
u=zeros(n,1); 
x=zeros(n+1,1); 
 
x(1)=x0; 
for k=1:n 
   u(k)=U(k,x(k)); 
   x(k+1)=f(x(k),u(k),tup,tdown); 
end; 
 
x=x(1:n); 
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function [G] = G(x,u,p,tup,tdown,Qmin,Qmax,a,b,c,S,T) 
%profit in period 
%state 1..tup+tdown 
 
%if Possible(x,u,tup,tdown)==0 
%   G=-10000 
%else 
    
   if u==1 
      Q=(p-b)/2/a; 
      Q=min(max(Q,Qmin),Qmax); 
      G=p*Q-a*Q^2-b*Q-c; 
   else 
      G=0; 
   end; 
    
   if (x==tup & u==0) 
      G=G-T; end; 
   if (x==tup+tdown & u==1) 
      G=G-S; end; 
%end; 
 
 
function [f] = f(x,u,tup,tdown) 
%state equation 
 
if Possible(x,u,tup,tdown)==0 
   error('impossible state transition');end; 
 
if x<tup 
   f=x+1; end; 
 
if x==tup 
   if u==0 
      f=tup+1; 
   else 
      f=x;end;end; 
 
if (x>tup & x<tup+tdown) 
   f=x+1; end; 
 
if x==tup+tdown 
   if u==0 
      f=x; 
   else 
      f=1;end;end; 
 
 
% Initialize1.m 
% a, b, c, tup, tdown, Qmin, Qmax, S, T 
% P, P_, n 
% s, d, DP 
% x0, j0 
% Corr 
 
clear; 
 
a=2; 
b=20; 
c=18; 
tup=3; 
tdown=2; 
Qmin=1; 
Qmax=10; 
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S=1; 
T=1; 
 
Import_Excel_Forecasts; 
Import_Excel_Prices; 
%P=Prices(1:300); 
%P_=Forecasts(1:300); 
P_=Forecasts; 
P=Prices; 
n=length(P); 
 
s=31; 
d=2; 
for i=1:s 
   DP(i)=d*(i-(s+1)/2);end;   %discrete values, median in 
intervall i 
 
x0=tup+tdown; 
j0=(s+1)/2; 
 
Corr=0.705; 
 
 
% Initialize2B.m 
% Cauchy 
 
% INPUT 
% s, d, DP 
% LOCAL 
% m, ff 
% OUTPUT 
% p,q 
 
clear p q; 
 
m=3; 
 
for i=1:s 
   p(i)=1/(1+(DP(i)/m)^2);end; 
 
ff=sum(p); 
p=p/ff; 
 
 
%plot(DP,p); 
 
for j=1:s 
   for i=1:s 
      q(i,j)= 1/(1+(  (DP(i)- Corr* DP(j))  /m)^2);end;end; 
 
for j=1:s      %normalize 
   q(:,j)=q(:,j)/sum(q(:,j)); 
end; 
 
%figure(100) 
%plot(q); 
 
 
%Main3B.m 
 
%uses Algorithm 3 for stochastic HA-market 
 
%LOCAL 
%df (=delta future), steps looked ahead 



  109

%dP,dj 
 
%OUTPUT 
%SaveU2B, SaveX2B 
 
Initialize1 
Initialize2B 
df=6; 
 
tP_=P_; 
tP=P; 
%tn=50; 
tn=n; 
tx(1)=x0; 
tj(1)=j0; 
 
 
for tk=1:tn 
    
   fprintf(1,'%4.0f',tk);  
 
   n=min(df,tn-tk+1); 
   P_=tP_(tk:(tk+n-1)); 
   for ti=1:n 
      P_(ti)=P_(ti)+Corr^ti*DP(tj(tk));end; 
    
   x0=tx(tk); 
   j0=0; 
   Algorithm3; 
   tu(tk)=u; 
   tx(tk+1)=x; 
    
   dP=tP(tk)-tP_(tk); 
   dP=min(max(dP,-(s-1)/2*d),(s-1)/2*d); 
   tj(tk+1)=round(dP/d)+(s+1)/2; 
    
end; 
 
 
P_=tP_; 
P=tP; 
u=tu; 
x=tx(1:tn); 
 
fprintf(1,'\n',tk); 
 
%---OUTPUT--- 
 
%figure(3); 
%plot([P,P_]); hold on; 
%ZeichneCD(10*u,'red',0.5); hold off; 
%axis([0, tn,0,80]); 
 
%---SAVE--- 
 
R=fopen('D:\matlab\u3.txt','w');   
fprintf(R,'%5.0f',u);         
fclose(R); 
 
R=fopen('D:\matlab\x3.txt','w');   
fprintf(R,'%5.0f',x);        
fclose(R); 
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Appendix E - Example 1 for Chapter 4.6 
Example1: 

MC=50;   P1∈{56,58,60,62,64,66} 
Q=1;    P2∈{46,48,50,52,54,56} 
FC=10; 
 
With pi=p(P1=P1i) = p(P2=P2i) and pi⎜j=p(P2=P2j⎜P1=P1i): 
 
p1=0.1888     p1⎜1=0.45        p1⎜2=0.20        pj⎜3= pj 
p2=0.1624       p2⎜1=0.20        p2⎜2=0.32        
p3=0.2978   p3⎜1=0.27        p3⎜2=0.33       pj⎜4= p5-j⎜2 
p4=0.1624    p4⎜1=0.06        p4⎜2=0.08        
p5=0.1888    p5⎜1=0.02        p5⎜2=0.08      pj⎜3= p5-j⎜1 
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