
Exact and Heuristic Approaches
for a Multi-Stage Nurse Rostering

Problem

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Computational Intelligence

eingereicht von

Florian Mischek
Matrikelnummer 1025898

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Priv.Doz. Dr. Nysret Musliu

Wien, 17. August 2016
Florian Mischek Nysret Musliu

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at





Exact and Heuristic Approaches
for a Multi-Stage Nurse Rostering

Problem

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Computational Intelligence

by

Florian Mischek
Registration Number 1025898

to the Faculty of Informatics

at the TU Wien

Advisor: Priv.Doz. Dr. Nysret Musliu

Vienna, 17th August, 2016
Florian Mischek Nysret Musliu

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at





Erklärung zur Verfassung der
Arbeit

Florian Mischek
Scheunenstr. 31, 2100 Korneuburg

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 17. August 2016
Florian Mischek

v





Acknowledgements

First, I want to express my gratitude to my advisor Priv.Doz. Dr. Nysret Musliu, for his
invaluable support and guidance, as well as for his enthusiasm towards and commitment
to this thesis and my work.

My thanks also go to my colleague Felix Winter, for always having an open ear and
helpful advice for any complications and problems I faced during the creation of this
thesis.

I cannot overstate my deep gratefulness for my family, who have been incredibly supportive,
motivating and patient throughout all my life.

Finally, I also want to thank whoever is reading this, for taking an interest and being
dedicated enough to read even this part.

This work was supported by the Austrian Science Fund (FWF): P24814-N23.

vii





Kurzfassung

Die automatische Erstellung von Schichtplänen für Angestellte in Spitälern und ähnlichen
Einrichtungen ist seit Jahrzehnten ein wichtiges Forschungsfeld. Der Bedarf an Arbeits-
kräften muss für jede Zeitperiode sichergestellt werden, während gleichzeitig gesetzliche
und vertragliche Bestimmungen eingehalten und Wünsche der Angestellten berücksichtigt
werden müssen.

In der für die Second International Nurse Rostering Competition (INRC-II) verwendeten
Problemstellung müssen Schichtpläne für mehrere aufeinanderfolgende und untereinander
abhängige Zeiträume erstellt werden. In diesem Format sind Informationen über die
Anforderungen zukünftiger Planungsperioden erst verfügbar, nachdem der aktuelle Plan
fixiert wurde. Das entspricht eher der täglichen Praxis, wie sie in Spitälern zu finden ist, wo
sich die Anforderungen innerhalb kurzer Zeiträume ändern können, als die monolithischen
Problemstellungen, die in der Literatur üblicherweise behandelt werden.

Diese Struktur macht es notwendig, dass Planungsprogramme bereits im Voraus zukünftige
Planungsperioden mit unbekannten Anforderungen in ihre Lösungen miteinbeziehen,
um Ungleichgewichte und hohe Einbußen bei der globalen Qualität der Lösungen zu
vermeiden.

In dieser Diplomarbeit wird eine Integer Programming Formulierung des ursprünglichen
Problems vorgestellt und dann mittels zusätzlicher Constraints erweitert, die diese
speziellen Anforderungen berücksichtigen. Diese Constraints sind so allgemein formuliert,
dass sie einfach auch an andere Probleme mit der selben Struktur angepasst werden
können. Mithilfe dieser Erweiterungen werden deutliche Verbesserungen in der Qualität
der erzeugten Schichtpläne erzielt, ohne dabei die von der INRC-II vorgeschriebenen
Zeitlimits zu überschreiten. Außerdem wird ein heuristisches Local Search Framework
implementiert, das sich ebenfalls die zusätzlichen Constraints zu Nutze macht, um seine
Ergebnisse zu verbessern.

Die Resultate beider Methoden werden experimentell ausgewertet und es wird gezeigt,
dass sie mit den Ergebnissen der Finalisten der INRC-II vergleichbar sind.
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Abstract

The generation of working schedules for employees in hospitals and similar institutions
has been an important field of study for multiple decades. Demand for each time period
must be met, while at the same time conforming to various regulations, employment
contracts and employee preferences.

In the problem variant posed for the Second International Nurse Rostering Competition
(INRC-II), solvers need to produce schedules for multiple consecutive and interdependent
periods. In this setting, also called a stepping horizon, information about future periods
becomes available only after the current schedule has been fixed. This corresponds more
closely to the real-word practice found in hospitals, where demand can change within
short periods, compared to the monolithic problem formulations usually studied in the
literature.

The problem structure requires solvers to take future stages with unknown requirements
into account during the solution of the current week in order to avoid imbalances and
high overall penalties to the quality of the whole schedule.

In this thesis, an Integer Programming model of the problem is introduced and then
extended with additional constraints that consider the special requirements of this
problem, but are general enough to fit also other problems of a similar structure. It
is shown that using these extensions, substantial improvements in the quality of the
generated schedules can be achieved, while still keeping solution times within the time
limits imposed by the competition. Further, a Local Search framework is implemented
that also makes use of these additional constraints to improve its solutions.

The results of both approaches are experimentally evaluated and compared to each other.
They are shown to be competitive with those of the finalists in the INRC-II.
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CHAPTER 1
Introduction

Generating high-quality working schedules is a complex, but very important problem in
many areas of work. On the one hand, there are numerous legal requirements and labour
regulations that have to be fulfilled. On the other hand, the quality of an employees
schedule can have a major impact on their performance, health and satisfaction with their
work (e.g. [KG89]). All this has to be balanced by the need to have enough employees
present at all times to successfully cover the workload.

Generating such schedules manually requires lots of experience and is a very time
consuming process. In addition, the schedules mostly are far from optimal concerning
the criteria listed above. Consequently, for multiple decades, a large amount of research
has been devoted to solving this problem in its numerous variants using automatic tools.

The exact tasks to be solved differ greatly between industries and even for different
companies within the same field, making a general solution for all variants of the problem
almost impossible. The requirements range across determining the demand, designing
acceptable shifts, generating working patterns for employees and assigning individual
tasks to each timeslot during work.

One area that is particularly challenging is the scheduling of nurses in hospitals. Care
has to be provided around the clock, during all days of the week, while the demand
varies widely within short timeframes. This problem is usually called nurse rostering or
nurse scheduling. Different definitions of the problem exist in the literature, Burke et
al. [BCBL04] defined nurse rostering as ”the allocation of nurses to periods of work over
several weeks“.

Over the years, a large number of solution methods have been used to tackle problems of
this kind, both exact (e.g. mathematical programming) and heuristic. Multiple surveys
cataloguing and reviewing these publications exist, e.g. [BCBL04, EJKS04, dBBB+13].
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1. Introduction

In academic contexts, almost always a self-contained problem definition is assumed: The
processed scheduling horizon is regarded as isolated from previous and possible future time
periods to be solved. Constraints on the number or total length of assignments are defined
over the current period only (or parts thereof). If constraints dealing with sequences
of assignments (e.g. maximum number of consecutive working days) are evaluated at
the borders of the scheduling horizon at all, usually the surrounding time periods are
assumed to be uniformly assigned (e.g. [HDCSS14]). In many cases (e.g. [BCP+08]),
violations of sequence constraints at the beginning of the schedule are counted towards
the objective function, while they are ignored at the end of the scheduling period (it is
assumed that the schedule for the next period will be able to repair the sequences).

However, this usually does not correspond to real-world practices, where multiple in-
terdependent schedules over consecutive time periods have to be generated and some
constraints may span over more than one of these periods. In 2015, Ceschia et al.
[CTC+15] introduced a new problem definition for the Second International Nurse Ros-
tering Competition (INRC-II) to deal with this aspect. For this competition, solvers have
to produce multiple schedules on a weekly basis, where the requirements of each week
become known only after the schedule of the previous week has been fixed. In [SV12],
such a setting was denoted a stepping horizon approach.

In such a multi-stage setting, it is necessary to consider the results of previous weeks
when judging the quality of a schedule due to the dependencies between weeks. The
details of this are already covered in the rules of the INRC-II and also treated in
[GK10, SV12, SSV16].

An aspect that has not been explored by the previously mentioned publications, is that
also future weeks have to be taken into account. Any solution approach that tries to
find good solutions for each week without regard for the remaining stages will produce
heavily imbalanced schedules that pay for minor improvements in the earlier stages with
heavy penalties in the last weeks.

The aim of this thesis is to find methods suited for problems in a setting horizon setting,
and in particular the one proposed for the INRC-II, that avoid these pitfalls and produce
balanced schedules of a high quality.

Towards this end, first a new Integer Programming (IP) formulation for this problem is
introduced according to the problem description in the rules of the competition. This
basic model is then extended by additional constraints that model the dependencies
between weeks and balance the conflicts over the whole period. While of course the
developed constraints will be fitted to the specific requirements of the problem at hand,
they should be general and modular enough to be applicable to a wide range of similar
problems.

Further, to demonstrate the viability of this approach for various solution techniques,
also a Local Search (LS) framework for this problem, based on a hybrid of Tabu Search
and Min-Conflicts, is developed. This framework also makes use of the new constraints
in its evaluation function to improve the quality of the generated schedules.
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All solution approaches are evaluated on a set of benchmark instances provided for the
INRC-II. It is shown that the solutions generated with models including the additional
constraints have a significantly higher quality than those produced by treating each week
as isolated from the rest. This holds both for the IP formulations and the LS framework,
although the results for the former are noticeably better.

Finally, the results are also shown to be competitive to those of the 7 finalists in the
INRC-II.

This thesis is structured as follows: Chapter 2 will provide an overview over publications
dealing with staff scheduling in general and nurse rostering specifically. The theoretical
background of the solution approaches used in this thesis will be described in Chapter
3. A formal definition of the problem will be given in Chapter 4, while an Integer
Programming formulation for both the basic model and the developed extensions will
be given in Chapter 5. Also the implementation of the Local Search framework will be
described in this chapter. Chapter 7 contains experimental results with an evaluation of
the impact of the various extensions and a comparison of the two solution approaches.
Finally, a discussion of these results and possible future work can be found in Chapter 8.
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CHAPTER 2
State of the Art

Staff scheduling in general and nurse rostering in particular have been active areas of
research for multiple decades. As such, there is a wide range of publications dealing with
problems from this field. This chapter gives an overview over selected publications and
survey papers that highlight common themes and methods found in the literature.

2.1 Surveys
In the survey on staff scheduling by Ernst et al. [EJKS04] from 2004, the authors
distinguish 6 different modules that together make up the complete staff scheduling
process. These modules are demand modelling, days off scheduling, shift scheduling, line
of work construction, task assignment and staff assignment. (Nurse rostering problems
typically cover a combination of days off scheduling, line of work construction and staff
assignment.) In the paper, problems are also grouped by application area and solution
methods.

In 2013, Van den Bergh et al. [dBBB+13] reviewed a list of 291 publications about staff
scheduling and classified them according to problem specific qualities, solution methods
and application area. While individual publications usually aren’t described in detail,
tables listing the categories and matching publications provide a fast and efficient way to
find papers with certain properties or to compare the popularity of different features.

A survey from 2004 by Burke et al. [BCBL04] specifically deals with the nurse rostering
problem. The authors compare a large number of publications according to various
criteria, including both properties of the problem variants studied and solution methods
employed in the publications.

De Causmaecker and Vanden Berghe [DCVB11] provided a categorization of different
variants of the nurse rostering problems in 2011, analogous to the α|β|γ scheme for job
scheduling problems. In their notation, the α part denotes properties of the problem

5



2. State of the Art

pertaining to individual (or groups of) nurses and constraints on their schedules, β
describes the characteristics of the work and demand model and γ provides information
about the optimization goals of the problem. A classification of various benchmark
instances is given as an example. With their classification scheme, the authors hope to
enable a systematic analysis of different problem features and their impact on various
solution approaches and the complexity of the problem.

2.2 Solution approaches

Over the years, many different solution approaches from various fields of research have
been applied to the Nurse Rostering Problem.

In the literature, there are two main categories of solution methods: Mathematical
programming (usually integer programming) and heuristics [dBBB+13], although also
other solution techniques have been applied.

2.2.1 Integer Programming

Most integer programming models use as their basis the Set Cover formulation developed
by Dantzig [Dan54] in 1954, either implicitly or explicitly.

A fairly recent example is a work by Santos et al. [STGR14] from 2015, dealing with
the problem posed in the first INRC [HDCSS14]. The authors develop and implement
various cutting plane algorithms to improve dual bounds as well as a local search phase
for fast generation and improvement of feasible solutions.

Especially when legal work patterns per nurse are listed explicitly, the number of necessary
variables can make solving larger instances directly infeasible. In such cases, column
generation is often applied, for example in [MS98] by Mason and Smith in 1998. Here,
the authors first precalculate feasible work stretches and their cost for each nurse, which
are later used in the column generation step to build roster lines.

Cappanera and Gallo [CG04] in 2004 used a different model to solve a variant of the
related crew rostering problem for airlines. Their formulation is based on the multi-
commodity flow problem, where each employee is represented by a commodity moving
through a graph of possible assignments. Similar models are also often used for rerostering
problems, where schedules need to be adapted to changing circumstances (e.g. [MP04]).

Also hybrid approaches combining integer programming with heuristic methods appear
frequently. Burke et al. [BLQ10] use an IP model to find a feasible solution (using only
the hard constraints) which they then optimize over the soft constraints using variable
neighbourhood search.

2.2.2 Heuristics

Metaheuristic approaches are often based on various local search algorithms.
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2.3. Multi-stage problems

Of particular importance for nurse rostering is tabu search, which was used e.g. by
Dowsland [Dow98] in 1998. This work is further of interest because the search repeatedly
shifts its focus between satisfying the (hard) cover constraints and the (soft) constraints
on shift patterns. This allows the exploration of larger parts of the search space by
moving through otherwise infeasible solutions.

The work by Kundu et al. [KMMA08] from 2008 is exemplary for simulated annealing,
the second metaheuristic commonly used for nurse rostering. In addition to that, the
authors also implement and evaluate a genetic algorithm for the same problem.

In many recent works, a variable neighbourhood is employed to enable rapid improvements
of a solution while also guiding the search away from local optima. An example of
this strategy can be found in [BCP+08] from 2008 by Burke et al., where a second
neighbourhood is explored as soon as the first cannot find any improving moves. The
authors also implemented a construction heuristic to generate the initial schedule in
which shifts are ranked according to the expected difficulty of assigning them and more
problematic shifts are placed first.

Burke et al. [BCDCB01] in 2001 proposed a memetic algorithm, which performs an
optimization step via local search before the recombination phase of a genetic algorithm.
Such repair heuristics are often employed in combination with genetic algorithms, as the
structure of staff rostering problems usually introduces extensive conflicts during the
crossover of two solutions.

2.2.3 Other

In addition to those mentioned above, a large number of other techniques have been used
to tackle nurse rostering problems, among them constraint satisfaction (e.g. [LLR03]),
Boolean satisfiability testing ([KA08]), case-based reasoning ([PBVB03]) and neural
networks ([HLT04]).

2.3 Multi-stage problems

Glass and Knight [GK10] first discussed the subject of continuity between scheduling
periods in 2010. On the basis of the schedule for the previous month, they imposed
specialized continuity constraints on the first days of the current month. Further, the
authors used implied penalties - penalties that will necessarily appear in the solution of
the next scheduling period due to the current schedule.

In 2012, Salassa and Vanden Berghe [SV12] introduced the concept of a stepping horizon to
denote problem settings, where multiple scheduling periods have to be solved successively,
with interdependencies between the periods and global constraints. Such a setting
was later used for the INRC-II. Stepping horizon settings are contrasted with static
horizons, where the problem is regarded as isolated from surrounding time periods, and
rolling horizons, where the time window moves forward continuously, requiring repeated

7



2. State of the Art

rerostering of (parts of) the schedule. The authors explore a limited form of workload
balancing between nurses in a stepping horizon setting (although the techniques used are
just as applicable to static and rolling horizons) and show that the schedules of previous
planning periods should be considered when generating a new schedule.

Smet et al. [SSV16] continued this work in 2016 by providing systematic integer pro-
gramming formulations for various types of constraints which ensure that the objective
function consistently takes previous planning periods into account. The techniques they
propose are similar to those used in the rules of the INRC-II.

While not a multi-stage problem itself, Brunner et al. [BBK09] solved a complex
scheduling problem by splitting it into multiple one-week periods which were solved
separately. In each stage, the authors used information about overtime and weekend
assignments of the previous week to generate a balanced and consistent schedule for the
current week. Via this decomposition method, they could find optimal solutions even in
cases where the monolithic model failed to generate feasible solutions at all.

A scientific treatment of the problem posed for the INRC-II can be found in [SFCO15] by
Santos et al. from 2015. The problem is solved using a weighted constraint satisfaction
approach. Despite several optimizations, feasible solutions could not be found for all
instances and the penalty of the solutions is much higher than those of the finalists of
the INRC-II and those achieved in this thesis. Also, no special consideration was placed
on the stepping horizon setting, with each stage being solved independently. So far, this
seems to be the only published work on this exact problem.

An abstract by Römer [R1̈5], the INRC-II competition winner, shows that they used an
Integer Programming formulation based on multi-commodity network flows. However,
the full publication is not yet available.
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CHAPTER 3
Theoretical Background

The problem dealt with in this thesis is an optimization problem, where a solution (in
this case a working schedule for a set of nurses) has to be found that satisfies a number
of constraints while minimizing (or maximizing) an objective function F .

There are two main approaches to optimization problems: Heuristic algorithms and exact
approaches. The latter guarantee that the produced solution is optimal with respect to
the objective function, while the former give no such guarantee but typically generate
good results faster than exact methods.

The rest of this chapter describes the two solution techniques used in this thesis: Local
search is a heuristic optimization technique, while (Integer) Linear programming is an
exact procedure.

3.1 Local Search
In Local Search, starting from an initial solution, small (local) changes are applied
repeatedly until a termination criterion is reached. A single such change is called a move
and the set of all solutions that can be generated from a given solution by applying a
single move is the neighbourhood Nof this solution.

The algorithm in its most general form (for a minimization problem) is described in
Algorithm 3.1.

While the objective function is usually fixed for a given problem, the generation of the
initial solution, the termination criterion and the strategy for selecting and applying moves
can all be chosen freely. For the initial solution, simple random or greedy procedures
are often used. The termination criterion usually is a time limit, a limit on the number
of moves performed, a certain objective value that should be reached or any similar
condition and combinations thereof. The most important part of the algorithm is the
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3. Theoretical Background

Algorithm 3.1: Local Search
1 currentSolution← GenerateInitialSolution();
2 bestSolution← currentSolution;
3 while ¬TerminationCondition() do
4 m← SelectMove(currentSolution);
5 currentSolution← ApplyMove(currentSolution,m);
6 if F (currentSolution) < F (bestSolution) then
7 bestSolution← currentSolution;
8 end
9 end

10 return bestSolution

selection of the change applied to the current solution at each iteration. This contains
two main tasks: For once, the set of valid moves must be defined (and subsequently the
neighbourhood of each solution). This usually depends on the problem structure. The
other part is the selection of a move at each step to apply to the current solution. For
this, a number of generally applicable strategies (metaheuristics) have been proposed.

One of the simplest is Hill-Climbing, where at each step, the move that results in the
best objective value is calculated and applied. However, this strategy tends to get stuck
in local optima.

One way to avoid this situation is to restart the search from a new initial solution as
soon as the current solution can no longer be improved.

Many other, more refined techniques exist and are widely used for many different problems.
The two strategies used in this thesis are Tabu Search and Min-Conflict.

3.1.1 Tabu Search

Tabu Search was first introduced by Glover [Glo89]. Naive Hill-Climbing will either stop
in a local optimum or, if non-improving moves are allowed, oscillate around this optimum,
repeating the same solutions and moves multiple times. To force the algorithm to explore
new regions of the search space, re-visiting recently seen solutions is discouraged. This
is done by collecting previously applied moves in a tabu list and allowing only moves
that do not already appear on this list (i.e. are tabu). After a certain time, the oldest
moves in the tabu list are removed from the list to avoid the algorithm getting stuck in
an unfavourable region of the search space.

A description of Tabu Search can be found in Algorithm 3.2.

Note that at each iteration, it is possible that the move chosen does not improve the
current solution. This is necessary to escape from local optima.

The length of the tabu list depends on the size and structure of the problem. If the list is

10



3.1. Local Search

Algorithm 3.2: Tabu Search
1 currentSolution← GenerateInitialSolution();
2 bestSolution← currentSolution;
3 tabuList← {};
4 while ¬TerminationCondition() do
5 m← best move that is not tabu;
6 tabuList.add(m);
7 if tabuList.size() > k then
8 tabuList.removeOldest();
9 end

10 currentSolution← ApplyMove(currentSolution,m);
11 if F (currentSolution) < F (bestSolution) then
12 bestSolution← currentSolution;
13 end
14 end
15 return bestSolution

too short, the algorithm can get stuck in cycles. If it is too long, paths to good solutions
might be blocked by older moves that are still in the tabu list.

A further refinement is adding an aspiration criterion that allows moves to be accepted
even if they are tabu. A common such criterion is accepting a move if the generated
solution is better than the previously best solution.

Other commonly used variants include adding both the accepted move and the inverse
move to the tabu list, to prevent the algorithm from reversing a change immediately, or
varying the length of the tabu list depending on the progress of the search.

3.1.2 Min-Conflict

Another commonly used way to escape local optima is the use of randomness. One
heuristic that does so is the Min-Conflict heuristic, introduced by Minton et al. [MJPL92].

At each iteration, a variable in the solution is chosen at random. Then only those moves
that involve the chosen variable are evaluated and the one that minimizes the remaining
conflicts is applied. As before for Tabu Search, also non-improving moves are allowed to
be able to escape local optima.

In order to avoid disrupting parts of the solution that already fulfil all constraints, the
variable that is chosen must appear in some conflict.

Due to the random choice of a variable and the restricted subset of the neighbourhood
that is regarded at each step, cycles are avoided and the solution eventually moves away
from local optima.

11



3. Theoretical Background

Algorithm 3.3: Min-Conflict
1 currentSolution← GenerateInitialSolution();
2 bestSolution← currentSolution;
3 while ¬TerminationCondition() do
4 v ← random variable that appears in a conflict;
5 m← best move involving v;
6 currentSolution← ApplyMove(currentSolution,m);
7 if F (currentSolution) < F (bestSolution) then
8 bestSolution← currentSolution;
9 end

10 end
11 return bestSolution

A disadvantage is that in situations where a particular move would lead to a substantial
improvement, this might not be detected due to the randomness involved. However, the
reduced number of moves that have to be evaluated for each step means that for a given
time limit, a much greater number of moves can be performed than for Tabu Search.

3.2 (Integer) Linear Programming
The solution space of optimization problems typically is a set S of tuples corresponding to
feasible variable assignments, with the domain of each variable a subset of R. Therefore,
the solution space for a problem with n variables can be interpreted as a subset of Rn.

The set S is usually described via constraints between variables that all elements have
to satisfy (including the domain restrictions). Depending on the properties of these
constraints (and the objective function), various different solution strategies exist, both
exact and heuristic.

An exact method that can be used if the objective function is a linear combination of the
variables and all constraints are linear (in)equalities is Linear Programming.

3.2.1 Linear Programming

A linear program (LP) has the following canonical form:

maximize
cTx

subject to
Ax ≤ b
x ≥ 0

12



3.2. (Integer) Linear Programming

where x are the unknown variables, c and b are vectors and A is a coefficient matrix.

In a more general form, also inequalities with ≥, equalities and (potentially) negative
variables are allowed as well as minimization of the objective function. However, each
LP in a general form can be transformed into an equivalent one in canonical form.

Example 1. An example of an LP with two variables is the following:

maximize
2x+ y

subject to
−x+ y ≤ 2
2x+ 3y ≤ 14
5x+ y ≤ 20
x, y ≥ 0

All values for x and y that fulfil all three constraints are feasible solutions, while x = 46/13
and y = 30/13 is the optimal solution that maximizes the objective value.

A graphical representation of this LP can be seen in Figure 3.1.

In general, the feasible region of a LP with n variables is an n-dimensional convex
polyhedron.

While research in the area of optimization in the presence of linear constraints existed
already in the 19th century, the term Linear Programming was coined by Dantzig in 1946
[Dan02]. Dantzig also developed the Simplex algorithm, which is still the most widely
used algorithm for solving linear programs.

The Simplex algorithm is based on the fact that in a linear program, any local optimum
is also a global optimum. Therefore, starting from any feasible solution at a vertex of
the polyhedron, it is always possible to move along an edge in the direction of increasing
objective value (for a maximization problem), unless the optimum is already reached.

There are a few problems with the base form of the Simplex algorithm (which have by
now been solved by extensions to the original version), most notably the potential for
stalling or cycling in the case where multiple boundaries join at the same vertex. Also
the generation of the initial solution is not trivial in most cases.

The Simplex algorithm has an exponential worst-case complexity in degenerate cases,
but in practice it is able to find optimal solutions very fast.

There are also algorithms that can solve LPs in polynomial time (including the Ellipsoid
Method and Interior Point Methods), but they are mostly not competitive to efficient
implementations of the Simplex algorithms.
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3. Theoretical Background
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Figure 3.1: Graphical representation of the linear program in Example 1. Each point
inside the area outlined in blue (edges inclusive) is a feasible solution to the LP. All
points on the dashed red line have the same objective value, with the value increasing
in the direction of the arrow. It is easy to see that the marked point is the optimum
solution.

A further improvement from duality theory was already proposed by Von Neumann in
1947 [Dan02]. Each linear program (the primary) can be directly transformed into a dual
linear program with the following qualities: The dual of a maximization problem is a
minimization problem (and vice versa) and the optimum solution to the dual is equal to
the optimum solution for the original problem. Therefore, finding any feasible solution
for the dual program immediately gives an upper bound (for a maximization problem)
for the optimum solution of the primary program.

3.2.2 Integer Programming

While LPs can theoretically be solved in polynomial time, this is no longer the case if
the variables can only take on integer values. Integer Linear Programs (IPs) have the
following canonical form:

14



3.2. (Integer) Linear Programming

maximize
cTx

subject to
Ax ≤ b
x ≥ 0
x ∈ Zn

As before, IPs in general form also allow minimization, ≥ constraints and unbounded
variables and can be translated to an equivalent IP in canonical form.

Given an IP, the LP that arises from removing the integrality constraints is called the
LP-relaxation. It is easy to see that all solutions of the original IP are also solutions
for the LP-relaxation. However, the converse is not true and in particular the optimum
solution is different in general.

Example 2. If Example 1 is extended to require x and y to be integer, the corresponding
IP looks like this:

maximize
2x+ y

subject to
−x+ y ≤ 2
2x+ 3y ≤ 14
5x+ y ≤ 20
x, y ≥ 0
x, y ∈ Z

The graphical representation of this IP is shown in Figure 3.2.

In contrast to the previous example, the integer problem has two optimum solutions -
(3, 2) and (4, 0), which are both different from the optimum solution of the LP-relaxation.

The problem of finding, whether any feasible solution for a given IP exists, is already
NP-hard [PS82] and subsequently also the problem of finding the best solution. In
practice, the solution of the LP-relaxation is usually used as a starting point and upper
bound (for maximization problems) for a Branch-and-Bound search over the fractional
variables. Competitive solvers also make use of the dual problem, additional inequalities
that reduce the search space without cutting off integer solutions and various heuristics
to find feasible solutions and improve the bounds on the optimum solution.
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3. Theoretical Background
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Figure 3.2: Graphical representation of the IP in Example 2. The feasible solutions are
all points at integer coordinates within the feasible region of the LP relaxation.

3.2.3 Staff scheduling formulations

While there are many variations of staff scheduling problems, nearly all of them have at
their core the requirement to assign employees to various tasks over the course of a certain
scheduling period. As a consequence, many IP formulations for these problems are founded
on similar base models that are adapted to the problem variation at hand[dBBB+13].

The most widely used type of model is based on a formulation first used by Dantzig in
1954 [Dan54]. This formulation uses the Set Cover problem to solve assignments of toll
booth operators as described in [Edi54].

Given a set of n+ T timeslots, and a demand for bt operators at timeslot t, we find the
minimum number of operators necessary using the following LP:
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3.2. (Integer) Linear Programming

minimize
n∑
j=0

xj

subject to
n∑
j=0

atjxj ≥ bt 1 ≤ t ≤ n+ T

xj ≥ 0 0 ≤ j ≤ n

where the decision variable xj denotes the number of operators starting their work at
time j and atj is 1 if an operator starting at time j is working during timeslot t and 0 if
they are on break or the timeslot lies outside their working hours.

This model, also known as the explicit set covering formulation[CGQR11], becomes
unwieldy if more flexible working patterns are introduced (as each possible pattern must
be represented by a new decision variable). For this reason, it is mostly used in column
generation approaches, where only a subset of patterns is regarded at any time and new
decision variables are added dynamically.

In contrast, the implicit set covering formulation handles different characteristics of work
patterns (such as start/end times and break assignments) separately. This reduces the
number of decision variables, but also requires additional constraints to ensure that the
generated solutions are feasible.

A variation proposed already by Dantzig involves splitting the rigid work patterns into the
individual timeslots and using the decision variables to denote whether an operator works
during a particular slot. This is closer to the formulation used for many modern rostering
problems and also in this thesis. Modern formulations usually split work patterns into
timeslots of either fixed length (including whole days), shifts or individual tasks to be
performed. This is known as the compact assignment formulation, because it usually
needs a smaller number of variables compared to the above formulation.

In cases where work patterns need to be assigned to individual employees (as in most
modern nurse rostering problems), two- (or higher) dimensional decision variables denote
the correspondence between employees and assigned work patterns, in either of the two
forms described above.

A different, rather modern, class of IP models use formulations based on network flow
problems. For example, Balakrishnan et al. [BW90] used a model where the days of
the scheduling period are represented as nodes of the network and arcs between them
correspond to feasible work and rest periods. The various constraints of the problem are
incorporated into the structure of the model such that a complete solution is represented
by a path through the network from the source (the beginning of the first day) to the
sink (the end of the last day).
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3. Theoretical Background

While very good results have been achieved using such network based formulations
(including the winners of the INRC-II [R1̈5]), many constraints are hard to model (in the
case of [BW90], coverage constraints had to be modelled separately from the network
formulation) and it is often difficult to adapt these models to new problem variants.

18



CHAPTER 4
Problem Definition

The task given for the INRC-II problem (defined in [CTC+15]) is to produce a series of
either 4 or 8 sequential weekly schedules (stages). The parameters for each schedule are
stored in three separate files:

• A scenario file, containing general parameters about the shifts, skills, nurses and
contracts available.

• Week data with the cover requirements for the current stage and individual nurse
preferences.

• A history file including relevant information about assignments at the end of the
previous week.

While the global scenario stays the same over all stages of an instance, the other files are
different between stages. In particular, the week data is known only for the current stage
(although solvers are not prohibited from storing additional information about previous
weeks). The history file is given as part of the instance for the first stage and generated
from the solution of the previous week for all subsequent stages.

Solutions should satisfy four hard constraints and seven soft constraints at varying
weights. Two of these are global constraints that are evaluated over all stages at the end.
The total penalty summed up over all stages should be minimized.

4.1 Constraints
In the following, a work stretch denotes a period of consecutive working days for a nurse.
Rest stretch and shift stretch are analogously defined for periods of consecutive days off
and assignments to the same shift, respectively.
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4. Problem Definition

All solutions have to satisfy the following hard constraints:

H1. Single assignment per day Each nurse can only work a single shift using a single
skill per day.

H2. Under-staffing The minimum number of nurses required for each shift and skill
must be present on each day.

H3. Shift type successions Nurses must not have shifts on two consecutive days that
form a forbidden sequence.

H4. Missing required skill Nurses can only cover assignments for which they have
the required skill.

Forbidden sequences (H3) are defined on a per-scenario basis, but usually include earlier
shifts following later shifts (such as a Day shift after a Night shift).

In addition to these constraints, there are also soft constraints, whose violation incurs a
penalty to the objective function. The weight of each constraint is given in brackets after
the name, this is multiplied by the degree of violation for most constraints.

S1. Insufficient staffing for optimal coverage (30) The number of nurses assigned
to each shift and skill should not be smaller than the optimum staffing.

S2. Consecutive assignments (15/30) The length of each shift stretch (weight 15)
and work stretch (weight 30) should be within the bounds defined for the shift type
resp. the contract of the involved nurse.

S3. Consecutive days off (30) As before, the length of each rest stretch should be
within the bounds defined in each nurse’s contract.

S4. Preferences (10) The requests of nurses for shifts (or days) off should be respected.

S5. Complete week-end (30) Nurses with the complete-weekend constraint in their
contract should either work both days of the weekend or none.

S6. Total assignments (20) Over the whole planning horizon, each nurse’s assign-
ments should be within the bounds defined in their contract.

S7. Total working week-ends (30) Over the whole planning horizon, each nurse
should not work more than the maximum number of weekends defined in their
contract.

Constraints H3, S2 and S3 are sequence constraints. Their evaluation involves the history
data from the previous week. In general, sequences starting in the previous week are
evaluated as normal, while penalties at the end of the week are counted only for already
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4.2. Parameters
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Figure 4.1: Example of the evaluation of sequence constraints at the beginning (a) and
end (b) of the week, assuming a maximum length of night stretches (N) of 3 and a
minimum of 2. Red and blue cells mark violations of maximum and minimum shift
stretch length, respectively. Note that the second sequence in (b) does not incur a penalty,
because it could be extended to a valid length in the next stage.

known violations of the maximum length part of S2 and S3. Examples of the evaluation
can be seen in Figure 4.1, a more detailed description is given in [CTC+15].

The last two constraints, S6 and S7, are the two global constraints. Counters for the
already assigned shifts and working weekends are passed from stage to stage via the
history file. After all stages have been solved, the values of these counters are compared
to the limits specified in the contract of each nurse and, if they are outside the bounds,
the appropriate penalty is added to the objective value.

4.2 Parameters

As mentioned before, parameters for each stage are passed via three separate files.

The first set of parameters, stored in the scenario file, deals with general information
about shifts, skills and the nurses and their contracts:

N set of nurses
S set of shifts
K set of skills
|W | number of weeks

w
[+/−]
n maximum/minimum consecutive working days for nurse n
f

[+/−]
n maximum/minimum consecutive days off for nurse n
a

[+/−]
n maximum/minimum total assignments for nurse n across planning horizon
t+n maximum number of working weekends for nurse n across planning horizon
bn boolean, 1 iff either both days of a weekend should be worked by nurse n,

or none
κnk boolean, 1 iff nurse n has skill k

σ
[+/−]
s maximum/minimum consecutive assignments of shift s
ust boolean, 1 iff shift t may be assigned the day after an assignment of shift s

These values stay the same for all stages of an instance.
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4. Problem Definition

Further, the coverage requirements as well as the weekly requests of the nurses are stored
in the week data, which can be different between stages:

w number of the current week
cdsk minimum cover requirements for day d, shift s and skill k
odsk optimum cover requirements for day d, shift s and skill k
rdns boolean, 1 iff nurse n requested not to work in shift s on day d (s = 0 is

day-off request)

Finally, the last set of parameters is from the history and contains global counters as
well as information about the last assignments of each nurse in the previous week:

lidn id of last shift worked by nurse n in previous week (0 if day off)
lns consecutive shifts of type s worked by nurse n at the end of the previous

week (0 if s 6= lidn )
lwn consecutive working days for nurse n at the end of the previous week (0 if

lidn = 0)
lfn consecutive days off for nurse n at the end of the previous week (0 if lidn 6= 0)

atotn total number of assignments for nurse n so far
ttotn total number of weekends worked by nurse n so far
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CHAPTER 5
Integer Programming

Formulations

This chapter describes the formulation of the INRC-II problem as an IP, on the basis of
the compact assignment formulation discussed in Section 3.2.3.

First, an implementation of the problem as described in Chapter 4 is provided as a
starting point. This model yields an optimal solution when isolated single stages are
regarded. Based on this basic model, extensions to deal with the stepping horizon
setting are introduced and discussed. These extensions take the form of additional (soft)
constraints that can be added to the model independently.

5.1 Basic Model

5.1.1 Decision variables

There are three types of decision variables. The basis of the model is formed by a set of
boolean variables indicating the schedule itself:

∀n ∈ N, s ∈ S, k ∈ K, d ∈ {1 . . . 7}

xdnsk =
{

1 if nurse n is assigned to shift s using skill k on day d
0 otherwise

In order to deal with constraints S5 (Complete weekends) and S7 (maximum number of
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5. Integer Programming Formulations

working weekends), an additional set of variables is necessary:

∀n ∈ N

Wn =
{

1 if nurse n works on at least one day of the weekend
0 otherwise

The last set of decision variables consists of surplus variables for the soft constraints.
Whenever one of these constraints would be violated, the corresponding surplus variable
can be set to a value > 0 to deactivate the constraint. However, the surplus variables are
included in the objective function and therefore each use incurs a penalty.

CS1
skd ≥ 0 missing nurses for optimal coverage of shift s, skill k on day d

CS2a
nsd ≥ 0 missing days in the block of shifts s starting on day d for nurse n

CS2b
nsd ∈ {0, 1} 1 iff shift s of nurse n on day d violates maximum consecutive shifts

CS2c
nd ≥ 0 missing days in the work block of nurse n starting on day d

CS2d
nd ∈ {0, 1} 1 iff work of nurse n on day d violates maximum consecutive work days

CS3a
nd ≥ 0 missing days in the rest stretch of nurse n starting on day d

CS3b
nd ∈ {0, 1} 1 iff day off of nurse n on day d violates maximum consecutive days off

CS4
nd ∈ {0, 1} 1 iff assignment on day d violates a request of nurse n

CS5
n ∈ {0, 1} 1 iff nurse n violates complete weekend constraint

CS6
n ≥ 0 number of total shifts outside the allowed bounds for nurse n

CS7
n ≥ 0 number of weekends worked above the maximum by nurse n

Depending on the nature of their associated constraints, some of the surplus variables
are binary, while others can take any non-negative value. This is particularly of note
in the case of the sequence constraints (S2, S3), where surplus variables have different
domains depending on whether they deal with violations of the maximum or minimum
sequence length.

5.1.2 Objective function

The objective function is a weighted sum of all surplus variables that were necessary to
deactivate otherwise violated (soft) constraints.
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5.1. Basic Model

minimize f = 30 ∗
∑
s∈S
k∈K

d∈{1...7}

CS1
skd

+15 ∗
∑
n∈N
s∈S

d∈{1...7}

(CS2a
nsd + CS2b

nsd )

+30 ∗
∑
n∈N

d∈{1...7}

(CS2c
nd + CS2d

nd )

+30 ∗
∑
n∈N

d∈{1...7}

(CS3a
nd + CS3b

nd )

+10 ∗
∑
n∈N

d∈{1...7}

CS4
nd

+30 ∗
∑
n∈N

CS5
n

+20 ∗
∑
n∈N

CS6
n

+30 ∗
∑
n∈N

CS7
n

5.1.3 Constraints

The following (in)equalities model the hard constraints, as described above.

H1 ∀n ∈ N, d ∈ {1 . . . 7}∑
s∈S
k∈K

xdnsk ≤ 1 (5.1)

H2 ∀s ∈ S, k ∈ K, d ∈ {1 . . . 7}∑
n∈N

xdnsk ≥ cdsk (5.2)

For constraint H3, any forbidden shift sequence (us1s2 = 0) must not be assigned to the
same nurse on consecutive days. This must be ensured both within the week (a) and at
the boundary of this week with the previous one (i.e. on the first day of the week, b).

H3a ∀n ∈ N, s1, s2 ∈ S, k ∈ K, d ∈ {1 . . . 6} : us1s2 = 0∑
k∈K

xdns1k +
∑
k∈K

xd+1
ns2k
≤ 1 (5.3)

H3b ∀n ∈ N, s ∈ S, k ∈ K : ulid
n s

= 0
x1
nsk = 0

(5.4)
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5. Integer Programming Formulations

H4 ∀n ∈ N, s ∈ S, d ∈ {1 . . . 7}, k ∈ K : κnk = 0
xdnsk = 0

(5.5)

The remaining inequalities deal with the soft constraints. The right hand side of each
constraint contains the corresponding surplus variable which can be used to deactivate
the constraint (incurring a penalty in the objective function).

S1 ∀s ∈ S, k ∈ K, d ∈ {1 . . . 7}∑
n∈N

xdnsk ≥ odsk − CS1
skd

(5.6)

Since none of the other soft constraints deal with skills, all following inequalities have
their left hand side summed up over all skills.

S2 actually contains various different constraints that have to be modeled separately:
consecutive assignments of the same shift (min (a)/ max (b)) and of work in general
(min (c) / max (d)), both during and at the start of the week.

For the minimum consecutive shifts constraints, all patterns that compose a sequence
shorter than the required length are prevented. For example, if the minimum number
of consecutive night shifts (N) is 4, the patterns {xNx, xNNx, xNNNx}, where x is any
other shift or a day off, should not appear.

Since each pattern incurs a penalty proportional to the number of missing assignments,
(in the example, xNx would incur a penalty of 45, while xNNNx would incur a penalty of
15) the surplus variables are weighted correspondingly, to ensure that a value of at least
the number of missing assignments is necessary to deactivate the constraint.

Equations 5.8 model the case where a stretch starts at the beginning of the week or
towards the end of the previous week. For the latter case, this stretch should not end
immediately if it does not yet have the minimum length. This is handled by Equations
5.9.

S2a ∀s ∈ S, n ∈ N, b ∈ {1 . . . (σ−s − 1)}, d ∈ {1 . . . 7− (b+ 1)}∑
k∈K

(xdnsk +
∑

i∈{1...b}
(1− xd+i

nsk) + xd+b+1
nsk ) ≥ 1 −

CS2a
ns(d+1)

σ−s − b
(5.7)

∀s ∈ S, n ∈ N, b ∈ {1 . . . (σ−s − 1− lns)}∑
k∈K

(
∑

i∈{1...b}
(1− xinsk) + xb+1

nsk ) ≥ 1 − CS2a
ns1

σ−s − lns − b
(5.8)

∀s ∈ S, n ∈ N : lidn = s ∧ lns < σ−s∑
k∈K

x1
nsk ≥ 1 − CS2a

ns1
σ−s − lns

(5.9)
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5.1. Basic Model

The maximum consecutive shifts constraints is modeled like this: For each shift s with a
maximum of σ+

s consecutive assignments, each block of σ+
s + 1 days must contain at least

one day where s is not assigned. Note that contrary to the situation for S2a, violations
of this constraint by more than one shift assignment result in multiple matches of the
pattern and therefore it suffices to use boolean surplus variables.

As before, equations 5.11 model the case where a shift block started in the previous week.

S2b ∀s ∈ S, n ∈ N, d ∈ {1 . . . (7− σ+
s )}∑

k∈K

∑
i∈{0...σ+

s }

xd+i
nsk ≤ σ

+
s + CS2b

ns(d+σ+
s )

(5.10)

∀s ∈ S, n ∈ N, b ∈ {(σ+
s − lns + 1) . . . σ+

s } : lidn = s∑
k∈K

∑
i∈{1...b}

xinsk ≤ b− 1 + CS2b
nsb

(5.11)

The inequalities modelling the maximum and minimum length of work stretches (S2c,
S2d) function analogously to those for shift stretches. The only difference is that an
assignment to any shift counts towards the length of the work stretch.

S2c ∀n ∈ N, b ∈ {1 . . . (w−n − 1)}, d ∈ {1 . . . 7− (b+ 1)}∑
s∈S
k∈K

(xdnsk +
∑

i∈{1...b}
(1− xd+i

nsk) + xd+b+1
nsk ) ≥ 1 −

CS2c
n(d+1)

w−n − b
(5.12)

∀n ∈ N, b ∈ {1 . . . (w−n − 1− lwn )}∑
s∈S
k∈K

(
∑

i∈{1...b}
(1− xinsk) + xb+1

nsk ) ≥ 1 − CS2c
n1

w−n − lwn − b
(5.13)

∀n ∈ N : lidn 6= 0 ∧ lwn < w−n∑
s∈S
k∈K

x1
nsk ≥ 1 − CS2c

n1
w−n − lwn

(5.14)

S2d ∀n ∈ N, d ∈ {1 . . . (7− w+
n )}∑

s∈S
k∈K

∑
i∈{0...w+

n }

xd+i
nsk ≤ w

+
n + CS2d

n(d+w+
n ) (5.15)

∀n ∈ N, b ∈ {(w+
n − lwn + 1) . . . w+

n } : lidn 6= 0∑
s∈S
k∈K

∑
i∈{1...b}

xinsk ≤ b− 1 + CS2d
nb (5.16)
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5. Integer Programming Formulations

S3 similarily contains two independent constraints: the minimum (a) and maximum (b)
number of consecutive days off, again both during and at the start of the week.

The equations modelling these constraints are again analoguous to those from constraints
S2c and S2d, except that days of work and days off were swapped.

S3a ∀n ∈ N, b ∈ {1 . . . (f−n − 1)}, d ∈ {1 . . . 7− (b+ 1)}∑
s∈S
k∈K

((1− xdnsk) +
∑

i∈{1...b}
xd+i
nsk + (1− xd+b+1

nsk )) ≥ 1 −
CS3a
n(d+1)

f−n − b
(5.17)

∀n ∈ N, b ∈ {1 . . . (f−n − 1− lfn)}∑
s∈S
k∈K

(
∑

i∈{1...b}
xinsk − xb+1

nsk ) ≥ 0 − CS3a
n1

f−n − lfn − b
(5.18)

∀n ∈ N : lidn = 0∑
s∈S
k∈K

−x1
nsk ≥ 0 − CS3a

n1

f−n − lfn
(5.19)

S3b ∀n ∈ N, d ∈ {1 . . . (7− f+
n )}∑

s∈S
k∈K

∑
i∈{0...f+

n }

xd+i
nsk ≥ 1 − CS3b

n(d+f+
n ) (5.20)

∀n ∈ N, b ∈ {(f+
n − lfn + 1) . . . f+

n } : lidn = 0∑
s∈S
k∈K

∑
i∈{1...b}

xinsk ≥ 1 − CS3b
nb (5.21)

To model nurse requests for shifts or days off, any assignment to an unwanted shift incurs
the penalty.

S4 ∀n ∈ N, s ∈ S, d ∈ {1 . . . 7} : rdns ∨ rdn0∑
k∈K

xdnsk ≤ CS4
nd

(5.22)

For the complete weekends constraint, first the additional helper variables Wn are set if
the nurse n works either of the days on the weekend. Equations 5.24 then ensure that if
Wn is set, and the complete weekend constraint is present for the nurse, both days of the
weekend should have work assigned.

S5 ∀n ∈ N, d ∈ {6, 7}∑
s∈S
k∈K

xdnsk ≤Wn (5.23)

∀n ∈ N : bn = 1∑
s∈S
k∈K

(x6
nsk + x7

nsk) ≥ 2Wn − CS5
n (5.24)
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5.2. Model Extensions

The constraint S6 (number of total assignments) is modeled slightly differently from
its description in [CTC+15]. Originally, these constraints were evaluated only after the
schedules of all weeks were fixed. In this model, the penalties are calculated immediately
and added to the objective function value of the week in which they arise. This does not
change the overall quality of the whole schedule, so results are still comparable, although
the intermediate quality value of the individual weeks might be different.

S6 ∀n ∈ N∑
s∈S
k∈K

d∈{1...7}

xdnsk ≤ max{a+
n − atotn , 0} + CS6

n (5.25)

∀n ∈ N∑
s∈S
k∈K

d∈{1...7}

xdnsk ≥ min{a−n − 7 ∗ (|W | − w), 7} − CS6
n (5.26)

The equations for constraint S7 (maximum number of weekends worked) use the variable
Wn, set in equations 5.23.

S7 ∀n ∈ N
ttotn +Wn ≤ t+n + CS7

n

(5.27)

5.2 Model Extensions
The basic model produces solutions that are optimal if each stage is regarded in isolation.
However, when multiple stages have to be solved in succession, it turned out that the
solution quality of each individual stage is heavily imbalanced, favouring earlier weeks.
This effect is demonstrated in Figure 5.1.

One reason for this is that constraints S6 (total assignments) become relevant only during
the later weeks. An additional factor is that the solutions of earlier weeks are generated
without regard to the requirements of later stages. As a result, good solutions in the first
weeks are bought with disproportionally higher penalties in the last weeks, especially
regarding the global constraints and sequence constraints at the boundaries between
weeks.

To mitigate these problems, the basic model has to be extended with additional consider-
ations that also take future stages into account.

These additional, “artificial” constraints will be included in the optimization step of
the solver. Once a solution has been fixed, the actual penalty has to be recalculated
according to the basic model to get the correct results. During the last week, the artificial
constraints should be ignored altogether, as there are no more future weeks to take care
of. Of course, this is only permissible in an academic setting like this, whereas in real
world applications, the solution for all weeks should use the extended model.
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Figure 5.1: Distribution of the penalties incurred by the eight stages of the instance
n035w8_2_9-7-2-2-5-7-4-3.

5.2.1 Overstaffing

If one looks at the total number of shifts for each nurse, it becomes apparent that nearly
all nurses exceed their maximum number of assignments (compare Figure 5.2), except
for nurses with a full time contract. Even these nurses mostly have all their available
shifts assigned.

This is despite the fact that, ignoring the other constraints, the total number of assign-
ments available is easily sufficient to cover all shifts at the optimal level (1180 available
versus 1029 needed for optimal staffing levels in the example instance).

However, since there is no penalty on overstaffing, there is no pressure to avoid unnecessary
assignments. Indeed, in some cases it can seem advantageous to assign shifts above the
optimal staffing levels in order to fulfil sequence constraints or the complete weekend
constraints (S7).

However, as soon as the available assignments are used up, high penalties are unavoidable
as other constraints (in particular cover constraints and sequence constraints) still have
to be fulfilled.
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Figure 5.2: Total number of assignments for the first 15 nurses in the solution of the
instance n035w8_2_9-7-2-2-5-7-4-3. Red marks assignments exceeding the maximum,
blue indicates remaining unassigned shifts below the maximum. The light green part
denotes the minimum number of assignments for each nurse.

This can also be seen from Figure 5.3: In earlier weeks, far more shifts are assigned to
nurses than necessary, while in later weeks, constraints S6 force solutions to be closer to
the required staffing levels.

To avoid this situation, the following constraint is added to the model:

S8*. Overstaffing The number of nurses assigned to each shift and skill per day should
not exceed the optimal coverage levels.

This constraint can be added to the basic IP model with the following inequalities:

S8* ∀s ∈ S, k ∈ K, d ∈ {1 . . . 7}∑
n∈N

xdnsk ≤ odsk + CS8∗
skd

(5.28)

where CS8∗
skd is a new (non-negative) surplus variable. These new variables need to be

included in the objective function too. A discussion about the optimal weights for all
artificial constraints can be found in Chapter 7.
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Figure 5.3: Distribution of the total number of assignments in the eight stages of the
instance n035w8_2_9-7-2-2-5-7-4-3.

5.2.2 Average assignments

While the overstaffing constraints already reduce the number of excess assignments over
the maximum, they do not differentiate between nurses with different contracts. As a
result, nurses with part-time or half-time contracts have the same schedules as those
with full-time contracts in the earlier weeks. Consequently, they are not available in later
weeks without penalties, as their contracts are already maxed out.

Ideally, nurses should be employed according to their contracts during all weeks, with
full-time nurses having more assignments per week than other nurses. In part this is
already done implicitly, because nurses with shorter contracts usually also have shorter
work stretch lengths and longer rest stretch lengths.

To ensure that each nurse will be available until the last stage, their assignments should
be distributed evenly across all stages.

S6*. Average assignments The total number of assignments up to the current week
must be within the bounds defined in the contract, multiplied by the fraction of
weeks that have already passed.

32



5.2. Model Extensions

This constraint generalizes constraints S6 to earlier weeks.

To give an example, if a nurse has a minimum of 10 assignments and a maximum of 22,
then after stage 4 (of 8), they should have between 5 and 11 shifts assigned. Assuming
that they already had 7 shifts assigned in stages 1 to 3, this constraint would require
them to have between 0 and 4 assignments in stage 4.

If these constraints are satisfied during all weeks, it can be guaranteed that also constraints
S6 are satisfied for the whole schedule.

The following inequalities model these constraints:

S6* ∀n ∈ N

atotn +
∑
s∈S
k∈K

d∈{1...7}

xdnsk ≤ ba+
n ∗

w

w+ c + CS6∗
n (5.29)

∀n ∈ N

atotn +
∑
s∈S
k∈K

d∈{1...7}

xdnsk ≥ da−n ∗
w

w+ e − CS6∗
n (5.30)

CS6∗
n are again new surplus variables. As at most one of the inequalities without surplus

variables can be violated at the same time, it is possible to reuse the surplus variables
for both equations.

Here, fractional limits are rounded such that the limits are always integer numbers and
the solutions satisfying S6* always also satisfy S6. However, different rounding schemes
did not influence the quality of the generated solutions.

An alternative version of constraints S6* can be formulated as

S6*b. Average assignments In each week, the remaining assignments (not yet used
in previous weeks) should be divided equally among all remaining weeks.

Continuing the example above, the nurse in question would have between 3 and 15
assignments left to distribute over 5 weeks (stages 4 to 8). This means that according to
constraint S6*b, they should have between 3

5 (rounded up to 1) and 3 shifts assigned
during stage 4.

S6*b ∀n ∈ N∑
s∈S
k∈K

d∈{1...7}

xdnsk ≤ b(a+
n − atotn ) ∗ 1

w+ − w + 1c + CS6∗
n (5.31)
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∀n ∈ N∑
s∈S
k∈K

d∈{1...7}

xdnsk ≥ d(a−n − atotn ) ∗ 1
w+ − w + 1e − CS6∗

n (5.32)

The difference between these two formulations becomes visible in case of an imbalance in
preceding stages (i.e. too many or too few assignments): S6* tries to restore the balance
(which might require unusual work or rest stretches), while S6*b ignores a global balance
and works exclusively with the assignments remaining for the current and future stages.
A further discussion of these two formulations can be found in Chapter 7.

5.2.3 Average working weekends

The same argument as above also applies to constraints S7, the maximum number of
total weekends. Just like assignments in general, also weekends should not be used up in
the early stages, but distributed across all weeks to preserve options.

Therefore, an analoguous constraint S7* can be defined:

S7*. Average working weekends In each week, the still available working weekends
(not yet used in previous weeks) should be divided equally among all remaining
weeks.

with the corresponding inequalities

S7* ∀n ∈ N

Wn ≤ b(t+n − ttotn ) ∗ 1
|W | − w + 1c + CS7∗

n

(5.33)

Note that since there is at most one working weekend per week and nurse, and the
maximum number of working weekends is less than the number of weeks, the limit set
for each week will either be 0 or 1.

5.2.4 Next week restrictions

In addition to the global constraints, solutions for different stages influence each other
also at the boundary between weeks.

Since the staffing requirements for the next week are unknown in each stage, leaving
more options to schedule nurses without conflicts is beneficial. If there are only few good
assignments for the nurses with a certain skill, satisfying the cover constraints might
become difficult if they do not match one of those options.

34



5.2. Model Extensions

A common way for schedules to restrict the options for the next stage is via the sequence
constraints. For example, let the minimum number of consecutive night shifts (σ−N) be
4 and the proposed solution for this week end with a single night shift on Sunday for
a nurse (and any other shift or a day off on Saturday, compare Figure 5.4). Then we
already know that any assignment for this nurse from Monday to Wednesday that is not
a night shift, will inevitably incur a penalty (and depending on the rest of the schedule,
assigning only night shifts on these three days could result in penalties of its own).

As another example, if the maximum number of consecutive night shifts is 5 and the
proposed solution already contains a shift stretch of at least 5 night shifts in the days
leading up to Sunday, this means that assigning a further night shift on Monday of the
next week would incur a penalty for exceeding the maximum length.

Sa Su Mo Tu We
. . . - N N? N? N? . . .

Figure 5.4: Assignment that heavily restricts options for the following week. Assuming
σ−N = 4, a single night shift on Sunday will cause a penalty in the next week if any shifts
other than additional night shifts have to be assigned between Monday and Wednesday.

The same reasoning applies to work and rest stretches.

S9*. Restriction of next week’s assignments Options for next week’s schedule should
not be restricted. The penalty is calculated as the total number of shifts that cannot
be assigned in the next week without violating at least one sequence constraint.

The equations to model this constraint are split into restrictions from shift (a), work (b)
and rest (c) stretches, each regarding the minimum and maximum stretch length and
with their own set of surplus variables.

S9*a ∀n ∈ N, s ∈ S, b ∈ {1 . . . (σ−s − 1)}∑
k∈K

((1− x7−b
nsk ) +

∑
i∈{0...(b−1)}

x7−i
nsk) ≤ b+ CS9∗a

n

|S|(σ−s − b)
(5.34)

∀n ∈ N, s ∈ S∑
k∈K

∑
i∈{0...(σ+

s −1)}

x7−i
nsk ≤ σ

+
s − 1 + CS9∗a

n
(5.35)

S9*b ∀n ∈ N, b ∈ {1 . . . (w−n − 1)}∑
s∈S
k∈K

((1− x7−b
nsk ) +

∑
i∈{0...(b−1)}

x7−i
nsk) ≤ b+ CS9∗b

n

w−n − b
(5.36)

35



5. Integer Programming Formulations

∀n ∈ N∑
s∈S
k∈K

∑
i∈{0...(w+

n−1)}

x7−i
nsk ≤ w

+
n − 1 + CS9∗b

n

|S|
(5.37)

S9*c ∀n ∈ N, b ∈ {1 . . . (f−n − 1)}∑
s∈S
k∈K

(x7−b
nsk −

∑
i∈{0...(b−1)}

x7−i
nsk) ≤ 0 + CS9∗c

n

|S|(w−n − b)
(5.38)

∀n ∈ N∑
s∈S
k∈K

∑
i∈{0...(f+

n −1)}

x7−i
nsk ≥ 1− CS9∗c

n (5.39)

5.2.5 Unresolvable patterns

In the solutions generated for various instances, violations of sequence constraints most
commonly appear at the boundaries between weeks. In many cases, this is the result of
patterns similar to those shown in Figure 5.5.

Mo Tu We Th Fr Sa Su Mo
N1 - - D D N N N ? . . .

Figure 5.5: Assuming that σ−N = 4 and w+
N1

= 5, the maximum work stretch length is
already reached but at least one more night shift at the beginning of the next week is
required.

In general, not checking the feasibility of completing a multi-shift work stretch in the
next week can lead to situations where the last shift stretch can not be extended to the
minimum length without violating the maximum work stretch length.

This leads to the following additional constraint:

S10*. Unresolvable Patterns For work stretches at the end of the week, there should
be a way to complete them in the next week without violating either the maximum
work stretch length or the minimum shift stretch length.

Assume a stretch of shift s is assigned to nurse n at the end of the week. Then an
unresolvable pattern has the following structure: First, a block of at least w+

n − σ−s
shifts (that can be any type except a day off) is scheduled (A), followed by a single shift
that is not s (B). Then, the remaining b days up to the end of the week are filled with
assignments to shift s (C), where b < σ−s .

To avoid a violation of the minimum shift stretch length, at least σ−s −b more days of shift
s would be required at the start of the next week. However, together with parts (A) and
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Mo Tu We Th Fr Sa Su Mo
N1 - - D D N N N ? . . .︸︷︷︸

w+
N1
−σ−

N
(A)

︸︷︷︸
1

(B)

︸ ︷︷ ︸
b

(C)

︸ ︷︷ ︸
w+

N1
+1

Figure 5.6: The same pattern as for Figure 5.5, split up into the parts matched by the
constraints S10*. For this assignment, b = 3.

(B), this would bring the total work stretch length to at least (w+
n −σ−s )+1+b+(σ−s −b) =

w+
n + 1, which exceeds the maximum work stretch length w+

n . The different parts are
visualized in Figure 5.6.

Equations 5.40 detect and penalize these patterns through the use of a further set of
surplus variables.

S10* ∀n ∈ N, s ∈ S, b ∈ {1 . . . σ−s − 1}

∑
k∈K

(

(A)︷ ︸︸ ︷∑
j∈{1...w+

n−σ−
s }

t∈S

x7−b−j
ntk +

(B)︷ ︸︸ ︷∑
t∈S\s

x7−b
ntk +

(C)︷ ︸︸ ︷∑
i∈{0...b−1}

x7−i
nsk)

≤ w+
n − (σ−s − b) + CS10∗

n

(5.40)

5.2.6 Objective Function

To have an impact on the generated solutions, the surplus variables for the added
constraints have to be included in the objective function. The objective function f ′ for
the extended model is therefore

minimize f ′ = f + WS8∗ ∗
∑
s∈S

∑
k∈K

∑
d∈{1...7}

CS8∗
skd

+ WS6∗ ∗
∑
n∈N

CS6∗
n

+ WS7∗ ∗
∑
n∈N

CS7∗
n

+ WS9∗ ∗
∑
n∈N

(CS9∗a
n + CS9∗b

n + CS9∗c
n )

+ WS10∗ ∗
∑
n∈N

CS10∗
n
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where WS8∗, WS6∗, WS7∗, WS9∗ and WS10∗ are the weights of their corresponding
constraints.
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CHAPTER 6
Local Search

To compare results with the IP model described above, a local search framework was im-
plemented for this problem. Similar to the approach described in [Mus06], a combination
of the Tabu-Search (TS) [Glo89] and Min-Conflicts (MC) [MJPL92] heuristics was used:
Starting from an initial solution, at each step, with probability p, one move of the TS
strategy is applied, and with probability 1− p, one move of the MC strategy is applied.
After a fixed number of successive moves that did not improve the current best solution,
the search is restarted from a new initial solution. The complete algorithm is described
in Algorithm 6.1.

Algorithm 6.1: Local Search
1 while ¬ timeout do
2 GenerateInitialSolution();
3 while ¬ max number non-improving moves reached do
4 if random() < p then
5 Apply move of TabuSearch strategy;
6 else
7 Apply move of MinConflict strategy;
8 end
9 if F (currentSolution) < F (bestSolution) then

10 bestSolution← currentSolution;
11 end
12 end
13 end
14 return bestSolution

For both heuristics, a neighbourhood composed of two types of moves was employed:
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Mo Tu We Th Fr Sa Su
Nn L - - E N N N
... l
Nn2 - L - - E E E

⇒
Mo Tu We Th Fr Sa Su
L L - - N N N

- - - E E E E

Figure 6.1: Example of a swap move between nurses n and n2, starting on Tuesday
(d = 2), with a length of l = 3 (assigned skills are not shown).

change(n, d, s, k) sets the shift and skill assignment of nurse n on day d to s and k,
respectively. If s = 0, this is treated as a day off. Only assignments to a legal skill
for this nurse are allowed.

swap(n, d, n2, l) swaps the assignments of the next l days, starting at day d, of nurse n
with those of nurse n2. As before, only moves that don’t result in conflicts with
the skills of both nurses are allowed. Blocks up to length l = 4 are considered in
each step.

An example of a swap move that could be used to resolve both shift and rest stretch
length conflicts is shown in Figure 6.1.

In the problem treated in [Mus06], the exact number of employees for each day and shift
was known in advance, making change moves unnecessary, as all staffing constraints
could already be fulfilled by the initial solution. This approach is infeasible for the current
problem, for multiple reasons: Since varying the coverage of a particular shift between
the minimum and optimum levels is only a soft constraint violation and going beyond the
optimal coverage not even that, the number of nurses assigned to this shift in a schedule
must be left variable. Further, the presence of skill restrictions (with nurses often being
qualified for multiple skills) and hard constraints concerning shift successions (H3) makes
it hard to construct even a feasible initial solution.

For this reason, initial solutions were not required to fulfil hard constraints H2 (Minimal
staffing) and H3 (Shift type successions), which were converted to soft constraints with
a sufficiently large weight (3000 for H2 and 1000 for H3). While feasibility of the final
solution cannot be guaranteed using this approach, all implemented heuristics were able
to produce a feasible solution within only a few steps.

For the generation of an initial solution, multiple approaches where implemented.

Random assignment Each nurse on each day is assigned a random shift and a random
(valid) skill, with fixed probabilities for days off.

Randomised greedy Shifts up to optimum coverage (for each day and skill) are assigned
in a random order to the nurse resulting in the lowest objective value. It is possible
that already assigned shifts are overwritten by later assignments, though it is
unlikely that the minimum staffing levels are violated, given the high weight of
these constraints.

40



Heuristic ordering Similar to above, except that assignments are ordered according
to their importance and expected difficulty to assign. Such an approach is detailed
in [BCP+08], although the criteria and their weights are adjusted to the current
problem. Specifically, assignments up to the minimum coverage are listed first,
with priority being given to night shifts, shifts at the start and end of the week
and skills that only few nurses are qualified for.

The more sophisticated algorithms usually produced schedules with only few violations
of hard constraints that could be made feasible in the first few steps of the local search
part. However, this came at the cost of a higher complexity and time needed, and had no
noticeable impact on the quality of the final solutions. Ultimately, the random assignment
approach was used, with an additional check to avoid assigning shifts over and above the
optimal coverage level.

To reduce the time needed to arrive at a feasible solution, only change moves are
considered until the first feasible solution has been found.

Also a hybrid form of TS and MC (MC-T) was experimented with, where the MC
heuristic additionally made use of a tabu list, but this approach did not result in good
solutions.

As an alternative to the MC heuristic, also Random Walk was implemented, where
a random move is chosen among all those involving at least one conflict. During the
experiments, it turned out that the speed gained from replacing MC by a simpler heuristic
did not make up for the additional noise introduced into the solutions.

Besides, the main bottleneck lies in the TS part, where for each step, all possible moves
have to be evaluated for their objective value. To speed up this process, the evaluation
function makes heavy use of caching and the fact that a single swap move influences the
schedule of at most two nurses (one for change moves) and staffing levels can change at
most for one day with change moves and not at all for swap moves. After each move,
the quality of each nurse’s schedule as well as the coverage constraint violations of each
day are evaluated separately and stored in a cache. During the evaluation of a candidate
move, only the changed parts are reevaluated, while the quality of all other parts is taken
directly from the cache.
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CHAPTER 7
Experimental Results

Both the IP formulations and the LS framework were implemented in Java 7, using the
IBM ILOG CPLEX solver1, version 12.6.3, to solve the IP models. All experiments were
performed on an Intel Xeon 2.33GHz PC, using a single thread. The time limit for each
week was set to the time allotted by the benchmarking script2 provided for the INRC-II
(see Table 7.1).

Nurses Time (s)
30 69.54
35 95.62
40 121.70
50 173.86
60 226.02
70 278.18
80 330.34
100 434.65
110 486.81
120 538.97

Table 7.1: Time limits allotted by the benchmarking script of the INRC-II for instances
of varying sizes

As data set for tuning parameters, the set of late instances3 published for the INRC-II
was used. The models were evaluated on the set of hidden instances 4.

1http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud/
2http://mobiz.vives.be/inrc2/?page_id=245
3http://mobiz.vives.be/inrc2/wp-content/uploads/2014/08/late-instances.txt
4http://mobiz.vives.be/inrc2/wp-content/uploads/2014/08/hidden-instances.txt
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7. Experimental Results

7.1 Model Extensions

The results given in this section are for the IP formulations, those of the LS framework
are discussed in Section 7.2.

Figure 7.1 shows the effects of adding the individual extensions described in Section 5.2 to
the basic model. Due to the similarity in structure and purpose, constraints S6* (Average
Assignments) and S7* (Average Weekends) are used together. For this comparison, the
weight of each additional constraint was set to a value of 1 to ensure that the focus of the
optimization still remains on the original constraints. The only exception is constraint
S10* (Unresolvable patterns), since a violation of this constraint directly results in a
violation of at least one shift stretch length constraint in the next week and thus warrants
a weight of 15 (as if the violation had already occured). These weights will be referenced
as standard weights.
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Figure 7.1: Performance of the basic model extended by each set of constraints individually.
The baseline (value of 1) for each instance is the solution generated by the basic model.

It can be seen that especially the constraints addressing the global assignment constraints
(S6* (either version) and S8* (Overstaffing)) result in large improvements to the quality
of the solution, in the most extreme cases halving the penalty incurred with the basic
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model. Constraints S9* (Next Week Restriction) and S10* also slightly improve upon
the solutions of the basic model.

The penalty can be further decreased by combining multiple extensions. During the
experiments, it turned out that the constraints S6* (and S7*), S8* and S10* work well
together, each of them further increasing the quality of the solutions. This is shown in
Figure 7.2: The results of the models using only 2 of the 3 extensions are nearly always
worse than in the case where all 3 extensions are used. The models are also better than
the basic model or those with only a single extension.
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Figure 7.2: Performance of the basic model extended by multiple additional constraints.
The baseline (value of 1) for each instance is the solution generated by the extended model
with all 3 constraints. For comparison, the results for the model with only constraints
S6* (/S7*) from Figure 7.1 are shown too.

Constraints S9* did not combine well with the other constraints, and the results are worse
than those without S9*, by between 20% and 50% for most instances. This remained the
case even if S9* was assigned a much smaller weight than the other constraints (compare
Figure 7.3). Assigning a higher weight to S9* produced even worse results.

For all further experiments, the evaluated models use the extensions S6*, S7*, S8* and
S10*, but not S9*. This will be denoted as the extended model.
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Figure 7.3: Comparison of performance of the extended model (S6*, S7*, S8*, S10*, at
standard weights) combined with S9* at weights 1 and 0.1. As before, the baseline value
of 1 indicates the solution quality achieved with the extended model without S9*.

Considering the two variants of S6*, S6* produces slights better results than S6*b, but
the differences are marginal (see Figure 7.4).

7.1.1 Extension weights

The standard weightsW ? of the constraints used so far were chosen more or less arbitrarily
(with the exception of S10*, which directly represent a penalty that is sure to appear in
the next week). During the experiments it turned out that assigning weights below 1 had
little influence on the quality of solutions. This is not surprising given that at weight
1, the original constraints already trump the extensions in importance and the solver
mostly optimizes against the basic model and considers the extensions only to distinguish
between multiple equivalent solutions. Conversely, assigning weights greater than 1 to
some artificial constraints did influence the solutions that were produced, as the relative
importance compared to the original constraints and the other extensions was changed.
However, if the weights for the extensions were set to values significantly higher than the
weights of the original constraints, the results rapidly became worse even than those of
the basic model.
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Figure 7.4: Comparison of performance of S6* in both variants. The extended model
with standard weights was used. All results were scaled by the best result achieved in
any of the models (a value of 1 corresponds to the best result for a certain instance).

# WS6∗ WS8∗

1 9.9 11.9
2 10.2 10.2
3 10.0 10.6

Table 7.2: Elite candidates found by IRACE for the values of parameters WS6∗ and
WS8∗

To find optimal values for the weights of constraints S6* (/S7*) and S8*, the parameter-
tuning framework IRACE [LIDLSB11] was used. Both WS6∗(= WS7∗) and WS8∗ were
varied between 0 and 20, with a precision of one significant digit after the decimal point.
As tuning instances, the set of late instances of the INRC-II was used, as mentioned
above. IRACE was run in parallel on 4 cores with a limit of 5000 iterations.

The best values for WS6∗ and WS8∗ found by IRACE can be seen on Table 7.2. All
values are very similar to each other and further experiments showed that the results do
not vary significantly under small variations of these values.

7.1.2 Model complexity

Even the direct implementation of all constraints in the basic model, without any
particular regard for efficient formulations, could be optimally solved within the time
limit for most instances. As can be seen on Table 7.3, even those weeks for which a
(provably) optimal solution could not be found, the optimality gap was only at 1.19% on
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Model Optimal Feasible Gap (%) Time (%)
Basic 309 51 1.19 28.4

Extended 274 86 1.90 47.3
Extended+S9* 98 262 7.35 88.0

Table 7.3: Complexity (in terms of time needed to solve each week) of different models.
The first two columns give the number of weeks solved to optimality or feasibility (out of
360 in the set of hidden instances) within the time limit. Gap is the average optimality
gap over all weeks that could not be solved optimally. Time is the average time taken by
the solver, regardless of whether an optimal solution could be found, relative to the time
limit of each instance.

average. Further, stages where usually solved within only slightly more than a quarter of
the time available.

The results for the extended model are similar, although the increased complexity of the
model had a noticeable effect on the time required to solve each stage. Still, an optimal
solution for most weeks could be found, and the optimality gap in the remaining cases
still remains below 2%.

When also constraints S9* are added to the model, suddenly only a small fraction of
all stages can be solved to optimality, and the average time needed by CPLEX nearly
doubles. Also the optimality gap remaining for unsolved stages is much larger than for
the extended model alone. This could be one reason why constraints S9* performed so
poorly. However, it can not be the only factor, as many solutions using models including
S9* were worse than those of other models even in cases where both could be solved
optimally.

All this indicates that major improvements can not be expected by more efficient solution
strategies and formulations, but will require further extension and refinement of the
model. The exception to this are constraints S9*, where a more detailed study of their
structure and impact on the size of the model might well result in substantially better
performance.

7.2 Local Search
Given the results above, the extended model was also used in the local search framework,
with the additional constraints being added to the evaluation function. Since the
optimization goal remained the same, it is reasonable to assume that the optimal weights
for the IP model are also close to optimal for the local search aproach. For this reason,
the same weights were reused without an additional round of re-tuning.

However, the local search framework described in Section 6 contains other parameters
that have an impact on the solution quality. In particular, these parameters are p (the
probability of following the TabuSearch strategy instead of MinConflict at each step), m
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Parameter Type Min Max
p real 0 0.9
m integer 10 10000
l integer 1 50

Table 7.4: Parameters tuned for the local search framework

Param Weight
WS6∗ 9.9
WS7∗ 9.9
WS8∗ 11.9
WS10∗ 15

Table 7.5: Constraint weights for model extensions used for the final evaluations

(the number of non-improving moves before a restart) and l (the length of the tabu list,
as a multiple of the number of nurses).

As before for the weights, the IRACE framework was used to tune these parameters.
The limits for each parameters are summarised in Table 7.4. As before, the set of late
instances was used as training data, with 4 threads and 5000 iterations.

The best values for these parameters found by IRACE are p = 0.5, m = 8000 and l = 5.
Further experiments showed that the overall solution quality is very robust against small
changes of these values.

Figure 7.5 shows an example run of the framework for a single stage. Only feasible
solutions were regarded for the plot. It can be seen that after each restart, feasible
solutions were found within very few steps and the solution quality improved rapidly
before coming to a standstill as local optima were reached. However, it is also noteworthy
that the phase leading to the best solution contains two series of over 5000 moves without
improvements. If the search had been set to restart substantially sooner, this solution
would not have been found. Also of interest is that very good results (within 10% of the
best solution found) were achieved after the first 2500 moves, or about 5% of the total
running time.

7.3 Final Results

For the final evaluation, the extended model was used, with weights for the extensions
as shown on Table 7.5, both for the IP model solved via CPLEX and the Local Search
framework. The exact results can be found on Table 7.6, see also Figure 7.6 for comparison.

Due to the extensions, the penalty incurred by the generated solutions is reduced by
about 40% on average for the IP model, in some cases even to less than half the penalty
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Figure 7.5: Solving the first stage of the instance n035w4_2_8-8-7-5 with the Local
Search framework, with the current solution in grey and the best solution within the
current search phase in black. Spikes in the fitness value mark points where the search
restarted from a new initial solution. Also shown is the move that led to the best overall
solution.

of the basic model. Further, there is no instance, where the extended model produced
results that were not at least 20% better than those of the basic model.

Also the Local Search framework performed comparatively well, although it was slightly
weaker than the IP approach. This is not surprising, considering that most stages could
already be solved optimally within the time limit. For larger problems, or with more
stringent time limits, it can be expected that LS will outperform any exact approaches.

Compared to the results of the finalists in the INRC-II, the results are competitive
(slightly better than the median), although no new best known solutions could be found.
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Figure 7.6: Performance of the extended model, both using Integer Programming and
Local Search, compared to the solutions produced by the basic model (value of 1). Also
shown are the median and best results achieved by the INRC-II finalists.

The average rank over all instances is 3.45, placing these results firmly into the top half
of the finalists.
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INRC-II
Instance Basic Extended LS Median Best Rank
n035w4_0_1-7-1-8 2720 1650 1890 1756.5 1630 3
n035w4_0_4-2-1-6 2625 1950 2050 2021.5 1800 3.1
n035w4_0_5-9-5-6 3020 1775 2035 1928.5 1755 2.2
n035w4_0_9-8-7-7 2700 1680 1810 1723.5 1540 4.3
n035w4_1_0-6-9-2 3035 1755 1835 1737 1500 3.3
n035w4_2_8-6-7-1 2495 1645 1605 1644.5 1490 4.5
n035w4_2_8-8-7-5 2375 1410 1420 1407.5 1255 4.2
n035w4_2_9-2-2-6 2675 1950 2050 1947.5 1705 2.7
n035w4_2_9-7-2-2 2645 2030 1950 1970.5 1650 4.1
n035w4_2_9-9-2-1 2700 1840 2040 1927.5 1620 3.3
n035w8_0_6-2-9-8-7-7-9-8 5640 3550 3630 4171 3020 2.1
n035w8_1_0-8-1-6-1-7-2-0 5380 3360 3600 4045.5 2770 3.3
n035w8_1_0-8-4-0-9-1-3-2 5315 3280 3575 4019 2775 3.7
n035w8_1_1-4-4-9-3-5-3-2 5205 3120 3680 3472.5 2805 4.6
n035w8_1_7-0-6-2-1-1-1-6 5795 3370 3535 3548.5 2840 4.1
n035w8_2_2-1-7-1-8-7-4-2 5570 3390 3735 4205 2910 2.5
n035w8_2_7-1-4-9-2-2-6-7 5725 3445 3700 3699.5 2960 3
n035w8_2_8-8-7-5-0-0-6-9 5265 3250 3560 3603 2815 3
n035w8_2_9-5-6-3-9-9-2-1 6040 3515 3880 3659 3045 2.9
n035w8_2_9-7-2-2-5-7-4-3 5340 3155 3680 3508 2715 3
n070w4_0_3-6-5-1 4580 2775 3255 3151 2700 4.3
n070w4_0_4-9-6-7 4030 2545 2895 2889 2430 2.7
n070w4_0_4-9-7-6 4195 2675 3055 2948 2475 3.8
n070w4_0_8-6-0-8 4440 2850 3135 3016 2435 4.1
n070w4_0_9-1-7-5 4010 2665 2950 2864 2320 4.1
n070w4_1_1-3-8-8 4185 2980 3080 3134.5 2700 3.7
n070w4_2_0-5-6-8 4100 2765 2950 3012 2520 4.1
n070w4_2_3-5-8-2 4250 2800 3010 3141.5 2615 3.5
n070w4_2_5-8-2-5 4460 2820 3145 3005.5 2540 4.1
n070w4_2_9-5-6-5 4315 2820 3070 3046 2615 2.5
n070w8_0_3-3-9-2-3-7-5-2 9690 6065 6505 6222 5115 3.5
n070w8_0_9-3-0-7-2-1-1-0 10160 6120 6710 6602 5390 3.3
n070w8_1_5-6-8-5-7-8-5-6 9920 6120 6610 6236.5 5475 3.2
n070w8_1_9-8-9-9-2-8-1-4 9715 5740 6130 6018.5 5100 2.9
n070w8_2_4-9-2-0-2-7-0-6 9995 5660 6635 6259 5410 2.9
n070w8_2_5-1-3-0-8-0-5-8 10310 5810 6695 6315 5280 3.9
n070w8_2_5-7-4-8-7-2-9-9 9885 6010 6855 6317.5 5505 3.9
n070w8_2_6-3-0-1-8-1-5-9 10785 5590 6230 6255 5120 3.6
n070w8_2_8-6-0-1-6-4-7-8 10905 5775 6840 6890.5 5350 3
n070w8_2_9-3-5-2-2-9-2-0 10225 5620 6715 6044.5 5320 2.8
...
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INRC-II
Instance Basic Extended LS Median Best Rank
...
n110w4_0_1-4-2-8 6085 2970 3420 3539 2710 4
n110w4_0_1-9-3-5 6110 3185 3750 3663 2920 2.8
n110w4_1_0-1-6-4 6235 3280 3560 4030 2850 3.9
n110w4_1_0-5-8-8 5930 3125 3650 3569.5 2820 3.3
n110w4_1_2-9-2-0 6810 3810 4130 4092 3345 4
n110w4_1_4-8-7-2 6785 3265 3565 3661 2805 3.9
n110w4_2_0-2-7-0 6170 3610 3800 4198.5 3005 3.5
n110w4_2_5-1-3-0 6650 3240 3895 3637.5 2925 4
n110w4_2_8-9-9-2 6725 3990 4285 4025 3415 4
n110w4_2_9-8-4-9 6265 3415 3935 3769 3135 3.3
n110w8_0_2-1-1-7-2-6-4-7 11595 5995 6720 6596 5155 3.9
n110w8_0_3-2-4-9-4-1-3-7 12130 5490 6350 6172.5 4805 4
n110w8_0_5-5-2-2-5-3-4-7 12015 5570 6375 6227 4750 3.8
n110w8_0_7-8-7-5-9-7-8-1 11640 5855 6655 6251.5 4855 3.9
n110w8_0_8-8-0-2-3-4-6-3 11495 5205 6150 6146.5 4465 4
n110w8_0_8-8-2-2-3-2-0-8 12255 5565 6480 6469 4865 3.4
n110w8_1_0-6-1-0-3-2-9-1 12010 5895 6455 6514 5090 3.7
n110w8_1_4-1-3-6-8-8-1-3 11355 5540 6315 6115.5 4315 4
n110w8_2_2-9-5-5-1-8-4-0 12015 5890 6555 6222.5 4770 4
n110w8_2_8-5-7-3-9-8-8-5 11465 5570 6230 5809 4360 3.9

Table 7.6: Results for the basic model, the extended model and the Local Search
framework over all instances of the hidden dataset. Added for comparison are the median
and best results achieved by the INRC-II finalists for each instance. The last column
contains the average rank among the 7 finalists achieved by the extended IP model for
each instance (over 10 runs).
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CHAPTER 8
Conclusions

This diploma thesis presented both an Integer Programming and a Local Search based
approach to solve a nurse rostering problem in a stepping horizon setting. Such settings,
where multiple, interdependent stages of a scheduling problem have to be solved consecu-
tively, correspond better to real world practices than the isolated, single stage problems
usually studied in academia.

First, a basic IP formulation capable of solving single problem stages was created and used
repeatedly for successive stages. This model was adapted to the multi-stage structure by
adding new constraints that balance penalties between weeks and favor solutions that
don’t restrict options for later stages. These constraints are general and modular enough
that they can easily be combined and also adapted to different problems with a similar
structure.

Using this extended model, substantially improved solutions over those of the original,
basic model could be achieved. It also turned out that within the time limits imposed
for the INRC-II, most stages could be solved optimally with a state-of-the-art IP solver.

Further, also a LS framework was implemented using the same extensions. While the
results did not improve upon those of the exact approach, very good results could be
achieved in a fraction of the time, indicating the potential of this approach in tackling
larger and more complex variants of the problem.

The results are also competitive with those of the finalists in the INRC-II, where the
problem under consideration was first presented, although no new best known solutions
could be found.

Potential for future work lies in finding further extensions that improve the existing
model. Prioritising nurses according to different qualities like their skills and contracts
seems like a good starting point. Also more sophisticated forecasting techniques based
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8. Conclusions

on the requirements of previous weeks could help in adapting the current solution to
expected coverage levels of later weeks.

Also similar scheduling problems with a stepping horizon setting could benefit from the
extensions developed in this thesis, if they are adapted to the specifics of the problem.
Further investigation will be necessary to identify general formulations for repeatedly
occuring variants of the new constraints.

Since the time limits used in this thesis were sufficient to solve most of the available
instances, not much focus was placed on the efficiency of the IP model. Additional
research, possibly including a hybrid approach combined with LS, could enable the same
approach to be used for even larger, more complex problems.
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