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Abstract In this paper we deal with a complex scheduling problem that arises in
a real-world industrial test laboratory, where a large number of activities has to
be performed using qualified personnel and specialized equipment, subject to time
windows and several other constraints. The problem is an extension of the well-
known Resource-Constrained Project Scheduling Problem (RCPSP) and features
multiple heterogeneous resources with very general availability restrictions. We
present and evaluate different metaheuristic approaches to solve this problem and
show that Simulated Annealing can be used to achieve very good results over
a wide range of instances generated based on real-world data. In particular for
large instances, the heuristic is able to find better solutions than a state-of-the-art
constraint programming solver within reasonable time.

Keywords RCPSP · Local Search · Real-world · Simulated Annealing

1 Introduction

Project scheduling problems appear in countless variations wherever multiple ac-
tivities have to be scheduled and assigned resources of some kind, subject to various
constraints. Examples include production and manufacturing environments, event
management, software development, and many more. Since these problems can
become quite large and include complex constraints in practical settings, there is
an ever increasing need for automated solution approaches to produce high-quality
solutions in acceptable time.

In this paper, we introduce a real-world scheduling problem that arises in
an industrial test laboratory of a large company. It is related to the well-known
Resource-Constrained Project Scheduling Problem (RCPSP), on which it builds
by adding various additional extensions, both traditional and new, to capture the
specific requirements of this, and other similar laboratories.
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In the Test Laboratory Scheduling Problem (TLSP), first described in a tech-
nical report by Mischek and Musliu (2018), tasks have to be grouped into larger
units called jobs, which derive their properties from the tasks they contain. The
jobs then have to be scheduled, subject to various constraints.

In this paper, we focus on the scheduling part of the problem, which we call
TLSP-S. We assume that an acceptable grouping is already provided, which will
not be changed in the course of the scheduling procedure. As a result, the properties
of the jobs are static and the resulting problem is a direct extension of (multi-
modal) RCPSP.

Besides several well-known features from the literature, such as time windows,
TLSP(-S) also features additional constraints imposed by the real-world problem
setting. In particular, RCPSP and its variants usually assume that units of a
resource are identical and homogeneous and therefore can be used to cover the
demand of all tasks. Due to this, an assignment of individual units to tasks is
not necessary. Exceptions exist, e.g. in Dauzère-Pérès et al. (1998) or Bellenguez
and Néron (2005), and sometimes an equivalent effect is achieved by introduc-
ing additional modes for each possible resource assignment (e.g. in Schwindt and
Trautmann (2000) and Bartels and Zimmermann (2009)). However, this is practi-
cal only for a single resource with very few available values per task. In contrast,
TLSP(-S) features multiple heterogeneous resources, with very general restrictions
on which units can be used to perform a job, and potentially large demands.

In addition, jobs in TLSP(-S) can be linked to each other, indicating that these
jobs must be performed by the same employees1. To the best of our knowledge, a
similar concept exists only in Salewski et al. (1997) and Drexl et al. (2000), where
the mode of several jobs is required to be the same.

This article is an extension of work presented at the conference on Practice and
Theory in Automated Timetabling (PATAT) 2018, where we introduced TLSP as
a new problem. With this work, we provide an instance generator for TLSP, which
is capable of randomly generating instances based on real-world data with a wide
variety of configuration options. We also introduce a local search framework for
TLSP-S, and evaluate the performance of several different meta-heuristics on the
problem. We show that Simulated Annealing can be used to produce high-quality
results, that rival those of a state-of-the-art constraint programming model and
even outperforms it on larger instances.

The rest of the paper is structured as follows: Section 2 gives a short overview
over related literature and variants of RCPSP that are particularly relevant for
TLSP. Section 3 formally introduces the problem definition, input data and con-
straints. Section 4 provides information about our instance generator and available
data sets. Section 5 describes the local search framework and the algorithms used,
followed by experimental results in Section 6. Finally, concluding remarks and
future work are given in Section 7.

1 This can be used to model multi-step procedures that require knowledge from previous
steps, such as ensuring that documentation of completed tasks is prepared by the employees
who actually performed the tasks.
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2 Related literature

As the standard problem in the area of project scheduling, RCPSP has seen vast
amounts of work over several decades. For surveys on literature regarding this
problem and its many variants, we refer to surveys e.g. by Mika et al. (2015),
Hartmann and Briskorn (2010) and Brucker et al. (1999).

In particular, Hartmann and Briskorn (2010) provide a comprehensive overview
regarding work dealing with extensions to RCPSP. In the following, we provide
some references for more recent literature showcasing particular features, where
available.

One particular variant that is employed in lots of publications, and is also
included in TLSP, is multi-mode RCPSP (MRCPSP), originally formulated in El-
maghraby (1977). It allows each activity to be performed in one of several modes
which can affect duration and resource requirements. A survey focused on MR-
CPSP formulations is provided by Wȩglarz et al. (2011). A more recent example,
including a Constraint Programming (CP) model for the problem, is given by
Szeredi and Schutt (2016).

Time windows for activities, in the form of release dates, due dates and dead-
lines, appear in various combinations in many works, e.g. in Polo Mejia et al. (2017)
and Avar and Najafi (2017), although typically either due dates or deadlines are
used. Wauters et al. (2016) introduce the Multi-Mode Resource Constrained Multi-
Project Scheduling Problem (MMRCMPSP), where activities are partitioned into
multiple projects, with project-specific constraints and objective functions. This
problem formulation was used for the MISTA 2013 challenge, which was won by
Asta et al. (2016), using a hybrid of memetic and hyperheuristic methods with
Monte-Carlo tree search. The same problem is also treated in Ahmeti and Musliu
(2018), who provide a local search algorithm based on a combination of the min-
conflict heuristic and tabu search, which bears some similarities to the heuristics
used in this paper.

The objective to be minimized in RCPSP and most variants is the makespan,
but also other objective functions, including multi-objective formulations have
been considered. For example, Gonçalves et al. (2008) employ a weighted linear
combination of several performance measures, including the total duration of each
project, similar to the approach used in TLSP.

Regarding the heterogeneous resources, Bellenguez and Néron (2005) intro-
duced the Multi-Skill RCPSP (MSPSP). In MSPSP, each resource unit has a
number of skills, and resource requirements are given as a multi-set of required
skills. Despite this different resource model, a distinct objective function and sev-
eral other discrepancies, MSPSP is still quite closely related to TLSP-S. It also
faces a similar problem as TLSP-S in that the number of possible assignments
for each job is far too large to explicitly translate into separate modes. Instances
for MSPSP contain up to 90 activities, compared to 300+ jobs for instances of
practical size for TLSP-S. To the best of our knowledge, the best results so far for
MSPSP have been achieved by Young et al. (2017), who used a CP approach to
solve the problem.

Two problems dealing with scheduling activities in laboratories are given be-
low: Bartels and Zimmermann (2009) deal with scheduling tests of experimental
vehicles. The described problem contains several aspects and constraints similar to
TLSP. However, it uses a different resource model and uses the number of employed
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vehicles as the main optimization criterion. Polo Mejia et al. (2017) developed an
integer linear program for scheduling research activities for a nuclear laboratory,
using a problem formulation derived from MSPSP, but with (limited) preemption
of activities.

3 Problem description

As mentioned before, we deal with a variant of TLSP (defined in the technical
report Mischek and Musliu (2018)), where we assume that a grouping of tasks
into jobs is already provided for each project, and focus on the scheduling part of
the problem instead (TLSP-S). Thus, the goal is to find an assignment of a mode,
time slot and resources to each (given) job, such that all constraints are fulfilled
and the objective function is minimized.

In the following, we describe the TLSP-S problem.
Each instance consists of a scheduling period of h discrete time slots and re-

sources of different kinds:

– Employees E = {1, . . . , |E|} who are qualified for different types of jobs.
– A number of workbenches B = {1, . . . , |B|} with different facilities.
– Various auxiliary lab equipment groups Gg = {1, . . . , |Gg|}, where g is the

group index. Each group represents a set of similar devices. The set of all
equipment groups is denoted G∗.

Further we have given the set of projects labeled P = {1, . . . , |P |}, and the set
of jobs to be scheduled J = {1, . . . , |J |}. For a project p, the jobs of this project
are given as Jp ⊆ J . Each job belongs to exactly one project.

Each job j has several properties2:

– A time window, given via a release date αj and a deadline ωj . In addition, it
has a due date ω̄j , which is similar to the deadline, except that exceeding it is
only a soft constraint violation.

– A set of available modes Mj ⊆M , where M is the set of all modes.
– A duration dmj for each available mode m ∈Mj .
– The resource requirements for the job:

– The number of required workbenches (at most one) rWb
j ∈ {0, 1}. If a work-

bench is required, it must be chosen from the available workbenches Bj ⊆ B.
– The number of required employees rEm

m depends on the mode m ∈ Mj .
Each of these employees must be chosen from the set of qualified employees
Ej ⊆ E. Additionally, there is also a set of preferred employees EPr

j ⊆ Ej .
– For each equipment group g ∈ G∗, the job requires rEq

gj devices, which must
be taken from the set of available devices Ggj ⊆ Gg for the group.

– The predecessors Pj of the job, which must be completed before the job can
start. Precedence relations will only occur between jobs of the same project.

– Linked jobs Lj of this job. All linked jobs must be performed by the same
employee(s). As before, such links only occur between jobs of the same project.

– Optionally, the job may contain initial assignments:

2 In TLSP, these are derived from the tasks contained within a job. Since we assume the
distribution of tasks into jobs to be fixed, they can be given directly as part of the input for
TLSP-S.
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– An initial mode m0
j .

– An initial starting time slot ts0j and an initial completion time slot tc0j .

– Initial resource assignments: aWb0
j ∈ B and the sets AEm0

j ⊆ E and

AEq0
gj ⊆ Gg ∀g ∈ G∗ are the assigned workbench, employees and devices

per group, respectively.
Some or all of these assignments may be present for any given job.

Out of all jobs, a subset are started jobs JS ⊆ J . A started job will always
have a start time of 0 and initial mode and resource assignments fulfilling all
requirements. Usually, the available resources for started jobs are also restricted
to the assigned values, to avoid interruptions of ongoing work due to reassignments.
This is the case in all instances used in this article.

A solution for TLSP-S is a schedule, which must contain, for each job j, the
following information:

– A mode ṁj .
– The job’s starting and completion time slots ṫsj and ṫcj .

– Resource assignments: ȧWb
j ∈ B∪{ε} and the sets ȦEm

j ⊆ E and ȦEq
gj ⊆ Gg ∀g ∈

G∗ for workbench, employees and equipment assignment.

3.1 Constraints

A solution is evaluated in terms of constraints that it should fulfill. Hard constraints
must all be satisfied in any feasible schedule, while the number and degree of
violations of soft constraints in a solution give a measure for its quality.

Note that this is a direct translation of the constraints in Mischek and Musliu
(2018), with adaptations only to account for the already provided grouping. We
have preserved the original constraint numbering, resulting in missing numbers
(H1 - H3) where constraints pertain to the grouping itself.

For the purpose of modeling, we introduce additional notation: The set of active
jobs at time t is defined as Jt := {j ∈ J : ṫsj ≤ t ∧ ṫcj > t}.

3.1.1 Hard Constraints

H4: Job duration. The interval between start and completion of a job must match
the job’s duration.

∀j ∈ J :

ṫcj − ṫsj = dṁjj

H5: Time Window. Each job must lie completely within the time window from
the release date to the deadline.

∀j ∈ J :

ṫsj ≥ αj
ṫcj ≤ ωj
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H6: Task precedence. A job can start only after all prerequisite jobs have been
completed.

∀j ∈ J, k ∈ Pj :

ṫck ≤ ṫsj

H7: Started jobs. A started job must start at time 0.

∀j ∈ JS :

ṫsj = 0

H8: Single assignment. At any one time, each workbench, employee and device
can be assigned to at most one job.

∀b ∈ B, t ∈ {0 . . . h− 1} :

|{j ∈ Jt : ȧWb
j = b}| ≤ 1

∀e ∈ E, t ∈ {0 . . . h− 1} :

|{j ∈ Jt : e ∈ ȦEm
j }| ≤ 1

∀g ∈ G∗, d ∈ Gg, t ∈ {0 . . . h− 1} :

|{j ∈ Jt : d ∈ ȦEq
gj }| ≤ 1

H9a: Workbench requirements. Each job requiring a workbench must have a work-
bench assigned.

∀j ∈ J :

ḃj = ε ⇐⇒ rWb
j = 0

H9b: Employee requirements. Each job must have enough employees assigned to
cover the demand given by the selected mode.

∀j ∈ J :

|ȦEm
j | = rEm

ṁj

H9c: Equipment requirements. Each job must have enough devices of each equip-
ment group assigned to cover the demand for that group.

∀j ∈ J, g ∈ G∗ :

|ȦEq
gj | = rEq

gj

H10a: Workbench suitability. The workbench assigned to a job must be suitable
for it.

∀j ∈ J :

ȧWb
j = ε ∨ ȧWb

j ∈ Bj

H10b: Employee qualification. All employees assigned to a job must be qualified
for it.

∀j ∈ J :

ȦEm
j ⊆ Ej
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H10c: Equipment availability. The devices assigned to a job must be taken from
the set of available devices for each group.

∀j ∈ J, g ∈ G∗ :

ȦEq
gj ⊆ Ggj

H11: Linked jobs. Linked jobs must be assigned exactly the same employees.

∀j ∈ J, k ∈ Lj :

ȦEm
j = ȦEm

k

3.1.2 Soft Constraints

The following constraints can be used to evaluate the quality of a feasible solution.
They arise from the business requirements of our industrial partner.

Each soft constraint violation induces a penalty on the solution quality, denoted
as Ci, where i is the soft constraint violated.

S1: Number of jobs3. The number of jobs should be kept as low as possible.

∀j ∈ J :

CS1 := |J |

S2: Employee project preferences. The employees assigned to a job should be taken
from the set of preferred employees.

∀j ∈ J :

CS2j := |{e ∈ ȦEm
j : e /∈ EPr

j }|

S3: Number of employees. The number of employees assigned to each project should
be minimized.

∀p ∈ P :

CS3p := |
⋃
j∈Jp

ȦEm
j |

S4: Due date. The due date for each job should be observed.

∀j ∈ J :

CS4j := max(ṫcj − ω̄j , 0)

S5: Project completion time. The total completion time (start of the first job to
end of the last) of each project should be minimized.

∀p ∈ P :

CS5p := max
j∈Jp

ṫcj − min
j∈Jp

ṫsj

3 This constraint is obviously constant in TLSP-S, but is included for comparability of results
with instances of TLSP.
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Constraint S2 allows defining ”auxiliary” employees, which should only be used
if necessary. Typically, these employees usually have other duties, but also possess
the required qualifications to perform (some) tasks in the laboratory.

Constraints S3 and S5 avoid overheads by reducing the need for communi-
cation (both internal and external), (re-)familiarization with project-specific test
procedures and storage space.

Constraint S4 makes the schedule more robust by encouraging jobs to be com-
pleted earlier than absolutely required, so they can still be finished on time in case
of delays or other disturbances.

The overall solution quality will be determined as the weighted sum over all
soft constraint violations.

The relative importance of these constraints (i.e. their weights) still needs to
be defined. In practical applications, we expect them to be chosen interactively
according to the current situation. For our evaluations, we have assumed a uniform
weight of 1 for all soft constraints.

4 New instances for TLSP

In this section, we introduce an instance generator, which can be used to randomly
generate instances for TLSP(-S) based on real-world data. We also propose two sets
of new and publicly available instances for TLSP-S assembled using our instance
generator.

4.1 Instance generator

We have developed an instance generator which can generate random instances
for TLSP which exhibit a similar structure as the real-world data they are based
on.

This instance generator works as follows: First, a reference solution is built
by iteratively and greedily adding jobs to the schedule. Each such job is grown
outward from a randomly selected point until the desired duration is reached,
taking care to guarantee that a feasible resource assignment for the job exists at
that location. During this process, job and task durations and their allocation
among the projects are chosen using a very similar distribution as in the real-
world laboratory. The other properties of the jobs and tasks, such as precedence
constraints and available resources, are then generated based on the reference
schedule, such that it is a feasible solution for the resulting instance. Finally, the
initial assignments are also extracted and possibly adapted from the reference
solution.

Several aspects of this generation process, such as the extraction of initial
assignments or the structure of precedence constraints, can be configured to create
instances with different properties. For a more in-depth description of the instance
generator and possible options, we refer to the technical report by Mischek and
Musliu (2018).
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4.2 Data sets

Currently, there are two sets of test data available, General and LabStructure, both
with 60 instances each. These were generated for TLSP, but include a grouping of
tasks into jobs that is guaranteed to have at least one feasible solution. Thus, they
can be directly translated to TLSP-S by assuming that grouping to be fixed and
calculating the properties of the jobs from the tasks they contain. Feasible solutions
for TLSP-S are guaranteed to also be feasible for TLSP under that grouping and
their objective values differ only by a constant amount (due to constraint S1, which
counts the number of jobs and is trivially useless for TLSP-S).

Both data sets feature instances of various sizes, starting at 5 projects over
a period of 88 time slots, up to 90 projects over 782 time slots. A single project
contains an average of close to 4 jobs. There are no initial assignments except for
the started jobs at the beginning of the scheduling period and a small number
(≈ 5%) of jobs whose assignments are fixed.

The difference between the two data sets is that for the LabStructure set,
the instance generator was configured to produce instances that are as close as
possible to the actual real-world data. In contrast, the General set uses the same
distribution of work across projects and tasks, but is more flexible regarding several
other structural features, such as equipment groups and job precedence.

On average, jobs have 5 available workbenches and 6 qualified employees (the
different modes each require between 0 and 2 employees). The demand and avail-
ability of equipment is more varied and differs a lot between data sets and in-
stances. Three different types of equipment demands appear: Of any given group,
jobs require either a single specific device (these are usually project-specific), one
out of a small list of options (< 10) or several (12 on average, but with a large vari-
ance) out of a large list (depends on the instance size, up to several hundred). The
distribution of these types is heavily skewed towards the first two options. Further,
the huge number of possible assignments for equipment demands of the third type
is offset by the fact that most jobs do not require equipment of these groups and
the number of devices per group is large enough that feasible equipment assign-
ments can be found quite easily. These resource distributions were adapted from
real-world data in our partner laboratory.

Both data sets are available for download at https://www.dbai.tuwien.ac.

at/staff/fmischek/TLSP. Once additional data sets become available, they will
also be added there. In particular, we plan to also provide (anonymized) real-world
data sets.

5 Local Search

For easy implementation of and comparison between different solution techniques,
we have developed a solution framework that provides a unified workflow, common
data structures and utility functionality for TLSP solver implementations.

While theoretically also applicable for other solution approaches, this frame-
work is mainly intended for use with local search. Here, the basic building block is
that of a move, which is a small change to a given solution, such as a replacement
of a time slot or a resource assignment for a single job. Each move contains the
necessary information to be applied to a schedule and to efficiently evaluate its
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effects on the solution quality. A basic set of move implementations are provided,
which can be combined to form more complex changes. Neighborhoods define a set
of moves available from a current schedule, and provide functionality to access and
iterate over these moves. In addition they also allow for the selection of a random
or the best move among those they contain. These neighborhoods are employed
by search heuristics, which implement the strategies to choose a move that should
be applied from among several neighborhoods in each step of the search.

5.1 Neighborhoods

For TLSP-S, we developed two different neighborhoods. Both are the combination
of several smaller neighborhoods focused on specific types of moves, and contain
the union of all these moves.

The first set, called Simple, contains neighborhoods that each affect a single
aspect of a job’s assignments. It consists of the following neighborhoods:

– Mode Change: Switches the assigned mode of the job to a different value.
The start time of the job is kept constant for all moves in this neighborhood,
except where the new duration would conflict with time windows or precedence
constraints. In these cases, the start time is adjusted to ensure that those
constraints are satisfied. Also, the number of assigned employees is adjusted to
match the new requirements.

– Time Slot Change: Moves the job to a new position in the schedule. As before,
time windows and precedence constraints are respected by all possible moves.

– Resource change: Switches out a single assigned resource unit (workbench,
employee or device) by a different unit of the same type (and group, for equip-
ment).

– Resource Swap: Swaps a unit of a resource assigned to this job with a differ-
ent unit of the same type assigned to an overlapping job. A resource unit is
considered for a swap only if it is suitable for its new job.

While moves from the first three neighborhoods are theoretically sufficient
to reach an optimal solution from any schedule already satisfying time window
and precedence constraints, the addition of resource swaps adds more options in
situations where a single change would result in a prohibitively large number of
conflicts.

The second variant, called JobOpt completely removes a job from the sched-
ule and then finds all possible combinations of mode, time slot and resource as-
signments for that job. As before, time windows and precedence constraints are
respected, wherever possible.

However, in our experiments it turned out that the enormous number of po-
tential equipment assignments per job in some instances made this approach in-
feasible in practice. Instead, we employed a reduced version of the JobOpt neigh-
borhood, which keeps equipment assignments intact, combined with a Resource
Change neighborhood limited to equipment changes. This results in much more
manageable, but still potentially large neighborhood sizes. To further increase the
efficiency when the best move in the neighborhood is required, JobOpt utilizes
independencies between assigned resources to precompute and cache the effects of
assigning individual units to the job. In the rest of the article, ’JobOpt’ refers to
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this combination of neighborhoods (the reduced JobOpt procedure and Resource
Change limited to equipment).

5.2 Search heuristics

We have implemented three well-known metaheuristic search algorithms and adapted
them for the use in TLSP-S: Tabu search (TS), Min-Conflict (MC) and Simulated
Annealing (SA). These implementations are problem-agnostic and could also be
used for TLSP and related variants, as long as the employed neighborhoods are
adjusted to fit.

5.2.1 Tabu Search

Tabu search (Glover (1989)) is similar to hill climbing in that the best move from
the neighborhood is chosen at each step. However, it contains a mechanism to
escape from local optima in the form of a tabu list - a list of the last l applied
moves. These moves must not be used again unless doing so results in a solution
better than all solutions found so far.

This encourages the algorithm to explore new regions of the search space by
avoiding cycles shorter than l moves in length. On the other hand, too large values
for l can lead to scenarios where promising opportunities are not detected because
they are still tabu from when the heuristic was still exploring another part of the
search space.

5.2.2 Min-Conflict

The min-conflicts heuristic (Minton et al. (1992)) was originally developed to solve
constraint satisfaction problems (including scheduling applications). It works by
randomly selecting a variable appearing in at least one conflict (violated con-
straint) and choosing a value for it that minimizes the number of conflicts remain-
ing.

This strategy can be adapted as follows for TLSP(-S) and our solver framework:
Choose a job at random that violates at least one constraint, and pick a move from
the neighborhood involving the chosen job that minimizes constraint violations
(i.e. the best move).

Different selection strategies are possible, due to the distinction between hard
and soft constraints. We have experimented with three different variants of Min-
Conflict. The first selects jobs from among those violating hard constraints. Once
the solution is feasible, also soft constraint violations are considered. The second
variant considers both hard and soft constraint violations from the start. Finally,
the third variant chooses from all jobs, regardless of their presence in any kind of
constraint violation.

In our experiments, it turned out that the second and third variants were
virtually equivalent. This can be explained by soft constraints S3 (Number of
employees) and S5 (Project completion time), whose presence entails that most, if
not all, jobs are involved in at least one soft constraint violation4. Further, results

4 This is exacerbated in TLSP, where soft constraint S1 (Number of jobs) trivially involves
every single job in a soft constraint violation
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did not differ in any meaningful way between the first and either of the latter
variants.

For simplicity, and to avoid having to keep a running account of the jobs
involved in constraint violations, the experiments in Section 6 have been done
using variant three.

A weakness of MC is that it contains no mechanism to avoid repeating already
visited solutions and thus might get stuck where several adjacent configurations
for most or all jobs are locally optimal. A possible countermeasure is to inject
additional randomness into the solution procedure. In our framework, we have
included a random walk (RW) algorithm, that is called with a low probability at
each step instead of MC. It randomly selects a job and performs a random move
for the chosen job.

Also, the search automatically restarts from a new initial solution if no progress
has been achieved within a certain number of moves.

5.2.3 Simulated Annealing

Simulated Annealing is a search heuristic introduced by Kirkpatrick et al. (1983)
that is inspired by physical annealing processes in mechanical statistics. It has been
employed successfully to solve many NP-complete problems, including RCPSP
(e.g. Bouleimen and Lecocq (2003); Laurent et al. (2017)).

In SA, the search starts from a randomly generated solution. In each step, a
candidate move is chosen randomly from the available neighborhoods. The dif-
ference in objective value ∆ due to the chosen move is calculated. If ∆ < 0 (for
minimization problems), the move is applied. Otherwise, it is still accepted with
probability e−∆/T . Thus, the acceptance probability depends on ∆ (smaller values
have a larger probability to be accepted) and a parameter T called temperature
(higher values result in a larger acceptance probability). The temperature starts
at an initial value T 0 and is iteratively reduced after a certain number of steps,
until a minimum temperature Tmin is reached. At this point, the search stops.

Cooling is usually done by multiplying the current temperature by a cooling
factor α, with 0 < α < 1. We have evaluated two variants for the choice of α. In
the first variant, α is constant for the whole search. If Tmin is reached, the search
restarts, either from a new initial solution, or from the current solution, but with a
reset in temperature (reheating). In the second variant, α is dynamically adjusted
to the number of moves applied per second, such that Tmin is reached right at the
end of the available time (dynamic cooling).

A schedule for TLSP-S can contain both hard and soft constraint violations.
This has to be taken into account when calculating a value for ∆. In our imple-
mentation, we have weighted each hard constraint violation by a factor wH .

6 Experimental results

For the experiments, a set of thirty instances of different sizes were chosen (15
each from the General and LabStructure sets described in Section 4.2 - one of
each size, plus a second instance for the three smallest sizes). The instances and
some important properties are listed in Table 1.
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# Data Set ID |P | |J | h |E| |B| |G∗| |Ej | |Bj | |Ggj |

1 General 000 5 7 88 7 7 3 2.08 3.57 1.5
2 General 001 5 8 88 7 7 3 4.88 3.63 15.67
3 LabStructure 000 5 24 88 7 7 3 1.84 3.38 11.67
4 LabStructure 001 5 14 88 7 7 3 4.36 3.5 0.36
5 General 005 10 29 88 13 13 4 4.04 3.48 5.76
6 General 006 10 18 88 13 13 6 5.56 4.22 13.28
7 LabStructure 005 10 37 88 13 13 3 6.16 4.03 0.65
8 LabStructure 006 10 29 88 13 13 3 6.21 3.76 21.01
9 General 010 20 60 174 16 16 5 7.42 4.42 11.36

10 General 011 20 84 174 16 16 4 7.31 4.3 3.7
11 LabStructure 010 20 65 174 16 16 3 6.28 4.43 26.26
12 LabStructure 011 20 62 174 16 16 3 7.27 4.24 1.21
13 General 020 15 29 174 12 12 5 5.76 3.97 1.12
14 LabStructure 020 15 53 174 12 12 3 6.28 4.47 20.63
15 General 025 30 113 174 23 23 3 8.26 4.41 5.71
16 LabStructure 025 30 105 174 23 23 3 7.52 4.25 39.63
17 General 015 40 126 174 31 31 3 9.26 4.48 29.53
18 LabStructure 015 40 138 174 31 31 3 7.36 3.57 41.93
19 General 030 60 208 174 46 46 6 9.85 4.11 31.45
20 LabStructure 030 60 212 174 46 46 3 9.28 4.17 78.16
21 General 035 20 76 520 6 6 5 4.24 3.62 8.08
22 LabStructure 035 20 71 520 6 6 3 4.3 3.42 11.70
23 General 040 40 196 520 12 12 4 6.95 4.47 4.24
24 LabStructure 040 40 187 520 12 12 3 6.55 4.51 1.38
25 General 045 60 260 520 18 18 6 7.65 4.52 23.95
26 LabStructure 045 60 239 520 18 18 3 7.44 4.42 33.65
27 General 050 60 270 782 13 13 4 6.89 4.39 3.89
28 LabStructure 050 60 247 782 13 13 3 6.97 4.21 23.42
29 General 055 90 384 782 19 19 5 7.27 4.29 26.89
30 LabStructure 055 90 401 782 19 19 3 7.34 4.53 36.76

Table 1 The set of test instances used for the experiments. Shown are the data set the
instance is taken from and the ID within that set. The following columns list the number of
projects, jobs and the length of the scheduling period, followed by the number of employees,
workbenches and equipment groups. The last columns contain the mean qualified employees
and available workbenches per job, as well as the mean available devices per job and equipment
group (only over those jobs that actually require at least one device of the group, about 10%
of all jobs).

The algorithms described in Section 5 were implemented in Java 8. All experi-
ments were performed on a Lenovo ThinkPad University T480s with an Intel Core
i7-8550U (1,8 GHz), using a single thread and a timeout of ten minutes.

6.1 Parameter configuration and tuning

For parameter tuning, we used SMAC3 (Hutter et al. (2011)), version 0.10.0.
Tuning was performed on a set of 30 instances chosen in the same way as, but
distinct from, the test data set. In each case, we allocated a budget of 500 target
algorithm runs to SMAC.
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6.1.1 Tabu Search

Despite considerable effort to improve its efficiency, the JobOpt set of neighbor-
hoods remained too large to compute the best move for each job at each step,
in particular in combination with checking for tabu moves. Even the Simple set
of neighborhoods resulted in quite slow search progress and correspondingly bad
results, especially due to the large time windows of many jobs. For our final ex-
periments, we used a reduced version of the latter, Simple−, which only considers
time slots within 5 slots of the current assignment.

The initial solution is created using a greedy construction heuristic, which
iterates over the jobs in order of ascending deadline and assigns to each job the
currently best values. This helps to efficiently resolve ”easy” assignments already
in the initial solution and focus the main part of the search on areas where good
solutions are hard to find.

Regarding the choice of the length of the tabu list l, we used SMAC to find
appropriate candidates. There is one additional boolean parameter, TLrel. If set,
the actual length of the tabu list is scaled with the number of projects in the
instance. Table 2a shows the parameters and their domain, together with the best
configuration found.

6.1.2 Min-Conflict

For the Min-Conflict heuristic, the restriction to a single job at each step means
that both the Simple and the JobOpt neighborhoods can be explored in reasonable
time. Over various solver runs, both neighborhoods achieved comparable results
on the training set over several different configurations. For parameter tuning and
the final evaluations, we decided to use the JobOpt neighborhood.

While MC itself does not include any parameters, there are still several possi-
bilities for configuration. The parameters submitted to SMAC for tuning are listed
on Table 2b and include the following: The initial solution - parameter Init - can
either be generated with the same greedy algorithm employed for Tabu Search
(Greedy), or use random values for all assignments, respecting time windows, job
precedence and resource availability constraints (Random). Another parameter is
the maximum number of moves without improvement (MMWI ) before the search
restarts from a new initial solution. Finally, pRW denotes the probability at each
step that a single move of random walk is performed instead of the min-conflict
heuristic.

6.1.3 Simulated Annealing

During our experiments, we noted that both the number of feasible solutions found
and the overall solution quality increased with longer cooling cycles (and fewer
restarts or reheatings). For this reason, we used the dynamic cooling variant for
tuning and the final evaluations.

The remaining parameters to tune are the initial temperature T 0, the minimum
temperature Tmin and the weight factor for hard constraint violations wH . The
parameters for SMAC and tuning results are listed in Table 2c.
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Parameter Value range Best configuration

l {50 . . . 5000} 1283
TLrel {true, false} false

(a) Tabu Search

Parameter Value range Best configuration

Init {Random, Greedy} Greedy
MMWI {100 . . . 10000} 131
pRW {0, 0.05, 0.1, 0.2} 0.1

(b) Min-Conflict + Random Walk

Parameter Value range Best configuration

T 0 {10 . . . 100} 69
Tmin {0.001, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10} 0.1
wH {10, 20, 50, 100, 200} 10

(c) Simulated Annealing

Table 2 Tuning parameters for Tabu Search (a), Min-Conflict with Random Walk (b) and
Simulated Annealing (c). The last column lists the parameter values for the best configuration
found.

As for the Min-Conflict heuristic, we saw comparable results for both the Sim-
ple and JobOpt neighborhoods and opted to continue the experiments with the
JobOpt neighborhood.

6.2 Evaluation

Table 3 shows a comparison of results for Tabu Search (TS), Min-Conflict with
Random Walk (MC+RW) and Simulated Annealing (SA), with the configuration
described in the previous section. These results are compared to those of a Con-
straint Programming model (CP), written in MiniZinc (Nethercote et al. (2007))
and using the solver Chuffed (Chu (2011). Details for this CP model can be found
in Geibinger et al. (2019).

Due to their non-deterministic behavior, both MC+RW and SA were run 10
times on each instance, with different seeds for the (pseudo-) random number
generator. The table shows the best solution found over all runs, the number of
feasible solutions found, and the average penalty among all feasible solutions.

From these results, it can be seen that instances can be split into two groups:
For small instances with 20 projects or less (instances 1-14 and 21,22), good so-
lutions could be found in most cases. This was much more difficult for larger
instances with more than 20 projects.

TS was unable to find feasible solutions for most large instances and also
for a few small instances within the given time. Moreover, even where it does
find solutions without conflicts, the resulting penalty is often only slightly better
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# TS
MC+RW SA

CP
Best #Feas. Avg Best #Feas. Avg

1 98 98 10 98 98 10 98 98 *
2 75 73 10 73 73 10 73 73 *
3 152 149 10 149.3 152 10 156.4 149 *
4 116 105 10 105.3 105 10 105 105 *
5 305 285 10 286.9 287 10 300.1 283 *
6 174 162 10 162.4 177 10 192.2 162 *
7 386 327 10 331.7 307 10 307.4 307 *
8 361 314 10 323.5 310 10 312 310 *
9 714 625 10 648.8 501 10 502.7 501 *

10 721 725 10 751 564 10 565.3 892
11 1041 993 10 1049.9 874 10 879 856 *
12 - 749 10 768.9 663 10 668 713
13 388 340 10 341 352 10 352.1 340 *
14 483 450 10 457.9 422 10 425.7 420 *
15 - 1800 4 1841 1087 10 1090.6 1653
16 1426 1357 8 1429.8 1143 10 1155.2 1561
17 1418 1381 10 1410.9 1195 10 1234 1382
18 1772 1688 10 1760.7 1364 10 1375.3 1822
19 - 2675 6 2735.3 2277 10 2337 2650
20 - 2853 2 2898.5 2312 10 2360.6 2892
21 1053 908 10 1007.7 683 10 686.6 930
22 1160 1033 10 1079.7 767 10 771.9 839
23 - - 0 - 2393 6 2476.3 3531
24 - 2484 2 2664 1808 10 1852.5 2454
25 - - 0 - 2908 8 3050.9 3281
26 - - 0 - 2724 10 2805 3899
27 3356 3372 3 3405.7 2176 10 2191.3 3146
28 2820 2585 10 2617.2 2367 10 2375.8 2569
29 - 5334 2 5406.5 4208 9 4428.4 4548
30 - 6453 10 6646.8 4828 9 4896.8 5905

Table 3 Comparison of results. Min-conflict with random walk and Simulated Annealing were
both run 10 times each, with different seeds. Columns Best contain the best solution found,
#Feas. the number of feasible solutions found (out of 10) and Avg the average penalty over
all feasible solutions. Solutions for CP marked with ”*” are optimal for the instance.

than what was already achieved with the greedy construction heuristic. Results
for MC+RW are comparable, although feasible solutions were found for some
additional instances.

SA performed much better and found feasible solutions in more than 97% of
all runs. Also the solution quality is consistently better than with the other two
heuristics, except for some small instances.

The CP model could find feasible solutions for all of the instances already
within one minute. Within the full time limit, it could prove optimality for 12 of
the 16 small instances.

Compared to the results for SA, CP slightly outperforms SA on those instances
where it could find optimal solutions. However, SA produced better results for
every single other instance, sometimes by more than 30%.

The differences between the results for small and large instances indicates
that the number of projects (and thus jobs) is the main factor in determining
the difficulty of an instance. In contrast, neither the number of time slots in the
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#
SA

CP
Best #Feas. Avg

1 98 5 98 98 *
2 73 5 73 73 *
3 151 5 152.4 149 *
4 105 5 105.4 105 *
5 292 5 300.8 283 *
6 180 5 191 162 *
7 307 5 307 307 *
8 310 5 310.2 310 *
9 501 5 501 501 *

10 564 5 564.6 740
11 872 5 873.4 856 *
12 663 5 664.8 656 *
13 352 5 353.6 340 *
14 422 5 422.2 420 *
15 1086 5 1086.8 1647
16 1141 5 1142.2 1561
17 1195 5 1206 1284
18 1360 5 1361 1820
19 2196 5 2233 2650
20 2261 5 2284.6 2888
21 683 5 683.6 679 *
22 765 5 766.6 765 *
23 2200 5 2276 3487
24 1782 5 1799.4 2452
25 2598 5 2737.8 3278
26 2605 5 2633.4 3894
27 2155 5 2159.8 3130
28 2333 5 2341.2 2569
29 4038 5 4204.8 4539
30 4601 5 4636.6 5904

Table 4 Comparison of results with a timeout of one hour. Simulated Annealing was run 5
times per instance with different seeds. Column Best contains the best solution found, #Feas.
the number of feasible solutions found (out of 5) and Avg the average penalty over all feasible
solutions. Solutions for CP marked with ”*” are optimal for the instance.

scheduling period, nor the number of resources available for each job seem to have
a decisive impact on the difficulty of an instance.

6.2.1 Additional runtime

We also repeated our experiments with the same configuration for Simulated An-
nealing with a longer timeout of one hour. Table 4 shows the results of these
experiments, again compared with the results for the CP model (also with a time-
out of one hour).

With the increased time budget, feasible solutions could be found for all in-
stances. As with the shorter time limit, the solutions produced by SA for all
instances where CP could not find optimal solutions are better than those found
by CP, in some cases by more than 30%. In particular, this includes all large
instances.

For those small instances, where optimal solutions have been found, SA achieved
solutions with the same or very close penalties.
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Compared to the results with a shorter time limit, the penalty for large in-
stances (>20 projects) has improved by nearly 3.8% on average with SA. CP could
find optimal solutions for three of the four remaining small instances. However,
the results for large instances improved by less than 1% on average.

7 Conclusions

In this article, we have described the TLSP-S problem, which is a complex exten-
sion to existing RCPSP variants based on real-world requirements.

We have introduced a flexible framework for solving this problem, which sup-
ports several metaheuristic solvers and provides multiple options for configuration
and extensions. Using this framework, we have shown that Simulated Anneal-
ing can be used to provide high quality solutions, and outperforms a Constraint
Programming model using a state-of-the-art exact solver for larger and practical
instances both under strict time limits and with longer runtimes.

Regarding future work, we plan to investigate whether these results can also
be transferred to the TLSP, which combines TLSP-S with an additional grouping
stage. A promising direction of research also seems the combination of both local
search and CP-based approaches, in the form of hybrid algorithms or large neigh-
borhood search, to combine the advantages of both methods and further improve
the results for TLSP-S.
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