
The Test Laboratory Scheduling
Problem

Florian Mischek, Nysret Musliu

Christian Doppler Laboratory for Artificial Intelligence and
Optimization for Planning and Scheduling

TU Wien
Favoritenstraße 9-11, 1040 Vienna, Austria

November 29, 2018

This report introduces a real-world scheduling problem arising in an
industrial test laboratory. It is related to the well-known Resource Con-
straint Project Scheduling Problem (RCPSP), which it extends by several
additional constraints and objectives, as well as a novel form of grouping
smaller activities to larger units to reduce operational overheads. In addi-
tion to a formal definition of the problem, the report includes a description
of an instance generator which can be used to create random instances
based on real-world data for this problem. Two such generated instance
sets with different characteristics are provided.

1 Introduction

Project scheduling problems arise naturally in many different contexts, including in-
dustrial production and manufacturing processes, construction work, software devel-
opment and many more. All those areas have in common that activities have to be
scheduled and have resources assigned to them subject to various different constraints.
Since such problems can become quite complex and practical instances are often very
large, automated solution approaches are essential for providing high quality solutions.

This report describes a real-world scheduling problem that arises in a test laboratory
of a large industrial company. In the Test Laboratory Scheduling Problem (TLSP),
a large number of tasks (tests) have to be scheduled over a long time period, subject
to resource availability constraints, time windows, precedence relations between tasks

1

and several other side constraints. However, instead of directly scheduling those tasks,
they are first grouped into larger units, called jobs. Only the jobs themselves have
times and resources assigned to them and derive their properties from the contained
tasks.

There are several advantages to be gained from such a grouping: It reduces overhead
due to multiple context switches, instead focusing on long, uninterrupted work on
similar activities. In the same vein, TLSP features setup times required for building
up test assemblies for each test. These can be reused between similar tests if they
are performed using the same resources. This can easily be modeled by adding the
required time at the beginning of each job. The duration of tasks can vary between
several minutes and multiple weeks. Grouping shorter tasks into longer units allows
for coarser time units in scheduling, without incurring prohibitive overheads due to
rounding durations. Further, it improves flexibility because tests within a job can
easily be switched around without generating any scheduling conflicts. Finally, the
reduced number of jobs compared to the total number of tasks makes the schedule more
comprehensible for humans, both those scheduled to perform the tests and any human
planners in cases where manual corrections or semi-automatic, interactive scheduling
is desired.

TLSP is related to the well-known Resource Constrained Project Scheduling Prob-
lem (RCPSP), and several of its extensions, including multiple modes (MRCPSP),
release dates and deadlines, heterogeneous resources and others. For an overview of
related literature on RCPSP and its extensions, we refer to surveys by Brucker et al. [3],
Hartmann and Briskorn [4], or Mika et al. [7].

Of particular relevance for the scheduling part of TLSP is the Multi-Skill Project
Scheduling Problem (MSPSP), introduced by Bellenguez and Néron [2]. MSPSP also
features resource availability constraints, which are modeled as skills possessed by
resources and required for activities. Young et al. [10] have achieved very good results
for MSPSP using a constraint programming approach.

Bartels and Zimmermann [1] describe a scheduling problem in a related context,
where tests for experimental vehicles are scheduled. It includes several aspects that
are also present in TLSP, although it has a different resource model and a completely
unrelated objective (i.e. minimizing the number of test vehicles built).

Concepts similar to the grouping aspect of TLSP are found in other works in the
form of batching (e.g. [9, 8]) or schedule-dependent setup times (e.g. [5, 6]), although
it is usually handled implicitly, i.e. the batches arise from the finished schedule, instead
of the other way round.

The rest of the report is structured as follows: A summary of the problem is pre-
sented in Section 2, followed by a description of the input parameters of a problem
instance in Section 3. Section 4 describes the concept of jobs and introduces notation
for the properties of jobs derived from the tasks contained in them. The constraints and
objective function of TLSP are formally defined in Section 5. Section 6 lists different
usage scenarios relevant in practice, together with their non-functional requirements.
In the last part of the report, an instance generator to randomly generate instances
based on real-world data is described in Section 7, with two such datasets given in
Section 8.

2

2 Problem description

In TLSP, a list of projects is given, which each contain several tasks. For each project,
the tasks must be partitioned into a set of jobs, with some restrictions on the feasible
partitions. Then, those jobs must each be assigned a mode, time slots and resources.
The properties and feasible assignments for each job are calculated from the tasks
contained within.

A solution of TLSP is a schedule consisting of the following parts:

• A list of jobs, composed of one or multiple similar tasks within the same project.

• For each job, an assigned mode, start and end time slots, the employees scheduled
to work on the job, and an assignment to a workbbench and equipment.

The quality of a schedule is judged according to an objective function that is the
weighted sum of several soft constraints and should be minimized. Among others,
these include the number of jobs and the total completion time (start of the first job
until end of the last) of each project.

3 Input parameters

A TLSP instance can be split into three parts: The laboratory environment, including
a list of resources, a list of projects containing the tasks that should be scheduled
together with their properties and the current state of the existing schedule, which
might be partially or completely empty.

3.1 Environment

In the laboratory, resources of different kinds are available that are required to perform
tasks:

• Employees e ∈ E = {1, . . . , |E|} who are qualified for different types of tasks.

• A number of workbenches b ∈ B = {1, . . . , |B|} with different facilities. (These
are comparable to machines in shop scheduling problems.)

• Various auxiliary lab equipment groups Gg = {1, . . . , |Gg|}, where g is the group
index. These each represent a set of similar devices. The set of all equipment
groups is called G∗.

The scheduling period is composed of time slots t ∈ T = {0, . . . , |T |−1}. Each time
slot represents half a day of work.

Tasks are performed in one of several modes labeled m ∈ M = {1, . . . , |M |}. The
chosen mode influences the following properties of tasks performed under it:

• The speed factor vm, which will be applied to the task’s original duration.

• The number of required employees em.

3

3.2 Projects and Tasks

Given is a set P of projects labeled p ∈ {1, . . . , |P |}. Each project contains tasks pa ∈
Ap, with a ∈ {1, . . . , |Ap|}. The set of all tasks (over all projects) is A∗ =

⋃
p∈P Ap.

Each task pa has several properties:

• It has a release date αpa and both a due date ω̄pa and a deadline ωpa. The
difference between the latter is that a due date violation only results in a penalty
to the solution quality, while deadlines must be observed.

• Mpa ⊆M is the set of available modes for the task.

• The task’s duration dpa (in time slots, real-valued). Under any given mode
m ∈Mpa, this duration becomes dpam := dpa ∗ vm.

• Most tasks must be performed on a workbench. This is indicated by the boolean
parameter bpa ∈ {0, 1}. If required, this workbench must be chosen from the set
of available workbenches Bpa ⊆ B.

• Similarly, it requires qualified employees chosen from Epa ⊆ E. The required
number depends on the mode. A further subset EPr

pa ⊆ Epa is the set of preferred
employees.

• Of each equipment group g ∈ G∗, the task requires rpag devices, which must be
taken from the set of available devices Gpag ⊆ Gg.

• A list of direct predecessors Ppa ⊆ Ap, which must be completed before the task
can start. Note that precedence constraints can only exist between tasks in the
same project.

Each project’s tasks are partitioned into families Fpf ⊆ Ap, where f is the family’s
index. For a given task pa, fpa gives the task’s family. Only tasks from the same
family can be grouped into a single job.

Additionally, each family f is associated with a certain setup time spf , which is
added to the duration of each job containing tasks of that family.

Finally, it may be required that certain tasks are performed by the same em-
ployee(s)1. For this reason, each project p may define linked tasks, which must be
assigned the same employee(s). Linked tasks are given by the equivalence relation
Lp ⊆ Ap ×Ap, where two tasks pa and pb are linked if and only if (pa, pb) ∈ Lp.

3.3 Initial schedule

All problem instances include an initial (or base) schedule, which may be completely
or partially empty. This schedule can act both as an initial solution and as a baseline,
placing limits on the schedules of employees and tasks, in particular by defining fixed
assignments that must not be changed.

1This is used most notably to ensure that documentation is prepared by those employees who also
did the tests.

4

Provided is a set of jobs J0, where each job j ∈ J0 contains the following assign-
ments:

• The tasks in the job: Ȧj

– A fixed subset of these tasks ȦF
j ⊆ Ȧj . All fixed tasks of a job in the base

schedule must also appear together in a single job in the solution.

• The mode assigned to the job: ṁj

• The start and completion times of the job: ṫsj resp. ṫcj

• The resources assigned to the job:

– Workbench: ḃj

– Employees: Ėj

– Equipment: Ġgj for equipment group g

Except for the tasks, each individual assignment may or may not be present in any
given job. Fixed tasks are assumed to be empty, if not given. In all other cases, missing
assignments will be referred to using the value ε. Time slots and employees can only
be assigned if also a mode assignment is given.

A subset of these jobs are the started jobs J0S . A started job js ∈ J0S must fulfill
the following conditions:

• It must contain at least one fixed task. It is assumed that the fixed tasks of a
started job are currently being worked on.

• Its start time must be 0.

• It must contain resource assignments fulfilling all requirements.

A started job’s duration does not include a setup time. In the solution, the job
containing the fixed tasks of a started job must also start at time 0. Usually, the
resources available to the fixed tasks of a started job are additionally restricted to those
assigned to the job, to avoid interruptions of ongoing work in case of a rescheduling.

4 Jobs and Grouping

For various operational reasons, tasks are not scheduled directly. Instead, they are
first grouped into larger units called jobs.

A single job can only contain tasks from the same project and family.
Jobs have many of the same properties as tasks, which are computed from the tasks

that make up a job. The general principle is that within a job, tasks are not explicitly
ordered or scheduled; therefore the job must fulfill all requirements of each associated
task during its whole duration2.

2while this might seem overly restrictive, tasks of the same family usually have equivalent or very
similar requirements in practice

5

Let J = {1, . . . , |J |} be the set of all jobs in a solution and Jp ⊆ J be the set of jobs

of a given project p. Then for a job j ∈ J , the set of tasks contained in j is Ȧj . j has
the following properties:

p̃j and f̃j

are the project and family of j.

α̃j := max
pa∈Ȧj

αpa, ˜̄ωj := min
pa∈Ȧj

ω̄pa, ω̃j := min
pa∈Ȧj

ωpa

are the release date, due date and deadline of j, respectively.

M̃j :=
⋂

pa∈Ȧj

Mpa

is the set of available modes.

d̃jm :=
⌈
(spjfj +

∑
pa∈Ȧj

dpa) ∗ vm
⌉

is the (integer) duration of the job under mode m. The additional setup time is added
to the total duration of the contained tasks.

b̃j := max
pa∈Ȧj

bpa

is the required number of workbenches (b̃j ∈ {0, 1}).

B̃j :=
⋂

pa∈Ȧj

Bpa

are the available workbenches for j.

Ẽj :=
⋂

pa∈Ȧj

Epa

are the employees qualified for j.

ẼPr
j :=

⋂
pa∈Ȧj

EPr
pa

are the preferred employees of j.

r̃jg := max
pa∈Ȧj

rpag

are the required units of equipment group g.

G̃jg :=
⋂

pa∈Ȧj

Gpag

are the available devices for equipment group g.

P̃j := {k ∈ J \ {j} : ∃pa ∈ Ȧj , pb ∈ Ȧk s.t. pb ∈ Ppa}
is the set of predecessor jobs of j. Finally,

L̃p := {(j, k) ∈ J × J : j 6= k ∧ ∃pa ∈ Ȧj , pb ∈ Ȧk s.t. (pa, pb) ∈ Lp}

6

defines the linked jobs in project p.

In addition, a solution contains the following assignments for each job:

• ṫsj ∈ T the scheduled start time slot

• ṫcj ∈ T the scheduled completion time

• ṁj ∈M the mode in which the job should be performed

• ḃj ∈ B the workbench assigned to the job (ε if no workbench is required)

• Ėj ⊆ E the set of employees assigned to the job

• Ġjg ⊆ Gg the set of assigned devices from equipment group g

5 Constraints

A solution is evaluated in terms of constraints that it should fulfill. Hard constraints
must all be satisfied in any feasible schedule, while the number and degree of violations
of soft constraints in a solution give a measure for its quality.

For the purpose of modeling, we introduce additional notation: The set of active
jobs at time t is defined as Jt := {j ∈ J : ṫsj ≤ t ∧ ṫcj > t}.

5.1 Hard Constraints

H1: Job assignment Each task must be assigned to exactly one job.

∀p ∈ P, pa ∈ Ap :

∃!j ∈ J s.t. pa ∈ Ȧj

H2: Job grouping All tasks contained in a job must be from the same project and
family.

∀j ∈ J, pa ∈ Ȧj :

p = p̃j

fpa = f̃j

H3: Fixed tasks Each group of tasks assigned to a fixed job in the base schedule must
also be assigned to a single job in the solution.

∀j0 ∈ J0 :

∃j ∈ J s.t. ȦF
j0 ⊆ Ȧj

7

H4: Job duration The interval between start and completion of a job must match the
job’s duration.

∀j ∈ J :

ṫcj − ṫsj = d̃jṁj

H5: Time Window Each job must lie completely within the time window from the
release date to the deadline.

∀j ∈ J :

ṫsj ≥ α̃j

ṫcj ≤ ω̃j

H6: Task precedence A job can start only after all prerequisite jobs have been com-
pleted.

∀j ∈ J, k ∈ P̃j :

ṫck ≤ ṫsj

H7: Started jobs A job containing fixed tasks of a started job in the base schedule
must start at time 0.

∀j ∈ J, js ∈ J0S :

tFjs = 1 ∧ ȦF
js ⊆ Ȧj =⇒ ṫsj = 0

H8: Single assignment At any one time, each workbench, employee and device can
be assigned to at most one job.

∀b ∈ B, t ∈ T :

|{j ∈ Jt : ḃj = b}| ≤ 1

∀e ∈ E, t ∈ T :

|{j ∈ Jt : e ∈ Ėj}| ≤ 1

∀g ∈ G∗, d ∈ Gg, t ∈ T :

|{j ∈ Jt : d ∈ Ġjg}| ≤ 1

H9a: Workbench requirements Each job requiring a workbench must have a work-
bench assigned.

∀j ∈ J :

ḃj = ε ⇐⇒ b̃j = 0

8

H9b: Employee requirements Each job must have enough employees assigned to cover
the demand given by the selected mode.

∀j ∈ J :

|Ėj | = eṁj

H9c: Equipment requirements Each job must have enough devices of each equipment
group assigned to cover the demand for that group.

∀j ∈ J, g ∈ G∗ :

|Ġjg| = r̃jg

H10a: Workbench suitability The workbench assigned to a job must be suitable for
all tasks contained in it.

∀j ∈ J :

ḃj = ε ∨ ḃj ∈ B̃j

H10b: Employee qualification All employees assigned to a job must be qualified for
all tasks contained in it.

∀j ∈ J :

Ėj ⊆ Ẽj

H10c: Equipment availability The devices assigned to a job must be taken from the
set of available devices for each group.

∀j ∈ J, g ∈ G∗ :

Ġjg ⊆ G̃jg

H11: Linked jobs Linked jobs must be assigned exactly the same employees.

∀p ∈ P, (j, k) ∈ L̃p :

Ėj = Ėk

5.2 Soft Constraints

The following constraints can be used to evaluate the quality of a feasible solution.
They arise from the business requirements of our industrial partner.

Each soft constraint violation induces a penalty on the solution quality, denoted as
Ci, where i is the soft constraint violated.

S1: Number of jobs The number of jobs should be minimized.

CS1 := |J |

9

S2: Employee project preferences The employees assigned to a job should be taken
from the set of preferred employees.

∀j ∈ J :

CS2
j := |{e ∈ Ėj : e /∈ ẼPr

j }|

S3: Number of employees The number of employees assigned to each project should
be minimized.

∀p ∈ P :

CS3
p := |

⋃
j∈Jp

Ėj |

S4: Due date The internal due date for each job should be observed.

∀j ∈ J :

CS4
j := max(ṫcj − ˜̄ωj , 0)

S5: Project completion time The total completion time (start of the first test to end
of the last) of each project should be minimized.

∀p ∈ P :

CS5
p := max

j∈Jp

ṫcj − min
j∈Jp

ṫsj

Constraint S1 favors fewer, longer jobs over more fragmented solutions. This helps
reducing overhead (fewer setup periods necessary, rounding of fractional durations),
but even more important, it reduces the complexity of the final schedule, both for the
employees performing the actual tasks and any human planners in those cases where
manual corrections or additions become necessary.

Constraint S2 allows defining ”auxiliary” employees, which should only be used if
necessary. Typically, these employees usually have other duties, but also possess the
required qualifications to perform (some) tasks in the laboratory.

Constraints S3 and S5 reduce overheads by reducing the need for communication
(both internal and external), (re-)familiarization with project-specific test procedures
and storage space.

Constraint S4 makes the schedule more robust by encouraging tasks to be completed
earlier than absolutely required, so they can still be finished on time in case of delays
or other disturbances.

The overall solution quality will be determined as the weighted sum over all soft
constraint violations.

The relative importance of these constraints (i.e. their weights) still needs to be
defined and may be adjusted according to the current situation. For preliminary
evaluations, we have assumed a uniform weight of 1 for all soft constraints.

10

6 Usage Scenarios

In the daily lab operation, three usage scenarios can be identified, with slightly different
assumptions on the input (in particular the initial schedule) and requirements. TLSP
is flexible enough to cover all three of those scenarios without additional changes.
However, solution approaches might have to be adapted according to the additional
restrictions and non-functional requirements of each usage scenario.

6.1 Full Scheduling

Here, the goal is to find a good (/optimal) schedule for all currently known projects,
starting either from an empty schedule or a complete base schedule, which is usually,
but not necessarily, already feasible. All hard constraints have to be respected, but
other than that, the solver is free to regroup tasks and reschedule jobs of all projects.

It is expected that the solution process will be able to run during off hours, e.g.
over night or on weekends and thus solution times are not critical (several hours, up
to several days).

This scenario is meant to build an initial schedule or reoptimize a schedule after
disruptions and subsequent repairs performed in one of the other scenario.

6.2 Project Insertion

For this scenario, the task is to insert a new project into the schedule, minimizing dis-
ruptions for existing projects. Thus, the initial schedule will be complete and feasible,
except for one single project designated as new, which is not scheduled at all.

In contrast to the Full Scheduling scenario, solutions should be available within a
few minutes at the most, as the feasibility of a project must be decided quickly and
during the working day. However, suboptimal solutions can be accepted, if this enables
additional projects to be fit into the schedule.

6.3 Modification & Repair

Finally, it regularly happens that already scheduled projects are modified before or
during their execution. Additional tests might be added or existing ones removed
and parameters of tests (in particular time and resource requirements) can change.
Therefore, the initial schedule will be complete, though not necessarily feasible for the
given environment and project data.

The focus of this mode is to retain or restore feasibility of the schedule under the
modified conditions. In particular for the case of disruptions arising during the execu-
tion of a project (lateness due to unforeseen complications or errors, employee illness,
...), it is crucial to repair the schedule with minimal effect on the timeliness of the
current and other projects.

Any problems should be corrected as fast as possible (few seconds), to minimize
disruptions to the operation of the lab.

At least the following modifications should be supported by the solution procedure:

11

• Adding tasks to a project.

• Changing the properties (e.g. duration, resource requirements, precedence, ...)
of a number of tasks

• Adding or removing resources, globally or restricted to a certain time period.

• Fixing the tasks or assignments of a job to its current, or different values.

The type of modification is given as additional input to allow for specialized solution
approaches. The weights of the soft constraints are chosen to set a clear focus on
ensuring or restoring feasibility of the schedule, especially for the beginning of the
scheduling period.

7 Instance generator

In order to be able to generate instances of specific size and complexity on demand, we
developed an instance generator for TLSP. It randomly generates instances of various
sizes that are based on the real-world data in the laboratory of our industrial partner
and can be configured to produce instances of various sizes and properties, including
the usage scenarios of Full Scheduling and Project Insertion3 The generator was written
in Java.

To generate a new instance, one has to specify the number of expected projects and
the length of the scheduling period, plus optionally various configuration parameters
that refine the desired properties of the instance. From this, an instance is generated as
follows: First, the laboratory environment, including the available resources, is defined
according to the desired number of projects and the length of the scheduling period.
Then, the required number of projects is generated, together with a set of jobs for
each project. This is used to populate the reference solution, which is guaranteed to
be a feasible solution for the final problem instance. In the third step, task properties
(resource requirements and availabilities, precedence constraints, time windows, ...)
are defined in accordance with the reference schedule. Finally, the reference solution
is modified to receive the base schedule, which completes the instance generation.

7.1 Environment generation

From the number of projects given (together with their average total work) and the
length of the scheduling period, a measure for the expected workload per time slot can
be extracted. The number of employees and workbenches required to achieve a certain
mean degree of utilization can be estimated from this measure.

Equipment is generated by a separate component, which can be passed to the in-
stance generator. This component also handles equipment requirements of tasks in
Step 7.2. Currently supported are two different implementations:

3Support for Rescheduling will be added at a later date

12

Mode vm em

Single 1 1
Shift 0.6 2

External 1 0

Table 1: Task modes used by the instance generator.

Lab equivalent mode generates devices for exactly those equipment groups that are relevant
for planning at our industrial partner. The equipment requirements for tasks
also closely corresponds to the distribution of requirements in the real-world
laboratory.

General mode is more flexible and creates between 3 and 6 equipment groups, together
with corresponding devices. Equipment requirements for each groups are selected
to be either unitary (i.e. tasks require at most device of this group) or randomly
generated for each project.

In both cases, the number of devices in each group depends on the same measure for
workload as for the employees and workbenches, modified by the expected number of
required devices per task.

In this step, also the task modes shown in Table 1 are generated.

7.2 Reference solution

Each project is assigned a certain total workload, which is taken from a distribution
that is as close as possible to the real-world data. It is also assigned to a random
interval of the scheduling period, where earlier intervals are slightly favored over later
ones. Then a number of tasks are created, still without a duration. In general, the
expected number of tasks grows with the project’s workload. These tasks are then
distributed into families and further into jobs. The families can either be taken from
the real-world data or generated randomly, depending on the generator configuration.

Each generated job is then randomly assigned a preliminary duration (taken from
the total workload of the project), a mode (with only a small probability for External
mode), and equipment requirements according to the chosen equipment generation
mode (see Step 7.1). Most jobs will also be set to require a workbench.

Once these parameters are determined, the job is placed into the reference schedule.
This is done by first randomly choosing a seed point within the project’s assigned
interval. Starting at this point, the job is grown outward in both directions as long as
any feasible resource assignment for it exists or until the desired duration is reached. If
no feasible placement at the whole duration can be found, the position is still accepted
as long as the duration is not much smaller than expected. Where this is not the case
or no resource assignment exists even for the initial seed, the procedure is repeated
for another random seed point, up to a certain maximum number of iterations. While

13

this process cannot guarantee that a feasible schedule can be found, experiments so
far have shown that this is sufficient in most cases.

Once a job is scheduled, it is assigned a feasible set of resources. Its final duration
is split between its tasks, minus the setup time required for its family.

To model started jobs, the scheduling period is extended to the past by one month
(about 40 time slots) in the beginning of this step. After all jobs have been scheduled,
the scheduling period is reduced to its original duration. Jobs ending before the new
first time slot are removed completely, including their contained tasks – it is assumed
that those have been completed before the start of the scheduling period. Those
overlapping the first time slot have their duration reduced accordingly (potentially
including removing some of the contained tasks) and are defined as started jobs.

7.3 Task properties

After the reference schedule has been completed, the remaining properties of the tasks
are finalized.

Release dates, deadlines and due dates for tasks of a project are set to the first start,
respectively last end, of any job in the project. They are then extended outwards by
an additional number of time slots (minimum of 0), which is usually smaller for the
due date than for the deadline.

The available resources are set for each job (and all contained tasks) such that they
include at least the assigned resources. The number of available resources is taken from
the real-world data for employees (including preferred employees) and workbenches,
and handled by the chosen equipment generation mode for equipment. A small subset
of tasks may also have additional available resources beyond those of the other tasks
in the job.

The available task modes are chosen such that tasks of a job with the External mode
in the reference schedule must be performed in this mode, while all other tasks can
be performed in Single mode, plus optionally in Shift mode. The latter is always the
case if the task’s job has Shift mode in the reference schedule.

Started jobs will always have their time window, available resources and modes set
to exactly those values that they are assigned to, to ensure that they cannot be altered
by the solver.

The generation of precedence constraints is again delegated to a separate component,
which can be set in the configuration. Two implementations are currently supported,
both start by building a maximum graph of possible dependencies according to the
reference schedule for each project:

Ranked precedence constraints assign ranks to a subset of tasks such that tasks of higher
rank have all tasks of lower rank as prerequisites.

General precedence constraints randomly choose arcs in the maximum dependency graph
that will result in actual dependencies between tasks.

In both cases, the number of precedence constraints between tasks is rather low and
most tasks don’t have any prerequisite tasks at all. This circumstance is directly

14

taken from the real-world data, where only few dependencies between tasks appear
and contrasts with other project scheduling problems that include tighter constraints
on the order of activities.

Finally, possible candidates for linked tasks are identified, both within and between
jobs, and a small subset of those is chosen randomly.

7.4 Base schedule

The last step in the instance generation process is the derivation of a base schedule
from the reference solution.

Again, there are several supported options for this, which the generator can be
configured to use. Currently, there are two main implementations supported:

Delete mode Removes some assignments of the jobs in the reference schedule, but leaves the
remaining assignments intact.

Random mode Replaces assignments of the jobs in the reference schedule by random values.
Resource availability constraints and time windows are respected, but other con-
straints may be violated by these changes.

Either mode has a parameter that defines the strength of the perturbation (given as the
percentage of jobs affected). Further, various flags can modify the behavior, including
keeping certain types of assignments intact (e.g. the grouping of tasks into jobs).

Any perturbations do not affect started jobs as well as a number of jobs selected
as fixed, which have their tasks fixed and either all or some assignments fixed to the
current value by restricting the time window, available resources and/or modes to their
assigned values.

This step also includes an option to specify the new project in the Project Insertion
usage scenario. This project will have all its jobs (though not the contained tasks)
removed from the initial schedule.

8 Data sets

Using the instance generator described above, we provide randomized datasets of vari-
ous sizes that can be used to evaluate solution approaches for different usage scenarios.

Currently, there are two different datasets, which are intended for the Full Scheduling
scenario. In both cases, the base schedule of all instances contains jobs providing a
grouping for all tasks in the instance, but no other assignments except for started and
fixed jobs. Feasible solutions using the provided job grouping are guaranteed to exist,
although they might not be optimal.

The first dataset (LabStructure) is modeled as closely as possible to the real-world
data. The second (General) uses the same distribution of work among the projects
and tasks, but is more flexible regarding several other problem features. The instance
generator configurations used to create these two datasets are listed in Table 2.

15

Parameter LabStructure General

Scenario Full Scheduling Full Scheduling
Equipment Lab equivalent General

Task families Lab equivalent General
Precedence Ranked General

Base schedule mode Delete Delete
Base schedule perturbation 1.0 1.0

Base schedule options Grouping constant Grouping constant

Table 2: Instance generator configuration parameters for the two provided datasets.

Instances |T | |P |
000 - 004 88 5
005 - 009 88 10
010 - 014 174 20
015 - 019 174 40
020 - 024 174 15
025 - 029 174 30
030 - 034 174 60
035 - 039 520 20
040 - 044 520 40
045 - 049 520 60
050 - 054 782 60
055 - 059 782 90

Table 3: Instances and their properties (identical for both data sets)

Each dataset contains 60 instances of varying sizes. Each instance consists of the
following four files, where <i>, <h> and <p> stand for the instance id, number of time
slots in the scheduling period and number of projects, respectively:

• <i>_<h>_<p>_environment.xml contains environment data (see Section 3.1).

• <i>_<h>_<p>_tasks.xml contains the list of projects and tasks (see Section 3.2).

• <i>_<h>_<p>_schedule.xml contains the initial schedule (see Section 3.3).

• <i>_<h>_<p>_reference.xml contains the reference solution produced by the
instance generator (see Section 7.2).

Table 3 shows the instances, together with their sizes. Both instance sets are pro-
vided for download at https://www.dbai.tuwien.ac.at/staff/fmischek/TLS.

16

Acknowledgments

The financial support by the Austrian Federal Ministry for Digital and Economic
Affairs and the National Foundation for Research, Technology and Development is
gratefully acknowledged.

References

[1] J.-H. Bartels and J. Zimmermann. Scheduling tests in automotive r&d projects.
European Journal of Operational Research, 193(3):805 – 819, 2009.

[2] Odile Bellenguez and Emmanuel Néron. Lower bounds for the multi-skill project
scheduling problem with hierarchical levels of skills. In Edmund Burke and
Michael Trick, editors, Practice and Theory of Automated Timetabling V, pages
229–243, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[3] Peter Brucker, Andreas Drexl, Rolf Möhring, Klaus Neumann, and Erwin Pesch.
Resource-constrained project scheduling: Notation, classification, models, and
methods. European Journal of Operational Research, 112(1):3 – 41, 1999.

[4] Sönke Hartmann and Dirk Briskorn. A survey of variants and extensions of the
resource-constrained project scheduling problem. European Journal of Operational
Research, 207(1):1 – 14, 2010.

[5] Marek Mika, Grzegorz Waligóra, and Jan Wȩglarz. Modelling setup times in
project scheduling. Perspectives in modern project scheduling, pages 131–163,
2006.

[6] Marek Mika, Grzegorz Waligóra, and Jan Wȩglarz. Tabu search for multi-mode
resource-constrained project scheduling with schedule-dependent setup times. Eu-
ropean Journal of Operational Research, 187(3):1238 – 1250, 2008.

[7] Marek Mika, Grzegorz Waligóra, and Jan Wȩglarz. Overview and state of the art.
In Christoph Schwindt and Jürgen Zimmermann, editors, Handbook on Project
Management and Scheduling Vol.1, pages 445–490. Springer International Pub-
lishing, Cham, 2015.

[8] Chris N. Potts and Mikhail Y. Kovalyov. Scheduling with batching: A review.
European Journal of Operational Research, 120(2):228 – 249, 2000.

[9] Christoph Schwindt and Norbert Trautmann. Batch scheduling in process indus-
tries: an application of resource–constrained project scheduling. OR-Spektrum,
22(4):501–524, 2000.

[10] Kenneth D. Young, Thibaut Feydy, and Andreas Schutt. Constraint programming
applied to the multi-skill project scheduling problem. In J. Christopher Beck,
editor, Principles and Practice of Constraint Programming, pages 308–317, Cham,
2017. Springer International Publishing.

17

