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Abstract
Although propositional model counting (#SAT) was long considered too hard to be practical,
today’s highly efficient solvers facilitate applications in probabilistic reasoning, reliability estimation,
quantitative design space exploration, and more. The current trend of solvers growing more capable
every year is likely to continue as a diverse range of algorithms are explored in the field. However,
to establish model counters as reliable tools like SAT-solvers, correctness is as critical as speed.

As in the nature of complex systems, bugs emerge as soon as the tools are widely used. To
identify and avoid bugs, explain decisions, and provide trustworthy results, we need verifiable results.
In this paper, we propose a novel system for certifying model counts. We show how proof traces can
be generated efficiently for exact model counters based on dynamic programming, counting CDCL
with component caching, as well as knowledge compilation to Decision-DNNF. These approaches are
the most widely used techniques in exact implementations. Furthermore, we provide proof-of-concept
software for emitting proofs from model counters and a parallel trace checker. Based on this, we
show the feasibility of using certified model counting in an empirical experiment.
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1 Introduction

Propositional model counting, also known as #SAT, asks to output the number of satisfy-
ing assignments of a propositional formula. The problem is canonical for the complexity
class #P [54, 46, 1] and by consequence of Toda’s theorem [53] a polynomial-time machine
can solve with a single call to a #SAT oracle any problem in the Polynomial Hierarchy.
While #SAT was long considered impractical, the field has seen considerable advances in
recent years and highly efficient solvers emerged, capable of solving larger problems each
year [8, 41, 37, 38, 49, 17, 21]. The applications of these solvers are vast. In artificial
intelligence and reasoning, model counting is key when using logic-based reasoning for sym-
bolic quantitative tasks [13, 3]. Model counters are becoming a standard tool for answering
quantitative queries on propositional theories, in domains like configuration analysis [51],
probabilistic reasoning [1, 39], explainable artificial intelligence [50, 2], or risk analysis [56, 18].

In fields such as explainability, risk analysis, or verification, we need to be able to trust
the output of a model counter. Similar to SAT solvers, model counters are highly efficient,
but complex software systems making it hard to trust their outputs. As in any complex
system [25], subtle implementation errors may easily remain undiscovered. In fact, in the
course of this research, we spotted such an error in the model counter sharpSAT [52], which
also serves as a basis for several other implementations, like Ganak [49] and Dsharp [40]:
If preprocessing is disabled, the solver does not propagate unit clauses present in the input
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23:2 Proofs for Propositional Model Counting

formula. In some cases, this leads to illegal assignments to their variables and wrong model
counts. This highlights that even a widely used solver can hide implementation errors,
especially in lesser-used code paths.

I Example 1 (Spotted Bug in sharpSAT). Consider a formula consisting of two unit clauses
F = (a) ∧ (b). It is easy to see that this formula has exactly one model. However, without
preprocessing, sharpSAT produces a model count of 4. Since input unit clauses are not
propagated, a and b are considered unconstrained during component analysis.

Since verifying entire complex solvers, which are constantly enhanced by algorithmic
innovations, is currently effectively impossible, researchers came up with a way to certify
outputs from SAT solvers [4, 5, 33]. The idea is simple but extremely effective. The solver
emits a trace during solving in a specific proof system focusing on simple constructs. In that
way, decisions made by a solver can be externally verified. The tool to prove correctness of
the trace can itself be fully verified and remains stable – even if the solver changes. While
one might not be able to verify all techniques in the solver, one can ensure that every step
is correct by verifying simple mathematical properties on the trace. This led to incredible
stability improvements in the solvers, in particular for complex parts such as inprocessing [33].
However, propositional proof systems are tailored towards unsatisfiability [9] and there is no
obvious way to encode a count in a sequence of existing clausal proofs [28], as enumerating
models quickly becomes infeasible. So far no generic proof system for model counting exists.

In model counting, we are interested in properties that are between satisfiability and
equivalence of the formulas. Mathematical combinatorics and number theory already provides
us with basic tools to establish counting proofs [29]. One possible principle is double-counting,
which checks whether two different approaches return the same answer. However, while the
diversity of algorithms for model counting makes correlated errors in two different solvers
less likely, there may still be a common conceptual error. In addition, double-counting limits
us to instances for which more than one solver returns a count. Another classical principle is
to establish a proof by bijection. Two sets are shown to have the same number of members
by exhibiting a bijection, i.e., a one-to-one correspondence, between them. We employ the
principle of proofs by bijection and establish a system that is tailored to practical model
counting. To this end, we formalize systematic search space splitting, which is a common
technique in model counting, and employ existing clausal proofs for unsatisfiability.

Contributions. Our main contributions are as follows:

1. We propose a novel proof system for certifying propositional model counts in practice.
2. We show how proof traces can be generated efficiently for exact model counters based

on dynamic programming, counting version of CDCL with component caching, and
knowledge compilation to Decision-DNNF.

3. We provide proof-of-concept software for emitting proofs from model counters and a
parallel trace checker. Based on this, we show the feasibility of using certified model
counting in an empirical experiment.

Related Works. Over time, various proof systems were developed for certifying SAT solver
outputs [26, 33, 55, 10], among them the popular format DRAT [55]. These approaches aim
to show unsatisfiability as a satisfying assignment can anyways be checked efficiently. While
there is no general method for verifying exact model counts, outputs of knowledge compilers
can be validated by equivalence checking [6, 7]. One approach is to label unsatisfiable sub-
formulas, during knowledge compilation, with a clause indicating the cause of the conflict [6].
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This allows checking equivalence to a formula in conjunctive normal form (CNF) in polynomial
time under restricted conditions. Since it conflicts with component caching employed in
knowledge compilers like D4 [38] and Dsharp [40], more recent works introduce a more
flexible notion of syntactical equivalence [7]. While knowledge compilers, counting version of
CDCL-based algorithms, and dynamic programming-based solving techniques are related [32],
the two latter techniques are not accommodated in the certification approach from above.
For example, the best performing solver of the 2021 Model Counting Competition did not
use knowledge compilations [36]. Furthermore, the notion of equivalence used for certifying
knowledge compilations is stronger than needed for preserving correctness of counting. In
consequence, we expect that certain counting-specific simplifications cannot be formulated
within this framework. Model counting on Decision-DNNFs can easily be done in terms
of complexity [14], but technically the result is not verified. Hence, errors in the counting
step will not be caught by checking equivalence to the input formula. Finally, we would like
to mention that our focus is on exact model counting. Some modern counting techniques
rely on probabilistic exact counting or approximate counting, which is incredibly valuable
for scalable counting of very large instances in applications where the exact count is of less
relevance. For approximate counting, the idea is to reduce the solution space uniformly to
a small number of samples. By varying the number and length of randomly chosen XOR
constraints and the number of repetitions, approximate counting can produce arbitrarily
tight bounds with arbitrarily high confidence. Here, our approach is not meaningful, already
existing techniques for certifying XOR constraints can be used [43, 27] instead.

2 Preliminaries

We assume that the reader is familiar with basic notions on functions, set theory, computa-
tional complexity [42], and propositional logic [35].

Propositional Satisfiability and Model Counting (#SAT). A literal ` is a propositional
variable v or its negation ¬v. Conversely, we refer to the variable v of literals v and
¬v by var(v) := v and var(¬v) := v, respectively. We assume ¬¬v to be equivalent
to writing v and, for a set L of literals, let ¬L := {¬v | v ∈ L}. A finite set C of
literals is called a clause, interpreted as a disjunction of literals. We say that clause C
is unit if |C| = 1. We refer by vars(C) to the variables occurring in a finite set C of
literals, i.e., vars(C) := {var(`) | ` ∈ C}. A formula F in conjunctive normal form (CNF)
is a finite set of clauses, interpreted as a conjunction of clauses. Unless otherwise stated,
we assume that formulas are in CNF. We let vars(F ) denote the variables occurring in a
formula, i.e., vars(F ) :=

⋃
C∈F vars(C). An assumption is a set A of literals. We let the unit

clauses Â for an assumption A be the formula Â := {{`} | ` ∈ A}, i.e., the formula enforcing
assumption A. A restriction of a set of literals A to set V of variables is A|V := A∩(V ∪¬V ).
Such a restriction can be applied to assumptions and clauses. A restriction of a formula F to
set V of variables is {C|V | C ∈ F}, i.e., the formula with each of the clauses in F restricted
to V. A (partial) assignment is a function α : V → {0, 1} which maps variables from a set V
to values {0, 1}. For the negation of a variable v ∈ V , we define α(¬v) := 1− α(v). By 2V
we denote the set of all total assignments α : V → {0, 1}, by α−1(b) the preimage of α for
b ∈ {0, 1}, and by dom(α) := V its domain. A restriction α|V of an assignment α to a set V
of variables is the partial assignment that assigns variables v ∈ V ∩ dom(α) to α(v) and is
undefined otherwise. For a formula F , we let F [α] := {C \ α−1(0) | C ∈ F,C ∩ α−1(1) = ∅}
be the formula F under assignment α. An assignment α falsifies F if ∅ ∈ F [α]; α satisfies F
if F [α] = ∅. Note that assignment α can falsify F , satisfy F , or neither (unless α is total).

CVIT 2016



23:4 Proofs for Propositional Model Counting

Later, the definitions are used precisely as stated for α over any set V of variables. Further,
α satisfies a clause C if {C} is satisfied. An assignment α is called a model of a formula F
if dom(α) = vars(F ) and α satisfies F . Note that for an assumption A, we can satisfy Â
trivially by assignment τA, where for a variable v ∈ V, τA(v) := 1 if v ∈ A and τA(v) := 0 if
¬v ∈ A. We let Mod(F ) be the set {α | α ∈ 2V , α satisfies F, V = vars(F )}, i.e., the set of
all models of a formula F over variables vars(F ). Then, |Mod(F )| is the model count of F .
While the SAT problem asks whether |Mod(F )| ≥ 1, the model counting problem, or #SAT for
short, asks to output |Mod(F )|. In addition, for a tuple T = (F, V ) consisting of formula F
and set V of variables and assumption A, we let ModA(T ) := {α | α ∈ 2V , α satisfies F ∪ Â}
be the models of T under assumption A. Intuitively, tuple T = (F, V ) represents formula F
restricted to variables V if V ⊂ vars(F ) or adding unconstrained variables to F if V ⊃ vars(F ).
Then, the model count for T under assumption A is |ModA(T )|. Finally, a formula F entails
a clause C, written as F |= C, if all models of F satisfy C.

Certified SAT Solving. Certified results are common in SAT solving [26, 30, 24] and support
of a standardized format is mandatory for solvers taking part in the competition [24]. Popular
formalisms like DRAT [30] and RUP are examples of the more general notion of propositional
proof systems [9]. Let Σ be an alphabet, L ⊆ Σ∗ be language, and TAUT be the class of
all propositional formulas that are tautological, encoded in a fixed alphabet. In general, a
proof system is a polynomial-time computable function s : Σ∗1 → Σ∗ with range L that maps
from words over a proof alphabet Σ1 to words in L. For a formula F , if s(x) = F then
x ∈ Σ1 is called a proof in system s. A propositional proof system is a proof system for TAUT.
Usual properties are completeness asking that every propositional tautology has a proof
in system s and soundness asking that if a propositional formula has a proof in system s

then it is a tautology. Further, proofs need to be verifiable in polynomial time of their size.
Intuitively, propositional proof systems concern certificates of membership in TAUT for a
given formula. Since SAT solving usually works on CNF formulas as input, practical focus is
on clausal proofs. Clausal proofs are sequences of clauses, where each clause is entailed by
the original formula [28]. A clausal proof is called a refutation, or proof of unsatisfiability,
if it contains the empty clause. The input formula is unsatisfiable if the empty clause is
derived in this sequence. Proof variants are based on clauses that have the RUP (reverse unit
propagation) [26] and RAT (resolution asymmetric tautology) property. These proof formats
share verifiability in polynomial time in the size of the proof and input formula and can be
tightly coupled with modern solving techniques. The popular DRAT proof system uses a
more general redundancy property based on extended resolution instead of entailment [30].

3 From Clausal Proofs Towards Certifying #SAT

By basic constructions, we can use propositional proof systems to establish correctness of
an outputted model count. To this end, we systematically enumerate models and add the
negation of a found model to the formula, thereby forbidding it. After solving outputs that
all models were found, we can prove that no more models exist by using clausal proofs of
unsatisfiability. Alternatively, we can establish equivalence using propositional proof systems
when solving by means of knowledge compilation. In both cases we use decision-based
proof systems for an actual function problem. Clearly, propositional proof systems lack
the capability of reasoning about sets of models and their cardinality, instead, we can only
reason about individual yes/no decisions. It is easy to see that enumerating models quickly
becomes infeasible and an equivalence-based approach works only for very specific techniques.
Moreover, a decision-based approach is not how modern model counters reason. Instead,
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Figure 1 Visual representation of operations used by #SAT solvers when exploring the solution
space. Splits in the search space are composed, independent sub-instances are joined and sub-
instances are extended by assigning new variables.

they commonly split the search space into sub-problems where solutions can be considered
independently, so-called components, as illustrated on a high level in the example below.

I Example 2 (Refutations are Insufficient for Counting). Consider formula F = (a∨b)∧ (c∨d),
which has 9 models. In detail, there are 3 assignments to a and b that satisfy (a ∨ b) and 3
assignments to c and d to satisfy (c ∨ d). Since both clauses share no variables, we can freely
combine the satisfying assignments for each clause. Hence, we obtain 3 · 3 = 9 models.

Example 2 states a reasoning technique that cannot be expressed concisely in a clausal
proof. In fact, we miss notions to express the combination of both sub-problems and lack the
capability of reasoning about sets of models and their cardinalities. Consequently, we are
interested in a natural approach to obtain certifiably correct results for practical propositional
model counters. From a more theoretical perspective, we design a proof system for counting
where the computable function has range N0. The challenging part is to define a system
that is simple, but expressive enough that certificates can be generated by diverse model
counting algorithms with low overhead. Mathematical combinatorics and number theory
already provides us with basic tools to establish counting proofs [29]. A classical concept in
proofs is to establish relations between sets using bijections, i.e., a one-to-one correspondence.
Two sets have the same number of elements if there is a bijection between them.

I Example 3. Consider again Example 2. We can easily show that there is a bijective
mapping between the set obtained from the Cartesian product of models of both clauses
and the set of models of the formula F , i.e., Mod(F ) = Mod(a ∨ b)×Mod(c ∨ d). Hence, the
model count of formula F can simply be expressed as the product of the cardinality of both
sets, i.e., |Mod(F )| = |Mod(a ∨ b)| · |Mod(c ∨ d)|.

Below, we formalize systematic search space splitting, which is common among all
exact model counting approaches. Then, we establish general reasoning rules based on
this technique and we combine it with established techniques on clausal proofs for TAUT.
The overall principle remains. Solvers output certificates, which can be easily verified by a
program (checker). Correctness of the checker needs to be audited for fully verified results.

3.1 Search Space Splitting
State-of-the-art model counters split the input instance into sub-instances and combine
the results – even implicitly in knowledge compilation-based or dynamic programming-
based counters. Figure 1 visualizes solution space exploration and operations that modern
solvers use to combine solutions of sub-instances. Intuitively, we observe the following
principles: (i) Solvers split the search space along an assumption, e.g., a decision literal.
The corresponding reasoning operation is a composition of disjoint sets of models for a
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sub-instance. (ii) Solvers identify sub-instances that are independent or overlap in such a
way that their models can be combined in a database-like join. (iii) Under some restrictions,
models of a sub-instance can be extended to models of a larger one by adding a stricter
assumption. (iv) There are sub-instances that do not have any models.

Next, we introduce components as a formal notion for sub-instances and claims as
statements talking about the model count of components under an assumption. Intuitively,
a component consists of a subset of the input formula and a selection of variables.

I Definition 4 (Component and Sub-components). A component C = (F, V ) consists of
a formula F and a set V of variables. We say that a component Cs = (Fs, Vs) is a sub-
component of C if Fs ⊆ F and Vs ⊆ V .

The set of models of a component can be restricted by an assumption, i.e., a set of unit
literals. Then, models can be represented by stating the component and assumption, which
we can directly use for counting. We call such a statement a claim, which represents a partial
result. The following example illustrates sets of models for components under assumptions.

I Example 5. Consider formula F = (a ∨ b) ∧ (c ∨ d) from Example 3 and corresponding
component C = (F, vars(F )). Recall that without an assumption, F has 9 models. If we
add assumption A1 = {a,¬b}, then ModA1(C) = {{a 7→ 1, b 7→ 0, c 7→ 1, d 7→ 0}, {a 7→ 1, b 7→
0, c 7→ 0, d 7→ 1}, {a 7→ 1, b 7→ 0, c 7→ 1, d 7→ 1}}, hence |ModA1(C)| = 3. With assumption
A2 = {¬a,¬b} we have ModA2(C) = ∅.

I Definition 6 (Claim). Let C = (F, V ) be a component. A claim I = (C, A, c) over C consists
of an assumption A with vars(A) ⊆ V and a count c ∈ N0. I is correct if c = |ModA(C)|.

Working with claims over components avoids naive enumeration of models, which we can
see in the following example.

I Example 7. Consider a formula F with a large number of clauses and variables. Further, we
have two disjoint components C1 = (F1, V1) and C2 = (F2, V2) in formula F (i.e., F1 ∩F2 = ∅
and V1 ∩ V2 = ∅). Using claims, we succinctly express that any two of the models can
be combined into a model of a larger component C = (F1 ∪ F2, V1 ∪ V2): If (C1, ∅, c1) and
(C2, ∅, c2) are correct claims, then (C, ∅, c1 · c2) is correct, regardless of c1 and c2. In contrast,
enumeration would quickly become infeasible in practice, since the individual components
may have exponentially many models.

3.2 (Re-)combining Claims of Search Spaces
As already demonstrated by the previous example, we can model search space splitting
of modern model counters by the combination of claims. In general, however, it is not
guaranteed that we do not over- or undercount when combining claims. Hence, we consider
properties of sets of claims that dictate which claims can be combined correctly.

Avoid Overcounting. First, we demonstrate a case where overcounting occurs.

I Example 8. Let C = ({{a, b, c}, {a,¬d}}, {a, b, c, d}) be a component (C, {a, b}, 4) and
(C, {a, d}, 4) be claims of C. Then, both claims count the model {a 7→ 1, b 7→ 1, c 7→ 1, d 7→ 1},
i.e., they overlap and cannot be simply combined without overcounting.

Consequently, we consider non-overlapping sets of claims, which prevents overcounting.

I Definition 9 (Non-overlapping and Uniform Claims). Let C = (F, V ) be a component and S
be a set of claims over C.
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Then, S is non-overlapping if, for every two distinct claims (C, A1, c1) and (C, A2, c2) in
set S, we have ModA1(C) ∩ModA2(C) = ∅.
Let U ⊆ V . If vars(A′) = U for every (C, A′, c′) ∈ S, we call S uniform for U .

Observe that uniformness is a special case of non-overlapping that is easier to verify.

I Observation 10 (?1). Let C = (F, V ) be a component, U ⊆ V a set of variables, and S a set
of claims over C. If S is uniform for U and all claims in S are correct, S is non-overlapping.

Provably Prevent Undercounting. While non-overlapping sets of claims prevent overcounting,
we also need to ensure the absence of further models to prevent undercounting. Before we
show how to avoid this, we briefly illustrate undercounting below.

I Example 11. Consider a component C = ({{a, b, c}, {a,¬d}}, {a, b, c, d}) and claims
I1 = (C, {a, d}, 4), I2 = (C, {a,¬d}, 4) of C. I1 and I2 are non-overlapping, but cannot
correctly be combined to I = (C, ∅, 8), because models with a 7→ 0 are counted by neither
I1 nor I2. However, adding a third claim (C, {¬a, d}, 3) is sufficient to cover C exhaustively,
since there are no models with a 7→ 0 and d 7→ 1.

To prove that undercounting does not occur, we need to ensure that a set of claims covers
the models of a component exhaustively. Note that this is different from a single claim with
zero models, which states that its component is unsatisfiable under an assumption. Rather,
exhaustiveness can be seen as unsatisfiability with exceptions.

I Definition 12 (Exhaustive Claims). Let C = (F, V ) be a component and S a set of claims
over C. For an assumption A, we call S exhaustive for A if for every model α ∈ ModA(C)
there is a claim (C, A′, c′) ∈ S with α satisfies Â′ and A ⊆ A′.

Unfortunately, already the task of checking exhaustiveness is hard.

I Proposition 13 (?,Exhaustiveness of Claims is co-NP Hard). Let S be a set of claims for a
component C = (F, V ) that is uniform for U ⊆ V and A be an assumption with vars(A) ⊆ U .
Then, it is co-NP-complete to decide whether S is exhaustive for A.

Despite this result, we later show that exhaustiveness can be established efficiently for the
surveyed solver implementations. This is not a contradiction, since #SAT is known to be in
#P [54], and thus at least as hard as decision problems in NP and co-NP. Hence, when using
intermediate results from the solving process for exhaustiveness checking, the “hardness” lies
in computing this intermediate information. However, if a set of claims is uniform, we can
show exhaustiveness, using well-known constructs from SAT. Next, we create a shortcut for
exhaustiveness of sets of claims, formalized in the notion of an absence of models statement.

I Definition 14 (Absence of Models Statement). Let C = (F, V ) be a component, S be a
set of claims that is uniform for U ⊆ V , and A be an assumption where we have A ⊆ A′

for every claim (C, A′, c) ∈ S. Then, given a clausal proof ∆, we call A = (C, A, U,∆)
an absence of models statement. Such a statement A is correct if ∆ is a refutation of
Â ∪ {C|V | C ∈ F} ∪ {¬A′ | (C, A′, c′) ∈ S}.

Intuitively absence of models can be seen as acting complementarily to claims. To state
that a component under some assumption is unsatisfiable, except for a set of claims, we
employ the well-established concepts of unsatisfiability proofs in SAT solving. Indeed this is
sufficient for exhaustiveness.

1 Proofs of statements marked with ? will be made public in an extended version.
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I Lemma 15 (?,Absence of Models). Let A = (C, A, U,∆) be an absence of models statement
and S be a set of claims for component C that is uniform over U and we have A ⊆ A′ for
every claim (C, A′, c) ∈ S. If A is correct for S, then S is exhaustive for A.

Non-overlapping and Exhaustive Claims. To avoid both over- and undercounting, we combine
the properties non-overlapping and exhaustive. We say that a non-overlapping set of claims
that is exhaustive for A is composable to A.

I Example 16. Consider a component C = ({{a, b, c}, {a,¬d}}, {a, b, c, d}) and a set S of
claims of C with assumptions {a, d}, {a,¬d}, and {¬a,¬d}. Since the assumptions are
distinct and S is uniform for U = {a, d}, S is non-overlapping. Since C has no model with
a 7→ 0 and d 7→ 1, S is exhaustive for ∅. To prove this, we can easily find a refutation ∆ for
{{. . . }, {a,¬d}} ∪ {{¬a,¬d}, {¬a, d}, {a, d}}. Hence, we can construct a correct absence of
models statement (C, ∅, U,∆) and know that S is composable to ∅.

Note that we can restrict a set of claims that is uniform for U and is composable to
some assumption, to a subset with a stricter assumption. This subset remains composable to
that stricter assumption. Hence, a single absence of models statement can be used to show
composability for multiple subsets of such a set of claims.

I Observation 17 (Composable Subset). Let S be a set of claims for a component C = (F,
V ), that is composable to A and uniform for U . Let As be an assumption with A ⊂ As and
vars(As) ⊆ U . Then, SAs := {(C, A′, c′) ∈ S | As ⊆ A′} is composable to As.

3.3 Inference Rules for Model Counting
To reproduce the reasoning of a solver, we use a trace, which is a finite sequence of steps. Each
step is either a claim, which represents a set of models, or an absence of models statement.

I Definition 18 (Model Counting Trace). A model counting trace T = 〈s1, . . . , sn〉 for a
given formula F is a finite sequence of steps si, which is either a claim or an absence of
model statement. A trace T is complete for F if there is a claim I = (C, ∅, c) in T for a
component C = (F, vars(F )). A trace T is correct if all claims in T are correct.

Next, we establish inference rules, which allow us to mechanically verify correctness of a
combination of partial results, which are succinctly expressed by claims. Since we approach
model counting proofs from the perspective of capturing search space splitting performed by
a solver instead of a formal deductive system, our rules use syntactic as well as semantic
notions. While it is possible to express them purely in syntactical terms as inference rules of
a deductive system, we defer this to future work. To make this clear, we denote a rule as
premises and inference separated by a double rule.

Intuitively, these rules then establish the correctness of a claim by combining claims
of sub-components or claims with stronger assumptions. In other words, we bring the
combination of claims in line with splitting the search space by composition, join, and
extension, as visualized in Figure 1. The resulting basic inference rules are (exactly one)
model, composition, join, and extension. Composition itself is backed up by exhaustiveness,
thereby using the sufficient absence of models statement via clausal proofs, cf., Lemma 15.

Inferring Exactly One Model Claims. First, we cover the base case of exactly one model,
claiming exactly one model for a component under a (total) assumption A. There, no further
claim is needed to check its correctness. Indeed, since a model is a total assignment over the
variables of the given component (F, V ), it suffices to check whether the formula F of the
component is satisfied by assumption A. As a result, we obtain the following simple rule.
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τA satisfies F

((F,dom(τA)), A, 1)

I Lemma 19 (?,Exactly One Model). Let C = (F, V ) be a component and (C, A, 1) be a claim
for C with vars(A) = V . The claim is correct if and only if τA satisfies F .

Inferring Composition Claims. Next, we discuss the composition inference rule. If we have
a set S of correct claims of a component that is composable to an assumption A, we can
directly infer a claim with the more general assumption A. Intuitively, we derive a more
general statement from a set of more specific claims. A matching absence of models statement
represents proof that S meets the necessary conditions to avoid undercounting, i.e., that S
is exhaustive for A. However, by Observation 10 such a statement also implies that S is
non-overlapping, thereby avoiding overcounting as well. Therefore, the following rule assumes
composability of every claim (C, Ai, ci) in S as a requirement.

(C, A1, c1), . . . , (C, An, cn) are correct and composable to A

(C, A,Σ1≤i≤nci)

I Lemma 20 (?,Composition or Unsatisfiability). Let C = (F, V ) be a component, I = (C, A, c)
be a claim with assumption A, S be a set of claims over C that is composable to A, and
c :=

∑
(C,A′,c′)∈S c

′. If every claim in S is correct, then I is correct, i.e., |ModA(C)| = c.

Note that if S = ∅, composition states that the current component is unsatisfiable
under assumption A. Extending Example 16, the following example illustrates inference by
composition of a composable set of claims.

I Example 21. Consider a component C = (F, V ) with F = {{a, b, c}, {a,¬d}} and V =
{a, b, c, d}. Recall from Example 16, that a set S of claims with assumptions {a, d}, {a,¬d},
and {¬a,¬d}, is composable to ∅. By composition, we infer claim (C, ∅, 11), as shown below.

set S:
c A
4 { a d }
4 { a ¬d }
3 { ¬a ¬d }

composed claim:
c A
11 ∅

In addition, we know that ∅ is composable to A = {¬a, d}. By composition, we infer a claim
(C, A, 0). This is equivalent to stating that C is unsatisfiable under assumption A.

Inferring Join Claims. If the models of two components are independent, we can combine
them arbitrarily to models of a joint component. The join rule generalizes this idea allowing
models to overlap, thereby assuming correct claims ((F1, V1), A1, c1) and ((F2, V2), A2, c2).

((F1, V1), A1, c1) and ((F2, V2), A2, c2) are correct
A1 ∪A2 is consistent and V1 ∩ V2 ⊆ vars(A1 ∪A2)
∀i ∈ {1, 2}, C ∈ Fi : vars(C) ∩ (V1 ∪ V2 \ Vi) = ∅

((F1 ∪ F2, V1 ∪ V2), A1 ∪A2, c1 · c2)

In case of overlapping components, the variables shared by the joined components must
be constrained by the inferred assumption and the clauses of one component must not further
constrain the set of models of the other.

CVIT 2016



23:10 Proofs for Propositional Model Counting

I Lemma 22 (?,Join). Let C = (F, V ) be a component; I = (C, A, c) be a claim; C1 = (F1, V1)
and C2 = (F2, V2) be sub-components of C with F = F1∪F2, V = V1∪V2, and V1∩V2 ⊆ vars(A)
where every C ∈ Fi has vars(C) ∩ (V \ Vi) = ∅. If I1 = (C1, A|V1 , c1) and I2 = (C2, A|V2 , c2)
are correct claims over C1 and C2 and c = c1 · c2, then I is correct, i.e., |ModA(C)| = c.

Note that if the model count of either joined claim is zero, the joint count is zero, regardless
of the other claim. The following example illustrates joins with overlapping assumptions.

I Example 23. Consider components C1 = (F1, V1) and C2 = (F2, V2) with F1 = {{a, b, c}},
V1 = {a, b, c}, F2 = {{a,¬d}}, and V2 = {a, d}. The tables below represent claims for both
components, along with claims for a third component C = (F1 ∪ F2, V1 ∪ V2). All claims of C
are inferred from claims of sub-components C1 and C2 using Lemma 22.

claims of C1:
c A
2 { a b }
2 { a ¬b }
2 { ¬a b }
1 { ¬a ¬b }

claims of C2:
c A
2 { a }
1 { ¬a }

claims of C:
c A
4 { a b }
4 { a ¬b }
2 { ¬a b }
1 { ¬a ¬b }

Extension. Similar to extending models to assign additional variables, we can extend a claim
to a larger component by adding additional literals to its assumption. We formalize this in
the following rule, whereby we assume a correct claim ((F ′, V ′), A′, c).

((F ′, V ′), A′, c) is correct
τA satisfies F \ F ′, where F ⊇ F ′ and A|V ′ = A′

∀C ∈ F ′ : τA|V \V ′ does not satisfy C

((F,V), A, c)

Since we infer a claim with the same count as the extended claim, introduced variables must
be constrained by the extended assumption, models extended according to the assumption
must satisfy the larger component, and no additional models may be introduced.

I Lemma 24 (?,Extension). Let C = (F, V ) be a component, I = (C, A, c) be a claim, C′ = (F ′,
V ′) be a sub-component of C, and I ′ = (C′, A|V ′ , c) be a correct claim. If V \ V ′ ⊆ vars(A),
τA satisfies F \F ′, and τA|V \V ′ does not satisfy C for every clause C ∈ F ′, then I is correct.

In principle, one might ask why we cannot add arbitrary literals to the assumption when
extending a claim. However, every model of a claim I ′ requires a corresponding model in
the extended claim I. We ensure this by enforcing that clauses that are only in the larger
component C, are satisfied by the literals added to the assumption. Conversely, every model
of the claim I, when restricted to the variables of C′, must be a model of I ′. Intuitively, this
establishes a sufficient one-to-one correspondence between the models of I and I ′.

I Example 25. We extend a component C′ = (F ′, V ′) with F ′ = {{a, b, c}} and V ′ = {a, b}
to the component C = (F, V ) with F = {{a, b, c}, {{a,¬d}} and V = {a, b, c, d}. The tables
below list claims for both components, where the claims of C can be verified by Lemma 24
(extension). Note that the extended assumption must include ¬c to satisfy extension.

claims of C′:
c A
1 { a b }
1 { a ¬b }
1 { ¬a b }

claims of C:
c A
1 { a b ¬c d }
1 { a b ¬c ¬d }
1 { a ¬b ¬c d }
1 { a ¬b ¬c ¬d }
1 { ¬a b ¬c ¬d }
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I Remark 26. Let C = (∅, ∅) be a component. Since Mod∅(C) = {∅}, claim I = (C, ∅, 1) is
correct. Thus, a claim satisfying exactly one model can be expressed as an extension of I.

3.4 Proofs for Model Counting
In the previous section, we established principles for reasoning on correctness of claims based
on claims obtained during search space splitting. These principles allow us to construct
proofs for #SAT. Specifically, we aim for traces that are proofs for model counting where
each step can be inferred from the preceding steps. To this end, we introduce MICE steps
that employ the inference rules as given in Section 3.1. We also state the corresponding
correctness lemma for convenience in brackets.

I Definition 27 (MICE Proof Step). Let T = 〈s1, . . . , sn〉 be a model counting trace for a
given formula F and S = {s1, . . . , sn}. We say sr /∈ S is a Model-counting Induction by
Claim Extension (MICE) step from S if either condition below is satisfied:

sr is an absence of models statement (C, A, U,∆) that is correct for {(C, A′, c′) | (C, A′, c′) ∈
S,A ⊆ A′, vars(A′) = U} (cf., Lemma 15);
sr is a claim of exactly one model; (cf., Lemma 19);
sr is a claim joining two claims I1, I2 ∈ S (cf., Lemma 22);
sr is a claim extending another claim I ∈ S (cf., Lemma 24); or
sr is a claim (C, A, c) by composing a set S′ ⊆ S of claims and there is an absence of
model statement (C, A, U,∆) correct for S′, hence S′ is composable to A (cf., Lemma 20).

This leads to our central definition of when a model counting trace is actually a MICE proof.

I Definition 28 (MICE Proofs). Let T = 〈s1, . . . , sn〉 be a model counting trace that is
complete for a given formula F . If every si in T is a MICE step from {s1, . . . , si−1}, then T
is a MICE proof.

Indeed, MICE proofs are sound, i.e, suitable for proving the model count of a given
formula. Furthermore, when restricting model counting to MICE proofs we do not loose
completeness, i.e., a MICE proof exists for any formula.

I Theorem 29 (?,Soundness & Completeness). Given formula F , component C=(F, vars(F )).
Soundness: If T is a MICE proof, then F has c= |Mod(F )| many models.
Completeness: There exists a MICE proof T that is complete for F .

4 Verifying Model Counting Traces

Having established model counting traces, we design an algorithm that can verify whether a
trace is correct and complete. Further, we demonstrate that model counting traces can be
verified efficiently, i.e., we can check whether such a trace is a MICE proof in polynomial time
in the size of the trace and the input formula. By Theorem 29, MICE proofs are sufficient.
In the following, we discuss a simple polynomial-time algorithm for checking correctness of
counting traces. We focus on correctness, because completeness can easily be checked by
linearly searching a trace for a relevant claim.

Consider Algorithm 1, which takes as input a trace T and outputs either “Correct” or
“Incorrect”. For each step si in T = 〈s1, . . . , sn〉, we check if si is a MICE step from its
predecessors P = {s1, . . . , si−1} by testing each case in Definition 27 sequentially. If no
case applies to si, we terminate with “Incorrect”. After processing all steps in T we output
“Correct”. Algorithm 1 outputs “Correct” if and only if the trace is a MICE proof.
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Algorithm 1 Simple Trace Correctness Checking

Input: A model counting trace T = 〈s1, . . . , sn〉
Output: “Correct” if T is a MICE proof, “Incorrect” otherwise

1 for i ∈ {1, . . . , n} do
2 P := {s1, . . . , si−1} B Set of predecessors.
3 if si is an absence of models statement (C, A, U,∆) then
4 S := {(C, Aj , c) ∈ S | Aj ⊇ A, vars(Aj) = U}
5 FE := Â ∪ {C|V | C ∈ F} ∪ {¬A′ | (C, A′, c′) ∈ S}
6 if ∆ is refutation of FE then continue
7 else if si is a claim (C, A, c) with C = (F, V ) then
8 if vars(A) = V and c = 1 and τA satisfies F then continue B Lemma 19
9 else if si is correct by joining sj , sk ∈ P then continue B Lemma 22

10 else if si is correct by extending sj ∈ P then continue B Lemma 24
11 else if P contains some (C, A, U,∆) then
12 S := {(C, Aj , c) ∈ S | Aj ⊇ A, vars(Aj) = U}
13 if si is correct by composition of S then continue B Lemma 20

14 return Incorrect B Step verification failed.
15 return Correct

I Proposition 30 (?,Polynomial-Time Correctness Checking). Given a model counting trace T ,
Algorithm 1 runs in polynomial time in the size of T .

5 Practical Considerations and Preliminary Evaluation

In this section, we briefly explain practical improvements, solver integration, and provide
preliminary data on using our certificates for model counting. We implemented Algorithm 1
into a program, which we call sharpCheck that is open-source and available at https:
//github.com/vroland/sharptrace. For space reasons, we describe the improvements
such as identifiers for components allowing us to restrict the search for claims to a single
component in an extended version. If we assume that for one assumption, there exists only
one claim in a component with that assumption, claims can be verified in parallel in any
order. Additionally, we can ensure that a refutation for an assumption A′ has to be checked
only once by allowing to reference an absence of models step in a more general assumption A,
which follows directly from Observation 17.

5.1 Solver Integration
For practical use, we integrate MICE traces into existing techniques for exact model counting.
Our approach works for generating traces in exact model counting when using a counting
version of CDCL with component caching [48], dynamic programming [47], or knowledge
compilation [14, 38]. For each technique, we provide a conceptual description and an
implementation. We directly augmented two solvers with tracing capabilities and compile
Decision-DNNFs outputted by knowledge compilers into MICE traces. Our implementations
are proof-of-concepts relying on existing SAT solvers for generating clausal proofs.

sharpSAT The solver uses a counting version of CDCL with component caching for model
counting [52]. It serves as basis for several model counters, e.g., Dsharp [40] or GANAK [49].

https://github.com/vroland/sharptrace
https://github.com/vroland/sharptrace
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Figure 2 Number of solved instances with and without tracing for sharpSAT, DPDB, and D4.
Of the instances solved with tracing, we show the number of traces verified given the same timeout.

The implementation emits traces directly during the solving process. Refutations for
absence of models are efficiently extracted during conflict analysis. Our implementation
is available online at https://github.com/vroland/sharpSAT/tree/proof-trace.

DPDB The solver implements dynamic programming algorithms on TDs using database man-
agement systems [23]. We extended the model counting implementation to translate result
tables into claims and use miniSAT [19] to generate refutations. Our implementation is
available online at https://github.com/vroland/dp_on_dbs/tree/sharpsat_proof.

D4 For prototype on knowledge compilation, we generate traces from the Decision-DNNF
while using miniSAT for refutations. We consider D4 due to its performance in a past
competition [21]. We believe that modifying D4 would result in faster trace outputs,
but is out of scope for our prototypical considerations. However, we provide conceptual
details for modifying a knowledge compiler in an extended version.
Our implementation is available online at https://github.com/vroland/nnf2trace.

5.2 Empirical Evaluation
To demonstrate the capability of our approach and estimate the overhead of traces in practice,
we conducted a preliminary evaluation on 400 instances of varying hardness and size.

Design of Experiment. We draw a small empirical experiment to study the following
questions: (Q1) Is there significant impact when solving with traces by compared solving
without emitting traces? (Q2) Can we verify traces in a reasonable time? (Q3) Does the
technique help to find bugs?

Instances. We considered sets of instances from Tracks 1 and 2 of the Model Counting
Competition 2020 [21]. For Track 2, we removed the weights. Instances are available on a
public data repository [22].

Hardware, Measure, and Restrictions. All solvers run on a server with two physical Intel
Xeon Silver 4112CPUs, where each of these 16 runs at 2.60GHz and has access to 128GB RAM.
Results are gathered on Ubuntu 18.04 LTS powered on kernel 4.15.0-135 with hyperthreading
disabled. We allow a solving time of 600 seconds per instance. Since we do not implement
traces directly into D4, we apply timeout to the combined runtime of D4 and the trace
generation. We execute solvers sequentially, one at a time, limiting available memory to the
maximum available on the system. Checking of the traces runs in parallel on 16 cores with a
timeout of 600 seconds per instance.

Limitations. All implementations are prototypical and are not optimized towards efficiency.
Traces currently do not support pre-processing.

CVIT 2016
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Solver #O #T #V

sharpSAT 141 67 66
DPDB 137 78 65
D4 172 15 15

(a) Number of solved instances.

Solver # tO[h] tT [h] tT +V [h] mem[GB]

sharpSAT 66 0:24:19 2:56:01 3:24:14 233
DPDB 65 0:23:27 2:44:45 1:29:28 17
D4 15 0:01:13 0:23:28 0:00:46 1

(b) Runtimes for verified instances and total proof size.

Table 1 Performance of solving and trace checking. #· refers to number of instances, t the total
runtime, mem memory, O without tracing, T with tracing, and T+V with tracing and checking.

Performance of Solving with Trace Outputs
Towards answering the question on the impact of traces on solving time, we consider the
number of solved instances with and without proof logging within the considered timeout.
We survey the number of solved instances in Figure 2 and provide more details in Table 1.
sharpSAT and DPDB solved a similar number of instances when outputting traces. However,
when comparing the number of solved instances with and without trace output, outputting
traces reduced the number of instances to half. For D4, we could generate traces only for a
small number of instances in the available time. In Table 1b, we list the size of proofs. For
sharpSAT, we can see that proofs grow quite large.

Discussion. To explain the results in more detail, we consider each solver individually.
For sharpSAT, most overhead in generating trace outputs is introduced by I/O functions
and serializing the output, which can be determined from profiling the solver. Currently,
component definitions are only implicitly stored and have to be re-constructed. Refutations
can directly be constructed within sharpSAT. For DPDB, fetching large intermediate
results from the database and passing them to miniSAT to generate refutations causes
significant overhead. For Decision-DNNFs, we currently need to construct a high number of
refutations, which requires to call an external solver resulting in a notable overhead. We
believe that this can be done directly inside a knowledge compiler. In comparison to DPDB,
there is a much higher number of refutations, however, refutations are of much smaller size.

Summary. Overall, the results show that we are capable of generating traces with common
solving techniques in practice. However, emitting proof traces results in significantly lower
performance of the solvers. In fact, within the same timeouts, only half of the instances
could be solved. Generating traces from Decision-DNNFs is not yet suitable as generating
refutations for absence of models suffer notable overhead, which might be already outputted
during solving. Still, our prototypes hopefully serve as a basis for future implementations.

Performance of Verifying Traces
Next, we consider the question of whether traces can be verified in a reasonable time.
Therefore, we consider the number of verified instances in comparison to the number of solved
instances with traces logging within the considered timeout. Figure 2 illustrates an overview
of the number of verified traces by sharpCheck and Table 1 provides additional details.
For sharpSAT, all but one trace could be verified within the timeout. The remaining trace
takes ≈ 750 seconds to verify on our system. Similarly, a large portion of DPDB traces
could be verified. The traces generated from Decision-DNNFs were all verified.

Discussion. When verifying traces from sharpSAT, most time is spent on parsing and
validating the integrity of the trace, while claims and refutations are checked very quickly.
In contrast, the traces emitted by DPDB are more compact and most time is spent on
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verifying refutations. In dynamic programming algorithms, large sets of claims are composed
resulting in large refutations in absence of model steps. When traces have more than 106

refutation steps in total, checking often timed out. We expect improvement from adding
deletion information to refutations, like in DRAT.

Summary. When comparing accumulated runtimes for solving and checking in Table 1b, we
see that checking MICE traces is not only efficient in theory, but also in practice. Still, we
expect that checking performance can be further improved when certified counting matures.

Finding Bugs

During our experiments, we noticed a bug in sharpSAT, which we already outlined in
Example 1. If preprocessing is disabled, unit clauses are violated and the solver outputs
a wrong model count. The MICE trace allowed us to pinpoint the actual origin of the
issue. Furthermore, we discovered that outputting traces may interfere with the two watched
literals scheme used in sharpSAT. This resulted in wrong counts for some benchmark
instances. We located and fixed the bug using MICE traces. Despite these bugs, which show
up only under certain conditions, we did not discover major issues. This confirms common
mathematical intuition that double counting already improves correctness. In addition, it
supports observations made in the Model Counting Competition 2020 that current model
counters are quite robust. However, the situation might look different as soon as preprocessing
is included and if only one model counter gives a solution similar to SAT solving [34, 31].

6 Conclusion and Future Work

Model counters are key tools for symbolic quantitative reasoning. Exact model counters need
to be trustworthy, in particular, in fields such as explainability, risk analysis, or verification.
While proof logging and verification approaches exist for SAT, a common proof system for
exact model counting was missing. Previous approaches to correctness were either limited
to a specific counting algorithm by establishing equivalence or could only be used to show
correctness of steps in approximate counting. In this paper, we propose a novel approach to
certified #SAT based on traces that capture the solution space exploration during solving. We
show that clausal proofs used for certifying unsatisfiability in SAT solvers are insufficient for
#SAT. Instead, we propose a system for certifying outputs from propositional model counters
practice, where we use clausal proofs as basic building blocks. We demonstrate that our
approach can be applied to solvers based on CDCL variants with component caching, dynamic
programming on tree decompositions, and knowledge compilation to Decision-DNNFs. We
provide prototypes for each solving technique and a tool for automated trace checking.
Finally, we illustrate preliminary results for certified model counting in actual solvers.

Our work opens up a wide variety of directions. A prime candidate for future investigations
is an efficient integration into knowledge compilers and dynamic programming-based solving
that uses more sophisticated data structures [16]. Further, establishing more general, but
efficiently verifiable, inference rules may facilitate integration into solvers. Here, stronger
proof techniques might come in handy [20, 27]. Beyond simple model counting, extending
counting traces to weighted model counting or projected model counting, which is highly
relevant in practical applications, seems to be a natural step for future considerations. Finally,
although our implementation to verify traces is conceptually simple, an efficient, formally
verified implementation might be interesting for highly sensitive applications.
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A Omitted Proofs

(Re-)combining Claims of Search Spaces
I Observation 10. Let C = (F, V ) be a component, U ⊆ V a set of variables, and S a set of
claims over C. If S is uniform for U and all claims in S are correct, S is non-overlapping.

Proof. Recall that since S is uniform for U , we have vars(A) = U for all claims (C, A, c) in
S. Then, for every assignment α that is total over V , there is exactly one assumption A
with vars(A) = U and α satisfies Â. Assume all claims in S are correct. Since there is one
correct count for a component and assumption, no two claims in S have the same assumption.
Hence, for every total assignment α to V , there is exactly one matching assumption over
variables U , thus there is at most one claim (C, A, c) in S with α ∈ ModA(C). J

I Proposition 13 (Exhaustiveness of Claims is co-NP Hard). Let S be a set of claims for a
component C = (F, V ) that is uniform for U ⊆ V and A be an assumption with vars(A) ⊆ U .
Then, it is co-NP-complete to decide whether S is exhaustive for A.

Proof. We show co-NP-completeness of deciding exhaustiveness of a set of claims S for an
assumption A by polynomial-time reduction from (hardness) and to (completeness) UNSAT,
which is a co-NP-complete problem. UNSAT asks to decide whether a given formula is
unsatisfiable, i.e., it is the complement of SAT.

To show hardness, we provide a polynomial-time reduction from UNSAT: Let r be a
function that maps a formula F to an instance of the exhaustiveness problem that asks
whether the set S = ∅ is exhaustive for component C = (F, vars(F )) and assumption ∅. We
know that F is in UNSAT if and only if Mod∅(C) = ∅. By Definition 12, that is the case if
and only if S = ∅ is exhaustive for the assumption ∅. Hence, F is in UNSAT if and only if
S = ∅ is exhaustive for ∅. Since r(F ) can be computed in polynomial time in the size of a
formula F , r is a reduction from UNSAT to the exhaustiveness problem.

For showing membership in co-NP and thus co-NP-completeness, let C = (F, V ) be a
component, U ⊆ V a set of variables, and A an assumption with vars(A) ⊆ U , and S a
set of claims of component C with assumptions over variables U . Then, a function r that
outputs the formula FE := Â ∪ {C|V | C ∈ F} ∪ {¬A′ | (C, A′, c′) ∈ S} from S, C, and A is
a reduction to UNSAT by Lemma 15: From Definition 14 and Lemma 15 follows that if there
is a refutation for FE , i.e. FE is unsatisfiable, S is exhaustive for A.

Finally, we show that r is computable in polynomial time in the size of S, C, and A. It is
easy to see that the inputs to r can be encoded as strings of symbols and comparison and
inversion of literals can be performed in polynomial time. We first output Â from A. Then,
we output {C|V | C ∈ F}, where we need O(|C| · |V |) steps per clause C ∈ F . Finally, we
output ¬A′ for every (C, A′, c′) ∈ S, taking polynomial time in the size of S. Hence, the
function r is a reduction to UNSAT and computable in polynomial time.

Since UNSAT can be reduced to exhaustiveness of a uniform set of claims and vice versa
in polynomial time, the exhaustiveness problem is co-NP complete. J

I Lemma 15 (Absence of Models). Let A = (C, A, U,∆) be an absence of models statement
and S be a set of claims for component C that is uniform over U and we have A ⊆ A′ for
every claim (C, A′, c) ∈ S. If A is correct for S, then S is exhaustive for A.

Proof. Let C = (F, V ). Recall that A is correct if ∆ is a refutation of E = Â ∪ {C|V | C ∈
F} ∪ {¬A′ | (C, A′, c′) ∈ S}. For proof of contradiction, assume S is not exhaustive for A.
Then, there is a model α ∈ ModA(C), but there is no claim with assumption Ae in S, such
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that τAe = α|U . Since α ∈ ModA(C), assignment α satisfies Â ∪ {C|V | C ∈ F}. Hence,
assignment α must falsify {¬A′ | (C, A′, c′) ∈ S}, or else E is satisfiable and ∆ is not a
refutation. However, since no claim with Ae is in S, α satisfies ¬A′ for all assumptions A′ of
claims in S by construction. Thus, α satisfies E, which contradicts that ∆ be a refutation.
Hence, if ∆ is a refutation for E and hence A is correct, S is exhaustive for A. J

Inference Rules and Proof Traces for Model Counting
I Lemma 19 (Exactly One Model). Let C = (F, V ) be a component and (C, A, 1) be a claim
for C with vars(A) = V . The claim is correct if and only if τA satisfies F .

Proof. Consider the assignment α = τA. Since vars(A) = V , assignment α is total over V
and ModA(C) ⊆ {α}. Consequently, τA satisfies F if and only if we have ModA(C) = {α}
and |ModA(C)| = 1. J

I Lemma 20 (Composition or Unsatisfiability). Let C = (F, V ) be a component, I = (C, A, c)
be a claim with assumption A, S be a set of claims over C that is composable to A, and
c :=

∑
(C,A′,c′)∈S c

′. If every claim in S is correct, then I is correct, i.e., |ModA(C)| = c.

Proof. Since S is composable to A, it is exhaustive for A and non-overlapping. Further,
by exhaustiveness for A, for all models α in ModA(C), there is a claim (C, A′, c) in S with
α ∈ ModA′(C). Hence, ModA(C) =

⋃
(C,A′,c′)∈S ModA′(C). Since S is also non-overlapping,

the assignments in ModA′(C) are mutually disjoint. Thus, if every claim in S is correct, we
have |ModA(C)| =

∑
(C,A′,c′)∈S c

′ = c. J

I Lemma 22 (Join). Let C = (F, V ) be a component; I = (C, A, c) be a claim; C1 = (F1, V1)
and C2 = (F2, V2) be sub-components of C with F = F1∪F2, V = V1∪V2, and V1∩V2 ⊆ vars(A)
where every C ∈ Fi has vars(C) ∩ (V \ Vi) = ∅. If I1 = (C1, A|V1 , c1) and I2 = (C2, A|V2 , c2)
are correct claims over C1 and C2 and c = c1 · c2, then I is correct, i.e., |ModA(C)| = c.

Proof. We distinguish two cases.
Case (I), c1 = 0 or c2 = 0. Then, ModA|V1

(C1) = ∅ or ModA|V2
(C2) = ∅, since the

sub-component claims are correct. Assume c1 = 0. Then, for every possible assignment
over V1, a clause C ∈ F1 exists that is not satisfied. But, because vars(C) ∩ (V \ V1) = ∅,
C cannot be satisfied by an assignment over V \ V1. Thus, C cannot be satisfied by any
assignment over V2. Hence, |ModA(C)| = 0 = c. If c2 = 0, the proof works similar.

Case (II), c1 6= 0 and c2 6= 0. We will show that f : α 7→ (α|V1 , α|V2) is a bijection from
ModA(C) into the set J = ModA|V1

(C1)×ModA|V2
(C2), similarly as in related work [47]. Since

|J | =
∣∣∣ModA|V1

(C1)
∣∣∣ · ∣∣∣ModA|V2

(C2)
∣∣∣ = c1 · c2, we then conclude that |ModA(C)| = c1 · c2.

First, we establish that f is a mapping from ModA(C) to J . For any α ∈ ModA(C), α|V1

is in ModA|V1
(C1) because clauses F1 cannot contain literals of variables that are in V \ V1.

Hence, clauses in F1 must be satisfied by literal assignments in α that are also in α|V1 . By
the same reasoning, we have α|V2 ∈ ModA2(C2).

Further, f is injective, because for every αi, αj ∈ ModA(C) with f(αi) = f(αj), we have
that αi|V1 = αj |V1 and αi|V2 = αj |V2 . Then, since V1 ∪ V2 = V , αi = αj . To see that
f is surjective, let (α1, α2) ∈ J . Then, the assignment α = α1 ∪ α2 is consistent, since
V1 ∩ V2 ⊆ vars(A) and A is consistent by definition. Since α1 satisfies every clause F1 α2
satisfies every clause F2, and α is consistent, α satisfies every clause in F1 ∪ F2 = F . In
consequence, α ∈ ModA(C).

Finally, because the sub-component claims are correct, we have |J | = c1 · c2 = c. This
concludes the proof. J
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I Lemma 24 (Extension). Let C = (F, V ) be a component, I = (C, A, c) be a claim, C′ = (F ′,
V ′) be a sub-component of C, and I ′ = (C′, A|V ′ , c) be a correct claim. If V \ V ′ ⊆ vars(A),
τA satisfies F \F ′, and τA|V \V ′ does not satisfy C for all clauses C ∈ F ′, then |ModA(C)| =
c.

Proof. We show that |ModA|V ′ (C′)| = |ModA(C)| = c by proving that the function f : α 7→
α|V ′ is a bijective mapping from model ModA(C) of claim I to models ModA|V ′ (C′) of I ′.

To see that f is a valid mapping, we show that if α is a model of C, α|V ′ also satisfies
F ′. For α|V ′ to not satisfy F ′, there must be a clause C ∈ F ′ that is satisfied by a literal
l of a variable in V \ V ′. Since we require that V \ V ′ ⊆ vars(A), l is in A|V \V ′ . However,
then τA|V \V ′ satisfies C, which is not allowed. Thus, we have α|V ′ ∈ ModA|V ′ (C′) for all
α ∈ ModA(C) and f is a valid mapping.

To show that f is injective, consider αi, αj ∈ ModA(C), where f(αi) = f(αj) = αi|V ′ =
αj |V ′ . Then, since there is exactly one assignment γ = τA|V \V ′ over variables V \ V ′ where
γ satisfies Â, we have αi = αi|V ′ ∪ γ = αj |V ′ ∪ γ = αj .

For surjectivity, let β ∈ ModA|V ′ (C′) be a model of claim I ′. Because V \ V ′ ⊆ vars(A),
we can construct an assignment α as β ∪ τA. Then, β satisfies the clauses F ′, τA satisfies
the clauses F \ F ′, thus α is an assignment over the variables V that satisfies the clauses F .
Hence, we have α ∈ ModA(C).

Since f is bijective and I ′ = (C′, A|V ′ , c) is correct, we have that |ModA|V ′ (C′)| =
|ModA(C)| = c. This concludes the proof. J

I Observation 31 (Trace Correctness of MICE Steps). Let T = 〈s1, . . . , sn〉 be a model
counting trace. If every si in T is a MICE step from S = {s1, . . . , si−1}, T is correct.

Proof. We prove correctness of a trace T by induction over its steps.
Base case. The empty trace 〈〉 is correct by Definition 18.
Inductive step. Assume the sub-trace Ti−1 = 〈s1, . . . , si−1〉 of T is correct and si is

a MICE step from S = {s1, . . . , si−1}. If si is a claim that can be inferred by Lemma 19
(Exactly one Model), Lemma 22 (Join), or Lemma 24 (Extension), si is correct and, thus,
Ti = 〈s1, . . . , si−1, si〉 is correct.

If si is an absence of models statement (C, A, U,∆) that is a MICE step from S, we know
that there is a subset S′ = {(C, A′, c′) ∈ S | A ⊆ A′, vars(A′) = U} of S that is composable
to A by Lemma 15 (Absence of Models). Then, trace Ti is correct because trace Ti−1 is
correct and si is not a claim.

Finally, consider the case where si is a claim (C, A, c) and there is an absence of models
step A = (C, A, U,∆) in S. Since A is a MICE step from its predecessors, A is correct for
some set S′ ⊆ S. Then, si can be inferred as composition of S′ by Lemma 20 (Composition).
Thus, Ti = 〈s1, . . . , si−1, si〉 is correct. This concludes the proof. J

I Theorem 29 (Soundness and Completeness). Given formula F , component C=(F, vars(F )).
Soundness: If T is a MICE proof, then F has c= |Mod(F )| many models.
Completeness: There exists a MICE proof T that is complete for F .

Proof. First, we consider soundness: If all steps in T are MICE steps from the set of their
predecessors in T , trace T is correct by Observation 31. Then, because T is correct and
contains a claim I = (C, ∅, c), the claim I is correct. Hence, |Mod∅(C)| = c = Mod(F ).

Next, we show completeness: Let N := Mod(F ) be the set of models of formula F . By
enumeration, it is easy to construct a, though impractically large, correct and complete
counting trace as follows: First, we construct a set of claims S := {(C, Aα, 1) | α ∈ N}
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where τAα = α. Each claim in S is verifiable using Lemma 19, hence it is a MICE step from
∅. Since N contains all models of C, there is no assignment that satisfies E = {C|V | C ∈
F} ∪ {¬A′ | (C, A′, c′) ∈ S}. Hence, there is a refutation ∆ for E and a correct absence of
models step A = (C, A, V,∆). Such a refutation ∆ must exist for every unsatisfiable formula
E [45]. Since S is uniform for variables V , and exhaustive for ∅, it is composable to ∅. Hence,
the claim I = (C, ∅, c) where c = |N | can be inferred by Lemma 20. Thus, I is a MICE step
from claims S and absence of models statement A.

Finally, we construct a trace T = 〈I1, . . . , In,A, I〉 with I1, . . . , In ∈ S. It is easy to see
that T is complete for F since it contains I. Since I1, . . . , In are correct by MICE steps
from ∅ and I is a MICE step from steps {I1, . . . , In,A}, trace T is correct. This concludes
the proof. J

Verifying Proof Traces

I Proposition 30 (Polynomial-Time Correctness Checking). Given a model counting proof
trace T , Algorithm 1 runs in polynomial time in the size of T and F .

Proof. We show that Algorithm 1 runs in polynomial time in the size the input trace T , we
consider the processing time for a single step si ∈ T . Since we process each step si in T
sequentially, if processing each step si takes polynomial time, Algorithm 1 runs in polynomial
time. In this proof, we assume a naive sequential encoding of the steps of T , separated by
separator symbols. For a step si, let the trace prefix P be the set of steps preceding si in T .
Next, we each case in Definition 27.

If si is an absence of models statement (C, A, U,∆), we first construct a set of claims S
from P . To construct S, we search through the trace prefix P and collect all claims for the
current component with assumptions over U that are a subset of A. Then, we construct the
formula FE := Â∪{C|V | C ∈ F}∪ {¬A′ | (C, A′, c′) ∈ S}. Both steps take polynomial time
in the size of P and the size of FE is bounded by the size of P . Hence, checking if ∆ is a
refutation of FE takes at most polynomial time in the size of P ⊆ T .

In the case that si is a claim, we check the prerequisites for Lemma 19 (Exactly One
Model), Lemma 22 (Join), and Lemma 24 (Extension) sequentially. It is easy to see that
comparing sets of variables and clauses, calculating vars() for clauses and assumptions,
verifying subset relations, and checking whether clauses are satisfied by an assignment are
polynomial-time operations. Hence, we can check Lemma 19 efficiently. To check correctness
by Lemma 24, we need to search the trace prefix P for a claim to infer si from. We can check
Lemma 24 in polynomial time, and this search takes at most |P | − 1 checks. Analogously,
searching for two claims to join by Lemma 22 takes at most (|P | − 1)2 polynomial-time
checks of Lemma 22.

Finally, we check correctness by Lemma 20 (Composition). We can find an absence of
models step (C, A, U,∆) in |P | − 1 polynomial-time steps. Finding one such step is sufficient
since using another absence of models statement must lead to the same inference, as all
absence of models steps in P are correct. Constructing a set of claims S ⊆ P as before and
checking the claim count by Lemma 20 takes polynomial time.

Overall, checking if si is a MICE step from P case-by-case takes polynomial time in the
size of P . Hence, Algorithm 1 checks correctness of a trace T in polynomial time. J

B Additional Plots
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Figure 3 Scatter plot comparing runtimes of individual instances with and without tracing for
sharpSAT (left) and DPDB (right).

C Solver Integration

For the sequel of this section, we assume that the reader is familiar with basic notions in
graph theory and propositional logic such as entailment, otherwise we refer to standard
texts [15, 35].

Knowledge compilation converts a formula into a normal form on which queries are
tractable that are hard on CNFs [14]. Specifically, we are interested in propositional formulas
in Decision-DNNF (or FBDD). Such a formula has following properties:

NNF : A propositional formula is in negation normal form, NNF for short, if negations
(¬) occur only directly in front of variables and the only other operators are conjunction
(∧) and disjunction (∨) [44].
Decomposability: For any two distinct subformulas Ci, Cj in a conjunction C = C1∧· · ·∧Cn
with i 6= j, we have vars(Ci) ∩ vars(Cj) = ∅, where vars(Ci) denotes the set of variables
that occur in subformula Ci [14].
Decision: Disjunctions are of the form C = (x∧C1)∨ (¬x∧C2), where x is called decision
variable. Decision is a stronger version of determinism, which requires that subformulas
in the disjunction must be logically contradictory [14]. Note that x does not occur in C1
and C2 because of decomposability. C1 and C2 may be conjunctions.
Smoothness: A disjunction C = C1 ∨ C2 is smooth, if vars(C1) = vars(C2). A formula
in C in Decision-DNNF is smooth if all disjunctions in C are smooth. Smoothness is
required for model counting [11].

Graph Representation. An NNF formula can be represented as a directed acyclic graph,
DAG for short, where nodes represent ∧, ∨, > (verum) or ⊥ (falsum) [11, 38]. ∧-nodes are
labeled with a set of literals lits(N) = {l1, . . . , ln}. For a ∨-node N = N1 ∨N2, there is a
decision variable x, such that x ∈ lits(N1) and ¬x ∈ lits(N2). We let the decision literals of
N1 be declit(N1) := x and of N2 be declit(N2) := ¬x [14]. For node N , we let vars(N) be
the set of variables that occur in the subgraph rooted at N .

Naturally, a conjunction C = C1 ∧ · · · ∧ Cn in an NNF formula corresponds to an ∧-
node N in the DAG representation. Node N is labeled with literals occurring in C and has
a child node corresponding to each non-literal conjunct. If C is a conjunction of only literals
then N has a >-node as its child. A disjunction C = C1 ∨ C2 corresponds to an ∨-node
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∨
∧ ∧

> ∨
∧∧

>

{¬a,¬d}{a}

{¬b, c}{b}

Figure 4 Graph representation of a Decision-DNNF that is equivalent to F = {{a, b, c}, {a,¬d}}.
∧-nodes are labeled with sets of literals.

N = N1 ∨ N2 with child nodes N1 and N2 for subformulas C1 and C2. An unsatisfiable
disjunct corresponds to an ∧-node labeled with the decision literal and that has child node
⊥. Figure 4 gives an example of a formula in DAG representation. In the following, we use
DAG and Decision-DNNF interchangeably.

From Decision-DNNFs to MICE Traces. Assume that the formula is in smooth Decision-
DNNF, which can be obtained in polynomial time from a Decision-DNNF [14, Lem A.2].
Then, counting works by evaluating each node in post-order: A >-node has a model count
of 1 and a ⊥-node a count of 0. The model count of an ∧-node is the product of the counts
of its children. The model count of an ∨-node is the sum of the counts of its children. The
count of the root node is the model count of the input formula. To generate a counting trace,
we construct a mapping of Decision-DNNF nodes to components and generate claims such
that their correctness can be inferred from claims of child nodes.

Annotating and Smoothing the Decision-DNNF
Intuitively, nodes in a Decision-DNNF represent components. While the Decision-DNNF is
logically equivalent to the input formula F in CNF, nodes of the Decision-DNNF and clauses
in the CNF might not directly be in relation.

Clause Annotation. In DNNFs we can check in polynomial time whether a clause C is
entailed. To annotate the NNF, we start at the root node and proceed in preorder. We
maintain a set R of clauses, initially set to F , indicating which clauses are remaining. If
the current node N is an ∨-node, we compute the set of entailed clauses E = {C | C ∈
R,N entails C} and annotate node N by E. Then, we apply the annotation to the child
nodes of N with R := E. For ∧-nodes, we construct R′ = R \ {C | C ∈ R, L̂ satisfies C} by
removing the clauses that are solved by L := lits(N) from the set R. Then, we annotate N
by R′ and proceed to the children of N with set R′. If we encounter a child node that was
already annotated by a different set of clauses, we copy the sub-tree under the child node and
proceed with annotating the copy. For > and ⊥ nodes, we set ∅. We denote the annotated
clauses for a node N as clauses(N).

Note that this annotation is not equal to the set of entailed clauses of a node. For
instance, if an ∨-node N = N1 ∨N2 entails some clauses EN , the child nodes N1 and N2
also entail EN . But ∧-nodes N1 and N2 may be annotated differently because clauses solved
by their literals are removed from their annotations.

In the following, we require non-interfering annotations for ∧-nodes. We say that
annotations of two child nodes interfere if one child is annotated by a clause that shares
variables with its sibling. The knowledge compilers D4 [38], Dsharp [40], and c2d [12]
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Algorithm 2 Decision-DNNF smoothing for Trace Generation

Input: An annotated Decision-DNNF with root N and a set M of “missing” nodes.
1 Procedure smooth(N , M)
2 if N is a ∧-node then
3 P :=

{
N ′ 7→ {v | v ∈M ∩ vars(clauses(N ′))}

∣∣∣N ′ ∈ children(N)
}

4 I := M \
(⋃

N ′∈children(N) P (N ′)
)

5 if ⊥ ∈ children(N) then
6 return B We do not smooth unsat. nodes.
7 foreach N ′ ∈ children(N) do
8 smooth(N ′, P (N ′))
9 foreach v ∈ I \ vars(N) do

10 add (v ∧ >) ∨ (¬v ∧ >) as child of N

11 else if N = N1 ∨N2 is an ∨-node then
12 smooth(N1, M ∪ (vars(N2) \ vars(N1))
13 smooth(N2, M ∪ (vars(N1) \ vars(N2))
14 return B Nothing to do for >- and ⊥-nodes.

produce such formulas by construction, as they decompose the input clauses into disjoint
components under some partial assignment (dynamic decomposition). Hence, we assume
non-interfering annotations for ∧-nodes in the following. Note that we can easily construct
non-interfering annotations as follows: If either subformula is unsatisfiable, which is easy to
check in Decision-DNNF, it can be replaced by a ⊥-node, which is not annotated. Otherwise,
we apply a transformation from interfering ∧-nodes.

Smoothing. After annotation, we transform the Decision-DNNF into a smooth Decision-
DNNF. Therefore, we add additional nodes, such that the children of ∨-nodes cover the same
variables. While an ∧-node N with variable v 6∈ vars(N) can be transformed such that v
is contained by replacing N with node ((v ∧N) ∨ (¬v ∧N)) [14], we need a slightly more
sophisticated procedure to avoid “invalidating” the annotation. To this end, we preserve
the annotation and use one decision node per input variable as done in Algorithm 2. The
algorithm takes a node N and a set M of missing variables as input. If N is an ∨-node,
we run smoothing for both decision branch nodes where set M consists of variables that
occur exclusively in the sibling node. If N is an ∧-node, we map children N ′ of N to sets
of variables, where P (N ′) is the subset of missing variables that occur in some clause in
clauses(N ′). For two distinct children Ni and Nj of N , P (Ni) and P (Nj) are disjoint since
they have non-interfering annotations. If no child is a ⊥-node, we smooth each child N ′

with M := P (N ′). Finally, there remains a subset I of missing variables that do not occur in
clauses(N ′) for any child N ′. For each v ∈ I\vars(N), we add the node Nv = (v∧>)∨(¬v∧>)
as a child of N . We label Nv with ∅. We do nothing for >- and ⊥-nodes. Our approach
ensures that claims generated from child nodes of an ∧-node can be joined (Lemma 22).

Generating Counting Traces
After annotation and smoothing, we have a smooth Decision-DNNF where each node is
annotated with a set of clauses. Intuitively, we translate an ∧-node to a join, its literals
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to an extension, and an ∨-node to a composition. To generate a counting trace, we apply
the following procedure recursively starting with the root node, which we assume to be a
decision.

Tracing ∧-nodes. If N is an ∧-node with parent node NP , we let CP := (clauses(NP ),
vars(NP )) be the parent component. We consider three cases. In each case, we construct a
claim IP for the parent component CP with assumption lits(N).
1. If N has a >-node as child, we output claim IP = (CP , lits(N), 1).
2. If N has a ⊥-node as a child, we output a claim I = (C⊥, ∅, 0) for component C⊥ = (F,
∅). The absence of models statement for I is trivial since a component with F 6= ∅ and
V = ∅ is always unsatisfiable. Additionally, we output claim IP = (CP , lits(N), 0).

3. Otherwise, N has non-trivial child nodes. We define a join component CJ = (clauses(N),
vars(N)\vars(lits(N))). If the parent node is not a decision node, we may have lits(N) = ∅
and CJ = CP . First, we output traces for the children of N . From that, we obtain
claim I ′ = (CN ′ , ∅, c′) for each child N ′ of N with child component CN ′ = (clauses(N ′),
vars(N ′)). Because the Decision-DNNF is deterministic and we have non-interfering
annotations, variables and clauses of child components for distinct children are mutually
disjoint. As a result of our smoothing algorithm, no variable in vars(clauses(N ′)) occurs
in another child of N . Hence, we can infer a joint claim IJ = (CJ , ∅, c) by Lemma 22
(Join), where c is the product of the counts in claims I ′. If lits(N) 6= ∅, we emit a claim
IP = (CP , lits(N), c) that extends IJ to the parent component CP by Lemma 24.

Finally, if |lits(N)| > 1, we additionally output claim (CP , {declit(N)}, c), which can
be inferred from IP by Lemma 20 (Composition). In our prototype, we use miniSAT to
generate a refutation for an absence of models statement supporting this composition. A
derivation of lits(N) from declit(N) might be obtained directly in a knowledge compiler.

Tracing ∨-nodes. For a decision node N = N1 ∨ N2, consider the component CN =
(clauses(N), vars(N)). Again, we first output counting traces for both children N1 and N2.
SinceN1 andN2 are ∧-nodes, we obtain claims I1 and I2 for CN with assumptions {declit(N1)}
and {declit(N2)}. Since declit(N1) = ¬declit(N2), we can infer a composed claim (CN , ∅, c)
where c is the sum of the counts of I1 and I2. The supporting absence of models statement
is straightforward.

Transforming a Decision-DNNF with Interfering Annotations
Current knowledge compilers do not generate Decision-DNNFs where clause annotations of
children of ∧-nodes share variables. Nevertheless, we can transform a Decision-DNNF with
interfering annotations into one without interfering annotations.

I Lemma 32. Let N be an ∧-node with two satisfiable children N1 and N2, where N1 entails
a clause C that shares variables I = vars(C)∩ vars(N2) with N2. Then, we can transform N

into a node Decision-DNNF N ′ with non-interfering annotations. The sub-tree rooted at N ′
has at most |I| · (2n+ 1) nodes, where n is the number of nodes in the subtree rooted at N .

Proof. Consider a literal ` ∈ C|I . We construct decision node N ′ = N` ∨N¬` from N , where
N` = N1[`] ∧N2 and N¬` = N1[¬`] ∧N2 with lits(N`) = {`} and lits(N¬`) = {¬`}. For a
node Ni, Ni[`] denotes conditioning of Ni with literal ` [14]. If either N1[`] or N1[¬`] become
> by conditioning, we omit > and have N` = N2 or N¬` = N2, respectively. We omit N2 if
either N1[`] or N1[¬`] becomes ⊥ by conditioning.
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As a result, N1[`] is not annotated with the interfering clause C, because C is solved by `
in lits(N`). Further, N1[¬`] does not contain the interfering variable by construction. If the
annotations of N1[¬`] and N2 still share variables, we replace N1[¬`] by N1[¬`]′ obtained
in the same way as N ′. We proceed until no interfering variable is left, where the node
conditioned with ¬` becomes ⊥.

It is easy to see that the result is still a Decision-DNNF. For the number of added nodes,
consider that we replace a node N1 by N1[l] and N1[¬`]each with at most as many nodes
n as the subtree rooted at N . Hence, the replacement for each ` ∈ C|I has at most 2n
additional nodes, plus one decision node. For each replacement, only one decision branch
must be processed further. Thus, N ′ is replaced by at most |I| · (2n+ 1) nodes. J

I Example 33. Consider formula F = {{e, a, b}, {a, b, c, d}, {c, d, f}, {¬f}}, which has an
equivalent Decision-DNNF with interfering annotations (left). The first child of the ∧-node
labeled with {¬e} is annotated with the first and second clause. The second child is annotated
with the second and third clause. Hence, the second clause is an interfering clause. By
applying the transformation in Lemma 32 with literal a of the second clause, we obtain a
Decision-DNNF (right) that does not lead to interfering annotations.

∨

∧

. . .

∧

∨ ∨
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> >

{e} {¬e}

{a} {¬a, b} {c} {¬c, d}

Lemma 32

∨

∧ ∧

. . . ∨

∧ ∧

∨
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>

∧

>

{e} {¬e}

{a} {¬a}

{b}

{c} {¬c, d}

D A Plain-Text Trace Format

In this section, we describe a trace format that can be efficiently generated by solvers and is
simple to implement and process. The format is line-based, where each line starts with a
string indicating its type and ends with 0, followed by the newline character. Within lines,
only spaces are allowed as whitespace. Lines starting with c are ignored.
PREFIX space separated items 0
c ignored line

As in the DIMACS format for formulas in CNF, variables are written as positive integers
n and literals as signed integers -n or n. A trace starts with a header line, indicating the
number of variables Nv and clauses Nc of the original DIMACS CNF instance.
p st Nv Nc 0

Clause Definitions

To refer to clauses of the input formula in the trace, each clause is given a unique index.
This positive integer index must be unique to the clause. A clause definition is written as a
line starting with f, followed by the index idx and the literals l1, . . . , ln of the clause.
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f idx l1 l2 ... ln 0

Component Definitions

Let C = (F, V ) be a component. As with clauses, we assign each component a unique positive
integer identifier id. This allows referring to the component from other statements in the
trace. A component definition line starts with tag d, followed by the component identifier
id, the component’s variables V = v1, . . . , vn, separator symbol 0, and the clause indices
c1, . . . , cn of clauses F .

d id v1 v2 ... vn 0 c1 c2 ... cn 0

Model Claims

An (exactly one) model claim (C, A, 1) for component C = (F, V ) is a claim that can be
inferred by Lemma 19. It is written as a line starting with tag m, followed by the component
identifier id for C and the literals l1, . . . , ln of its assumption A.

m id 1 l1 l2 ... ln 0

Join Claims

A join claim I = (C, A, c) for component C = (F, V ) is a claim that can be inferred by
Lemma 22 or a generalization to n-ary joins. First, we define the subcomponents of C. Note
that these definitions apply to all join claims of C, not just a I. A join subcomponent
definition starts with tag jc followed by the identifier childn of a subcomponent of C and
the identifier id of C.

jc child1 id 0
jc child2 id 0
jc child3 id 0

Then, we write a claim line starting with tag j, followed by component identifier id, the
claimed count c, and the literals l1, . . . , ln of the assumption A.

j id c l1 l2 ... ln 0

If one claim I of a joined subcomponent has model count 0, the claims for sibling components
of I may be omitted.

Extension Claims

An extension claim I = (C, A, c) for component C = (F, V ) is a claim that can be inferred by
Lemma 24 from a claim of subcomponent C′ of C. The claim is written as a line starting
with tag e, followed by the identifier id of C, the identifier subid of C′, the claimed count c,
and the literals l1, . . . , ln of the assumption A.

e id subid c l1 l2 ... ln 0
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Absence of Models Statements

An absence of models statement A = (C, A, U,∆) for a component C is written as multiple
lines. First, the refutation ∆ is declared with a unique positive integer identifier aid. The
declaration line starts with tag xp which is followed by the refutation identifier aid.

xp aid 0

Then, the steps δ of ∆ are given with one step δ = {l1, l2, . . . , ln} per line. Each line
starts with tag xs, followed by the refutation identifier aid and the literals l1, . . . , ln of the
refutation step δ.

xs idx l1 l2 ... ln 0

Finally, we write a statement line finishes. All claims in the set A states composability
for must occur before the statement line. There may be multiple statement lines referencing
the same refutation. The statement line starts with tag xf, followed by identifier id of C,
refutation identifier aid of ∆, the variables v1, . . . , vn U , the separator symbol 0, and the
literals l1, . . . , ln of the assumption A.

xf id aid v1 v2 ... vn 0 l1 l2 ... ln 0

Composition Claims

A composition claim (C, A, c) for component C = (F, V ) is a claim that can be inferred by
Lemma 20. It is written as a line starting with tag a, followed by identifier id of C, the
refutation identifier of an absence of models statement aid, the claimed count c and the
literals l1, . . . , ln of the assumption A.

a id aid c l1 l2 ... ln 0
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