
Alternation as a Programming Paradigm⋄

PPDP’09, Coimbra, Portugal

Wolfgang Dvǒrák†, Georg Gottlob∗, Reinhard Pichler†, Stefan Woltran†

† Institut für Informationssysteme
Technische Universität Wien
∗Computing Laboratory

Oxford University

September 7, 2009

⋄This work was supported by the Austrian Science Fund (FWF), project P20704-N18.

Alternation as a Programming Paradigm Slide 1

1. Motivation

Motivation

Why considering Alternation as a Programming Paradigm ?

Alternating (Turing) Machines are a well-known concept in
computational complexity theory.

Alternating algorithms are often used to prove containment of a
problem in a particular complexity class.

There are feasible alternating complexity classes and problems.

Many practical problems have natural descriptions in terms of
alternation.

There is no support of alternation in the common programming languages

Alternation as a Programming Paradigm Slide 2

1. Motivation

Motivation

Why considering Alternation as a Programming Paradigm ?

Alternating (Turing) Machines are a well-known concept in
computational complexity theory.

Alternating algorithms are often used to prove containment of a
problem in a particular complexity class.

There are feasible alternating complexity classes and problems.

Many practical problems have natural descriptions in terms of
alternation.

There is no support of alternation in the common programming languages

Alternation as a Programming Paradigm Slide 2

1. Motivation

Motivation

Why considering Alternation as a Programming Paradigm ?

Alternating (Turing) Machines are a well-known concept in
computational complexity theory.

Alternating algorithms are often used to prove containment of a
problem in a particular complexity class.

There are feasible alternating complexity classes and problems.

Many practical problems have natural descriptions in terms of
alternation.

There is no support of alternation in the common programming languages

Alternation as a Programming Paradigm Slide 2

1. Motivation

Motivation

Integration of declarative language constructs in imperative languages
has been an important goal in many research projects.

Some previous projects that integrated non-determinism in imperative
languages:

Alma-0 (A.R. Apt and A. Schaerf): Integrating non-determinism in
Modula-2

Paslog (A. Radensky): Horn-clause programming in Pascal

Alternation as a Programming Paradigm Slide 3

1. Motivation

Outline

1. Motivation

2. Alternation

3. Alter-Java

4. Alter-Java Programs

5. Implementation

6. Conclusion

Alternation as a Programming Paradigm Slide 4

2. Alternation

Computation Modes

In theoretical computer science there are different modes of computation

deterministic machines
There is exactly one possible successor for each configuration of the
machine.

A computation for an input is simply a sequence of configurations.

The value of a computation is given by the last configuration in the
sequence.

nondeterministic machines
For each configuration of the machine there may be many possible
successors.

The possible computations for an input can be represented as a
computation tree.

It is not clear what is the output for a given input.

Alternation as a Programming Paradigm Slide 5

2. Alternation

Computation Modes

In theoretical computer science there are different modes of computation

deterministic machines
There is exactly one possible successor for each configuration of the
machine.

A computation for an input is simply a sequence of configurations.

The value of a computation is given by the last configuration in the
sequence.

nondeterministic machines
For each configuration of the machine there may be many possible
successors.

The possible computations for an input can be represented as a
computation tree.

It is not clear what is the output for a given input.

Alternation as a Programming Paradigm Slide 5

2. Alternation

Computation Modes

In theoretical computer science there are different modes of computation

deterministic machines
There is exactly one possible successor for each configuration of the
machine.

A computation for an input is simply a sequence of configurations.

The value of a computation is given by the last configuration in the
sequence.

nondeterministic machines
For each configuration of the machine there may be many possible
successors.

The possible computations for an input can be represented as a
computation tree.

It is not clear what is the output for a given input.

Alternation as a Programming Paradigm Slide 5

2. Alternation

Nondeterministic Acceptance

(ordinary) nondeterministic acceptance

A machine accepts an input if at least one possible computation accepts.

(co-) nondeterministic acceptance

A machine accepts an input iff all possible computations accept.

NP co-NP

Alternation as a Programming Paradigm Slide 6

2. Alternation

Nondeterministic Acceptance

(ordinary) nondeterministic acceptance

A machine accepts an input if at least one possible computation accepts.

(co-) nondeterministic acceptance

A machine accepts an input iff all possible computations accept.

NP co-NP

Alternation as a Programming Paradigm Slide 6

2. Alternation

Nondeterministic Acceptance

(ordinary) nondeterministic acceptance

A machine accepts an input if at least one possible computation accepts.

(co-) nondeterministic acceptance

A machine accepts an input iff all possible computations accept.

NP co-NP

Alternation as a Programming Paradigm Slide 6

2. Alternation

Alternation

Alternating machines combine the existential acceptance from NP with
the universal acceptance from co-NP

alternating machines

An alternating machine is a nondeterministic machine with two kinds of
configurations:

universal configurations: evaluate to true iff all successors evaluate
to true

existential configurations: evaluate to true iff at least one successor
evaluates to true

The machine accepts an input iff the initial configuration evaluates to
true.

Alternation as a Programming Paradigm Slide 7

2. Alternation

Figure: alternating acceptance mode

Alternation as a Programming Paradigm Slide 8

2. Alternation

Alternation

The class of problems decidable by an Alternating Turing Machine in
logarithmic space corresponds to the class of polynomial time
decidable problems on deterministic Turing Machines

ALOGSPACE = P

There are many problems with natural specifications in terms of
alternation (even in ALOGSPACE).
e.g. Horn Minimal Model/Satisfiability, Winning Strategies in
Games, Circuit Evaluation, Alternating Graph Accessibility, . . .

Alternation as a Programming Paradigm Slide 9

2. Alternation

Alternation

The class of problems decidable by an Alternating Turing Machine in
logarithmic space corresponds to the class of polynomial time
decidable problems on deterministic Turing Machines

ALOGSPACE = P

There are many problems with natural specifications in terms of
alternation (even in ALOGSPACE).
e.g. Horn Minimal Model/Satisfiability, Winning Strategies in
Games, Circuit Evaluation, Alternating Graph Accessibility, . . .

Alternation as a Programming Paradigm Slide 9

2. Alternation

Example

Acyclic Geography Game (AGG)

instance: An directed acyclic graph G = (V ,E) and a vertex s.
The game is played as follows:
We start with a token on the vertex s. Player 1 has the first move and
then the players alternate moving. In each move the active player can
move the token along one edge. The first player with no possible move
loses.
question: Is there a winning strategy for Player 1?

alternating approach:

Player 1 has a winning strategy starting in s if there EXISTS an edge
(s, v) such that FORALL edges (v , v ′) there is winning strategy for player
1 starting in v ′.

Alternation as a Programming Paradigm Slide 10

2. Alternation

Example

Acyclic Geography Game (AGG)

instance: An directed acyclic graph G = (V ,E) and a vertex s.
The game is played as follows:
We start with a token on the vertex s. Player 1 has the first move and
then the players alternate moving. In each move the active player can
move the token along one edge. The first player with no possible move
loses.
question: Is there a winning strategy for Player 1?

alternating approach:

Player 1 has a winning strategy starting in s if there EXISTS an edge
(s, v) such that FORALL edges (v , v ′) there is winning strategy for player
1 starting in v ′.

Alternation as a Programming Paradigm Slide 10

3. Alter-Java

Alter-Java

Alter-Java is a language extension of the imperative part of Java which
adds constructs for alternation.

The main concepts of the Alter-Java language:

input variables - input for the computation, must not be modified
during the computation

work variables - specifying the configurations of the program

the program is written in states - a state computes successor states
and combines their results to a return value

the program starts in an initial configuration. The output of the
program is the result of the initial configuration

Alternation as a Programming Paradigm Slide 11

3. Alter-Java

Alter-Java

Additional keywords in the Alter-Java language:

atm - at the beginning of an Alter-Java program. Followed by the
program´s name

state - defines a state of the program. Followed by the name of a
state and a block with the code of the state

forall, exists - declares the acceptance mode of a configuration.
Followed by a block defining the successor configurations

accept, reject - immediate acceptance / rejection of the
configuration

Alternation as a Programming Paradigm Slide 12

4. Alter-Java Programs

Acyclic Geographic program

package at . ac . tuwien . dba i . a l t e r n a t i o n . examples ;

atm Geograph i c (Graph<Pos i t i o n> gameBoard ,
Graph . Node<Pos i t i o n> s t a r tNode)

{
Graph . Node<Pos i t i o n> p o s i t i o n=s ta r tNode ;

s ta te P lay e r 1 {
[. . .]

}

s ta te P lay e r 2 {
[. . .]

}
}

Alternation as a Programming Paradigm Slide 13

4. Alter-Java Programs

state Player1

s ta te P lay e r 1 {
e x i s t s {

f o r (Graph . Node<Pos i t i o n> node : p o s i t i o n .
g e tCh i l d r e n ()) {
P lay e r 2 {

p o s i t i o n=node ;
}

}
}

}

Alternation as a Programming Paradigm Slide 14

4. Alter-Java Programs

state Player2

s ta te P lay e r 2 {
f o r a l l {

f o r (Graph . Node<Pos i t i o n> node : p o s i t i o n .
g e tCh i l d r e n ()) {
P lay e r 1 {

p o s i t i o n=node ;
}

}
}

}

Alternation as a Programming Paradigm Slide 15

4. Alter-Java Programs

package at . ac . tuwien . dba i . a l t e r n a t i o n . examples ;

atm Geograph i c (Graph<Pos i t i o n> gameBoard ,
Graph . Node<Pos i t i o n> s t a r tNode)

{
Graph . Node<Pos i t i o n> p o s i t i o n=s ta r tNode ;

s t a t e P lay e r 1 {
e x i s t s {

f o r (Graph . Node<Pos i t i o n> node : p o s i t i o n . g e tCh i l d r e n ())
{
P lay e r 2{

p o s i t i o n=node ;
}

}
}

}

s t a t e P lay e r 2 {
f o r a l l {

f o r (Graph . Node<Pos i t i o n> node : p o s i t i o n . g e tCh i l d r e n ())
{
P lay e r 1{

p o s i t i o n=node ;
}

}
}

}
}

Alternation as a Programming Paradigm Slide 16

5. Implementation

Implementation

Alter-Java Implementation:

A compiler transforming Alter-Java to Java.

A framework executing alternating Programs.

Framework:

Computation trees of ATMs grow exponentially with the input (even
for ALOGSPACE).
↪→ naive tree traversal algorithms are not feasible.

Our framework uses a tabled evaluation algorithm to provide
polynomial runtime.

Our framework offers cycle detection to handle infinite computation
paths.

Alternation as a Programming Paradigm Slide 17

5. Implementation

Experimental Results

First experiments with the following problems:

Two Player Games

Definite Horn Minimal Model

Experience:

Comparable runtime to traditional Java programs

Lines of code: significant reduction

↪→ example 700 loc in Java vs 100 loc in Alter-Java

Cycle-detection is critical for many applications

Alternation as a Programming Paradigm Slide 18

6. Conclusion

Conclusion

The main contributions of our paper:

Examples of feasible alternating problems and programs.

Alter-Java: A language offering language constructs for expressing
alternation.

Alter-Java-Implementation: A framework executing Alter-Java
programs in feasible time and space bounds.

Experiments confirming the feasibility of Alter-Java.

Future work:

Explore the potential of alternating programs for LOGCFL-problems.

Identifying possible applications of alternation in the field of
Computer Aided Verification (e.g. CTL).

Alternation as a Programming Paradigm Slide 19

6. Conclusion

Conclusion

The main contributions of our paper:

Examples of feasible alternating problems and programs.

Alter-Java: A language offering language constructs for expressing
alternation.

Alter-Java-Implementation: A framework executing Alter-Java
programs in feasible time and space bounds.

Experiments confirming the feasibility of Alter-Java.

Future work:

Explore the potential of alternating programs for LOGCFL-problems.

Identifying possible applications of alternation in the field of
Computer Aided Verification (e.g. CTL).

Alternation as a Programming Paradigm Slide 19

	Motivation
	Alternation
	Alter-Java
	Alter-Java Programs
	Implementation
	Conclusion

