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Abstract. A fast-growing research direction in the study of formal argumenta-
tion is the development of practical systems for central reasoning problems under-
lying argumentation. In particular, numerous systems for abstract argumentation
frameworks (AF solvers) are available today, covering several argumentation se-
mantics and reasoning tasks. Instead of proposing another algorithmic approach
for AF solving, we introduce in this paper distinct AF preprocessing techniques
as a solver-independent approach to obtaining performance improvements of AF
solvers. We establish a formal framework of replacement patterns to perform lo-
cal simplifications that are faithful with respect to standard semantics for AFs.
Moreover, we provide a collection of concrete replacement patterns. Towards po-
tential applicability, we employ the patterns in a preliminary empirical evaluation
of their influence on AF solver performance.
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1 Introduction

Argumentation is today a vibrant area of modern AI research [4]. In particular, the study
of computational aspects of argumentation connects with several AI subfields such as
knowledge representation, constraints, and complexity of reasoning. The development
of practical systems and algorithmic solutions for central reasoning problems underly-
ing argumentation is motivated by a range of applications [1].

Abstract argumentation offers argumentation frameworks (AFs) as an important
graph-based knowledge representation formalism for argumentation [9]. Computational
models of argumentation, in particular from the perspective of the development of prac-
tical algorithms, have recently received a lot of attention. Several optimized practical
AF reasoning systems (AF solvers) are available today [6], covering several argumen-
tation semantics and reasoning tasks such as enumeration and skeptical and credu-
lous query answering. The various state-of-the-art AF solvers, developed by several
research groups around the world, are evaluated in the biennially organized ICCMA
AF solver competitions [22,13], providing further incentives for seeking improvements
in AF solver technology.

While both specialized and constraint-based AF solvers have been developed, less
attention has been so far put on the development of preprocessing and simplification
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techniques working directly on AFs. This is despite the fact that polynomial-time pre-
processing (rewriting) has been shown to bring great practical performance improve-
ments in various constraint solving paradigms [11,18,17,20,14,19]. Notably, prepro-
cessing techniques applied before invoking a solver for the reasoning task at hand are
solver-independent. Thereby the development of practical preprocessing techniques has
the potential of improving the performance of various solvers. As proven to be the case
in the area of propositional reasoning [18], applying combinations of relatively simple
individual preprocessing techniques can have a surprisingly significant positive effect
on solver performance.

In this work, we take first steps in solver-independent preprocessing for AFs. By
preprocessing we understand a family of polynomial-time applicable simplification
rules which preserve an appropriate form of equivalence. In the domain of AFs this
amounts to searching for particular sub-AFs that can be replaced by a smaller and/or
simpler AF without changing the semantics of the whole AF. However, the nonmono-
tonic nature of AF semantics makes the understanding of such replacements non-trivial.
In addition, we aim for removing arguments that cannot be accepted and for merging
arguments that can only be jointly accepted. Since preprocessing itself should rely on
efficient polynomial-time algorithms, we cannot include any semantic treatment of AFs
or sub-AFs into the procedures.

To this end, we introduce the concept of replacement patterns which contain infor-
mation about (i) which AFs need to be matched on subgraphs of the AF at hand, and
(ii) how to simplify them independently of the surrounding framework. The recently
introduced notion of C-relativized equivalence [5] provides a suitable tool to prove
faithfulness of such simplifications. However, we need to extend this notion properly
in order to also capture the concept of merging of arguments in a formally sound way.
Our formal results refine equivalence results for AFs with merged arguments and show
how these can be used to show faithfulness of our patterns. Consequently, AFs obtained
by iterative applications of replacement patterns are equivalent to the original AF one
started with, which makes them applicable even for the task of extension enumeration.

An alternative approach to local simplifications of AFs is the S-equivalence of mul-
tipoles [2]. However, S-equivalence treats the part of the AF to be replaced as ”black-
box” and thus allows for changes in the extensions w.r.t. arguments which are not in the
IO-interface of the multipole. As our work is focusing on replacements that preserve
the extensions of the AF we thus follow and extend the approach of [5].

The preprocessed AFs obtained via applications of replacement patterns can be in-
put to any state-of-the-art AF solver for obtaining solutions to enumeration and rea-
soning tasks over the original input AF. After obtaining a solution to the preprocessed
AF, the only additional tasks to be performed is to reconstruct actual arguments from
merged arguments, which is straightforward for our replacement patterns.

We provide a set of concrete polynomial-time checkable replacement patterns which
we consider as a first suite of solver-independent AF preprocessing techniques for sta-
ble, preferred, and complete semantics. We further study the impact of our preprocess-
ing routine via a preliminary empirical evaluation on both two state-of-the-art native
AF solvers [15,21] and a SAT-based AF solver [10,12] on the task of extension enumer-
ation. Our results reveal that in particular the native solvers can highly benefit from pre-
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processing; also the performance of constraint-based solvers can be improved at times.
Hence preprocessing appears promising for further closing the current performance
gap [8] between state-of-the-art native and constraint-based solvers, and the first em-
pirical results presented motivate further studies of practical preprocessing techniques
for different AF reasoning tasks, including acceptance problems where preprocessing
needs not to preserve all extensions, in constrast to extension enumeration.

The paper is organized as follows. We first recall abstract argumentation and the
notion of C-relativized equivalence (Section 2). Next, we introduce replacement pat-
terns as a formal framework for studying faithful simplifications of AFs, and extend
the notion of C-relativized equivalence to allow for formally establishing faithfulness
of replacement patterns (Section 3.1). We then provide concrete replacement patterns
for preprocessing AFs (Section 3.2). Finally, we present an empirical evaluation of the
presented patterns (Section 4).

2 Argumentation Frameworks and Equivalence

We recall abstract argumentation frameworks [9], their semantics (see [3] for an over-
view), and the notion of C-relativized equivalence [5] which we will employ to show
the faithfulness of replacements. We fix U as a countably infinite domain of arguments.

Definition 1. An argumentation framework (AF) is a pair F = (A,R) where A ⊆ U
is a finite set of arguments and R ⊆ A × A is the attack relation. The pair (a, b) ∈ R
means that a attacks b. We use AF to refer to A and RF to refer to R. We say that an
AF is given over a set B of arguments if AF ⊆ B.

Definition 2. Given an AF F and set S ⊆ AF , we define S+
F = {x | ∃y ∈ S : (y, x) ∈

RF }, S−F = {x | ∃y ∈ S : (x, y) ∈ RF }, and the range of S in F as S⊕F = S ∪ S+
F .

The following adaptions of set-theoretic operators to pairs of AFs will be useful in
the rest of the paper.

Definition 3. Given AFs F = (A,R), F ′ = (A′, R′), we denote the union of AFs as
F ∪ F ′ = (A ∪ A′, R ∪ R′). For a set S ⊆ U of arguments, and a set T ⊆ (A × A)
of attacks, we define F \ S = (A \ S,R ∩ ((A \ S)× (A \ S))), F \ T = (A,R \ T ),
F ∩S = (A∩S,R∩((A∩S)×(A∩S))), F ∪S = (A∪S,R), and F ∪T = (A,R∪T ).
For mixed sets S∪T of arguments S and attacks T we define F \(S∪T ) = (F \T )\S,

We next give a formal definition of sub-AFs. In words, a sub-AF is an induced subgraph
of the directed graph representation of an AF.

Definition 4. We call an AF F to be a sub-AF of G, in symbols F v G, if AF ⊆ AG
and RF = RG ∩ (AF ×AF ).

Replacement is a central notion in this work, and intuitively defines substitutions of
a sub-AF with another.

Definition 5. Given AFs F, F ′, G such that F v G and AF ′ ∩ (AG \ AF ) = ∅, let
A = (AG \ AF ) ∪ AF ′ . The replacement of F by F ′ in G is defined as G[F/F ′] =
(A, ((RG \RF ) ∩ (A×A)) ∪RF ′).
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Semantics for AFs are defined based on the notions of defense and the characteristic
function.

Definition 6. Given an AF F = (A,R), argument a ∈ A is defended (in F ) by a set
S ⊆ A if {a}−F ⊆ S+

F . The characteristic function FF : 2A → 2A of F is defined as
FF (S) = {a ∈ A | a is defended by S in F}.

Semantics are functions σ which assign to each AF F a set σ(F ) ⊆ 2AF of ex-
tensions. We consider for σ the functions stb, com, and prf, which stand for stable,
complete, and preferred semantics, respectively.

Definition 7. Let F = (A,R) be an AF. A set S ⊆ A is conflict-free (in F ), if there are
no a, b ∈ S such that (a, b) ∈ R. cf(F ) denotes the collection of conflict-free sets of F .
For a conflict-free set S ∈ cf(F ), it holds that

– S ∈ stb(F ), if S⊕F = A;
– S ∈ com(F ), if S = FF (S);
– S ∈ prf(F ), if S ∈ com(F ) and @T ⊃ S s.t. T ∈ com(F ).

Under a standard notion, two AFs are equivalent under a semantics iff they have the
same extensions.

Definition 8. We call two AFs F and G to be equivalent in semantics σ, in symbols
F ≡σ G, iff σ(F ) = σ(G).

Baumann et al. [5] have studied the following refined notion of equivalence, which
is sensitive to expansions as long as they do not affect a certain core of arguments.

Definition 9. Given a semantics σ and C ⊆ U . Two AFs F and G are C-relativized
equivalent w.r.t. σ (F ≡σC G) iff F ∪H ≡σ G ∪H holds for each AF H over U \ C.

In order to decide whether two AFs are C-relativized equivalent, C-restricted se-
mantics have been introduced. Those restrict the relevant properties of the original se-
mantics to the core arguments C. We present these concepts in detail for stable seman-
tics, on which we shall focus in the remainder of the paper.

Definition 10. Let F be an AF, C ⊆ U and E ⊆ AF . We have that E ∈ stbC(F ) if
E ∈ cf(F ) and AF ∩ C ⊆ E⊕F .

That is, for C-restricted stable extensions we relax the conditions for stable semantics
such that, beside the extension being conflict-free, we only require that all arguments in
the core are in the range of the extension.

We have that two AFs F,G can only be C-relativized equivalent w.r.t. a semantics
σ if they have exactly the same C-restricted σ extensions. However, this is only a nec-
essary but not a sufficient condition. We additionally require that, except for arguments
in the core C, the AFs F,G have the same arguments and for stable semantics that all
C-restricted stable extensions have the same range in F and G when ignoring the core
arguments C.

Theorem 1. [5] Let F,G be AFs and C ⊆ U . Then, F ≡stb
C G iff the following jointly

hold:

1. if stbC(F ) 6= ∅, AF \ C = AG \ C;
2. stbC(F ) = stbC(G); and
3. for all E ∈ stbC(F ), E+

F \ C = E+
G \ C.
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3 Replacement Patterns

The idea behind the notion of replacement patterns is to allow for some freedom in the
subgraphs we are looking for to apply simplifications. For example, often the existence
of certain attacks does not affect the applicability of replacements; a specific replace-
ment pattern defines similar graphs that qualify for replacements. In what follows, we
first introduce the formal framework of replacement patterns and show how faithful-
ness of patterns can be achieved using the notion of C-relativized equivalence. Then
we present concrete replacement patterns for preprocessing AFs.

3.1 Main Concepts

A central ingredient of replacement patterns is merging of arguments, resulting in argu-
ments of the form mS with S ⊆ U being standard arguments. The universe of all such
arguments is given by Um = {mS | S ⊆ U, S is finite}.

Definition 11. Let F = (A,R) be an AF and a, b ∈ A. The merge M(F, a, b) of a, b in
F is the AF (A′, R′) given by A′ = A \ {a, b} ∪ {m{a,b}} 3 and R′ = R∩ (A′×A′)∪
{(m{a,b}, c) | (a, c) ∈ R or (b, c) ∈ R} ∪ {(c,m{a,b}) | (c, a) ∈ R or (c, b) ∈ R}.

The following two unpacking functions U(·) map (i) a set of arguments over U∪Um
to the corresponding set of arguments in U , and (ii) an AF with merged arguments back
to an AF over U .

Definition 12. Let F = (A,R) be an AF with A ⊆ U ∪Um and E ⊆ A. The unpacked
set U(E) of E is given by (E ∩U)∪

⋃
mS∈E S. The unpacked AF U(F ) of F is the AF

(A′, R′) given by A′ = U(A) and R′ = R ∩ (A′ × A′) ∪ {(a, c) | (mS , c) ∈ R, a ∈
S} ∪ {(c, a) | (c,mS) ∈ R, a ∈ S} ∪ {(a, c) | (mS ,mS′) ∈ R, a ∈ S, c ∈ S′}.

Notice that U(F ) is always an AF over U . In the next step we generalize standard
equivalence by taking into account AFs which have resulted from merging of argu-
ments. That is we do not compare extensions directly but consider AFs to be equivalent
if their unpacked extensions coincide.

Definition 13. We call two AFs F and G over U ∪Um to be equivalent in semantics σ,
in symbols F ≡σ G, iff {U(E) | E ∈ σ(F )} = {U(E) | E ∈ σ(G)}.

We are now ready to give a formal notion of a replacement pattern. In order to
define a replacement for a class of (similar) graphs instead of just a single graph in our
replacement pattern we have to define a replacement for each of the graphs in the class.
That is, a replacement pattern PC consists of pairs (F, F ′) that coincide on arguments
not in C. When applying such a pattern PC to a larger AF G some sub-AF M of G
that is isomorphic to F is replaced by a graph isomorphic to F ′. We first give a formal
definition of replacement patterns and then define how to apply such patterns to AFs.

3 However, we keep the set structure flat, i.e., when merging arguments mS ,mS′ ∈ Um the
resulting argument is mS∪S′ .
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Definition 14 (Replacement pattern). A replacement pattern PC forC ⊆ U is a set of
pairs (F, F ′) of AFs F, F ′ such that AF ⊆ U , AF ′ ⊆ U ∪Um, and F and F ′ coincide
on the arguments not contained in Cm = C ∪ {mS | S ⊆ C}, i.e., a replacement
pattern is of the form

PC = {(F, F ′) | F, F ′ AFs, F \ C = F ′ \ Cm},

such that for any (F1, F
′
1), (F2, F

′
2) ∈ PC , F1 6= F2.

For preprocessing, we need to detect an instantiation of a pattern PC as what we call
C-encircling sub-AF of an AF G, i.e. a sub-AF F such that C might be connected to F
but is not connected to G \ F , and then apply the pattern in the form of a replacement.

Definition 15 (C-encircling sub-AF). An AF F is a C-encircling sub-AF of an AF G
if (i) F v G and (ii) C⊕G ∪ C

−
G ⊆ AF , i.e., C is not connected to AG\F in G.

Now a match of a pattern PC = {(Fi, F ′i ) | 1 ≤ i ≤ k} on G is a C ′-encircling
sub-AF I of G that is isomorphic to some Fi where C ′ is the image of C under the
isomorphism from Fi to I .

Definition 16 (Applying PC). Given AF G and pattern PC , a match of PC on G is
a tuple (F, F ′, I, α), where (F, F ′) ∈ PC , I is a C ′-encircling sub-AF of G, and I
is isomorphic to F via isomorphism α : AF → AG such that α(C) = C ′. We say
a pattern PC can be applied to G if there exists a match of PC on G. An application
PC [G] of pattern PC on G then picks a match (F, F ′, I, α) of PC on G and returns
G[I/α(F ′)], where α is extended to arguments mS by mapping them to mα(S).

The following example illustrates these concepts.

Example 1. Consider the replacement pattern PY{a,b,c} containing the pair (F, F ′) with
F =({a, b, c, d, e}, {(d, a), (a, b), (b, c), (c, e), (e, d)}) and F ′=M(F\{(b, c)}, a, c) =
({m{a,c}, b, d, e}, {(d,m{a,c}), (m{a,c}, b), (m{a,c}, e), (e, d)}). Moreover, consider
the AF G depicted in in Figure 1 (left). Now observe that the tuple (F, F ′, I, α) is a
match of PY{a,b,c} on G with I = G ∩ {x1, . . . , x5} and α = {a 7→ x1, b 7→ x2,

c 7→ x3, d 7→ x5, e 7→ x4}. Hence PY{a,b,c} can be applied to G, resulting in the AF
G[I/α(F ′)] = G′ depicted in Figure 1 (center). For stable semantics, we can verify
that this replacement is equivalence preserving, since stb(G) = {{x0, x1, x3}} and
stb(G′) = {{x0,m{x1,x3}}}, meaning that {U(E) | E ∈ stb(G)} = {U(E) | E ∈
stb(G′)} = {{x0, x1, x3}}. Note, however, that U(G′) 6= G, since U(G′) contains the
attacks (x3, x2), (x5, x3), and (x1, x4), which are not present in G. ♦

Naturally, a replacement pattern is faithful only if each of its possible applications
is an equivalence-preserving modification.

Definition 17 (Faithful pattern). A replacement pattern PC is σ-faithful iff PC [G] ≡σ
G for all G over U ∪ Um.

Testing whether a replacement pattern is faithful can be reduced to testing C-relativized
equivalence of the pairs of AFs covered by the pattern. This applies directly to patterns
that do not involve the merging of arguments, and requires unpacking for patterns that
do.
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x0

x1

x5

x2

x4

x3

⇒
x0

m{x1,x3}

x5

x2

x4

⇒
x0

m{x1,x3}

x5

x2

Fig. 1. Applying (i) the 3-path pattern (cf. Example 1) and (ii) the 3-loop pattern (cf. Example 3).

Theorem 2. For semantics σ ∈ {stb, prf, com} and replacement pattern PC such that
for each (F, F ′) ∈ PC ,AF ′∩S = ∅ formS ∈ AF ′ and S∩S′ = ∅ formS ,mS′ ∈ AF ′ ,
the following statements are equivalent.

1. PC is σ-faithful.
2. F ≡σC U(F ′) for each (F, F ′) ∈ PC .

We next continue our example to illustrate how one can use the above theorem in
order to prove our pattern to be stb-faithful.

Example 2. Again consider the replacement pattern PYC with C = {a, b, c} from Ex-
ample 1 and assume it contains just the pair (F, F ′). Now observe that U(F ′) =
F \{(b, c)}∪{(a, e), (d, c), (c, b)}. It holds that (1)AF \C = AU(F ′) \C = {d, e}, (2)
stbC(F ) = stbC(U(F ′)) = {{a, c}, {b, d}}, and (3) {a, c}+F \ C = {a, c}+U(F ′) \ C =

{e} and {b, d}+F \ C = {b, d}+U(F ′) \ C = ∅. It thus holds that F ≡stb
C U(F ′) (cf.

Theorem 1) and, by Theorem 2, that PYC is stb-faithful. ♦

Proof of Theorem 2

In this section we provide a proof of Theorem 2. We call an AF that meets the conditions
of Theorem 2 an arg-unique AF.

Definition 18. An AF F over U ∪Um is called arg-unique ifAF ∩S = ∅ formS ∈ AF
and S ∩ S′ = ∅ for mS ,mS′ ∈ AF ′ .

We first observe that two arg-unique AFs are equivalent iff their unpackings are equiv-
alent. The proof of the lemma exploits the fact that the unpacked extensions of an arg-
unique AF F coincide with the extensions of its unpacking U(F ).

Lemma 1. For semantics σ ∈ {stb, prf, com}, arg-unique AFs F,G over U ∪ Um we
have F ≡σ G iff U(F ) ≡σ U(G).

Proof. We show that σ(U(F )) = {U(E) | E ∈ σ(F )} which implies the lemma.
⊆: Consider E ∈ σ(U(F )) and an argument mS ∈ AF ∩ Um. As all arguments in

S have the same attackers in U(F ) we have that either S ⊂ E or S ∩ E = ∅. Now it is
easy to verify that for the set E′ = {a | a ∈ AF ∩ E} ∪ {mS | ms ∈ AF , S ⊆ E} it
holds that E′ ∈ σ(F ) and U(E′) = E.
⊇: For E ∈ σ(F ) it is easy to verify that U(E) ∈ σ(U(F )). In particular, mS is

defended by E in F iff each a ∈ S is defended by U(E) in U(F ). ut
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We next extend the notion of C-relativized equivalence to AFs over U ∪ Um.

Definition 19. Given a semantics σ and C ⊆ U ∪Um. Two AFs F and G over U ∪Um
are C-relativized equivalent w.r.t. σ (F ≡σC G) iff F ∪ H ≡σ G ∪ H for H over
(U ∪ Um) \ C.

Notice that if F,G are AFs over U the above notion coincides with the earlier notion
of C-relativized equivalence. We next show that a pattern with core C is faithful iff the
two AFs in each of the pattern’s pairs are Cm-relativized equivalent.

Proposition 1. For C ⊆ U and Cm = C ∪{mS | S ⊆ C} the pattern PC is σ-faithful
iff F ≡σCm

F ′ for each (F, F ′) ∈ PC .

Proof. 2⇒ 1) We have to show PC [G] ≡σ G, for every G and every possible match.
Consider a match (F, F ′, I, α). First notice that F ≡σCm

F ′ implies I = α(F ) ≡σC′

α(F ′) = I ′ (with C ′ = α(C)) as the equivalence does not depend on the names of
arguments from U , but only on whether they are in the core C, resp. C ′, which is
maintained by α. By the definition of ≡σC′ we have I ∪ H ≡σ I ′ ∪ H for all H that
do not contain arguments from C ′m. Finally, by setting H = G \ C ′ we obtain that
PC [G] ≡σ G.

1 ⇒ 2) If F 6≡σC F ′ for some (F, F ′) ∈ PC there is an AF H over (U ∪ Um) \
(C ∪ {mS | S ⊆ C} such that F ∪ H 6≡σ F ′ ∪ H . Now as there is a match with
PC [F ∪H] = F ′ ∪H we obtain that PC is not σ-faithful. ut

Finally, for arg-unique AFs the C-relativized equivalence tests for (F, F ′) ∈ PC can be
reduced to C-relativized equivalence tests on AFs over U . That is, to the case already
studied and well characterised in [5].

Lemma 2. For semantics σ ∈ {stb, prf, com}, cores C ⊆ U , Cm = C ∪ {mS | S ⊆
C}, AF F over U and arg-unique AF F ′ over U ∪Um such that F \C = F ′ \Cm, the
following statements are equivalent:

1. F ≡σCm
F ′.

2. F ≡σC U(F ′).

The proof of the lemma is based on the observation that given an AF H over U ∪ Um
such that F 6≡σCm

F ′, by exploiting Lemma 1 we can construct an AF H ′ over U
showing F 6≡σC U(F ′), and vice versa.

Proof. 2⇒ 1) W.l.o.g. assume there are E and H such that E ∈ σ(F ∪ H) but E 6∈
σ(F ′∪H). It is easy to verify that U(F ′∪H) = U(F ′)∪U(H) (notice that F ′A∩HA ⊆
FA ⊆ U ). By Lemma 1 we have U(F ∪ H) 6≡σ U(F ′ ∪ H). Thus there is an E′

such that E′ ∈ σ(F ∪ U(H)) but E′ 6∈ σ(U(F ′) ∪ U(H)), i.e., U(F ) ∪ U(H) 6≡σ
U(F ′) ∪ U(H). Moreover, by construction, U(H) does not contain arguments from
U(C). Hence, U(F ) 6≡σU(C) U(F

′).
1 ⇒ 2) W.l.o.g. assume there is a set E and an AF H such that E ∈ σ(F ∪ H)

but E 6∈ σ(U(F ′) ∪H). As AF \ C = AF ′ \ Cm the set AF ′ \ Cm does not contain
merged arguments. Thus we have U(F ′)∪H = U(F ′ ∪H) and, by Lemma 1, we have
E ∈ σ(F ∪H) but E 6∈ σ(U(F ′)∪H), i.e., F ∪H 6≡ F ′ ∪H . Hence, F 6≡σCm

F ′. ut
Finally, Theorem 2 is immediate by combining Proposition 1 with Lemma 2.
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3.2 Formalizing Concrete Patterns

We will now present our concrete replacement patterns. For this, we will use the concept
of a lagging. Intuitively, for a given core-AF F a lagging FL is an AF extending F by
new arguments that either attack or are attacked by arguments in F . When defining
our patterns we are typically interested in all laggings of a specific core-AF satisfying
certain conditions.

Definition 20. Given an AF F = (A,R), a lagging of F is any AF FL = (A′, R′)
with A ⊆ A′ such that FL ∩ A = F and A⊕FL

∪ A−FL
= A′. Given a lagging FL, we

sometimes refer to F as the core-AF.

For instance, the AF F in the pattern of Example 1 is a lagging of the AF ({a, b, c},
{(a, b), (b, c)}).

We have already given a glimpse on one of the patterns in Examples 1 and 2. There,
the pattern contained just a single pair of AFs (F, F ′), where the core contained the
directed path a→ b→ c. The insight that, given that b and c are otherwise unattacked,
in such cases a and c can be merged as they will appear together in every (stable)
extension, is the central concept to the following pattern.

Definition 21. Let F3P = ({a, b, c}, {(a, b), (b, c)}) be the core-AF. The 3-path pattern
is given by

P 3P
{a,b,c} ={(F, F

′) | F is a lagging of F3P ,

{b, c}−F = {a, b}, F ′ = M(F \ {(b, c)}, a, c)}.

In words, the 3-path pattern concerns all AFs which contain a proper 3-path a →
b→ c such that each argument x different from a, b, c is adjacent to this 3-path. In order
to contain the 3-path properly, x can only attack a, but it can be attacked by a, b, or c.
Each such AF F is replaced by merging a and c, without taking b → c into account.
Loosely speaking we aim to replace in F the path a→ b→ c by m{a,c} → b.

Proposition 2. P 3P
{a,b,c} is a stb-faithful replacement pattern.

Proof. Due to Theorem 2 it suffices to show that F ≡σC U(F ′) holds for each (F, F ′) ∈
P 3P
C , where C = {a, b, c}. Consider an arbitrary (F, F ′) ∈ P 3P

C . First note that, since
F ′ = M(F \ {(b, c)}, a, c), U(F ′) = (AF , RF \ {(b, c)} ∪ {(a, x) | (c, x) ∈ RF } ∪
{(c, x) | (a, x) ∈ RF } ∪ {(x, c) | (x, a) ∈ RF }. Let G = U(F ′).

For F ≡σC G we need to show that (1) if stbC(F ) 6= ∅ then AF \ C = AG \ C, (2)
stbC(F ) = stbC(G), and (3) for all E ∈ stbC(F ), E+

F \ C = E+
G \ C.

(1) is immediate by AG = AF . For (2), consider an arbitrary E ∈ stbC(F ). By
F ∩ C = F3P (F is a lagging of F3P ) and {b, c}−F = {a, b}, we have {b}−F = {a}.
Hence either (i) a ∈ E or (ii) b ∈ E. In case of (i) we get, since {c}−F = {b} and a
attacks b, that also c ∈ E. As attacks among arguments AF \ C remain unchanged in
G, i.e. RF \ (C × C) = RG \ (C × C), we get that E ∈ cf(G). As (a, b) ∈ RG,
also E ∈ stbC(G). In case of (ii) there must be some x ∈ E with (x, a) ∈ RF .
By construction of G, then (x, a), (x, c) ∈ RG, hence E+

G ⊇ C. Consequently, E ∈
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stbC(G). Hence stbC(F ) ⊆ stbC(G). For the other direction, consider an arbitrary
E ∈ stbC(G). By the same reason as above, either (i) a ∈ E or (ii) b ∈ E. For (i)
observe that, for each x ∈ AG, (x, c) ∈ RG iff (x, a) ∈ RG. Hence also c ∈ E. By
RF \ (C ×C) = RG \ (C ×C) and (a, b) ∈ AF , it follows that E ∈ stbC(F ). In case
of (ii) there must be some x ∈ E with (x, a) ∈ RG, hence also (x, a) ∈ RF . Moreover,
(b, c) ∈ RF , hence E ∈ stbC(F ).

For (3) let E ∈ stbC(F ). As before, we can distinguish between (i) a, c ∈ E and
(ii) b ∈ E. Now by construction ofG it holds that S+

F \C = S+
G \C for any S ⊇ {a, c},

in particular for E. Also in case of (ii) we get E+
F \ C = E+

G \ C since a, c /∈ E.
We can conclude that F ≡stb

C G and P 3P
C is stb-faithful. ut

Another candidate for simplification are odd-length cycles. More concretely, in ev-
ery occurrence of a directed cycle of length 3, a → b → c → a, where only a is
attacked from the outside, one can disregard c as well as the attack (a, b) when adding
a self-loop to a. This is formalized in the following replacement pattern.

Definition 22. Let F3L = ({a, b, c}, {(a, b), (b, c), (c, a)}) be the core-AF. The 3-loop
pattern is given by

P 3L
{a,b,c} ={(F, F

′) | F \ {(a, a), (c, c)} is a lagging of F3L,

{b, c}−F ⊆ {a, b, c}, F
′ = (F \ {c, (a, b)}) ∪ {(a, a)}.

Example 3. Consider the AF G′ in Figure 1 (center), which we obtained through ap-
plication of P 3P

{a,b,c} (cf. Example 1). We can now apply P 3L
{a,b,c} on G′: the tuple

(F, F ′, I, α) is a match of P 3L
{a,b,c} on G′ with F = F3L ∪ ({a, b, d, e}, {(a, d), (d, a),

(b, e)}) (a lagging of F3L), F ′ = F \ {c, (a, b)} ∪ {(a, a)}, I = G′, and α = {a 7→
x5, b 7→ m{x1,x3}, c 7→ x4, d 7→ x0, e 7→ x2}. One can check that (F, F ′) ∈ P 3L

{a,b,c}
and I is isomorphic to F via α. The result is the AF G′′ depicted in Figure 1 (right).
It holds that G′ ≡stb G′′ since {U(E) | E ∈ stb(G′)} = {U(E) | E ∈ stb(G′′)} =
{{x0, x1, x3}}. ♦

Now consider two arguments in arbitrary attack relation, one of them being other-
wise unattacked. Then, any stable extension must contain one of the two arguments.
Hence, under stb, we can safely remove any argument that is attacked by the two with-
out attacking back, together with all incident attacks. The following pattern expresses
this simplification.

Definition 23. Let F3C = ({a1, a2, b}, {(a1, b), (a2, b)}) be the core-AF. The 3-cone
pattern is given by

P 3C
{a1,a2,b} ={(F, F

′) | F \ {(a1, a2), (a2, a1)} is a lagging of F3C ,

{a2}−F ⊆ {a1}, F
′ = F \ {b}}.

The pattern P 3C
{a1,a2,b} is illustrated in Figure 2. Solid edges represent necessary

attacks while optional attacks are given by dotted edges.
The next pattern expresses that two arguments which have the same attackers and

are not conflicting with each other can be merged to a single argument.
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a1 a2

b

a1 a2

⇒

Fig. 2. The pattern P 3C
{a1,a2,b}.

Definition 24. Let F2to1 = ({a, b}, ∅) be the core-AF. The 2-to-1 pattern is given by

P 2to1
{a,b} ={(F, F

′) | F is a lagging of F2to1,

{a}−F = {b}−F , F
′ = M(F, a, b)}.

The pattern P 2to1
{a,b} is illustrated in Figure 3.

All patterns presented so far can be generalized. We exemplify this by presenting the
patterns 4-path, 4-cone, and 3-to-2, extending 3-path, 3-cone, and 2-to-1, respectively.

First, in the 4-path pattern the core-AF is the directed path a → b → c → d and,
given that beside (a, d) there are no further attacks among the core arguments, a, c as
well as b, d can be merged as they will appear together in every (stable) extension.
Loosely speaking we aim to replace in F the 4-path a → b → c → d by the 2-path
m{a,c} → m{b,d}.

Definition 25. Let F4P = ({a, b, c, d}, {(a, b), (b, c), (c, d)}) be the core-AF. The 4-
path pattern is given by

P 4P
{a,b,c,d} = {(F, F

′) | F \ {(a, d)} is a lagging of F4P ,

{b, c, d}−F = {a, b, c}, F ′ = M(M(F \ {(b, c)}, a, c), b, d)}.

In the 4-cone pattern we consider three arguments in arbitrary attack relation, one of
them being otherwise unattacked. Each stable extension contains at least one of the
three arguments and we can remove any argument that is attacked by the three without
attacking back.

Definition 26. Let F4C = ({a1, a2, a3, b}, {(a1, b), (a2, b), (a3, b)}) be the core-AF.
The 4-cone pattern is given by

P 4C
{a1,a2,a3,b} = {(F, F

′) | F \ {(ai, aj) | i 6= j∈{1, 2, 3}}

is a lagging of F4G, {a3}−F ⊆ {a1, a2}, F
′ = F \ {b}}.

a b ⇒ m{a,b}

Fig. 3. The pattern P 2to1
{a,b}.
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Finally, in the 3-to-2 pattern we consider three arguments a1, a2, b that are attacked
by the same arguments, and only a1 and a2 are conflicting. Each stable extension can
only accept one of a1 and a2 but whenever accepting one of them also accepts b. Thus
we can safely replace the three arguments by two merged arguments m{a1,b},m{a2,b}.
Definition 27. Let F3to2=({a1, a2, b}, ∅) be the core-AF. The 3-to-2 pattern is given by

P 3to2
{a1,a2,b} ={(F, (A

′, R′)) | F \ {(a1, a2), (a2, a1)} is a lagging of F3to2,

{a1}−F = {a2}−F = {b}−F },
where A′ = AG \ {a1, a2, b} ∪ {m{a1,b},m{a2,b}} and

R′ =RG ∩ (A′ ×A′) ∪ {(m{a,b}, c) | a ∈ {a1, a2} ∧ ((a, c) ∈ RG ∨ (b, c) ∈ RG)} ∪
{(c,m{a1,b}), (c,m{a2,b}) | c ∈ {b}

−
F }).

Patterns for stb semantics. This concludes our replacement patterns for stable seman-
tics. For preprocessing AFs, we apply these patterns recursively until no match for any
of the patterns can be found. Notice that by the transitivity of the equivalence relation
the recursive application of faithful replacement patterns is also equivalence preserv-
ing. For instance we simplify a 5-cycle by first applying the 3-path pattern and then the
3-loop pattern (cf. Fig. 1). Notice that, (a) when searching for matches of the pattern
we only need to check whether a graph from a finite set of finite graphs appears as sub-
AFs and (b) with each replacement we delete either arguments or attacks, and thus the
preprocessing is indeed in polynomial-time.

Patterns for prf and com semantics. While the path, 2to1, and 3to2 patterns are also
prf-preserving and com-preserving (cf. Table 1) the remaining patterns, in general, are
not. However, by a small modification, we can adapt the 3-loop pattern to work for
prf as well as com as follows. Given an occurrence of a directed cycle of length 3,
a → b → c → a, where only a is attacked from the outside, we can safely add a
self-loop to a. In contrast to stable semantics we have to maintain that attack (a, b), and
cannot simply disregard c but rather have to merge a and c, i.e. we still can delete c but
for each attack (c, x) in the original AF we have an attack (a, x) in the simplified AF.
This is formalized in the following replacement pattern. Notice that we can avoid using
a merged argument m{a,c} as both a and c cannot appear in any extension.
Definition 28. Let F3L = ({a, b, c}, {(a, b), (b, c), (c, a)}) be the core-AF. The 3-loop
pattern for com and prf is given by

P 3L′

{a,b,c} ={(F, F
′) | F \ {(a, a), (c, c)} is a lagging of F3L,

{b, c}−F ⊆ {a, b, c}, F
′ = (F \ {c}) ∪ {(a, x) | (c, x) ∈ RF }.

In order to adapt the 3-cone and 4-cone pattern for prf, one additionally requires that
one of the arguments ai defends itself against all attackers. However, there is no such
fix for com semantics.

Theorem 3. The presented patterns are σ-preserving as depicted in Table 1.

The proofs except for P 3to2 exploit Theorem 2 and the results of [5], following the
same schema as the proof of Proposition 2. Finally, we note that further generalizations
of our patterns are possible, e.g., extending the 3-loop pattern to 5-loop.
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Table 1. σ-faithfulness of replacement patterns.

3-path 3-loop 3-cone 2to1 4-path 4-cone 3to2
stb X X X X X X X

prf X (X) (X) X X (X) X

com X (X) × X X × X

4 Empirical Evaluation

We overview first empirical results of the potential of replacement patterns as an AF
preprocessing approach in the context of extension enumeration. Our main goal was to
investigate to which extent applying the patterns affects the AF solver running times.

In terms of AF semantics we overview results under stable and preferred semantics.
As preprocessing, we applied all the presented patterns (cf. Table 1). For these first ex-
periments, we implemented a software prototype for the application of the replacement
patterns in a somewhat brute-force way. In particular, we encoded the search for a set
of arguments to which a specific replacement pattern is applicable through an answer
set programming (ASP) encoding, and iterated through all considered replacement pat-
terns one-by-one until no applicable set of arguments was reported by the ASP solver
Clingo (version 5.3.0). Note that this approach would require the ASP solver to prove
in the end that a fixpoint is reached, i.e., that no replacements are applicable. To ensure
the relatively fast termination of the preprocessing loop, we enforced a time limit of 5
seconds on each of the ASP solver calls, and terminated preprocessing for a particular
pattern as soon as the ASP solver timed out. The experiments were run on Intel Xeon
E5-2680 v4 2.4 GHz nodes with 128 GB RAM under CentOS 7. A per-instance timeout
of 1800 seconds was enforced on each solver, with the preprocessing times included.

As benchmarks, we used a total of 440 AFs based on the Watts-Strogatz model with
the number of arguments n ∈ {500, 600, . . . , 1500} and parameters k ∈ {blog2(n)c −
1, blog2(n)c+ 1}, β ∈ {0.1, 0.3, . . . , 0.9}, and probCycles ∈ {0.1, 0.3, . . . , 0.7}, gen-
erated using AFBenchGen2 [7] that was also employed in the 2017 ICCMA argumen-
tation solver competition.

As for size reductions achieved on these instances, on average 11% of arguments
and 17% of attacks were removed, with the maximum proportions of deleted arguments
and attacks being 72% and 80%, respectively.

Runtime comparisons with and without preprocessing under stable semantics are
shown for ArgTools [15], Heureka [21], and CEGARTIX [10] in Figure 4, with the run-
time of the original instance on the x-axis and the runtime of the preprocessed instance
on the y-axis (with preprocessing time included). Applying the patterns has a strong ef-
fect on the runtimes of the native AF solvers ArgTools (Fig. 4 left) and Heureka (Fig. 4
center): some instances which originally took over 500 seconds for solving can now
be solved in under 10 seconds. The number of timeouts also is reduced: from 141 to
134 for ArgTools and from 251 to 243 for Heureka. The contributions of preprocess-
ing to the running times is fairly small even using the somewhat brute-force prototype
implementation; the preprocessing overhead is from some seconds to around 20 sec-
onds at most. This explains the increased running times on the easiest of the benchmark
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Fig. 4. Effect of preprocessing on runtimes of solvers under stable semantics.
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Fig. 5. Effect of preprocessing on runtimes of solvers under preferred semantics.

instances. The positive impact of preprocessing is evident on the harder (expectedly
more interesting) benchmark instances. These results demonstrate the potential of AF
preprocessing for improving the competitiveness of native AF solvers. In contrast, pre-
processing appears to have no noticeable impact on the the SAT-based CEGARTIX
system (Fig. 4 right).

Results for preferred semantics are shown in Fig. 5. Again, there seems to be no ef-
fect on CEGARTIX, and the effect on ArgTools is more modest when compared to the
results for stable semantics. However, the effect on Heureka is similar to stable seman-
tics, as it is able to solve instances which originally timed out without preprocessing,
although Heureka seems to perform weakly on this particular set of instances under
preferred semantics. As for size reductions, on average 6% of arguments and 9% of
attacks were removed, with the maximum values being 62% and 72%, respectively.

5 Conclusions

In this paper, we introduced distinct preprocessing techniques for abstract argumenta-
tion frameworks which provide a solver-independent approach towards more efficient
AF solving. Our formal framework of replacement patterns allows for identifying local
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simplifications that are faithful w.r.t. standard semantics for AFs. We provided a suite of
concrete replacement patterns and evaluated their impact with encouraging results espe-
cially for native AF solvers. So far we focused on equivalence-preserving preprocessing
that allows for an easy reconstruction of all extensions of the original AF. We see even
more potential for preprocessing in the context of credulous and skeptical acceptance,
where faithfulness is required only in terms of a particular query argument; in that con-
text, also the concept of S-equivalence of input/output AFs [2,16] deserves attention.
Motivated by the first empirical results presented in this work, we are planning on engi-
neering a fully-fledged stand-alone preprocessor, providing optimized implementations
of applications of both the replacement patterns presented in this work as well as other
forms of native AF preprocessing techniques. Furthermore, preprocessing rules (or re-
stricted forms of them) may also be integrated into solvers for adding reasoning to the
core search routine, which is another interesting topic for further work.
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5. Baumann, R., Dvořák, W., Linsbichler, T., Woltran, S.: A general notion of equivalence for
abstract argumentation. In: Proc. IJCAI. pp. 800–806. ijcai.org (2017)

6. Cerutti, F., Gaggl, S.A., Thimm, M., Wallner, J.P.: Foundations of implementations for for-
mal argumentation. IfCoLog Journal of Logic and its Applications 4(8), 2623–2707 (2017)

7. Cerutti, F., Giacomin, M., Vallati, M.: Generating structured argumentation frameworks:
AFBenchGen2. In: Proc. COMMA. Frontiers in Artificial Intelligence and Applications,
vol. 287, pp. 467–468. IOS Press (2016)

8. Cerutti, F., Vallati, M., Giacomin, M.: Where are we now? State of the art and future trends
of solvers for hard argumentation problems. In: Proc. COMMA. Frontiers in Artificial Intel-
ligence and Applications, vol. 287, pp. 207–218. IOS Press (2016)

9. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial Intelligence 77(2), 321–358
(1995)
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