Parametric Properties of Ideal Semantics[◆] IJCAI 2011, Barcelona

Wolfgang Dvořák¹, Paul E. Dunne², Stefan Woltran¹

¹Institute of Information Systems, Vienna University of Technology

²Department of Computer Science, University of Liverpool, U.K.

July 22, 2011

• • = • • = •

 $^{\circ}$ Supported by the Vienna Science and Technology Fund (WWTF) under grant ICT08-028 and by the Austrian Science Fund (FWF) under grant P20704-N18.

Motivation

"Ideal semantics" as an alternative basis for skeptical reasoning in abstract argumentation [Dung, Mancarella and Toni, 2007].

臣

<ロト <部ト < 国ト < 国ト

Motivation

"Ideal semantics" as an alternative basis for skeptical reasoning in abstract argumentation [Dung, Mancarella and Toni, 2007].

Ideal acceptance

Informally, ideal acceptance requires an argument to be in an admissible set all of whose arguments are also skeptically accepted.

・ 同 ト ・ ヨ ト ・ ヨ ト

Motivation

"Ideal semantics" as an alternative basis for skeptical reasoning in abstract argumentation [Dung, Mancarella and Toni, 2007].

Ideal acceptance

Informally, ideal acceptance requires an argument to be in an admissible set all of whose arguments are also skeptically accepted.

- Similar to the concept of prudent reasoning in nonmonotonic reasoning.
- The original proposal was couched in terms of preferred semantics.
- Has been applied to semi-stable semantics (⇒ eager semantics) [Caminada 2007].

(4月) (1日) (日)

Argumentation Frameworks

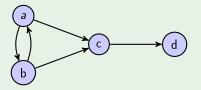
Definition

An argumentation framework (AF) is a pair (A, R) where

- A is a set of arguments
- $R \subseteq A \times A$ is a relation representing "attacks"

Example

$$F = (\{a, b, c, d\}, \{(a, b), (b, a), (a, c), (b, c), (c, d)\})$$



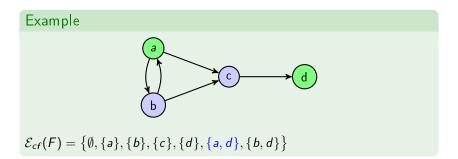
- 3 ≥ >

イロト イヨト イヨト

Argumentation Semantics

Conflict-Free Sets

Given an AF F = (A, R). A set $S \subseteq A$ is conflict-free in F, if, for each $a, b \in S$, $(a, b) \notin R$.



臣

- 3 ≥ >

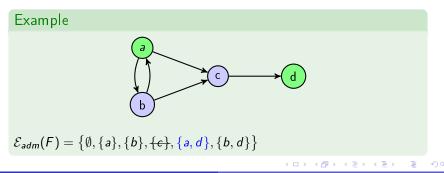
• □ ▶ • • □ ▶ • • □ ▶ •

Argumentation Semantics (ctd.)

Admissible Sets

Given an AF F = (A, R). A set $S \subseteq A$ is admissible in F, if

- S is conflict-free in F
- each $a \in S$ is defended by S in F
 - $a \in A$ is defended by S in F, if for each $b \in A$ with $(b, a) \in R$, there exists a $c \in S$, such that $(c, b) \in R$.

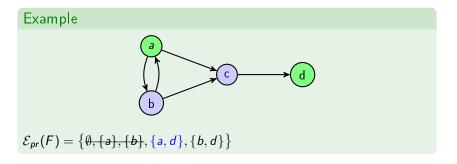


Argumentation Semantics (ctd.)

Preferred Extensions

Given an AF F = (A, R). A set $S \subseteq A$ is a preferred extension of F, if

- S is admissible in F
- for each $T \subseteq A$ admissible in $F, S \not\subset T$



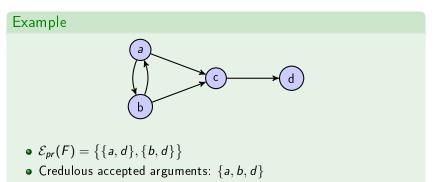
臣

イロト イヨト イヨト イヨト

Argumentation Semantics (ctd.)

Ideal Semantics

Given an AF F = (A, R). The ideal extension is the \subseteq -maximal admissible set, that is contained in all preferred extensions.



- Skeptical accepted arguments: {d}
- \bullet Ideal extension: \emptyset

Argumentation Semantics (landscape)

Definition

For an AF $F = \langle \mathcal{X}, \mathcal{A} \rangle$ we define the following semantics:

$$\begin{split} \mathcal{E}_{cf}(F) &= \{S \subseteq \mathcal{X} \mid \forall x, y \in S, \ \langle x, y \rangle \not\in \mathcal{A}\} \\ \mathcal{E}_{adm}(F) &= \{S \in \mathcal{E}_{cf}(F) \mid S \subseteq \mathcal{F}(S)\} \\ \mathcal{E}_{comp}(F) &= \{S \in \mathcal{E}_{adm}(F) \mid \mathcal{F}(S) \subseteq S\} \\ \mathcal{E}_{gr}(F) &= \mathcal{F}^{k}(\emptyset), \text{ for } k \text{ such that } \mathcal{F}^{k}(\emptyset) = \mathcal{F}^{k+1}(\emptyset) \\ \mathcal{E}_{naive}(F) &= \{S \in \mathcal{E}_{cf}(F) \mid S \subset T \Rightarrow T \notin \mathcal{E}_{cf}(F)\} \\ \mathcal{E}_{pr}(F) &= \{S \in \mathcal{E}_{adm}(F) \mid S \subset T \Rightarrow T \notin \mathcal{E}_{adm}(F)\} \\ \mathcal{E}_{sst}(F) &= \{S \in \mathcal{E}_{adm}(F) \mid S \cup S^{+} \subset T \cup T^{+} \Rightarrow T \notin \mathcal{E}_{adm}(F)\} \\ \mathcal{E}_{stage}(F) &= \{S \in \mathcal{E}_{cf}(F) \mid S \cup S^{+} \subset T \cup T^{+} \Rightarrow T \notin \mathcal{E}_{cf}(F)\} \\ \mathcal{E}_{gr*}(F) &= \min \bigcup_{\beta \in \gamma(\langle \mathcal{X}, \mathcal{A} \rangle)} \{\mathcal{E}_{gr}(\langle \mathcal{X}, \mathcal{A} \setminus \beta \rangle)\} \end{split}$$

臣

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Parameterised Ideal Semantics

Let $\langle X, A \rangle$ be an AF and σ a semantics that for every AF promises at least one extension.

Definition

 $S \subseteq \mathcal{X}$ is an ideal set w.r.t. base semantics σ of $\langle \mathcal{X}, \mathcal{A} \rangle$ iff:

Т

•
$$S \in \mathcal{E}_{adm}(\langle \mathcal{X}, \mathcal{A} \rangle)$$

• $S \subset \bigcap$

$$\mathcal{P} \subseteq | | \\ \mathcal{T} \in \mathcal{E}_{\sigma}(\langle \mathcal{X}, \mathcal{A} \rangle)$$

S is an ideal extension wrt σ , if S is a \subseteq -maximal ideal set wrt σ .

イロト イポト イヨト イヨト

Parameterised Ideal Semantics

Let $\langle X, A \rangle$ be an AF and σ a semantics that for every AF promises at least one extension.

Definition

 $S \subseteq \mathcal{X}$ is an ideal set w.r.t. base semantics σ of $\langle \mathcal{X}, \mathcal{A} \rangle$ iff:

Т

•
$$S \in \mathcal{E}_{adm}(\langle \mathcal{X}, \mathcal{A} \rangle)$$

• $S \subseteq \bigcap_{T \in \mathcal{E}_{\sigma}(\langle \mathcal{X}, \mathcal{A} \rangle)}$

S is an ideal extension wrt σ , if S is a \subseteq -maximal ideal set wrt σ .

Some Notation:

- E_{σ}^{ie} denotes an ideal extension wrt σ .
- $\sigma^{\rm ie}$ denotes the corresponding semantics.

Parameterised Ideal Semantics - Basic Properties

We show that standard properties of classical ideal semantics continue to hold for any "reasonable" extension-based base-semantics σ .

Parameterised Ideal Semantics - Basic Properties

We show that standard properties of classical ideal semantics continue to hold for any "reasonable" extension-based base-semantics σ .

Theorem

If every σ -extension is conflict-free then σ^{ie} is a unique status semantics.

Parameterised Ideal Semantics - Basic Properties

We show that standard properties of classical ideal semantics continue to hold for any "reasonable" extension-based base-semantics σ .

Theorem

If every σ -extension is conflict-free then σ^{ie} is a unique status semantics.

Theorem

If σ satisfies the reinstatement property ^a then the ideal extension E_{σ}^{ie} is a complete extension.

^aA semantics σ satisfies reinstatement iff for every AF $\langle \mathcal{X}, \mathcal{A} \rangle$ and $E \in \mathcal{E}_{\sigma}(\mathcal{X}, \mathcal{A})$, we have that if E defends $x \in \mathcal{X}$ then $x \in E$.

Parameterised Ideal Semantics - Algorithmic Aspects

Algorithms

We provide two algorithms for computing ideal extensions:

- A generalisation of the algorithm presented by Dunne (2009) that uses a proof procedure for CA_{σ} .
- A new algorithm using proof procedures for SA_o.

Computational Complexity

- We give generic upper bounds for the complexity of several decision problems associated with ideal semantics.
- Moreover we provide generic hardness results for some of the decision problems.

\subseteq - Relations between Ideal Extensions

We study several instantiations of parametric ideal semantics and the relations between those.

Theorem

For any AF $F = \langle \mathcal{X}, \mathcal{A} \rangle$ the following \subseteq -relations hold:

$$E_{comp}^{IE}(F) \subseteq E_{gr*}^{IE}(F) \subseteq E_{pr}^{IE}(F) \subseteq E_{sst}^{IE}(F)$$

$$\cup \mid$$

$$E_{naive}^{IE}(F) \subseteq E_{stage}^{IE}(F)$$

We have that:

- $E_{comp}^{IE}(F)$ is the the grounded semantics.
- $E_{pr}^{IE}(F)$ is the the standard ideal semantics.
- $E_{sst}^{IE}(F)$ is the the eager semantics.

(ロ) (部) (目) (日) (日) (の)

Complexity Landscape

σ	VER^{idI}_{σ}	CA^{idl}_σ	NE^{idI}_σ	VER^{ie}_σ	$CONS^{ie}_{\sigma}$
comp	P-c	P-c	in L	P-c	in FP
pr	co-NP-c	in Θ_2^P	in Θ_2^P	in Θ_2^P	$FP^{NP}_{{\scriptscriptstyle \parallel}}$ -c
sst	П ₂ ^p -с	П ₂ ^p -с	П ₂ ^p -с	DP ₂ -c	$FP^{\Sigma^p_2}_{\parallel}$ -c
stage	П ₂ ^p -с	П ₂ ^p -с	П ₂ ^p -с	DP ₂ -c	FP _∥ ^{Σ^p/₂-c}
gr*	co-NP-c	co-NP-c	co-NP-c	DP-c	$FP^{NP}_{{\scriptscriptstyle \parallel}}$ -c
naive	in L	P-c	P-c	P-c	in FP

æ

・ロ・ ・聞・ ・ヨ・ ・ヨ・

Conclusion

In this work we:

- Argue that the notion of "ideal acceptability" is applicable to arbitrary semantics.
- Justify this claim by showing that standard properties of classical ideal semantics continue to hold.
- Categorise the relationship between the divers concepts of "ideal extension wrt semantics σ ".
- Give a comprehensive analysis of algorithmic and complexity issues.

Conclusion

In this work we:

- Argue that the notion of "ideal acceptability" is applicable to arbitrary semantics.
- Justify this claim by showing that standard properties of classical ideal semantics continue to hold.
- Categorise the relationship between the divers concepts of "ideal extension wrt semantics σ ".
- Give a comprehensive analysis of algorithmic and complexity issues.

Future research directions:

- Ideal Reasoning in generalizations of AFs (VAF, EAF, AFRA)
- in particular: Uncontested Semantics for Value-based Argumentation

• • = • • = •