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The Argumentation Process

Steps
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Identify con�icts

Abstract from
internal structure

Resolve con�icts

Draw conclusions

Example

∆ = {⇒ x ,→ ¬x , x → y ,⇒ y ,⇒ ¬y}

prf (F∆)={{ b , d},
{ b , e}}

CS(F∆)={ ¬x }
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1. Prolog

The Argumentation Process

Remarks

Main idea dates back to [Dung, 1995]; has then been re�ned by
several authors (Prakken, Gordon, Caminada, etc.)

Abstraction allows to compare several Knowledge Representation
(KR) formalisms on a conceptual level

Main Challenge

All Steps in the argumentation process are, in general, intractable.

This calls for:

careful complexity analysis (identi�cation of tractable fragments)
re-use of established tools for implementations (reduction method)
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1. Prolog

Dung's Abstract Argumentation Frameworks

a b

c

de

Main Properties

Abstract from the concrete content of arguments and only consider
the relation between them

Semantics select subsets of arguments respecting certain criteria

Simple, yet powerful, formalism

Most active research area in the �eld of argumentation.

�plethora of semantics�
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1. Prolog

Topics of the thesis

Complexity Analysis

Complexity classi�cation of standard reasoning tasks in abstract
argumentation

Towards Tractability

Graph classes as tractable fragments
Fixed-parameter tractability

Intertranslatability of argumentation semantics

Translations between semantics as an reduction approach within
argumentation
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2. Abstract Argumentation

Dung's Abstract Argumentation Frameworks

De�nition

An argumentation framework (AF) is a pair (A,R) where

A is a set of arguments

R ⊆ A× A is a relation representing the con�icts (�attacks�)

Example

F=( {a,b,c,d,e} , {(a,b),(c,b),(c,d),(d,c),(d,e),(e,e)} )

b c d ea
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2. Abstract Argumentation

Basic Properties

Con�ict-Free Sets

Given an AF F = (A,R).
A set S ⊆ A is con�ict-free in F , if, for each a, b ∈ S , (a, b) /∈ R.

Example

b c d ea

cf (F ) =
{
{a, c},
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2. Abstract Argumentation

Basic Properties

Admissible Sets [Dung, 1995]

Given an AF F = (A,R). A set S ⊆ A is admissible in F , if

S is con�ict-free in F

each a ∈ S is defended by S in F

a ∈ A is defended by S in F , if for each b ∈ A with (b, a) ∈ R, there
exists a c ∈ S , such that (c, b) ∈ R.

Example

b c d ea

adm(F ) =
{
{a, c},
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2. Abstract Argumentation 2.1. Argumentation Semantics

Semantics

De�nition

An extension-based semantics is a function σ mapping each AF F to a
set of extensions σ(F) ⊆ 2AF .

If for each F , |σ(F)| = 1 then we call σ a unique status semantics,
otherwise multiple status semantics.

We consider 9 semantics, namely:

naive grounded
stable admissible
complete resolution-based grounded
preferred semi-stable
stage
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2. Abstract Argumentation 2.1. Argumentation Semantics

Semantics

Grounded Extension [Dung, 1995]

Given an AF F = (A,R). The unique grounded extension of F is de�ned
as the outcome S of the following �algorithm�:

1 put each argument a ∈ A which is not attacked in F into S ; if no
such argument exists, return S ;

2 remove from F all (new) arguments in S and all arguments attacked
by them and continue with Step 1.

Example

b c d ea

grd(F ) =
{
{a}}
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2. Abstract Argumentation 2.1. Argumentation Semantics

Semantics

Preferred Extensions [Dung, 1995]

Given an AF F = (A,R). A set S ⊆ A is a preferred extension of F , if

S is admissible in F

for each T ⊆ A admissible in F , S 6⊂ T

Example

b c d ea

prf (F ) =
{
{a, c}, {a, d}, {a}, {c}, {d}, ∅

}
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2. Abstract Argumentation 2.1. Argumentation Semantics

Semantics

Stable Extensions [Dung, 1995]

Given an AF F = (A,R). A set S ⊆ A is a stable extension of F , if

S is con�ict-free in F

for each a ∈ A \ S , there exists a b ∈ S , such that (b, a) ∈ R

Example
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2. Abstract Argumentation 2.1. Argumentation Semantics

Semantics

Semi-Stable Extensions [Caminada, 2006, Verheij, 1996]

Given an AF F = (A,R). For a set S ⊆ A, de�ne the range S+ = S ∪
{a | ∃b ∈ S with (b, a) ∈ R}.
A set S ⊆ A is a semi-stable extension of F , if

S is admissible in F

for each T ⊆ A admissible in F , S+ 6⊂ T+

Example

b c d ea

sem(F ) =
{
{a, c}, {a, d}, {a}, {c}, {d}, ∅

}
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2. Abstract Argumentation 2.1. Argumentation Semantics

Semantics

Some Relations

For any AF F the following relations hold:

1 Each stable extension of F is admissible in F .

2 Each stable extension of F is also a preferred one.

3 Each semi-stable extension of F is also a preferred one.

4 Each stable extension of F is also a semi-stable one.

stb(F ) ⊆ sem(F ) ⊆ prf (F ) ⊆ adm(F ) ⊆ cf (F )
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2. Abstract Argumentation 2.1. Argumentation Semantics

Parametrised Ideal Semantics

Generalising [Dung et al., 2007, Caminada, 2007] we de�ne:

De�nition

Given an AF F = (A,R). A set S ⊆ A is a ideal set w.r.t. base semantics
σ of F , if

I1. S ∈ adm(F)

I2. S ⊆
⋂

E∈σ(F)

E

We say that S is an ideal extension of F w.r.t. σ, if S is a ⊆-maximal
ideal set (of F) w.r.t. σ.

For typical base semantics there is a unique ideal extension.
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3. Complexity Analysis

Complexity Analysis

Why doing Complexity Analysis?

Complexity Theoretic View: To understand the Computational Costs
that underlie a certain reasoning problem.

Knowledge-Representation View: Measuring Expressivness of a
formalism.

Practitioners View: For applying the Reduction Approach, i.e.
encoding a problem in other formalisms, the target formalism must
be at least of the same complexity.
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3. Complexity Analysis

Decision Problems on AFs

Credulous Acceptance

Credσ: Given AF F = (A,R) and a ∈ A; is a contained in at least one
σ-extension of F?

Skeptical Acceptance

Skeptσ: Given AF F = (A,R) and a ∈ A; is a contained in every
σ-extension of F?

If no extension exists then all arguments are skeptically accepted and no
argument is credulously accepted.

Ideal Acceptance

Idealσ: Given AF F = (A,R) and a ∈ A; is a contained in the ideal
extension (w.r.t. base-semantics σ) of F?
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3. Complexity Analysis

Further Decision Problems

Verifying an extension

Verσ: Given AF F = (A,R) and S ⊆ A; is S a σ-extension of F?

Does there exist an extension?

Existsσ: Given AF F = (A,R); Does there exist a σ-extension for F?

Does there exist a nonempty extension?

Exists¬∅σ : Does there exist a non-empty σ-extension for F?
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3. Complexity Analysis

Complexity Landscape (State-of-the-Art)

σ Credσ Skeptσ Idealσ Verσ Existsσ Exists¬∅σ

cf in P trivial ? in P trivial in P

naive in P in P ? in P trivial in P

grd in P in P ? in P trivial in P

stb NP-c coNP-c ? in P NP-c NP-c

adm NP-c trivial ? in P trivial NP-c

com NP-c in P ? in P trivial NP-c

resGr NP-c coNP-c ? in P trivial in P

prf NP-c ΠP
2 -c in ΘP

2 coNP-c trivial NP-c

sem in ΣP
2 in ΠP

2 ? coNP-c trivial NP-c

stg ? ? ? ? ? ?

Table: State-of-the art complexity landscape for abstract argumentation.
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3. Complexity Analysis

Complexity Analysis - Contributions

We contribute in three directions:

Exact complexity classi�cations for semi-stable and stage semantics

Complexity analysis for ideal reasoning

Generic complexity results referring to the complexity of other
reasoning tasks (membership and hardness results)

Exact complexity classi�cations for concrete base semantics

P-completeness classi�cation for tractable problems
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3. Complexity Analysis 3.1. Complexity of semi-stable and stage semantics

Complexity of semi-stable and stage semantics

Theorem

Cred sem is ΣP
2 -complete and Skeptsem is ΠP

2 -complete.

Hardness is via the following reduction:
Given a QBF 2

∀ formula Φ = ∀Y ∃ZC , we de�ne FΦ = (A,R), where

A = {ϕ, ϕ̄, b} ∪ C ∪ Y ∪ Ȳ ∪ Y ′ ∪ Ȳ ′ ∪ Z ∪ Z̄
R = {(c, ϕ) | c ∈ C} ∪ {(ϕ, ϕ̄), (ϕ̄, ϕ), (ϕ, b), (b, b)} ∪

{(x , x̄), (x̄ , x) | x ∈ Y ∪ Z} ∪
{(y , y ′), (ȳ , ȳ ′), (y ′, y ′), (ȳ ′, ȳ ′) | y ∈ Y } ∪
{(l , c) | l ∈ C , c ∈ C}.

One can show that Φ is valid i� ϕ is skeptically accepted w.r.t. sem, i� ϕ̄
is not credulously accepted w.r.t. sem.

Computational Aspects of Abstract Argumentation (PhD Defense) Slide 21



3. Complexity Analysis 3.1. Complexity of semi-stable and stage semantics

Complexity of semi-stable and stage semantics

Theorem

Cred sem is ΣP
2 -complete and Skeptsem is ΠP

2 -complete.

Hardness is via the following reduction:
Given a QBF 2

∀ formula Φ = ∀Y ∃ZC , we de�ne FΦ = (A,R), where

A = {ϕ, ϕ̄, b} ∪ C ∪ Y ∪ Ȳ ∪ Y ′ ∪ Ȳ ′ ∪ Z ∪ Z̄
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3. Complexity Analysis 3.1. Complexity of semi-stable and stage semantics

Complexity of semi-stable and stage semantics

Φ = ∀y1, y2 ∃z3, z4 (y1 ∨ y2 ∨ z3) ∧ (ȳ2 ∨ z̄3 ∨ z̄4) ∧ (ȳ1 ∨ ȳ2 ∨ z4).

ϕ

c1 c2 c3

bϕ̄

y1 ȳ1 y2 ȳ2 z3 z̄3 z4 z̄4

y ′
1

ȳ ′
1

y ′
2

ȳ ′
2

true assignment τ : τ(y1) = f , τ(y2) = f , τ(z3) = f , τ(z4) = f
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ȳ ′
1

y ′
2
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ȳ ′
2

true assignment τ : τ(y1) = f , τ(y2) = f , τ(z3) = t, τ(z4) = f

Computational Aspects of Abstract Argumentation (PhD Defense) Slide 22



3. Complexity Analysis 3.1. Complexity of semi-stable and stage semantics

Complexity of semi-stable and stage semantics

Φ = ∀y1, y2 ∃z3, z4 (y1 ∨ y2 ∨ z3) ∧ (ȳ2 ∨ z̄3 ∨ z̄4) ∧ (ȳ1 ∨ ȳ2 ∨ z4).
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3. Complexity Analysis 3.2. Overview

Complexity Landscape

σ Credσ Skeptσ Idealσ Verσ Existsσ Exists¬∅σ

cf in L trivial trivial in L trivial in L

naive in L in L P-c in L trivial in L

grd P-c P-c P-c P-c trivial in L

stb NP-c coNP-c DP-c in L NP-c NP-c

adm NP-c trivial trivial in L trivial NP-c

com NP-c P-c P-c in L trivial NP-c

resGr NP-c coNP-c coNP-c P-c trivial in P

prf NP-c ΠP
2 -c in ΘP

2 coNP-c trivial NP-c

sem ΣP

2
-c ΠP

2
-c ΠP

2
-c coNP-c trivial NP-c

stg ΣP

2
-c ΠP

2
-c ΠP

2
-c coNP-c trivial in L

Table: Complexity of abstract argumentation.
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4. Towards Tractability

Towards Tractability

Tractability for Abstract Argumentation

Increasing interest for reasoning in argumentation frameworks (AFs).

Many reasoning tasks are computationally intractable.

As AFs can be considered as graphs,

there are several graph classes where some in general hard problems
have been shown to be tractable (Tractable Fragments)
there is broad range of graph parameters we can consider to identify
tractable fragments (Fixed-Parameter Tractability)
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4. Towards Tractability 4.1. Tractable Fragments

Tractable Fragments

We study four tractable fragments proposed by the literature:

acyclic AFs [Dung, 1995]

AFs without even length cycles (noeven)
[Dunne and Bench-Capon, 2001]

symmetric AFs [Coste-Marquis et al., 2005]

bipartite AFs [Dunne, 2007]

We complement existing results by

generalising them to all semantics under our considerations,

classifying them w.r.t. P-completeness,

solving an open problem concerning resolution-based grounded
semantics and bipartite AFs.
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4. Towards Tractability 4.1. Tractable Fragments

Tractable Fragments
The P-hardness for acyclic, noeven, and bipartite is by the following:

Theorem

Credgrd is P-complete even for acyclic bipartite AFs.

Hardness is by a reduction from the Mon. Circuit Value Problem (β, a)

x y

∨

∧

Monotone Boolean Circuit β

a

x

y

∨

∧

x̄

ȳ

∨̄

∧̄1

∧̄2

AF Fβ,a, with a(x) = 0, a(y) = 1
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4. Towards Tractability 4.2. Fixed-Parameter Tractability

Fixed-Parameter Tractability

Often computational costs primarily depend on some problem
parameters rather than on the mere size of the instances.

Many hard problems become tractable if some problem parameter is
�xed or bounded by a �xed constant.

In the arena of graphs important parameters are tree-width and
clique-width. They have served as the key to many �xed-parameter
tractability (FPT) results.

We are looking for algorithms with a worst case runtime that might
be exponential in the parameter but is polynomial in the size of the
instance.
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4. Towards Tractability 4.2. Fixed-Parameter Tractability

Fixed-Parameter Tractability

Positive Results:

We show FPT results for the parameters

tree-width and

clique-width

via meta-theorems by Courcelle (1987) and Courcelle, Makowsky &
Rotics (2000), and MSO encodings of the argumentation semantics.

Negative Results:

We show that typical reasoning tasks remain intractable if we bound
the parameter cycle-rank.

We extend this result to the parameters directed path-width,
DAG-width, Kelly-width, and directed tree-width.
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4. Towards Tractability 4.2. Fixed-Parameter Tractability

Negative Results

De�nition

An AF F = (A,R), has cycle rank 0 (cr(F ) = 0) i� F is acyclic, and
cr(F ) ≤ 1 i� each strongly connected component of F can be made
acyclic by removing one argument.

Theorem

When restricted to AFs which have a cycle-rank of 1

1 Cred sem remains ΣP
2 -hard, and

2 Skeptsem remains ΠP
2 -hard.
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4. Towards Tractability 4.2. Fixed-Parameter Tractability

Negative Results

Proof.

Recall the reduction from the hardness proof:

ϕ

c1 c2 c3

y1 ȳ1 y2 ȳ2 z3 z̄3 z4 z̄4

y ′
1

ȳ ′
1

y ′
2

ȳ ′
2

bϕ̄

every framework of the form FΦ has cycle-rank 1.
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4. Towards Tractability 4.3. Overview

Tractability Results

stb adm com resGr prf sem stg

acyclic X X X X X X X
noeven X X X X X X 7
bipartite X X X 7 X X X
symmetric 7 X X X X 7 7

bounded tree-width X X X X X X X
bounded clique-width X X X X X X X
bounded cycle-rank 7 7 7 7 7 7 7

bounded directed path-width 7 7 7 7 7 7 7
bounded Kelly-width 7 7 7 7 7 7 7
bounded DAG-width 7 7 7 7 7 7 7

bounded directed tree-width 7 7 7 7 7 7 7
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5. Intertranslatability of Argumentation Semantics

Intertranslatability of Argumentation Semantics

Why consider translations between Argumentation Semantics ?

�Plethora� of Argumentation Semantics

Reduction approach within argumentation:

Given a translation for semantics σ to semantics σ′ we can reuse
sophisticated solver for σ′ for semantics σ.

Translation
for σ ⇒ σ′

Solver
for σ′ Filter

AF F Tr (F) σ′(Tr (F)) σ(F)

Figure: Generalising Argumentation Systems via Translations
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5. Intertranslatability of Argumentation Semantics

Translations

De�nition

A Translation Tr is a function mapping (�nite) AFs to (�nite) AFs.

We want translations to satisfy certain properties:

Basic Properties of a Translation Tr

e�cient: for every AF F , Tr (F ) can be computed using logarithmic
space wrt. to |F |
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5. Intertranslatability of Argumentation Semantics

Translations

Next we connect translations with semantics.

�Levels of Faithfulness� (for semantics σ, σ′)

exact: for every AF F , σ(F ) = σ′(Tr (F ))

faithful: for every AF F , σ(F ) = {E ∩ AF | E ∈ σ′(Tr (F ))} and
|σ(F )| = |σ′(Tr (F ))|.

Translation
for σ ⇒ σ′

Solver
for σ′

AF F Tr (F) σ′(Tr (F)) = σ(F)
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5. Intertranslatability of Argumentation Semantics 5.1. Translations for Argumentations Semantics

Example Translation 1

De�nition

For AF F , let Tr1(F ) = (A∗,R∗) where A∗ = AF ∪ A′F and
R∗ = RF ∪ {(a, a′), (a′, a), (a′, a′) | a∈AF}, with A′F = {a′ | a∈AF}.

Example

a b c d e

a′ b′ c ′ d ′ e′

Result:

Tr1 is an exact translation for prf ⇒ sem.
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5. Intertranslatability of Argumentation Semantics 5.1. Translations for Argumentations Semantics

Example Translation 2

De�nition

For AF F , Tr6(F ) = (A∗,R∗) where A∗ = AF ∪ ĀF ∪ RF and
R∗ = RF ∪ {(a, ā), (ā, a) | a ∈ AF} ∪ {(r , r) | r ∈ RF} ∪
{(ā, r) | r = (y , a) ∈ RF} ∪ {(a, r) | r = (z , y) ∈ RF , (a, z) ∈ RF}.

Example

a b c d e

ā b̄ c̄ d̄ ē

(a, b) (c, b) (d, c) (c, d) (d, e) (e, e)

Result:

Tr6 is a faithful translation for adm⇒ stb.
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5. Intertranslatability of Argumentation Semantics 5.2. Impossibility Results

Impossibility Results

Proposition

There is no exact translation for

adm⇒ σ with σ ∈ {stb, prf , sem}
com⇒ adm

Proposition

There is no e�cient faithful translation for sem⇒ σ, σ∈{adm, stb},
unless ΣP

2 = NP.

Follows from complexity results.
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5. Intertranslatability of Argumentation Semantics 5.3. Overview

Hierarchies of intertranslatability

grounded

stable admissible complete

preferred stage

semi-stable

Exact Intertranslatability

grounded

admissible, complete, stable

preferred stage

semi-stable

Faithful Intertranslatability
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6. Summary

Summary

We complemented existing Complexity Analysis by

exact classi�cations for semi-stable and stage semantics

our studies on ideal reasoning

P-completeness classi�cations

Towards tractable instances we studied Tractable Fragments as well
as Fixed-Parameter Tractability.

We complemented studies of Tractable Fragments

Fixed-Parameter Tractability results for tree-width and clique-width.

By the Intertranslatability of semantics we applied the reduction
approach within abstract argumentation presenting

translations between argumentation semantics

negative results showing that certain translations are impossible
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