COMPLEXITY OF ABSTRACT ARGUMENTATION UNDER A CLAIM-CENTRIC VIEW

Wolfgang Dvořák, Stefan Woltran TU Wien, Institute of Logic and Computation, Vienna, Austria

Instantiation-based Argumentation

- A prominent approach to formal argumentation is *instantiation-based argumentation*:
- 1. start from a knowledge base (KB), which is potentially inconsistent;
- 2. from KB, all relevant arguments are constructed; an argument typically contains (a) a claim and (b) a support;
- 3. relationship between arguments is analysed;

ШF

Der Wissenschaftsfonds.

- 4. abstract away from the contents of the arguments and only consider the remaining abstract argumentation framework (AF);
- 5. semantics for AFs deliver a collection of sets of arguments ("extensions") which are understood as jointly acceptable;
- 6. re-interpret extensions in terms of their claims.

Example: Instantiating AFs from Logic Programs

Claim-centric Complexity Analysis

Claim-centric Reasoning Problems

Given semantics σ , a CAF CF = (A, R, claim), claim $c \in \mathcal{C}$, and claims $C \subseteq \mathcal{C}$:

- $Cred_{\sigma}^{CAF}$: Does $c \in S$ hold for at least one $S \in \sigma_c(CF)$?
- $Skept_{\sigma}^{CAF}$: Does $c \in S$ hold for all $S \in \sigma_c(CF)$?
- Ver_{σ}^{CAF} : Does $C \in \sigma_c(CF)$ hold?
- $NEmpty_{\sigma}^{CAF}$: Does $S \neq \emptyset$ hold for some $S \in \sigma_c(CF)$?

Complexity of CAFs

σ	$Cred_{\sigma}^{CAF}$	$\mathit{Skept}_{\sigma}^{\mathit{CAF}}$	Ver_{σ}^{CAF}	$NEmpty_{\sigma}^{CAF}$
cf	in P	trivial	NP-c	in P
naive	in P	coNP-c	NP-c	in P
grd	P-c	P-c	P-c	in P
stb	NP-c	coNP-c	NP-c	NP-c
adm	NP-c	trivial	NP-c	NP-c
com	NP-c	P-c	NP-c	NP-c
prf	NP-c	П 2 ^Р -с	Σ_2^{P} -c	NP-c

Consider the following logic program:

 $P = \{r_1 : a \leftarrow not \, b.; \quad r_2 : b \leftarrow not \, a.; \quad r_3 : c \leftarrow not \, a.; \quad r_4 : c \leftarrow not \, b.\}$

The instantiation yields an AF $F_P = (A, R)$ with arguments $A = \{\alpha, \beta, \gamma_1, \gamma_2\}$, where

- α represents rule r_1 and has claim a;
- β represents rule r_2 with claim b;
- γ_1 and γ_2 represent rules r_3 and r_4 respectively, both have as claim c.

An argument representing rule r attacks an argument representing rule r' if the head of roccurs negated in the rule body of r'. Hence, $R = \{(\alpha, \beta), (\beta, \alpha), (\alpha, \gamma_1), (\beta, \gamma_2)\};$

Stable model semantics of logic programs corresponds to stable extensions of AFs:

- the two stable models $S_1 = \{a, c\}$ and $S_2 = \{b, c\}$ of P are given via
- the two stable extensions $E_1 = \{\alpha, \gamma_2\}$ and $E_2 = \{\beta, \gamma_1\}$ of F_P ;
- the claims of E_1 yield S_1 and those of E_2 yield S_2 .

Reasoning Modes

- Argument-centric Reasoning: is a particular argument accepted w.r.t. the extensions?
- *Claim-centric Reasoning*: is a particular claim accepted w.r.t. the extensions?

(Results that deviate from the corresponding results for AFs are highlighted in **blue**.)

	Co	\mathbf{mplexi}	ty of we	ell-forme	d CAFs	
	σ	$Cred_{\sigma}^{wf}$	$Skept_{\sigma}^{wf}$	Ver_{σ}^{wf}	$NEmpty_{\sigma}^{w\!f}$	
	cf	in P	trivial	in P	in P	
	naive	in P	coNP-c	in \mathbf{P}	in P	
	grd	P-c	P-c	P-c	in P	Coincides with results in a comment-centric reason
st	stb	NP-c	coNP-c	in P	NP-c	ing except for $Skept_{no}^{wf}$
	adm	NP-c	trivial	in \mathbf{P}	NP-c	
	com	NP-c	P-c	in \mathbf{P}	NP-c	
	prf	NP-c	Π_2^{P} -c	coNP-c	NP-c	
Results	that de	viate fro	m genera	l CAFs ar	e highlighted	in red .)

Analysing the Tractability Frontier

We follow three directions towards tractability results:

Exploiting Special Graph Classes

Skeptical Acceptance: is a particular argument a / claim c covered by all extensions?

Example: Instantiating AFs from Logic Programs (ctd.)

- With the extensions of F_P being $E_1 = \{\alpha, \gamma_2\}$ and $E_2 = \{\beta, \gamma_1\}$ of F_P , we have that
 - no argument is skeptically accepted.

However, as the stable models of P are $S_1 = \{a, c\}$ and $S_2 = \{b, c\}$,

• claim c is a skeptical consequence of the program P.

Observation:

• Argument acceptance alone is insufficient to decide the acceptance of claims.

Reasoning about Claims

We consider AFs augmented by claims as a distinguished concept.

Claim-augmented Argumentation Frameworks

- A claim-augmented argumentation framework (CAF) is a triple (A, R, claim) where
 - (A, R) is an AF with arguments A and attacks $R \subseteq A \times A$;
 - $claim: A \to C$ assigns a claim to each argument.

A CAF (A, R, claim) is called *well-formed* if arguments with the same claim attack the same arguments.

• Different arguments can have the same claim.

Some results are in contrast to argument-centric reasoning:

- $Skept_{naive}^{CAF}$, $Skept_{naive}^{wf}$, Ver_{naive}^{CAF} , Ver_{cf}^{CAF} remain coNP/NP-hard for acyclic CAFs.
- For $\sigma \in \{naive, stb, prf\}, Skept_{\sigma}^{CAF}$ is **coNP**-complete for bipartite well-formed CAFs.

Exploiting the Number of Claims

We parameterize the problems with the number k of different claims that appear in the CAF and obtain a Fixed-Parameter Tractability Result:

• $Cred_{\sigma}^{wf}$, $Skept_{\sigma}^{wf}$, and Ver_{prf}^{wf} can be solved in time $O(2^k \cdot poly(n))$ for $\sigma \in$ $\{naive, stb, adm, com, prf\}.$

Exploiting (Incidence) Tree-Width of CAFs

We introduce the parameter *incidence tree-with* of well-formed CAFs which measures the structure of the interplay between claims and arguments and is complementary to tree-width. Main Results (for $\sigma \in \{naive, stb, adm, com, prf\}$):

- $Cred_{\sigma}^{CAF}$ and $Skept_{\sigma}^{CAF}$ are fixed-parameter tractable w.r.t. the tree-width;
- Ver_{σ}^{CAF} is NP-hard for CAFs of tree-width 1;
- $Cred_{\sigma}^{wf}$, $Skept_{\sigma}^{wf}$, and Ver_{σ}^{wf} are fixed-parameter tractable w.r.t. incidence tree-width.

Main References

• No further information about claims (like equivalence or contradict relation).

• The concept of well-formedness is satisfied by many (but not all) instantiations.

Semantics

For any CAF CF = (A, R, claim) and semantics σ , we define its claim-based variant σ_c as:

 $\sigma_c(CF) = \{ claim(S) \mid S \in \sigma((A, R)) \}.$

We consider conflict-free (cf), naive (naive), grounded (grd), stable (stb), admissible (adm), complete (com), and preferred (prf) semantics.

[1] Dung, P. M. 1995. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2):321-358.

[2] Dunne, P. E. 2007. Computational properties of argument systems satisfying graphtheoretic constraints. Artif. Intell. 171(10-15):701-729.

[3] Dvořák, W., and Dunne, P. E. 2018. Computational problems in formal argumentation and their complexity. In Handbook of Formal Argumentation. College Publications. 631-687.

[4] Dvořák, W.; Pichler, R.; and Woltran, S. 2012. Towards fixed-parameter tractable algorithms for abstract argumentation. Artif. Intell. 186:1 - 37.