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1. Motivation

Motivation

Fixed-Parameter Tractability

Many argumentation reasoning tasks are computationally intractable.

Often computational costs primarily depend on some problem
parameters rather than on the mere size of the instances.

Many hard problems become tractable if some problem parameter is
fixed or bounded by a fixed constant.

FPT results (in terms of treewidth) for argumentation already exist.
[Dunne, 2007; Dvořák, Pichler and Woltran, 2010]

In the arena of graphs an important parameter is clique-width, which
generalizes the parameter of tree-width.
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1. Motivation

Main Contribution

We present data-structures and algorithms for efficient reasoning in
abstract Argumentation Frameworks (AFs) of bounded clique-width.

Features of clique-width:

The class of AFs with bounded clique-width subsumes and
significantly extends the fragment of AFs with bounded tree-width.

There are both, sparse (e.g. tree-like AFs) and dense AFs (e.g.
clique-like AFs) that possess small clique-width.

Clique-width incorporates the orientation of attacks.

Clique-width offers an efficient handling for modular structures.
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2. Clique-Width

Clique-Width

Definition
A k-AF is an AF whose arguments are labeled by integers from {1 . . . k}.

Operations
We allow the following operations on labeled AFs:

Vertex introduction: vertex v labeled by i (denoted by i(v))
Disjoint union (denoted by ⊕);
Relabeling: changing all labels i to j (denoted by ρi→j);
Edge insertion: connecting all arguments labeled by i with all
arguments labeled by j (denoted by ηi,j).

These operations treat equally labeled arguments in the same way.
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2. Clique-Width

Clique-Width

An AF can be represented by an algebraic term composed of i(v), ⊕,
ρi→j , and ηi,j . If this construction only uses labels in {1, . . . , k} we call
this term a k-expression.

The AF:

can be constructed by the 3-expression:

η1,2(ρ1→3(η1,2(1(a)⊕ 2(b)))⊕ η2,1(1(c)⊕ 2(d)))

Definition
The clique-width of an AF F , cwd(F), is the smallest integer k such
that F can be defined by a k-expression.
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2. Clique-Width

Parse-Tree

3 - expression: η1,2(ρ1→3(η1,2(1(a)⊕ 2(b)))⊕ η2,1(1(c)⊕ 2(d)))

parse-tree associated AFs
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2. Clique-Width

AFs with Bounded Clique-Width

trees/forests (clique-width 3)

graphs of bounded tree-width:
including trees, forests, series
parallel networks, outer-planar
graphs, Halin graphs, . . .

co-graphs (clique-width 2)
including complete graphs,
complete bipartite graphs,
Threshold graphs,
Turán graphs, . . .

transitive tournaments
(clique-width 2)
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3. Reasoning

Reasoning

Credulous Acceptance
Given an AF F = (A,R) and an argument x ∈ A.
Is x in at least one preferred extension ?

For credulous acceptance it suffices to consider admissible extensions.

Skeptical Acceptance
Given an AF F = (A,R) and an argument x ∈ A.
Is x in every preferred extension ?

Complexity:
The credulous acceptance problem is NP-complete
(Dimopoulos and Torres, 1996).
The skeptical acceptance problem is Πp

2-complete
(Dunne and Bench-Capon, 2002).
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4. Fixed-Parameter Tractability

Fixed-Parameter Tractability

Theorem (Courcelle, Makowsky, Rotics 2000)
Any graph problem that can be expressed in Monadic Second Order Logic
with second-order quantification on vertex sets (MSO1) can be solved in
linear time for graphs of clique-width bounded by some constant k.

[Dunne 2007] already provided MSO1 characterizations to show FPT for
tree-width.

Theorem
For AFs of clique-width bounded by a constant, credulous and skeptical
acceptance are decidable in linear time.

But the theorem doesn’t lead us to efficient algorithms.
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4. Fixed-Parameter Tractability 4.1. DP - Algorithm

Dynamic Programming

Basic Ideas:

Given: AFσ and the corresponding k-expression σ

Traverse the parse-tree of σ with a bottom up algorithm

Compute the admissible sets for each node

Instead of computing the admissible sets, we compute a succinct
representation of all admissible sets, via tables

We use the tables of the successors to compute the table for the
current node.

To decide credulous acceptance we mark rows representing
extensions containing the specified argument.

The results for the entire problem can be read of the root
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4. Fixed-Parameter Tractability 4.1. DP - Algorithm

DP-Example

Problem: We want to decide the credulous acceptance of argument b in
our Example AF.

Leaf-Node i(v)
We have two conflict-free sets,
i.e. {v} and ∅.

Example

Table 1(a)

in att out def
1 - - - {a}
- - 1 - ∅

Table 2(b)

in att out def
2 - - - {b}
- - 2 - ∅
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4. Fixed-Parameter Tractability 4.1. DP - Algorithm

DP-Example

Union-Node ⊕
We combine the tables of the
successors to get the table of the
⊕-node.

Example

Table 1(a)

in att out def
1 - - - {a}
- - 1 - ∅

Table 1(a)⊕ 2(b)

in att out def
1,2 - - - {a, b}
1 - 2 - {a}
2 - 1 - {b}
- - 1,2 - ∅

Table 2(b)

in att out def
2 - - - {b}
- - 2 - ∅
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4. Fixed-Parameter Tractability 4.1. DP - Algorithm

DP-Example

Edge Insertion-Node ηi ,j

Eliminate rows with {i , j} ⊆ in.
Update sets att, out, def

Example

η1,2( 1(a)⊕ 2(b) )

in att out def
1 - - 2 {a}
2 1 - - {b}
- - 1,2 - ∅

1(a)⊕ 2(b)

in att out def
1,2 - - - {a, b}
1 - 2 - {a}
2 - 1 - {b}
- - 1,2 - ∅

Reasoning in AFs of Bounded Clique-Width Slide 13



4. Fixed-Parameter Tractability 4.1. DP - Algorithm

DP-Example

Relabeling-Node ρi→j

We update the sets in, att, out, def of
according to the renaming.

Example

ρ1→3( η1,2(1(a)⊕ 2(b)) )

in att out def
3 - - 2 {a}
2 3 - - {b}
- - 3,2 - ∅

η1,2(1(a)⊕ 2(b))

in att out def
1 - - 2 {a}
2 1 - - {b}
- - 1,2 - ∅
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4. Fixed-Parameter Tractability 4.1. DP - Algorithm

DP-Example

Example

ρ1→3( η1,2(1(a)⊕ 2(b)) )

in att out def
3 - - 2 {a}
2 3 - - {b}
- - 3,2 - ∅

ρ1→3(. . . )⊕ η1,2(. . . )

in att out def
1,3 2 - - {a, c}
2,3 - - 1,2 {a, d}
3 - 1,2 - {a}
1,2 2,3 - - {b, c}
2 3 - 1 {b, d}
2 3 1,2 - {b}...

...
...

...

η1,2(1(c)⊕ 2(d))

in att out def
1 2 - - {c}
2 - - 1 {d}
- - 1,2 - ∅
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4. Fixed-Parameter Tractability 4.1. DP - Algorithm

DP-Example

Root-Node
att = ∅ ⇔ admissible sets.
marked row with att = ∅ if and only if
a is credulous accepted

Example

η1,2(. . . )

in att out def
1,3 - - 2 {a, c}
2,3 - - 1,2 {a, d}
3 - 1,2 - {a}
2 3 - 1 {b, d}
2 1,3 2 - {b}...

...
...

...

in att out def
1,3 2 - - {a, c}
2,3 - - 1,2 {a, d}
3 - 1,2 - {a}
1,2 2,3 - - {b, c}
2 3 - 1 {b, d}
2 3 1,2 - {b}...

...
...

...
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4. Fixed-Parameter Tractability 4.1. DP - Algorithm

Complexity

Complexity
Given an AF Fσ with a k-expression σ and an argument x , our algorithm
decides if x is credulously accepted in time O(f (k) · |AF |).

Skeptical Acceptance
By extending our data-structure to characterize preferred extensions we
get a similar algorithm for skeptical reasoning.
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5. Conclusion

Conclusion

Main Contributions of the paper:
We identified AFs of bounded clique-width as new tractable
fragment for abstract argumentation.
Fixed-parameter tractable algorithms for reasoning in AFs of
bounded clique-width.

Credulous / Skeptical Reasoning w.r.t. preferred semantics.

These algorithms can be extended for Computing extensions (with
linear delay) and Counting extensions.

The techniques presented for preferred semantics are prototypical,
i.e. can be easily applied to several other semantics.

Future and Ongoing Work:
Implementation of these algorithms.
Identifying further tractable fragments.
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5. Conclusion

Modularity

Definition
Consider an AF F = (A,R). A subset M ⊆ A is a module of F if any
two arguments in M are “indistinguishable from the outside” i.e.,
for any x , x ′ ∈ M and y ∈ A \M we have that (x , y) ∈ R iff (x ′, y) ∈ R,
and (y , x) ∈ R iff (y , x ′) ∈ R.

Example: A Group of agents that share the same beliefs and opinions
regarding the world outside the group (but possibly attack each other for
some “internal” reason).

Efficient handle of modules via clique-width:
Find a k-expression for the subframework induced by M.
Give all arguments in M the same label and treat them for
subsequent considerations as one single argument.
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