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1. Argumentation in AI

Argumentation in AI

Very general idea: representation of an argument
Different views: modeling the process, verifying the correctness,
analyzing the conflicts,...etc.
Thus, representation of arguments came in many different flavors

Abstract Argumentation
Arguments are “atomic”
Argumentation frameworks (AFs) formalize relations (rebuttals)
between arguments
Semantics gives an abstract handle to solve the inherent conflicts
between statements by selecting acceptable subsets
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2. Abstract Argumentation

Argumentation Frameworks

Argumentation Frameworks
An argumentation framework (AF) is a pair (A,R) where

A is a set of arguments
R ⊆ A× A is a relation representing “attacks” (“defeats”)

Example
AF=({a,b,c,d,e},{(a,b),(c,b),(c,d),(d,c),(d,e),(e,e)})

b c d ea
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2. Abstract Argumentation

Conflict-free Extension

Conflict-Free Extension
Given an AF (A,R).
A set S ⊆ A is conflict-free in F , if, for each a, b ∈ S , (a, b) /∈ R.

Example

b c d ea

cf (F ) =
{
{a, c},
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2. Abstract Argumentation

Admissible Extension

Admissible Extension
Given an AF (A,R). A set S ⊆ A is admissible in F , if

S is conflict-free in F
each a ∈ S is defended by S in F ,

a ∈ A is defended by S in F , if for each b ∈ A with (b, a) ∈ R, there
exists a c ∈ S , such that (c, b) ∈ R.

Example

b c d ea

adm(F ) =
{
{a, c},
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2. Abstract Argumentation

Stable Extensions

Stable Extension
Given an AF (A,R). A set S ⊆ A is stable in F , if

S is conflict-free in F
for each a ∈ A \ S , there exists a b ∈ S , such that (b, a) ∈ R.

Example

b c d ea

stable(F ) =
{
{a, c}
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2. Abstract Argumentation

Stable Extensions

Some AFs have no stable extension:

ba

c

Idea: Using extensions minimizing the unattacked arguments in A \ S .

For S ⊆ A we define S+ = S ∪ {a : ∃b ∈ S : (b, a) ∈ R}
minimizing A \ S+ ⇔ maximizing S+

If S is a stable extension then S+ = A
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2. Abstract Argumentation

Stage/Semi-Stable Extension

Stage/Semi-Stable Extension
Given an AF (A,R). A set S ⊆ A is stage (resp. semi-stable) in F , if

S is conflict-free (resp admissible) in F
for each S ′ ⊆ A, if S ′ conflict-free (admissible) then S+ 6⊂ S ′+..

Example

ba

c

cf (F ) =
{
∅, {a}, {b}, {c}

}
adm(F ) =

{
∅
}
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Stage/Semi-Stable Extension
Given an AF (A,R). A set S ⊆ A is stage (resp. semi-stable) in F , if

S is conflict-free (resp admissible) in F
for each S ′ ⊆ A, if S ′ conflict-free (admissible) then S+ 6⊂ S ′+..

Example

ba

c

cf (F ) =
{
∅, {a}, {b}, {c}

}
stage(F ) =

{
{a}, {b}, {c}

}
adm(F ) =

{
∅
}

semi(F ) =
{
∅
}
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3. Complexity of Stage / Semi-Stable Semantics

Decision Problems on AFs

Let be σ a semantic for AFs then we are interested in the following
problems:

Credulous Acceptance (Credσ): Given AF F = (A,R) and a ∈ A; is
a contained in at least one σ-extension of F?

Skeptical Acceptance (Skeptσ): Given AF F = (A,R) and a ∈ A; is
a contained in every σ-extension of F?

Theorem ( [Dunne and Caminada(2008)] )
Credsemi and Skeptsemi are PNP

|| - hard.
Credsemi is Σp

2 - easy. / Skeptsemi is Πp
2 - easy.
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3. Complexity of Stage / Semi-Stable Semantics

Complexity of stage / semi-stable semantics

Theorem ( [Dvořák and Woltran(2009)] )
Cred for stage / semi-stable semantics is Σp

2-complete.
Skept for stage / semi-stable semantics is Πp

2-complete.

Proof membership.
Credulous Acceptance of a ∈ A

Guess a set S such that a ∈ S .
Verify that S is conflict-free (admissible)
Verify that S is ⊆+-maximal (in co-NP)

Guess a set S ′ such that S+ ⊂ S ′+

Test if S ′ is conflict-free (admissible)
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3. Complexity of Stage / Semi-Stable Semantics

Hardness - Skeptical Acceptance

To prove the hardness we reduce the Πp
2-hard problem QSAT∀2 to Skept.

Definition (QSAT∀
2)

Given: A quantified boolean formula in CNF: Φ = ∀Y ∃Z Ψ(Y ,Z ).
Question: Is Φ true?

Example:

∀y1, y2 ∃z3, z4 (y1 ∨ y2 ∨ z3) ∧ (¬y2 ∨ ¬z3 ∨ ¬z4) ∧ (¬y1 ∨ ¬y2 ∨ z4)

In our reduction
we map each formula to Φ to an AF FΦ and an argument t ∈ FΦ

such that Φ is true iff t is skeptically accepted in FΦ.
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3. Complexity of Stage / Semi-Stable Semantics

Reduction (informal)
We first demonstrate our reduction on an example QBF:

∀y1, y2 ∃z3, z4 (y1 ∨ y2 ∨ z3) ∧ (¬y2 ∨ ¬z3 ∨ ¬z4) ∧ (¬y1 ∨ ¬y2 ∨ z4)

The resulting framework FΦ:
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3. Complexity of Stage / Semi-Stable Semantics

Reduction (formal)

Reduction
Given a QBF 2

∀ formula Φ = ∀Y ∃Z
∧

c∈C c , we define FΦ = (A,R), where

A = {t, t̄, b} ∪ C ∪ Y ∪ Ȳ ∪ Y ′ ∪ Ȳ ′ ∪ Z ∪ Z̄
R = {〈c , t〉 | c ∈ C} ∪

{〈x , x̄〉 , 〈x̄ , x〉 | x ∈ Y ∪ Z} ∪
{〈y , y ′〉 , 〈ȳ , ȳ ′〉 , 〈y ′, y ′〉 , 〈ȳ ′, ȳ ′〉 | y ∈ Y } ∪
{〈l , c〉 | literal l occurs in c ∈ C} ∪
{〈t, t̄〉 , 〈t̄, t〉 , 〈t, b〉 , 〈b, b〉}.
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3. Complexity of Stage / Semi-Stable Semantics

Lemma

For every stage (resp. semi-stable) extension S of an AF FΦ = (A,R):
1 b 6∈ S, as well as y ′ 6∈ S and ȳ ′ 6∈ S for each y ∈ Y .
2 x /∈ S ⇔ x̄ ∈ S for each x ∈ {t} ∪ Y ∪ Z.

Proof.
ad 1) clear, since all this arguments attack themselves

ad 2) Obviously {x , x̄} ⊆ S cannot hold (S is conflict-free).
Let us assume there exists an x , such that {x , x̄} ∩ S = ∅.
If x = t then T = S ∪ {t̄} is conflict-free and we have S+ ⊂ T+. Further
T is admissible if S is. E
If x ∈ Y ∪ Z then we define T = (S \ {c ∈ C | 〈x̄ , c〉 ∈ R}) ∪ {x̄}. Once
more we have that T is conflict-free and that T is admissible if S is. For
the removed arguments c ∈ C , we have c ∈ T+.
The only argument attacked by such c is t, but t ∈ T+, since we can
already assume {t, t̄} ∩ S 6= ∅. Therefore we have S+ ⊂ T+. E
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3. Complexity of Stage / Semi-Stable Semantics

Lemma

Let Y ∗ = Y ∪ Ȳ ∪ Y ′ ∪ Ȳ ′ and S ,T be conflict-free sets then:
1 S ∩ Y ∗ ⊆ T ∩ Y ∗ iff (S ∩ Y ∗)+ ⊆ (T ∩ Y ∗)+

2 S ∩ Y ∗ = T ∩ Y ∗ iff (S ∩ Y ∗)+ = (T ∩ Y ∗)+

Proof.
We first prove (1):
⇒: First, assume S ∩ Y ∗ ⊆ T ∩ Y ∗.
By the monotonicity of (.)+ we get (S ∩ Y ∗)+ ⊆ (T ∩ Y ∗)+. X
⇐: Assume now (S ∩ Y ∗)+ ⊆ (T ∩ Y ∗)+ and let l ∈ S ∩ Y ∗. (l is either
of form y or ȳ)
As l ∈ S ∩ Y ∗ we have l , l̄ , l ′ ∈ (S ∩ Y ∗)+ and thus l , l̄ , l ′ ∈ (T ∩ Y ∗)+.
But then, l ∈ T ∩ Y ∗ follows from l ′ ∈ (T ∩ Y ∗)+. X
By symmetry (2) follows.
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3. Complexity of Stage / Semi-Stable Semantics

Lemma

If Φ is true, then t is contained in every stage and in every semi-stable
extension of FΦ.

Proof.
Suppose Φ = ∀Y ∃ZC is true and let S be a stage or a semi-stable
extension of such that t /∈ S . Let IY = Y ∩ S . Since Φ is true we know
there exists an IZ ⊆ Z , such that for each c ∈ C holds:(

IY ∪ IZ ∪ {x̄ | x ∈ (Y ∪ Z ) \ (IY ∪ IZ )}
)
∩ c 6= ∅.

Consider now the set

T = IY ∪ IZ ∪ {x̄ | x ∈ (Y ∪ Z ) \ (IY ∪ IZ )} ∪ {t}.

T is admissible and T+ = A \ Ī ′Y .
As S ∩ Ī ′Y = ∅ and b /∈ S+ this implies S+ ⊂ T+ E
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3. Complexity of Stage / Semi-Stable Semantics

Hardness - Skeptical Acceptance Semi-Stable

Theorem

Skeptsemi is Πp
2-hard.

We have to show that t is contained in all semi-stable extensions of FΦ

iff Φ is true. (The if direction is already captured by the last lemma)

Proof.
We prove the only-if direction by showing that if Φ is false, then there
exists a semi-stable extension S of FΦ such that t 6∈ S .
In case Φ is false, there exists an IY ⊆ Y , such that for each IZ ⊆ Z ,
there exists a c ∈ C , such that(

IY ∪ IZ ∪ {x̄ | x ∈ (Y ∪ Z ) \ (IY ∪ IZ )}
)
∩ c = ∅. (1)

Consider now a maximal (wrt. ≤+) admissible (in FΦ) set S , such that
IY ⊆ S . S then has to be a semi-stable extension.
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3. Complexity of Stage / Semi-Stable Semantics

proof (ctd).
Consider now a maximal (wrt. ≤+) admissible (in FΦ) set S , such that
IY ⊆ S . S then has to be a semi-stable extension.
It remains to show t 6∈ S . We prove this by contradiction and assume
t ∈ S .
As S is admissible, S defends t and therefore it defeats all c ∈ C .
Further as all attacks against C come from Y ∪ Ȳ ∪ Z ∪ Z̄ , the set
U =

(
IY ∪ (S ∩ (Z ∪ Z̄ )) ∪ {ȳ | y ∈ Y \ IY }

)
defeats all c ∈ C .

As we know that for each z ∈ Z , either z or z̄ is contained in S . We get
an equivalent characterization for U by
U =

(
IY ∪ IZ ∪ {x̄ | x ∈ (Y ∪ Z ) \ (IY ∩ IZ )}

)
with IZ = S ∩ Z .

Thus, for all c ∈ C ,(
IY ∪ IZ ∪ {x̄ | x ∈ (Y ∪ Z ) \ (IY ∪ IZ )}

)
∩ c 6= ∅,

which contradicts assumption (1).
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3. Complexity of Stage / Semi-Stable Semantics

Hardness - Skeptical Acceptance under Stage Semantics

Theorem

Skeptstage is Πp
2-hard.

Proof.
Similar to the proof of the previous theorem.
For details see [Dvořák and Woltran(2009)]
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3. Complexity of Stage / Semi-Stable Semantics

Hardness - Credulous Acceptance

Theorem

Credulous acceptance for stage or semi-stable semantics is Σp
2-hard.

Proof.
We have shown that a QBF 2

∀ formula Φ is true iff t is contained in each
semi-stable extension of FΦ. This is equivalent to t̄ is not contained in
any semi-stable extension of FΦ. Thus the co-credulous acceptance is
also Πp

2-hard.
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4. Fixed-Parameter-Tractability

Fixed-Parameter-Tractability
Stage and Semi-stable Extensions can be specified in MSOL:

U ⊆+
R V = ∀x

((
x ∈ U ∨ ∃y(y ∈ U ∧ 〈y , x〉 ∈ R)

)
→(

x ∈ V ∨ ∃y(y ∈ V ∧ 〈y , x〉 ∈ R)
))

U ⊂+
R V = U ⊆+

R V ∧ ¬(V ⊆+
R U)

cfR(U) = ∀x , y
(
〈x , y〉 ∈ R → (¬x ∈ U ∨ ¬y ∈ U)

)
admR(U) = cfR(U) ∧ ∀x , y

(
(〈x , y〉 ∈ R ∧ y ∈ U)→

∃z(z ∈ U ∧ 〈z , x〉 ∈ R)
)

semi(A,R)(U) = admR(U) ∧ ¬∃V (V ⊆ A ∧ admR(V ) ∧ U ⊂+
R V )

stage(A,R)(U) = cfR(U) ∧ ¬∃V (V ⊆ A ∧ cfR(V ) ∧ U ⊂+
R V )

By Courcelles theorem the problems Credsemi , Skeptsemi , Credstage ,
Skeptstage are fixed parameter tractable wrt tree-width of AF.
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4. Fixed-Parameter-Tractability

Fixed-Parameter-Tractability

Definition (cycle rank)
An acyclic graph has cr(G ) = 0.
If G is strongly connected then cr(G ) = 1 + minv∈VG cr(G \ v).
Otherwise, cr(G ) is the maximum cycle rank among all strongly
connected components of G .

Theorem
The problems Skeptsemi , Skeptstage (resp. Credsemi ,Credstage) remain
Πp
2-hard (resp. Σp

2-hard), even if restricted to AFs which have a
cycle-rank of 1.

Proof.
Every framework of the form FΦ has cycle-rank 1 and therefore we have
an reduction from QBF 2

∀ formulas to an AF with cycle-rank 1.
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5. Conclusion

Conclusion

Main Results:
We answered two questions about the complexity of semi-stable
semantics raised by Dunne and Caminada (2008).
Credsemi is Σp

2-complete / Skeptsemi is Πp
2-complete

We extended this results to stage semantics:
Credstage is Σp

2-complete / Skeptstage is Πp
2-complete

But these problems are tractable on AFs of bounded tree-width.

Future Work:
Finding tractable algorithms for AFs of bounded tree-width.
Identify further tractable fragments.
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