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Abstract

In this work, we answer two questions about the complexity ofsemi-stable seman-
tics for abstract argumentation frameworks: we showΠP

2 -completeness for the prob-
lem of deciding whether an argument is skeptically accepted, and respectively,ΣP

2 -
completeness for the problem of deciding whether an argument is credulously accepted
under the semi-stable semantics. Furthermore, we extend these complexity bounds to
the according decision problems for stage semantics and discuss two approaches to-
wards tractability.
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1. Introduction

In Artificial Intelligence (AI), the area of argumentation [2] has become one of
the central issues during the last years. Argumentation provides a formal treatment
for reasoning problems arising in a number of interesting applications fields, includ-
ing Multi-Agent Systems and Law Research. In a nutshell, so-called abstract argu-
mentation frameworks formalize statements1 together with a relation denoting attacks
between them, such that the semantics gives an abstract handle to solve the inherent
conflicts between statements by selecting acceptable subsets of them. Several such
semantics have already been proposed by Dung in his seminal paper [5], but there are
several others which received significant interest lately.

One such approach is known as stage semantics and was introduced by Verheij [17]
more than ten years ago. With the work on semi-stable semantics by Caminada [3],
who revived Verheij’s basic concepts, stage semantics are nowadays mentioned as an

✩This work was supported by the Vienna Science and TechnologyFund (WWTF) under grant ICT08-
028.

1In general, arguments are not considered as simple statements but contain a number of reasons that
lead to a conclusion. However, for the purpose of this work, we will treat arguments as abstract entities
(following [5]), thus abstracting from their internal structure.
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important alternative (see, e.g. [1]) to Dung’s original semantics. The underlying idea
of stage semantics is to maximize not only the arguments included in an extension
but also those attacked by such an extension. While the complexity of Dung’s ba-
sic extension based semantics is well studied (see, e.g. [10]) there are open issues for
stage semantics. In this work, we give exact complexity bounds for typical decision
problems assigned to argumentation frameworks (AFs). In particular, we proveΣP

2 -
hardness, and respectivelyΠP

2 -hardness, for the problems of deciding whether a given
argument is contained in one (credulous acceptance), respectively in all (skeptical ac-
ceptance), semi-stable extensions of a given argumentation framework. The respective
membership results have been shown by Dunne and Caminada [9], but matching lower
bounds have been left as an open problem. We also show that stage semantics (defined
in terms of conflict-free sets) are of the same complexity as semi-stable semantics.
In order to identify tractable subclasses, we finally investigate the effect of bounding
parameters as tree-width and cycle-rank.

2. Background

An argumentation framework(AF, for short) is a pair(A, R) whereA is a finite2 set
of arguments andR ⊆ A ×A represents the attack-relation. For an AFAF = (A, R),
S ⊆ A, anda ∈ A, we call (i)S conflict-freein AF , if there are nob, c ∈ S such that
〈b, c〉 ∈ R; (ii) a attackedby S in AF , if there is ab ∈ S such that〈b, a〉 ∈ R; (iii)
a defendedby S in AF , if for eachb ∈ A such that〈b, a〉 ∈ R, b is attacked byS in
AF ; (iv) S admissiblein AF , if S is conflict-free inAF and eacha ∈ S is defended
by S in AF . To define the concepts of stage and resp. semi-stable extensions, we
basically follow the conventions used in [1]. Let for an AFAF = (A, R) andS ⊆ A,
S+

R = S ∪{b | ∃a ∈ S, such that〈a, b〉 ∈ R}. Moreover, let us say thatS ≤+
R T holds

if S+
R ⊆ T+

R andS <+
R T holds ifS+

R ⊂ T+
R .

Definition 1. Let AF = (A, R) be an AF. A setS is a stage(resp. asemi-stable)
extensionof AF , if S is maximal conflict-free (resp. admissible) inAF wrt. ≤+

R.

Example1. The AF({a, b, c}, {〈a, b〉 , 〈b, c〉 , 〈c, a〉}) has as its only semi-stable exten-
sion ofAF the empty set, while it possesses stage extensions{a}, {b}, {c}. Thus, the
set of stage extensions and the set of semi-stable extensions are in general incompara-
ble. Concerning the relations to the semantics proposed by Dung, we refer to [3, 17].

We consider the following decision problems, for given AFAF = (A, R) anda ∈ A:

• StageC: is a contained in at least one stage extension ofAF?

• StageS: is a contained in every stage extension ofAF?

2Usually, an argumentation framework may be infinite, but forthe complexity analysis carried out
in this paper, it is sufficient to restrict to finite frameworks.
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• SemiC: is a contained in at least one semi-stable extension ofAF?

• SemiS: is a contained in every semi-stable extension ofAF?

For our forthcoming reductions, we require a particular class of quantified Boolean
formulas (QBFs) which we introduce next. AQBF 2

∀ formula is of the form∀Y ∃ZC
whereY andZ are sets of propositional atoms from a countable domainU , andC is
a collection of clauses (which we shall represent as sets) over literals built from atoms
Y ∪ Z. A clause itself is interpreted as a disjunction over its literals. For a variabley,
we useȳ to represent its negation. Moreover,¯̄y stands fory, etc. We say that a QBF
∀Y ∃ZC is true iff, for eachIY ⊆ Y there exists anIZ ⊆ Z, such that for eachc ∈ C,

(

IY ∪ IZ ∪ {x̄ | x ∈ (Y ∪ Z) \ (IY ∪ IZ)}
)

∩ c 6= ∅. (1)

Example2. Consider QBFΦ = ∀y1y2∃z3z4{{y1, y2, z3}, {ȳ2, z̄3, z̄4)}, {ȳ1, ȳ2, z4}}
which we will use as running example. It can be checked that this QBF is true.

We recall that the problemQSAT 2
∀ (i.e. given aQBF 2

∀ formulaΦ, decide whether
Φ is true) isΠP

2 -complete.

3. Complexity of Semi-Stable and Stage Semantics

As already mentioned, we consider a countable setU of propositional atoms (in
what follows, we use atoms and arguments interchangeably).Moreover, we have the
following pairwise disjoint sets of arguments̄U = {ū | u ∈ U}, U ′ = {u′ | u ∈ U},
Ū ′ = {ū′ | u ∈ U}. For any setV ⊆ U , we useV̄ , V ′, V̄ ′, also as renaming schemes
in the usual way (for instance,V ′ denotes the set{v′ | v ∈ V }). Finally, we use further
new argumentst, t̄, b and{c1, c2, . . .}.

We make use of the following reduction fromQBF 2
∀ formulas to AFs.

Reduction1. Given aQBF 2
∀ formulaΦ = ∀Y ∃ZC, we defineAFΦ = (A, R), where

A = {t, t̄, b} ∪ C ∪ Y ∪ Ȳ ∪ Y ′ ∪ Ȳ ′ ∪ Z ∪ Z̄

R = {〈c, t〉 | c ∈ C} ∪ {〈t, t̄〉 , 〈t̄, t〉 , 〈t, b〉 , 〈b, b〉} ∪

{〈x, x̄〉 , 〈x̄, x〉 | x ∈ Y ∪ Z} ∪

{〈y, y′〉 , 〈ȳ, ȳ′〉 , 〈y′, y′〉 , 〈ȳ′, ȳ′〉 | y ∈ Y } ∪

{〈l, c〉 | literal l occurs inc ∈ C}.

Figure 1 illustrates the corresponding AFAFΦ for Φ from Example 2.

Lemma 1. For every stage (resp. semi-stable) extensionS of an AFAFΦ = (A, R),
the following propositions hold: (i)b 6∈ S, as well asy′ 6∈ S and ȳ′ 6∈ S for each
y ∈ Y and (ii) x /∈ S ⇔ x̄ ∈ S for eachx ∈ {t} ∪ Y ∪ Z.
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Figure 1: Argumentation frameworkAFΦ for QBFΦ given in Example 2.

Proof. Let Φ = ∀Y ∃ZC andAFΦ = (A, R) be the corresponding AF.

ad (i) Clear, since all these arguments are self-attacking.

ad (ii) Obviously, for eachx ∈ {t} ∪ Y ∪ Z, {x, x̄} ⊆ S cannot hold, sinceS has to
be conflict-free inAFΦ. It remains to show{x, x̄} ∩ S 6= ∅. Towards a contradiction,
let us assume there exists such anx, such that{x, x̄} ∩ S = ∅ holds for a stage (resp.
semi-stable) extensionS of AFΦ.

Let us first assumex = t. Then the setT = S ∪ {t̄} is conflict-free and we have
S <+

R T . The argument̄t defends itself and thereforeT is admissible ifS is. This
already shows thatS then cannot be a stage or semi-stable extension.

Let us thus assume thatx ∈ Y ∪ Z and letT = (S \ {c ∈ C | 〈x̄, c〉 ∈ R}) ∪ {x̄}.
One can check thatT is conflict-free and that ifS is admissible thenT is admissible.
Moreover, we again haveS <+

R T . In fact, for the removed argumentsc ∈ C, we have
c ∈ T+

R . Moreover, the only argument attacked by suchc is t, butt ∈ T+
R , since we can

already assume{t, t̄}∩S 6= ∅. This shows thatS cannot be a stage (resp. semi-stable)
extension.

Lemma 2. LetY ∗ = Y ∪ Ȳ ∪Y ′∪ Ȳ ′ andS, T be conflict-free sets inAFΦ = (A, R).
ThenS ∩ Y ∗ ⊆ T ∩ Y ∗ iff (S ∩ Y ∗)+

R ⊆ (T ∩ Y ∗)+
R and furtherS ∩ Y ∗ = T ∩ Y ∗ iff

(S ∩ Y ∗)+
R = (T ∩ Y ∗)+

R.

Proof. First, assumeS∩Y ∗ ⊆ T∩Y ∗. By the monotonicity of(.)+
R we get(S∩Y ∗)+

R ⊆
(T∩Y ∗)+

R. So, assume now(S∩Y ∗)+
R ⊆ (T∩Y ∗)+

R and letl ∈ S∩Y ∗. By Lemma 1(i),
l is either of formy or ȳ. If l ∈ S∩Y ∗, thenl, l̄, l′ ∈ (S∩Y ∗)+

R. Using our assumption
we getl, l̄, l′ ∈ (T ∩ Y ∗)+

R. But then,l ∈ T ∩ Y ∗ follows from l′ ∈ (T ∩ Y ∗)+
R. This

showsS ∩Y ∗ ⊆ T ∩Y ∗ iff (S ∩Y ∗)+
R ⊆ (T ∩Y ∗)+

R. By symmetry,S ∩Y ∗ = T ∩Y ∗

iff (S ∩ Y ∗)+
R = (T ∩ Y ∗)+

R follows.

Lemma 3. Let Φ be aQBF 2
∀ formula. IfΦ is true, thent is contained in every stage

and in every semi-stable extension ofAFΦ.
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Proof. SupposeΦ = ∀Y ∃ZC is true and let, towards a contradiction,S be a stage or
a semi-stable extension ofAFΦ = (A, R) with t /∈ S. By Lemma 1(ii), we know that
for eachy ∈ Y , eithery or ȳ is in S. Let IY = Y ∩ S. SinceΦ is true we know
there exists anIZ ⊆ Z, such that (1) holds, for eachc ∈ C. Consider now the set
T = IY ∪ IZ ∪ {x̄ | x ∈ (Y ∪ Z) \ (IY ∪ IZ)} ∪ {t}. We show thatT is admissible
in AFΦ and thatS <+

R T holds. This will contradict our assumption in both cases,
i.e. thatS is a stage or a semi-stable extension ofAFΦ. It is easily verified thatT is
conflict-free inAFΦ. Next we show that eacha ∈ T is defended byT in AFΦ. This is
quite obvious for eacha ∈ T exceptt, since all those arguments defend themselves. To
havet defended byT in AFΦ, each argumentc ∈ C has to be attacked by an element
from T . But this is the case since (1) holds and by the construction of AFΦ, i.e. by
the definition of attacks{〈l, c〉 | literal l occurs inc}, each such attackerc is attacked
by an argumentx ∈ Y ∪ Ȳ ∪ Z ∪ Z̄. It remains to showS <+

R T . By Lemma 2,
(S ∩ Y ∗)+

R = (T ∩ Y ∗)+
R, for Y ∗ = Y ∪ Ȳ ∪ Y ′ ∪ Ȳ ′. Moreover, by Lemma 1(ii)

eitherz or z̄ in S, for eachz ∈ Z; the same holds forT , by definition. We observe that
S+

R ∩ (Z ∪ Z̄) = T+
R ∩ (Z ∪ Z̄) = Z ∪ Z̄. Moreover, we already have argued that each

c ∈ C is attacked by some argument inT . Let A− = A \ {t, t̄, b}. So far, we thus have
shown thatS+

R ∩A− ⊆ T+
R ∩A− = IY ∪ I ′

Y ∪ (Ȳ \ ĪY ) ∪ (Ȳ ′ \ Ī ′
Y ) ∪Z ∪ Z̄ ∪C. We

finally observe thatS+
R ∩ {t, t̄, b} = {t, t̄} ⊂ {t, t̄, b} = T+

R ∩ {t, t̄, b}, sincet /∈ S by
assumption andt ∈ T by definition. This showsS <+

R T as desired.

We are now prepared to give our first main result.

Theorem 1. SemiS is ΠP
2 -hard.

Proof. We use our reduction fromQBF 2
∀ formulas to AFs and show that, for each such

QBF Φ, it holds thatt is contained in all semi-stable extensions ofAFΦ iff Φ is true.
SinceAFΦ can be constructed fromΦ in polynomial time, the claim then follows.

Let Φ = ∀Y ∃ZC andAFΦ = (A, R) be the corresponding AF. The if direction
is captured by Lemma 3. We prove the only-if direction by showing that if Φ is false,
then there exists a semi-stable extensionS of AFΦ such thatt 6∈ S.

In caseΦ is false, there exists anIY ⊆ Y , such that for eachIZ ⊆ Z, there exists
a c ∈ C, such that

(

IY ∪ IZ ∪ {x̄ | x ∈ (Y ∪ Z) \ (IY ∪ IZ)}
)

∩ c = ∅. (2)

Consider now a maximal (wrt.≤+
R) admissible (inAFΦ) setS, such thatIY ⊆ S (note

that such a set exists, sinceIY itself is admissible inAFΦ). Using Lemma 2, one
can show thatS then has to be a semi-stable extension ofAFΦ. To wit, let T be an
admissible (inAFΦ) set such thatIY 6⊆ T . By Lemma 2 it holds that(S ∩ Y ∗)+

R 6⊆
(T ∩ Y ∗)+

R and thereforeS+
R 6⊆ T+

R . Putting this together with the maximality ofS in
the set{T | T is admissible inAFΦ andIY ⊆ T} we get that there is no admissible
(in AFΦ) setT , such thatS+

R ⊂ T+
R . Hence,S is a semi-stable extension ofAFΦ.

It remains to showt 6∈ S. We prove this by contradiction and assumet ∈ S. As
S is admissible inAFΦ, S defendst and therefore it attacks allc ∈ C. As all attacks
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against arguments inC come fromY ∪Ȳ ∪Z∪Z̄, the setU =
(

IY ∪(S∩(Z∪Z̄))∪{ȳ |
y ∈ Y \ IY }

)

attacks allc ∈ C. By Lemma 1(ii), for eachz ∈ Z, eitherz or z̄ is
contained inS. We get an equivalent characterization forU by U =

(

IY ∪ IZ ∪ {x̄ |
x ∈ (Y ∪ Z) \ (IY ∩ IZ)}

)

with IZ = S ∩ Z. Thus, for allc ∈ C,
(

IY ∪ IZ ∪ {x̄ | x ∈ (Y ∪ Z) \ (IY ∪ IZ)}
)

∩ c 6= ∅,

which contradicts assumption (2).

Theorem 2. SemiC is ΣP
2 -hard.

Proof. In the proof of Theorem 1, we have shown that aQBF 2
∀ formulaΦ is true iff t is

contained in each semi-stable extension ofAFΦ. According to Lemma 1(ii), this holds
iff t̄ is not contained in any semi-stable extension ofAFΦ. Thus, the complementary
problem ofSemiC is alsoΠP

2 -hard.ΣP
2 -hardness ofSemiC follows immediately.

We now turn our attention to the stage semantics.

Theorem 3. StageS is ΠP
2 -hard.

Proof. We again use our reduction fromQBF 2
∀ formulas to AFs and show that, for

each such QBFΦ, it holds thatt is contained in all stage extensions ofAFΦ iff Φ is
true. Thus, letΦ = ∀Y ∃ZC andAFΦ = (A, R) be the corresponding AF. The if
direction is already captured by Lemma 3. We prove the only-if direction by showing
that, if Φ is false, then there exists a stage extensionS of AFΦ such thatt 6∈ S.

If Φ is false, there is anIY ⊆ Y , such that for eachIZ ⊆ Z, we have ac ∈ C with
(

IY ∪ IZ ∪ {x̄ | x ∈ (Y ∪ Z) \ (IY ∪ IZ)}
)

∩ c = ∅. (3)

Consider the collectionW = {S | IY ⊆ S, S is conflict-free inAFΦ} of conflict-free
sets inAFΦ. Using Lemma 2, we can show that for every conflict-free (inAFΦ) set
T , S ≤+

R T impliesIY ⊆ T . For verifying≤+
R-maximality of a setS ∈ W we thus

can restrict ourselves to setsT ∈ W .
It remains to show that there is a stage extensionS in W with t 6∈ S. We prove

that (i) for every setS ∈ W with t ∈ S, there exists ac ∈ C, suchc 6∈ S+
R ; and (ii)

existence of a setS ∈ W such thatC ⊆ S+
R . Note that (i)+(ii) imply existence of a

stage extensionS of AFΦ with t 6∈ S.
We prove (i) by contradiction and assume thatC ⊆ S+

R . As S is conflict-free in
AFΦ andt ∈ S, we getC ∩ S = ∅. SinceC ⊆ S+

R , S attacks allc ∈ C. As all attacks
againstC come fromY ∪Ȳ ∪Z∪Z̄, the setU =

(

IY ∪(S∩(Z∪Z ′))∪{ȳ | y ∈ Y \IY }
)

attacks allc ∈ C. By Lemma 1(ii), for eachz ∈ Z, eitherz or z̄ is contained inS and
so we getU =

(

IY ∪ IZ ∪ {x̄ | x ∈ (Y ∪ Z) \ (IY ∪ IZ)}
)

with IZ = S ∩ Z. Thus,
for eachc ∈ C, U ∩ c 6= ∅, which contradicts assumption (3).

To show (ii) we just construct such a setS = U∪V usingU = IY ∪{ȳ ∈ Y \IY }∪Z
andV = {c ∈ C | ∄u ∈ U with 〈u, c〉 ∈ R}. It is easy to verify thatS is conflict-free
in AFΦ. It remains to showc ∈ S+

R , for all c ∈ C. Note that for eachc ∈ C we have
that eitherc is attacked byU or contained inV . In both cases,c ∈ S+

R is clear.
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The following result is proven analogously to Theorem 2.

Theorem 4. StageC is ΣP
2 -hard.

Our hardness results can be extended to AFs without self-attacking arguments.
To this end, we adapt our reduction by replacing all self-attacking arguments in the
frameworkAFΦ by cycles of odd length (for instance, of length 3). Figure 2 illustrates
such a frameworkAFm

Φ for our example QBF. In case of semi-stable extensions, we
use the fact that the only admissible set of an (unattacked) odd-length cycle is the
empty set. Indeed,S is a semi-stable extension ofAFΦ iff S is a semi-stable extension
of AFm

Φ .
The same construction can be used for stage semantics, although the argumenta-

tion is slightly different: As stage extensions only require conflict-freeness and not
admissibility, the arguments of the introduced cycles may now be part of stage exten-
sions. However, to repair the correctness proofs for the modified reduction, we use the
observation that for each cycle of length 3 at most one argument can be in a stage ex-
tensionS (see also Example 1) and at least one argument in the cycle is not attacked by
S. Thus each such cycle contributes in three different but incomparable ways to stage
extensions. More formally, letAm be the set of arguments inAF m

Φ , X = {b}∪Y ′∪ Ȳ ′

and denote byx− be the (unique) attacker of an argumentx ∈ X in the original frame-
work AFΦ = (A, R). Then, we get that (i) ifS is a stage extension ofAFΦ, then each
S ′ ⊆ Am, such thatS ′ ∩ A = S and for eachx ∈ X,

card(S ′ ∩ {x1, x2, x3}) =

{

1 if x− /∈ S
0 otherwise

is a stage extension ofAFm
Φ ; and (ii) if S is a stage extension ofAF m

Φ , thenS ∩ A is
a stage extension ofAFΦ. This correspondence between extensions suffices to show
that our hardness results carry over to self-attack free AFs.

We summarize our results in terms of completeness results. The matching upper
bounds for semi-stable semantics have been reported in [9];for the stage semantics we
give them in the proof of the following theorem.

Theorem 5. StageC andSemiC are ΣP
2 - complete;StageS andSemiS are ΠP

2 - com-
plete. For all problems, hardness holds even for AFs withoutself-attacking arguments.

Proof. Hardness is by Theorems 1– 4 and by the observations above.
For the matching upper bounds, we first consider the following problem which we

show to be in coNP: Given an AFAF = (A, R) and a setS ⊆ A, is S a stage (resp. a
semi-stable) extension ofAF? Letcf (AF ) denote the collection of conflict-free sets
S ⊆ A of AF andadm(AF ) denote the collection of setsS ⊆ A, admissible inAF .
By definition,S is a stage (resp. a semi-stable) extension ofAF iff (i) S ∈ σ(AF )
and (ii) ∀ T ⊆ A, T ∈ σ(AF ) only if S+

R 6⊂ T+
R , for σ = cf (resp.σ = adm).

GivenS, we can decideS ∈ σ(AF ) in polynomial time, forσ ∈ {cf , adm}. For the
complement of (ii), we guess a setT and then we verify (again, in polynomial time),
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Figure 2: The modified frameworkAF
m

Φ
for Φ from Example 2.

whetherS+
R ⊂ T+

R andT ∈ σ(AF ), for σ ∈ {cf , adm}. This yields membership in
NP for the complement of (ii), thus, given setS, (ii) is in coNP, and thus the entire
problem is in coNP.3

We now can give algorithms forStageC andSemiC as follows. We have given an
AF AF = (A, R) and an argumenta ∈ A. We guess a setS ⊆ A with a ∈ S and then
use an NP-oracle (we recall that oracle calls are closed under complement), to check
whetherS is a stage (resp. semi-stable) extension ofAF . Obviously this algorithm
correctly decides the considered problems. Hence, these problems are inΣP

2 .
ForStageS andSemiS we argue as follows: Given an AFAF = (A, R), to decide if

an argumenta ∈ A is contained in each stage (resp. semi-stable) extension ofAF , we
have to prove that every setS with a 6∈ S is nota stage (resp. semi-stable) extension of
AF . Thus, for the complementary problem, we can guess a setS with a /∈ S and check
whetherS is a stage (resp. semi-stable) extension ofAF . Again, this check can be done
with a single call to an NP-oracle, and thus the complementary problems ofStageS and
SemiS are inΣP

2 . ΠP
2 -membership ofStageS andSemiS follows immediately.

4. Fixed Parameter Tractability

As we have shown in the previous section, all considered problems are highly in-
tractable. A natural task is now to identify tractable subclasses. We focus on particular
graph parameters and check whether bounding such parameters leads to the desired
tractable fragments. One such parameter for graph problemsis tree-width [16]. Intu-
itively, the tree-width of a graph measures the tree-likeness of the graph.

Definition 2. LetG = (V, E) be a digraph. Atree decompositionofG is a pair〈T ,X〉
whereT = 〈VT , ET 〉 is a tree andX = (Xt)t∈VT

such that:

3For semi-stable semantics, this problem is also coNP-complete, cf. [9].

8



1.
⋃

t∈VT
Xt = V , i.e.X is a cover ofV ,

2. for eachv ∈ V the subgraph ofT induced by{t | v ∈ Xt} is connected,
3. for each edge(vi, vj) ∈ E there exists anXt with {vi, vj} ⊆ Xt.

The width of a decomposition〈T ,X〉 is given bymax{|Xt| : t ∈ VT } − 1. The
tree-widthof a graphG is the minimum width over all tree decompositions ofG.

Many graph properties can be defined by formulas of monadic second-order logic
(MSOL) and by Courcelle’s Theorem [4] such properties can beefficiently decided on
arbitrary relational structures with bounded tree-width (see also [12]). Proposition 1
gives a more specific version of this meta-theorem, namely for digraphs with a set of
distinguished vertices (we express that a vertexx is distinguished by a predicateq(x)).

Proposition 1. Let K be a class of digraphs with a set of distinguished vertices, for
which the tree-width is bounded by some constantk andΠ be a MSOL-definable prop-
erty. For each suchG ∈ K, G ∈ Π is decidable in linear time wrt. the size ofG.

This result is a powerful tool to classify graph problems as fixed-parameter tractable.

Theorem 6. Let K be a class of AFs, which, when interpreted as undirected graphs,
have tree-width≤ k (for fixedk). For eachAF ∈ K the problemsSemiS, SemiC,
StageS andStageC are decidable in linear time.

Proof. One can show that the MSOL formulasemiAF (U) (resp.stageAF (U)) as given
below characterizes the semi-stable (resp. stage) extensions of an AFAF .

U ⊆+
R V = ∀x

(

(

x ∈ U ∨ ∃y(y ∈ U ∧ 〈y, x〉 ∈ R)
)

→
(

x ∈ V ∨ ∃y(y ∈ V ∧ 〈y, x〉 ∈ R)
)

)

U ⊂+
R V = U ⊆+

R V ∧ ¬(V ⊆+
R U)

cfR(U) = ∀x, y
(

〈x, y〉 ∈ R → (¬x ∈ U ∨ ¬y ∈ U)
)

admR(U) = cfR(U) ∧ ∀x, y
(

(〈x, y〉 ∈ R ∧ y ∈ U) → ∃z(z ∈ U ∧ 〈z, x〉 ∈ R)
)

semi(A,R)(U) = admR(U) ∧ ¬∃V (V ⊆ A ∧ admR(V ) ∧ U ⊂+
R V )

stage(A,R)(U) = cfR(U) ∧ ¬∃V (V ⊆ A ∧ cfR(V ) ∧ U ⊂+
R V )

The required checks for the considered decision problems are easily added to these
formulas. For instance, if we label the argument which we check for acceptance byq,
SemiC (with input (A, R) anda ∈ A) can be decided by∃U∃u(semi(A,R)(U) ∧ u ∈
U ∧ q(u)). Proposition 1 then yields the desired result.

As argumentation frameworks are directed graphs it seems natural to consider di-
rected graph measures to get larger tractable fragments than those we capture with
bounded tree-width, which doesn’t take the direction of theedges into account. Unfor-
tunately, it turns out that the considered problems remain hard when bounding typical
directed graph measures. We illustrate this fact by using cycle rank [11] as a parameter.
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Definition 3. Let G = 〈V, E〉 be a directed graph. The cycle rank ofG, cr(G), is
defined as follows: An acyclic graph hascr(G) = 0. If G is strongly connected then
cr(G) = 1+minv∈VG

cr(G \ v). Otherwise,cr(G) is the maximum cycle rank among
all strongly connected components of G.

Theorem 7. The problemsSemiS, StageS (resp. SemiC, StageC) remain ΠP
2 - hard

(resp.ΣP
2 - hard), even if restricted to AFs which have a cycle-rank of1.

Proof. Its easy to see that every framework of the formAFΦ has cycle-rank1 and
therefore we have an reduction fromQBF 2

∀ formulas to an AF with cycle-rank1. In
fact, the strongly connected components ofAFΦ are induced by the following sets:
{yi, ȳi}, {zi, z̄i}, {t, t̄}, {y

′
i}, {ȳ

′
i}, {z

′
i}, {z̄

′
i}, {b}. As each of these components can

be made acyclic by removing one vertex, the cycle-rank ofAFΦ is thus1.

By results in [13, 14, 15] it follows that a problem which is hard for bounded cycle-
rank remains hard for bounding other directed graph measures, i.e. directed path-width,
Kelly-width, DAG-width and directed tree-width.

5. Conclusion

In this note, we provided novel complexity results for abstract argumentation frame-
works in terms of skeptical and resp. credulous acceptance under semi-stable and stage
semantics (as defined in [1]). In case of semi-stable semantics, we improved the exist-
ingPNP

|| -lower bound [9] to hardness for classesΠP
2 (resp.ΣP

2 ). Together with existing
upper bounds, we thus obtained completeness for classes on the second level of the
polynomial hierarchy, answering an open question raised byCaminada and Dunne [9].

Furthermore, we showed that stage semantics leads to the same complexity. To the
best of our knowledge, no complexity results for this semantics have been obtained so
far. We emphasize that the level of complexity the considered semantics show is unique
for credulous reasoning not only among the semantics proposed by Dung4 but also with
respect to more recent proposals such as the ideal semanticswhere acceptance can be
decided withinP NP

|| [7].
Finally, we gave some results in terms of bounding some problem parameter. As a

positive result, bounded tree-width leads to tractable subclasses of the problems under
consideration (similar results for other semantics have been shown by Dunne [6]).
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