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Abstract

In this work, we answer two questions about the complexitgarhi-stable seman-
tics for abstract argumentation frameworks: we sh&j¥completeness for the prob-
lem of deciding whether an argument is skeptically accepted respectivelyy?-
completeness for the problem of deciding whether an argtimeredulously accepted
under the semi-stable semantics. Furthermore, we exteseé tomplexity bounds to
the according decision problems for stage semantics amdstiswo approaches to-
wards tractability.
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1. Introduction

In Artificial Intelligence (Al), the area of argumentatioB][has become one of
the central issues during the last years. Argumentatiowiges a formal treatment
for reasoning problems arising in a number of interestingiaations fields, includ-
ing Multi-Agent Systems and Law Research. In a nutshellcated abstract argu-
mentation frameworks formalize statemérttsgether with a relation denoting attacks
between them, such that the semantics gives an abstradehtangblve the inherent
conflicts between statements by selecting acceptable tsubsthem. Several such
semantics have already been proposed by Dung in his sengipat {5], but there are
several others which received significant interest lately.

One such approach is known as stage semantics and was itecblay VVerheij [17]
more than ten years ago. With the work on semi-stable seasaloyi Caminada [3],
who revived Verheij's basic concepts, stage semantics @amadays mentioned as an

HThis work was supported by the Vienna Science and Technélogg (WWTF) under grant ICT08-
028.

In general, arguments are not considered as simple stateimetrcontain a number of reasons that
lead to a conclusion. However, for the purpose of this workwill treat arguments as abstract entities
(following [5]), thus abstracting from their internal stture.
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important alternative (see, e.g. [1]) to Dung’s originahsatics. The underlying idea
of stage semantics is to maximize not only the argumentsidiedd in an extension
but also those attacked by such an extension. While the exityplof Dung’s ba-
sic extension based semantics is well studied (see, e.j.tftlE®de are open issues for
stage semantics. In this work, we give exact complexity bisuor typical decision
problems assigned to argumentation frameworks (AFs). tticodar, we prove>?-
hardness, and respectivély -hardness, for the problems of deciding whether a given
argument is contained in one (credulous acceptance),atdsglg in all (skeptical ac-
ceptance), semi-stable extensions of a given argumentasimework. The respective
membership results have been shown by Dunne and Caminada{®atching lower
bounds have been left as an open problem. We also show thatsteantics (defined
in terms of conflict-free sets) are of the same complexityeasistable semantics.
In order to identify tractable subclasses, we finally iniggge the effect of bounding
parameters as tree-width and cycle-rank.

2. Background

An argumentation framewortF, for short) is a paif A, R) whereA is a finite? set
of arguments an&k C A x A represents the attack-relation. For an AF = (A, R),
S C A, anda € A, we call (i) S conflict-freein AF, if there are n@, ¢ € S such that
(b,c) € R; (ii) a attackedby S in AF, if there is ab € S such that(b,a) € R; (iii)
a defendeddby S in AF, if for eachb € A such that(b,a) € R, b is attacked by5 in
AF; (iv) S admissiblen AF, if S is conflict-free inAF and eachu € S is defended
by S in AF. To define the concepts of stage and resp. semi-stable exisnsve
basically follow the conventions used in [1]. Let for an AF" = (A, R) andS C A,
St =SU{b]|Ja € S, suchthat(a,b) € R}. Moreover, let us say that <}, 7" holds
if S C Tx andS <3, T holdsifS;, C Tx.

Definition 1. Let AF = (A, R) be an AF. A sefS is a stage(resp. asemi-stablg
extensiorof AF, if S is maximal conflict-free (resp. admissible)ArF wrt. <7}..

Examplel. The AF({a, b, c},{{a,b), (b, c), (c,a)}) has as its only semi-stable exten-
sion of AF' the empty set, while it possesses stage extengiohs(b}, {c}. Thus, the
set of stage extensions and the set of semi-stable extaraiemn general incompara-
ble. Concerning the relations to the semantics proposedungDwe refer to [3, 17].

We consider the following decision problems, for given AF = (A, R) anda € A:
e StageC: is a contained in at least one stage extensiod 6f?

e StagesS: is a contained in every stage extensiontf'?

2Usually, an argumentation framework may be infinite, buttfer complexity analysis carried out
in this paper, it is sufficient to restrict to finite framewerk



e SemiC: is a contained in at least one semi-stable extensioA B?
e SemiS: isa contained in every semi-stable extensiordt?

For our forthcoming reductions, we require a particulasslaf quantified Boolean
formulas (QBFs) which we introduce next. @BF? formula is of the formvy 3ZC
whereY andZ are sets of propositional atoms from a countable dorfiaiandC' is
a collection of clauses (which we shall represent as sets)ligrals built from atoms
Y U Z. Aclause itself is interpreted as a disjunction over ieréts. For a variablg,
we usey to represent its negation. Moreoverstands fory, etc. We say that a QBF
VY 3ZC is true iff, for eachly C Y there exists ad; C Z, such that for each € C,

(IyUI;u{z|ze(YUZ)\(IyUlz)})Nec#. (1)

EX&mp'eZ. Consider QBF(I) = Vy1y25|23z4{{y1, Yo, 23}, {gg, 23, 24)}, {ﬂl, Y2, 24}}
which we will use as running example. It can be checked thaQBF is true.

We recall that the probler@SAT? (i.e. given aQBF? formula®, decide whether
® is true) isII’-complete.

3. Complexity of Semi-Stable and Stage Semantics

As already mentioned, we consider a countablelsef propositional atoms (in
what follows, we use atoms and arguments interchangedkdgjeover, we have the
following pairwise disjoint sets of arguments= {u | v € U}, U’ = {u' | u € U},

U = {u' |ue U} ForanyselV C U, weuseV,V’, V', also as renaming schemes
in the usual way (for instanc&]’ denotes the sdt’ | v € V'}). Finally, we use further
new arguments, ¢, b and{c;, ¢, .. .}.

We make use of the following reduction fro@BF? formulas to AFs.

Reductionl. Given aQBF? formula® =YY 3ZC, we definedFg = (A, R), where

A = {t,t,b}uCUuYUYUY' UY UZUZ
R = {{at)|ce CYU{{tT), (1), (D), (b;b)}U

{z, ), (z,2) |1 €Y UZ}U
{(,v)@,9), W, y), @, 7) lyeY}U
{(l,¢) | literal l occurs inc € C'}.

Figure 1 illustrates the corresponding A’ for ® from Example 2.

Lemma 1. For every stage (resp. semi-stable) extensioof an AFAF¢ = (A, R),
the following propositions hold: (iy ¢ S, as well asy’ ¢ S andy’ ¢ S for each
yeYand(i)z ¢ S< ze Sforeachr € {t} UY U Z.



Figure 1: Argumentation framewotkF' ¢ for QBF @ given in Example 2.

Proof. Let® = VY 3ZC andAF¢ = (A, R) be the corresponding AF.
ad (i) Clear, since all these arguments are self-attacking.

ad (ii) Obviously, for eaclr € {t} UY U Z, {z,z} C S cannot hold, sincé& has to
be conflict-free inA F¢. It remains to showz, z} N S # (). Towards a contradiction,
let us assume there exists suchvasuch thafz, z} N S = () holds for a stage (resp.
semi-stable) extensiaosiof AF .

Let us first assume = ¢. Then the sef’ = S U {t} is conflict-free and we have
S <% T. The argument defends itself and therefofE is admissible ifS is. This
already shows thai then cannot be a stage or semi-stable extension.

Let us thus assume thatc Y U Z and letT’ = (S \ {c € C' | (Z,¢) € R}) U{Z}.
One can check that is conflict-free and that if is admissible thefi’ is admissible.
Moreover, we again havé <}, T'. In fact, for the removed arguments: C, we have
c € T . Moreover, the only argument attacked by sudt, butt € T, since we can
already assumgt, t} N S # (. This shows thaf cannot be a stage (resp. semi-stable)
extension. O

Lemma 2. LetY* = YUY UY'UY’ andS, T be conflict-free setsid Fy = (A, R).
ThenSNY* CTNY*iff (SNY*)L C(T'NY*)} and furtherSNY* =T N Y™ iff
(SNY*)E = (T NY*).

Proof. First,assumé&ny™* C T'NY*. By the monotonicity of.)}, we get(SNY*)}, C
(TNY™)%. So,assume noWsNY ™)} C (I'NY )% andlet € SNY*. By Lemma 1(i),
Lis either of formy or . If [ € SNY*, thenl,[,!' € (SNY*)}. Using our assumption
we getl,[,l' € (T NY*)%. Butthen, € T N Y~ follows from!’ € (' N Y*)%. This
showsSNY* CTNY*iff (SNY*)L C (TNY*)%. Bysymmetry,SNY*=TNY*
iff (SNY*)} = (TNY™*)% follows. O

Lemma 3. Let ® be aQBF?2 formula. If @ is true, thert is contained in every stage
and in every semi-stable extensionAdf .



Proof. Supposeb = VY 3ZC is true and let, towards a contradictighpe a stage or

a semi-stable extension dff's = (A, R) with ¢ ¢ S. By Lemma 1(ii), we know that
for eachy € Y, eithery oryisin S. Letly = Y N .S. Since® is true we know
there exists al; C Z, such that (1) holds, for eache C. Consider now the set
T=LUl;u{z|ze(YUZ)\ (IyUlIz)}U/{t}. We show thatl" is admissible

in AF4 and thatS <}, T holds. This will contradict our assumption in both cases,
i.e. thatS is a stage or a semi-stable extensioMdfs. It is easily verified thafl’ is
conflict-free inAF' 4. Next we show that eache T is defended by’ in AFs. This is
quite obvious for each € T exceptt, since all those arguments defend themselves. To
havet defended byl" in AF 3, each argument € C has to be attacked by an element
from T'. But this is the case since (1) holds and by the constructioffd, i.e. by
the definition of attack$(/, ¢) | literal [ occurs inc}, each such attackeris attacked

by an argument € Y UY U Z U Z. It remains to shows <} 7. By Lemma 2,
(SNY*;: = (I'NnYy"E forY* =Y UY UY' UY'. Moreover, by Lemma 1(ii)
eitherz orz in S, for eachz € Z; the same holds fdf, by definition. We observe that
SEN(ZUZ)=TEN(ZUZ) = ZUZ. Moreover, we already have argued that each
c € C'is attacked by some argumentin Let A~ = A\ {t,¢,b}. So far, we thus have
shownthatS; NA- CTH NA- =L ULL,UY \Ly)UY'\)UZUZUC.We
finally observe that}, N {t,t,b} = {¢t,t} C {t,t,b} =T N{t,t,b}, sincet ¢ S by
assumption and € T' by definition. This shows$ <%, T as desired. O

We are now prepared to give our first main result.
Theorem 1. SemiS is I1%'-hard.

Proof. We use our reduction fro@ BF2 formulas to AFs and show that, for each such
QBF @, it holds thatt is contained in all semi-stable extensionsdf s iff ¢ is true.
SinceAF 3 can be constructed from in polynomial time, the claim then follows.

Let® = VY3IZC and AFs = (A, R) be the corresponding AF. The if direction
is captured by Lemma 3. We prove the only-if direction by simgwhat if ® is false,
then there exists a semi-stable extensiaof AF' s such that ¢ S.

In case® is false, there exists ally C Y, such that for eacli, C Z, there exists
ac € C, such that

(IyUI;u{z|ze (YU2Z)\(IyUlz})Nne=0. (2)

Consider now a maximal (wrt},) admissible (inA F') setS, such thafly C S (note
that such a set exists, sinée itself is admissible inAF'g). Using Lemma 2, one
can show thatS then has to be a semi-stable extensioméf;. To wit, let’T" be an
admissible (inAF¢) set such thafy ¢ 7. By Lemma 2 it holds thatS N Y*); &
(T nY™*)} and thereforeS}; ¢ T%. Putting this together with the maximality 6fin
the set{7" | T'is admissible inAF'¢ andly C T'} we get that there is no admissible
(in AF4) setT, such thatS}; C T4 . Hence,S is a semi-stable extension dff's.

It remains to show ¢ S. We prove this by contradiction and assutne S. As
S'is admissible inAF 3, S defendst and therefore it attacks alle C. As all attacks
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against arguments ifi come fromy'UY UZUZ, the setU = (IyU(SN(ZUZ))U{y |
y € Y\ Iy}) attacks alle € C. By Lemma 1(ii), for each: € Z, eitherz or z is
contained inS. We get an equivalent characterization foby U = (Iy U I, U {Z |
ze(YUZ)\ (Iynliz)})withl, =SnZ. Thus, forallc € C,

(IyUI;u{z|ze(YU2Z)\(IyUlz)})Nec#0,
which contradicts assumption (2). O
Theorem 2. SemiC is ©¥-hard.

Proof. In the proof of Theorem 1, we have shown th&BF?2 formulad is true iff ¢ is
contained in each semi-stable extensiod éf;. According to Lemma 1(ii), this holds
iff ¢ is not contained in any semi-stable extensiomdf;. Thus, the complementary
problem ofSemiC is alsol14-hard.X{’-hardness ofemiC follows immediately. O

We now turn our attention to the stage semantics.
Theorem 3. StageS is I[1%'-hard.

Proof. We again use our reduction fro@BF?Z formulas to AFs and show that, for
each such QBR, it holds thatt is contained in all stage extensionsAF ¢ iff @ is
true. Thus, letd = VY3ZC andAFs = (A, R) be the corresponding AF. The if
direction is already captured by Lemma 3. We prove the dindijrection by showing
that, if @ is false, then there exists a stage extensi@i A F'¢ such that & S.

If ® isfalse, thereis afy C Y, such that for eaclh, C Z, we have a: € C with

(yUlzu{z |z e (YUZ)\ (IyUlz)}) Ne=10. (3)

Consider the collectiohl/ = {S | Iy C S, S is conflict-free inAF 3} of conflict-free
sets inAFg. Using Lemma 2, we can show that for every conflict-free4ifis) set
T,S <}, T impliesIy C T. For verifying <j-maximality of a setS € W we thus
can restrict ourselves to séfse V.

It remains to show that there is a stage extensian W with ¢t ¢ S. We prove
that (i) for every setS € W with ¢t € S, there exists @ € C, suchc ¢ S7; and (ii)
existence of a sef € W such thatC' C S7;. Note that (i)+(ii) imply existence of a
stage extensioff of AF'g witht & S.

We prove (i) by contradiction and assume thatC S3;. As S is conflict-free in
AFg andt € S, we getC' NS = (. SinceC C S}, S attacks alk € C. As all attacks
againsC' come fromyY’UY UZUZ, the sel/ = (I, U(SN(ZUZ"))U{y | y € Y\Iv})
attacks alk € C. By Lemma 1(ii), for eachr € Z, eitherz or z is contained inS and
soweget/ = (ly UI;U{Z |z € (YUZ)\ (Iy Uly)}) with [, = SN Z. Thus,
for eachc € C, U N ¢ # ), which contradicts assumption (3).

To show (ii) we just construct such a set= UUV usingU = IyU{y € Y\ Iy }UZ
andV = {c € C | Bu € U with (u,c) € R}. Itis easy to verify thaf is conflict-free
in AF¢. It remains to show € S7, for all ¢ € C. Note that for eacl € C' we have
that eitherc is attacked by or contained iri/. In both cases; € S}, is clear. O
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The following result is proven analogously to Theorem 2.
Theorem 4. StageC is X1'-hard.

Our hardness results can be extended to AFs without salflatly arguments.
To this end, we adapt our reduction by replacing all seleking arguments in the
frameworkA F' 4 by cycles of odd length (for instance, of length 3). Figur#ustrates
such a frameworlkd F'g' for our example QBF. In case of semi-stable extensions, we
use the fact that the only admissible set of an (unattackdd)length cycle is the
empty set. Indeed; is a semi-stable extension dff' iff S is a semi-stable extension
of AFy.

The same construction can be used for stage semanticsyglthbe argumenta-
tion is slightly different: As stage extensions only reguaonflict-freeness and not
admissibility, the arguments of the introduced cycles may be part of stage exten-
sions. However, to repair the correctness proofs for theifieddeduction, we use the
observation that for each cycle of length 3 at most one argtican be in a stage ex-
tensionS (see also Example 1) and at least one argument in the cyabé édtacked by
S. Thus each such cycle contributes in three different budnmgarable ways to stage
extensions. More formally, let™ be the set of arguments ibF'y, X = {b}UY’'UY’
and denote by~ be the (unique) attacker of an argumerg¢ X in the original frame-
work AFg = (A, R). Then, we get that (i) if is a stage extension ofF'¢, then each
S’ C A™, such thats’ N A = S and for eachr € X,

1 ifa- ¢S

, _
card(S N {$1,$2,$3}) - { 0 otherwise

is a stage extension of F'; and (ii) if S is a stage extension ofF';', thenS N A is
a stage extension of F's. This correspondence between extensions suffices to show
that our hardness results carry over to self-attack free AFs

We summarize our results in terms of completeness resukts.nfatching upper
bounds for semi-stable semantics have been reported ifofQhe stage semantics we
give them in the proof of the following theorem.

Theorem 5. StageC andSemiC are ©F'- complete;StageS and SemiS are I1%'- com-
plete. For all problems, hardness holds even for AFs witlselftattacking arguments.

Proof. Hardness is by Theorems 1—- 4 and by the observations above.

For the matching upper bounds, we first consider the follgvyaroblem which we
show to be in coNP: Given an ARF = (A, R) and asef C A, is S a stage (resp. a
semi-stable) extension of F'? Letcf(AF') denote the collection of conflict-free sets
S C A of AF andadm(AF) denote the collection of sets C A, admissible inAF.
By definition, S is a stage (resp. a semi-stable) extensionl 6fiff (i) S € o(AF)
and (i)VT C A, T € o(AF) only if S} ¢ Ty, foroc = ¢f (resp.c = adm).
Given S, we can decid& € o(AF) in polynomial time, foro € {cf, adm}. For the
complement of (ii), we guess a sBtand then we verify (again, in polynomial time),
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Figure 2: The modified framewotk I for ® from Example 2.

whetherS;, ¢ T andT € o(AF), for o € {cf, adm}. This yields membership in
NP for the complement of (ii), thus, given sgt (ii) is in coNP, and thus the entire
problem is in coNP.

We now can give algorithms fdtageC andSemiC as follows. We have given an
AF AF = (A, R) and an argument € A. We guess a s&t C A with a € S and then
use an NP-oracle (we recall that oracle calls are closedrwmteplement), to check
whetherS is a stage (resp. semi-stable) extensioméf. Obviously this algorithm
correctly decides the considered problems. Hence, thesdgons are ircl.

ForStageS andSemiS we argue as follows: Given an AFF = (A, R), to decide if
an argument € A is contained in each stage (resp. semi-stable) extensidii’'pfve
have to prove that every s€twith a ¢ S is nota stage (resp. semi-stable) extension of
AF'. Thus, for the complementary problem, we can guess&aéth a ¢ S and check
whethersS is a stage (resp. semi-stable) extensioA 8f Again, this check can be done
with a single call to an NP-oracle, and thus the complemgmiarblems oftageS and
SemiS are inXr’. T12-membership oftageS andSemiS follows immediately. O

4. Fixed Parameter Tractability

As we have shown in the previous section, all consideredlipnabare highly in-
tractable. A natural task is now to identify tractable sabsks. We focus on particular
graph parameters and check whether bounding such paranhesels to the desired
tractable fragments. One such parameter for graph prohketree-width [16]. Intu-
itively, the tree-width of a graph measures the tree-liksra the graph.

Definition 2. LetG = (V, E) be a digraph. Aree decompositioof G is a pair (7, X')
where7 = (Vr, E7) is atree andY’ = (X;);cy, Such that:

3For semi-stable semantics, this problem is also coNP-cet@ptf. [9].



1. UtGVT X, =V,i.e.X is acover ofV,
2. for eachv € V the subgraph of induced by{¢ | v € X,} is connected,
3. for each edgé€v;, v;) € E there exists atX; with {v;, v;} C X,.

The width of a decompositioq7, X) is given bymax{|X,| : t € Vz} — 1. The
tree-widthof a graphG is the minimum width over all tree decompositiong;of

Many graph properties can be defined by formulas of monadiergkorder logic
(MSOL) and by Courcelle’s Theorem [4] such properties caaffieiently decided on
arbitrary relational structures with bounded tree-widibq also [12]). Proposition 1
gives a more specific version of this meta-theorem, nameldifiraphs with a set of
distinguished vertices (we express that a vertéexdistinguished by a predicaiér)).

Proposition 1. Let K be a class of digraphs with a set of distinguished verticas, f
which the tree-width is bounded by some constaantdIl be a MSOL-definable prop-
erty. For each sucli € K, G € 11 is decidable in linear time wrt. the size 6f

This resultis a powerful tool to classify graph problems@sdiparameter tractable.

Theorem 6. Let K be a class of AFs, which, when interpreted as undirectedligap
have tree-width< £ (for fixedk). For eachAF € K the problems$SemiS, SemiC,
StageS andStageC are decidable in linear time.

Proof. One can show that the MSOL formuemi,»(U) (respstage,»(U)) as given
below characterizes the semi-stable (resp. stage) egtensf an AFAF'.
Ucltv = Va:((:n eUVIy(yeUA (y,z) € R)) —
(xeVVIy(yeVA(yz)e R)))
UChV = UCEVA-(VCLU)
cfr(U) = Va,y({(z,y) e R— (~z €UV ~yeU))
U) = ofp(U) AV, y(((m,y} ERAyYEU) —3z(z €U (2,1) € R))
semiq gy (U) = admp(U)A-3V(V C AANadmg(V)AU cLV)
U) )A=FV(V CANCER(V)AU CLV)

admp(U

stage(a g)(U) = cfr(U

The required checks for the considered decision problemeasily added to these
formulas. For instance, if we label the argument which weckHer acceptance by,
SemiC (with input (A, R) anda € A) can be decided byUJu(semija gy (U) A u €
U A q(u)). Proposition 1 then yields the desired result. O

As argumentation frameworks are directed graphs it seetusah@o consider di-
rected graph measures to get larger tractable fragmentsthioge we capture with
bounded tree-width, which doesn't take the direction ofetiges into account. Unfor-
tunately, it turns out that the considered problems remaid Wwhen bounding typical
directed graph measures. We illustrate this fact by usiofgawnk [11] as a parameter.
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Definition 3. Let G = (V, E) be a directed graph. The cycle rank 6f c¢r(G), is
defined as follows: An acyclic graph hag(G) = 0. If G is strongly connected then
cr(G) = 14+mingyey, cr(G \ v). Otherwisecr(G) is the maximum cycle rank among
all strongly connected components of G.

Theorem 7. The problemsSemiS, StageS (resp. SemiC, StageC) remain I1%- hard
(resp.XL’- hard), even if restricted to AFs which have a cycle-rank.of

Proof. Its easy to see that every framework of the forh's has cycle-rank and
therefore we have an reduction froBFZ formulas to an AF with cycle-rank. In
fact, the strongly connected components4dfs are induced by the following sets:

{yi. i} {2 73 At ) {yid {wid {=i}, {Z} {b}. As each of these components can
be made acyclic by removing one vertex, the cycle-rank Bf; is thusl. O

By results in [13, 14, 15] it follows that a problem which igtidor bounded cycle-
rank remains hard for bounding other directed graph measueedirected path-width,
Kelly-width, DAG-width and directed tree-width.

5. Conclusion

In this note, we provided novel complexity results for abstargumentation frame-
works in terms of skeptical and resp. credulous acceptamderisemi-stable and stage
semantics (as defined in [1]). In case of semi-stable seosgmie improved the exist-
ing P""-lower bound [9] to hardness for clasdgs (resp.:25). Together with existing
upper bounds, we thus obtained completeness for classdse@etond level of the
polynomial hierarchy, answering an open question raiseddiginada and Dunne [9].

Furthermore, we showed that stage semantics leads to tleecsanplexity. To the
best of our knowledge, no complexity results for this sencartave been obtained so
far. We emphasize that the level of complexity the considlsegnantics show is unique
for credulous reasoning not only among the semantics pespmg Dund but also with
respect to more recent proposals such as the ideal semahgcs acceptance can be
decided withinP‘f‘V PI71.

Finally, we gave some results in terms of bounding some prolgarameter. As a
positive result, bounded tree-width leads to tractablekasses of the problems under
consideration (similar results for other semantics hawentsown by Dunne [6]).
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