
supported under grant ICT 08-028

Poster Session ACAI’09 Belfast

Argumentation with Bounded Tree-Width

Wolfgang Dvořák

Vienna University of Technology
Institute of Information Systems

Database and Artificial Intelligence Group
Supervisor: Stefan Woltran

Motivation

I Argumentation is a general issue in AI
I Many argumentation problems are in general

computationally intractable
I We are interested in tractable fragments
I By Courcelle´s theorem we know that there exists

tractable algorithms for bounded tree-width but it
doesn’t give us practical algorithms.

I Dynamic Programming algorithms are approved for
bounded tree-width problems.

Argumentation Framework

An argumentation framework (AF) is a pair F=(A,R)
where
I A is a set of arguments and
I R ⊆ A × A a set of attacks.
The pair (a,b) ∈R means that a attacks (or defeats) b. A
set S⊆ A of arguments defeats b (in F), if there is an
a∈S, such that (a,b)∈R. An argument a∈A is defended
by S⊆A (in F) iff, for each b∈A, it holds that, if (b,a)∈R,
then S defeats b (in F).

Example: Let F=(A,R) be an AF with A={a,b,c,d,e} and
R={(a,b), (c,b), (c,d), (d,c), (d,e), (e,e)}.

Figure: Argumentation Framework F

Semantics
Let F=(A,R) be an AF. A set S⊆A is
I conflict-free (cf), if there are no a, b∈S, such that

(a,b)∈ R.
I a stable extension of F, if S is conflict-free and each

a∈A\S is defeated by S in F.
I an admissible extension of F, if S is conflict- free and

each a∈S is defended by S in F.
I a preferred extension of F, if S is an admissible

extension and for each adm. extension T holds S6⊂T.
Example: Let be F our example AF then:

stable(F)={{a,d}}
adm(F)= {{a,c},{a,d},{a},{c},{d},∅}
pref(F)= {{a,c},{a,d}}

Figure: Stable Extension

Complexity

Reasoning Problems in AFs for e∈{stable,adm,pref}:
I Crede: Given AF F=(A,R) and a∈ A.

Is a contained in some extension S∈ e(F)?
I Skepte: Given AF F=(A,R) and a∈ A.

Is a contained in each extension S∈ e(F)?

stable adm pref
Crede NP-c NP-c NP-c
Skepte co-NP-c trivial Πp

2-c

So most of these problems are computationally hard.

Fixed Parameter Tractability

As argumentation problems are computationally
intractable we are interested in tractable fragments.
I Often the computational complexity primarily depends

on some problem parameters rather than on the size
of the instance.

I Many hard problems become tractable if some
problem parameters are fixed or bounded.

I In the area of graphs tree-width is such a parameter,
e.g. there are many hard problems which are tractable
for graphs of bounded tree-width.

Tree-Width
Let G=(VG,EG) be an undirected graph.
A tree decomposition of G is a pair 〈T ,X〉 where
T =(VT ,ET) is a tree and X =(Xt)t∈VT such that

1.
⋃

t∈VTXt =VG, X is a cover of VG
2. For each vertex v∈VG the subgraph of T induced

by { t : v ∈ Xt} is connected
3. For each edge {vi,vj} ∈ EG there exists an Xt with

{vi,vj} ⊆ Xt

The width of such a decomposition is

max{|Xt| : t ∈ VT } − 1

The tree-width of a graph is the minimum width over all
tree decompositions.

A nice tree decomposition is a tree decomposition
where each bag t is of one of the following types:

I Leaf: t is a leaf of T
I Forget: t has exact one child t’; Xt=Xt ′ ∪̇ {v}
I Insert: t has exact one child t’; Xt ∪̇ {v}=Xt ′

I Join: t has exact two children t’,t”; Xt=Xt ′=Xt ′′

Given a tree decomposition we can easily compute a
nice tree decomposition of the same width.

Example: A nice tree decomposition of our example
argumentation framework.

Figure: Nice Tree Decomposition of our example AF

Dynamic Programming (DP)

Given an AF and a nice tree decomposition we can use
a dynamic programming algorithm.
Basic Ideas:
I Bottom-up traversal of the tree;

computing a table for each bag b that
I assigns values to the arguments in b, encoding if

they are in the extension or not
I stores information about the subtree rooted in b

I The results can be read off the root

A bag extension of a bag b is a subset of Xb.
A table for a bag b in the DP algorithm stores bag
extensions and assign values #b to these extension.
These values encode the information about the sub tree
rooted in b. Further there are labels on arguments in b
that encode information about attacks against the
arguments in this subtree.

Counting Stable Extensions

Ideas:
I In each bag b the values #b encode the numbers of

extensions on the subtree rooted in b, that may be part
of a stable extension on the whole subtree.

I We drop out ”subtree” extension with a conflict in it -
this we can do ”locally” as every attack is in at least
one bag.

I We drop out extensions having undefeated arguments
outside.We can’t do this in one bag because we don’t
know if there already was an attack in previous bags
or there will be an attack in future bags.

↪→We resolve this problem by labeling arguments
that are undefeated - If an argument is marked as
undefeated after considering the last incident attack
we drop this extension.

Counting Stable Extensions

Following these ideas we get the following algorithm:
I Leaf Nodes:

I compute all possible bag extensions
I label arguments and test if the extension is cf

I Forget Nodes:
I delete extensions where the forgotten argument is

undefeated
I delete the column of the forgotten argument
I union rows representing the same extension (sum

the values #b)
I Insert Nodes:

I add column for the new argument
I duplicate each extension - one version including the

new argument and one that not
I update labels and test if the extension is cf

I Join Nodes:
I copy extension which are in both successor tables
I multiply the values #b from the successors
I update labels, an argument is undefeated only if it is

undefeated in both successor extensions
I Root Node:

sum over all bag extensions without undefeated
arguments to get the number of stable extensions

Theorem
Given an argumentation framework F together with a
tree decomposition of width t, our DP algorithm
computes the number of stable extensions in time
O(f(t)·|F|) (assuming constant cost for arithmetics).

Example

If we use the DP algorithm to compute the number of
stable extensions for our example AF we get the
following tables:

The sub-frameworks we can
access in each bag:

legend:
I 1: the argument is in the bag

extension
I 0: the argument is not in the

bag extension
I 0’: the argument is not

defeated
I n̂: there is undefeated attack

in the bag extension

Summary

I We have presented a DP-algorithm that counts stable
extension in linear time for bounded tree-width.

I With similar techniques we get DP-algorithms for
admissible and preferred extensions.
(and further for stage, semi-stable, ideal)

Future work:
I Implementation of these DP-algorithms
I Evaluate the DP-algorithm’s efficiency by comparing it

with other systems

Contact: dvorak@dbai.tuwien.ac.at
Cooperative Work with FWF project P20704-N18

Projectpage: http://www.dbai.tuwien.ac.at/research/project/argumentation/
Joint work with Reinhard Pichler and Stefan Woltran

http://www.dbai.tuwien.ac.at/staff/dvorak
mailto:dvorak@dbai.tuwien.ac.at
http://www.dbai.tuwien.ac.at/research/project/tractability/
http://www.dbai.tuwien.ac.at/research/project/argumentation/
http://www.dbai.tuwien.ac.at/staff/pichler
http://www.dbai.tuwien.ac.at/staff/woltran

