
1

Computational Problems in Formal Ar-
gumentation and their Complexity
Wolfgang Dvořák, Paul E. Dunne

abstract. In this chapter we give an overview of the core compu-
tational problems arising in formal argumentation together with a com-
plexity analysis highlighting different sources of computational complex-
ity. To this end we consider three of the previously discussed formalisms,
that are Dung’s abstract argumentation frameworks, assumption-based
argumentation, and abstract dialectical frameworks, each of which allows
to highlight different sources of computational complexity in formal argu-
mentation. As most of these problems turn out to be of high complexity
we also consider properties of instances, like being in a specific graph
class, that reduce the complexity and thus allow for more efficient algo-
rithms. Finally, we also show how to apply techniques from parametrized
complexity that allow for a more fine-grained complexity classification.

1 Introduction

In the previous chapters of this handbook several models for formal argumen-
tation were discussed. They propose different ways to construct arguments,
draw conclusions and each of these models comes with several proposals for se-
mantics as to how coherent sets of arguments or statements should be selected.
In this chapter we address the computational issues appearing in argumenta-
tion formalisms and that have to be tackled when implementing argumentation
systems. That is, we will identify core problems of abstract argumentation and
present basic procedures to solve them together with hardness results, based on
computational complexity theory, that show some problems to have inherent
complexity that cannot be circumvented by any algorithm.

The computational problems of formal argumentation occur at several places
in the argumentation process. (A1) First, when instantiating argumentation
frameworks from knowledge bases one has to deal with the task of constructing
arguments and identifying conflicts (or even more complex) relations between
arguments. (A2) Second, given the arguments and conflicts between them
one has to find coherent sets of arguments that can be simultaneously accepted
(w.r.t. a selected semantics). (A3) Finally, given the coherent sets of arguments
one has to draw conclusions based on this selection. The computations in the
first and third item often correspond to problems that are purely located in
the underlying logic, e.g., to evaluating an inference operator. The second item
is at the core of formal argumentation. That is, we are given arguments and
relations (e.g. attacks) between them, and have to evaluate them w.r.t. to an



2 Wolfgang Dvořák, Paul E. Dunne

argumentation semantics. This may require computing all extensions of a given
semantics, the acceptance status of some argument w.r.t. some semantics, or
finding some witness or counter example for a claim.

In this chapter we consider computational problems in three argumentation
formalisms introduced in earlier chapters of this handbook, i.e. Dung’s abstract
argument frameworks, assumption-based argumentation and abstract dialecti-
cal frameworks. Dung’s abstract argument frameworks are a model for (A2)
which only consists of abstract entities called arguments and a binary attack
relation between them. There is no instantiation process or computation of
conclusions. Thus, it is perfectly suited for studying the computational issues
involved in (A2). Assumption-based argumentation models the whole process
(A1), (A2) and (A3), starting from a knowledge base, constructing arguments
and conflicts, and finally returning conclusions. By comparing assumption-
based argumentation with the results for Dung’s abstract argumentation we
are able to highlight the computational costs for (A1) and (A3). Finally, we
consider abstract dialectical frameworks (ADFs) which are a richer model for
(A2). As for Dung’s abstract argument frameworks, here only abstract en-
tities are considered but instead of just a binary attack relation ADFs allow
for more complex relations between these entities. On the basis of ADFs we
will highlight the impact of the allowed relations between arguments on the
computational complexity of the reasoning tasks.

Notice by the term “computational problem” we mean the task of when
presented with a description of some input, e.g., the vertices and edges in a
graph, a collection of numeric values, producing an output related in a specified
way to this input. For example: reporting the set of vertices forming the end-
points of at least two edges, returning the collection of numerical values sorted
in increasing order. One special type of computational problem is of particular
interest: the class of so-called decision problems. These concern determining
whether the given input structure has a particular property of interest, e.g.
given a graph as before does it contain a cycle?, given a list of numbers, does
the largest exceed 100?

The formal study of computational problems has two principal foci:

A. The construction of (“efficient”) algorithms to solve the problem. That
is methods which when presented with an input instance always report
the correct output.

B. To categorise collections of computational problems that are “similar” in
terms of their “best” algorithms, and thence provide a formal proof that
every algorithmic approach must take some number of steps.

Thus (A) is concerned with positive constructive demonstration of an upper
bound on a problem’s computational complexity while (B) is a (more negative)
statement prescribing lower bounds on computational complexity.

Why are these focal points of importance? To gain some insight to this
consider the well-known computational problem of sorting : given a collection



Computational Problems in Formal Argumentation and their Complexity 3

of N numbers < a1, a2, . . . , an > return this collection in increasing order of its
members. Here are three informally presented “sorting algorithms”:

S1 Generate each possible ordering, π, of < a1, a2, . . . , aN > in turn: return
the first ordering found that is correct.

S2 Form a new ordering by comparing for each i > 1 the (current) ai−1 and
ai: if ai > ai−1 exchange the pair. Repeat with the new ordering produced
until the collection is sorted.

S3 If N = 1 the list is already sorted. Otherwise (recursively) sort the two
list < a1, . . . , aN/2 > and < aN/2+1, . . . , aN > and “merge” the two sorted
lists to give the final output.

On the surface, in the sense that all three methods are correct there appears
to be little to choose between these three methods. If, however, we examine
their performance a very different picture emerges.

Method (S1) in the worst case (no matter how the successive ordering are
produced) requires N ! steps: if N = 100 this is roughly 10200

Method (S2) in the worst case needs N2 steps: for N = 100 this is 104.
Method (S3) takes of the order of N log2N steps: with N = 100 this is about

102.5.
Now (S1) is unusable as a realistic algorithm: even with a high-performance

computer implementation capable of executing 1012 operations per second, in
the worst case (S1) will require 10150 years. On a much slower machine (say
100 operations per second) even a “naive” implementation of (S2) will have
finished in about 2 minutes and (S3) in just over 1 second.

Although a quite extreme case is being considered, this overview of one par-
ticular range of algorithmic methods for a computational problem does high-
light two significant issues:

H1. The efficiency of an algorithm is a crucial factor in determining its prac-
tical usability: if (S1) were the only known sorting method, tasks such as
organising records in a database would not be possible.

H2. Developments in technology – the platforms on which algorithms are
realised – have minimal impact: a reasonable algorithm (S2 or S3) even
running on an antiquated very slow machine (100 ops/sec) will easily
outperform a very inefficient approach (such as S1) even if this is run on
a machine with significant computational power (1012 ops/sec)

The study of algorithms for computational problems in argumentation has
made notable advances over the last twenty years. There is, however, a sig-
nificant issue that besets many of its computational concerns: that within the
technical classifications of problem difficulty presented in the field of compu-
tational complexity theory there is powerful evidence that the prospects for
identifying efficient solution methods are extremely limited: that is to say, in



4 Wolfgang Dvořák, Paul E. Dunne

terms of the sorting method example given, the status of best known worst-
case methods for important computational problems in argumentation is more
likely to be characterised by (S1) than (S2) or (S3).

Our intention in this chapter is to present a survey of computational com-
plexity results that have been obtained within formal argumentation.

Prior to embarking on this overview, in order to provide some necessarily
technical background, we give an very informal basic introduction to the ideas
and techniques used in this study.

From a practical point, complexity classification is in particular crucial when
one considers implementing argumentation reasoning tasks by a reduction ap-
proach. That is, instead of designing and implementing complex algorithms
and systems from scratch, one might reduce the new reasoning tasks to related
formalisms where sophisticated solvers already exist. For instance, for a broad
range of argumentation semantics one can reduce the task of computing a set
of coherent arguments of an argumentation framework to computing a model
of a propositional formula that can be efficiently constructed from the argu-
mentation framework [Besnard and Doutre, 2004]. Now one can exploit the
sophisticated systems to deal with propositional formulae to get an efficient
system for the encoded argumentation semantics with relatively small effort.
In the reduction approach the complexity of the actual problem and the corre-
sponding problem in the target formalism are crucial for the following reasons:
given that an actual problem has higher complexity than the designated target
problem we know that there is no efficient encoding of our problem and we
might consider a different target formalism. On the other hand if the target
problem is of higher complexity we may end up with unnecessarily high com-
putational costs. In such a case it might be a good idea to encode the problem
within a restriction of the target formalism, providing lower complexity.

The remainder of the chapter is organised as follows. In Section 2 we give
a brief introduction to computational complexity. That is we introduce the
techniques and complexity classes we will use in the later parts of the chapter.
In Section 3 we consider Dung’s abstract argumentation frameworks and the
main computational problems thereof. In Section 4 we consider computational
problems in assumption-based argumentation. In Section 5 we consider com-
putational problems in abstract dialectical frameworks. Finally, in Section 6
we summarise and discuss the presented results as well as related results not
covered by this chapter.

2 A brief Introduction to Computational Complexity
Theory

In very informal terms, computational complexity theory is the field of com-
puter science concerned with grouping computational problems (in the sense
we introduced above) into so-called “complexity classes”. Such classes are cap-
tured by different resource requirements, typically measured by quantities such
as Time (number of steps taken by an algorithm) or Space (amount of “mem-



Computational Problems in Formal Argumentation and their Complexity 5

ory” needed). Thus a complexity class C is a set of computational problems,
and when we say that “problem P is in the complexity class C” (or P has
complexity C) this indicates that there exists an algorithm that solves P and
meets the resource criteria prescribed by C. For example, as illustrated by the
methods discussed in the introduction, the computational problem of “sorting
n numbers” is in the (function) complexity class of problems solvable in time
n logn (evidenced by method S3).

Now already this basic description raises many issues, among which we have:

a. How do we avoid proliferating “complexity classes” because of different
technological capabilities, i.e., having to formulate a “complexity theory
for Apple Mac machines”, another for IBM hardware, and yet another
for Windows O/S, etc. etc.?

b. How do we formalise notions of “input size” and relate such to the com-
putational complexity of a problem?

c. How do we, in a precise sense, group distinct computational problems
into collections of similar behaviour?

Before developing these questions further, we observe that it is convenient
to focus on decision problems. That is to say, problems that separate input
instances into two disjoint sets:

� Positive instances x of problem P : those on which P reports the answer
true (equivalently, 1 or yes).

� Negative instances x of problem P : those on which P reports the answer
false (equivalently, 0 or no).

In order to abstract away from the trivialities of platform specifics, algo-
rithms are considered as realised on some standard “model of computation”.
While a huge number of such models have appeared in the technical literature1

those adopted in computational complexity, ultimately, derive from Turing
machine (tm) programs. The exact specification of these is unimportant for
the purposes of this overview. The interested reader is referred to any stan-
dard textbook for further details (e.g., [Papadimitriou, 1994; Arora and Barak,
2009]).

By fixing a standard basis for specifying algorithms (that is, tm programs)
we obtain methods for addressing questions (b) and (c). At the most rar-
efied abstract level of tm operation, “input size” is simply the total number
of characters (symbols) appearing in the input data. Usually (although not
invariably) this will take the form of a sequence of binary “digits”. The impor-
tant feature is that the input sequence uses only characters from a fixed finite

1In one form or another the abstraction “model of computation” can be traced back
almost a hundred years: its first appearance being with respect to capturing the notion of
“computational problems that can be solved”.



6 Wolfgang Dvořák, Paul E. Dunne

set or alphabet no matter whether these characters are digits, letters, or any
other type of characters. 2

While “length of the input string” offers a common basis for comparison, it
can be somewhat cumbersome for practical analysis. Fortunately (and certainly
in the case of abstract argumentation problems which are our principal interest)
there is, usually, some supporting structure to a problem instance which can
serve as a size parameter. For example, returning to the example of “sorting”,
instead of considering the total number of bits to represent instances (which
could be n log2 k when non-negative integers of value < 2k are involved), since
most sorting methods work at the level of numeric comparisons (as opposed
to individual bit-level manipulation), the size of an instance can reasonably
be viewed as the number of values (N) to be sorted. In the consideration of
decision problems arising in Dung’s formalism a typical instance will specify an
argumentation framework, that is to say a directed graph, (A,R) and a subset S
of arguments: hence the “obvious” input size parameter is simply “the number
of arguments in A”. Notice that, total input size is bounded polynomially in n,
as the size of each part of input, i.e., of A, R and S, is bounded polynomially
in n.

We can now deal with the second part of (b): relating such notions of “size”
to problem complexity, in particular precise interpretations of “problem P has
lower (time) complexity than problemQ”. Notice that such statements combine
two separate claims:

C1. That there exists an algorithm AP solving P that runs in time TP (n) on
instances of size n.

C2. That every algorithm AQ solving Q takes times at least TQ(n) on in-
stances of size n and TQ(n) is “larger” than TP (n).3

Let us focus now on problems concerning afs in which the dominant input com-
ponent is a directed graph, (A,R). Considering the character of the algorithm,
AP , associated with this there is an infinite sequence,

{< AP ,RP >(1),< AP ,RP >(2), . . . ,< AP ,RP >(k), . . .}

for which < AP ,RP >k is an af having exactly k arguments. In addition, the
number of steps (run-time) of AP on the instance < AP ,RP >k is not exceeded
by any other instance (A,R) in which A has exactly k arguments. Such an
instance, < AP ,RP >k is called a “worst-case input for AP ”. In this way the
run-time function, TP , is just the

TP (n)=def The number of steps AP takes when given the input < AP ,RP >(n)
2In complexity matters, if such a set contains at least 2 distinct symbols, it makes little

difference whether the alphabet has 2 or 1000 or more symbols. In contrast, however, unary
(single symbol) encodings may lead to notably different algorithmic behaviour.

3Typically, one is interested in the asymptotic behaviour with growing input size n, i.e.,
whether there is an there exists n0 such that TQ(n) >= TP (n) for every n >= n0.



Computational Problems in Formal Argumentation and their Complexity 7

Now, unless we are dealing with a highly artificial and contrived problem, P ,
one will typically have TP (n + 1) > TP (n).4 This clarifies the precise meaning
of (C1), and by a similar analysis we can associate run-time functions, TQ with
every algorithm solving Q. The statement “P has smaller complexity than Q”
is thus a positive (upper bound) claim about algorithms for problem P and
a negative lower bound claim about all algorithms for Q: as the number of
arguments in A increases we will see a growing disparity between the worst-
case time that P requires to deliver an answer (using AP ) compared to the
worst-case time that any algorithm, AQ takes to deliver its answer.

Much of the focus of computational complexity theory is in grouping prob-
lems into classes where this disparity is at its most extreme: these extremes and
the techniques for placing problems at either end of the spectrum of difficulty
are the subject of the next subsection.

2.1 Basic Complexity Classes

Here we briefly review the complexity classes used in this work and their rela-
tions. As discussed above the high-level idea of complexity theory is to group
problems with similar resource requirements in complexity classes and also put
these classes into an order so that we can distinguish between “easier” and
“harder” problems.

2.1.1 Polynomial-Time

By convention, a problem is viewed as having an efficient algorithmic solution
if it can be placed into the class P (polynomial-time) of all problems that have
a polynomial-time algorithm, i.e., an algorithm that for each instance x (of size
∣x∣) produces its answer after at most ∣x∣k steps, for a fixed constant k. It is
noted that this a rather coarse-grained classification: problems whose fastest
algorithm runs in time n100 are considered to be “efficiently solvable”. This
may seem rather arbitrary, however, there is a very noticeable performance
difference between methods whose run-time is bounded by nk and those that
cannot be so bounded.

An important subclass we will consider is L (logarithmic space), which con-
sists of the problems that can be solved in logarithmic space (not counting
input and output) and polynomial-time. Just as P is seen as the class of com-
putational problems with efficient “sequential” algorithms, so L is the class
having efficient “parallel” algorithms (see, e.g., [Greenlaw et al., 1995]).

We consider problems in the classes L, P to be computationally tractable,
while we will consider problems in all the other classes in this chapter to be
intractable or computationally hard.

4We are, of course, ignoring minor issues whereby P requires (A,R) to have a particular
structure rendering frameworks with some numbers of arguments unsuitable, e.g., problems
in which A must have an even number of arguments and are ill-defined when the size of A is
an odd number.



8 Wolfgang Dvořák, Paul E. Dunne

2.1.2 The classes NP, coNP and DP

Often a decision question can be solved by finding a witness for the instance
satisfying the questioned property. For instance if we ask whether an AF has a
stable extension, a way to answer that positively would be to actually compute
a stable extension as witness.

Taking this view, we may associate with any instance x of a decision problem
Q, a set W (x) of potential witnesses that x has the property of interest. For
example, for admissibility semantics if we are interested in whether a specified
argument p is credulously accepted with respect to admissibility the instances
have the form ((A,R), p) (with p ∈ A) and potential witnesses are all subsets
of A ∖ {p}. A witness S in this set is valid for the instance if and only if the
set S ∪ {p} is admissible.

The class NP. The complexity class NP (non-deterministic polynomial-time)
can be characterised by such witnesses. A decision problem is in the class NP if
(i) for each instance x there is a set W (x) of potential witnesses, which are of
polynomial size in ∣x∣, such that (ii) one can verify that a y ∈W (x) is actually
a witness for x in polynomial time and (iii) x is a “yes” instance if and only if
at least one y ∈W (x) is a witness for x.

In the above example for an AF F the potential witnesses W (F ) would
be all the subsets of arguments. Verifying whether a set is admissible is in
polynomial time and F is a positive instance iff 5 at least one of these sets is a
stable extension.

Formally the specification of a decision problem in terms of witness sets can
be seen in the following way. Let x be an instance of a (decision) problem Q
we write, Q(x) = 1 if x is a “yes” instance of Q, and Q(x) = 2 if x is a “no”
instance of Q. We have a binary relation WQ(x, y) for which < x, y >∈ WQ iff
y is a valid witness that x is a positive instance of the (decision) problem Q.
This yields,

Q(x) = 1 ⇔ ∃ y ∈W (x) ∶ < x, y >∈WQ

Thus the class NP can be interpreted as those decision problems, Q, for which
the membership problem < x, y >∈ WQ can be decided in time polynomial in
the size of x. Notice that this constraint immediately forces y (a valid witness)
also to have size polynomial in ∣x∣.
The class coNP. The quantifier in our formalisation of NP is an existential
one. If we modify this to

∀ y ∈W (x) < x, y >∉WQ

then we obtain the important class coNP capturing instances that do not have
the property of interest. For example if we wish to demonstrate that an argu-
ment, x is inadmissible then it suffices to show “for every subset S of A the set
S ∪ {x} either is not conflict-free or has an undefended argument”.

5We will frequently use “iff” as short form for “if and only if”.



Computational Problems in Formal Argumentation and their Complexity 9

We, now, briefly summarise some developments of this view of “decision
problems as witness testing”.

The first of these is the concept of “oracles”: in an oracle computation we are
provided with a “black-box” for witness testing which given a problem instance
x provides the answer for “Q(x) = 1?” in a single computational step. Now such
oracle machines may be considered with respect to arbitrary complexity classes,
so PA describes the class of “decision problems that have a polynomial-time
algorithm that makes use of an oracle for a decision problem in the complexity
class A”.

For example, for an NP oracle we might use “existence of a stable extension”.
In exploiting such an oracle to solve another decision problemB “in polynomial-
time” we might use an algorithm which, given an instances p of B, constructs
one or more (but at most polynomial in ∣p∣) frameworks F p1 , F p2 , etc., using
the answer to “does F pk have a stable extension?” to determine if p should be
accepted as an instance of B.

The class DP. A number of important classes have been found to occur in
complexity analysis of argumentation via such oracles. Among them we have
DP, the so-called “difference class” of decision problems whose members are
captured by the intersection of instances x accepted by a problem L1 (with
L1 ∈ NP) and x accepted by a problem L2 (with L2 ∈ coNP). For example the
set of pairs of propositional formulae < ϕ1, ϕ2 > in which ϕ1 is satisfiable and
ϕ2 is not so (the sat-unsat problem) is in DP since its positive instances are
the intersection of

L1 = { < ϕ,ψ > ∶ ϕ is satisfiable }
L2 = { < ϕ,ψ > ∶ ψ is unsatisfiable }

2.1.3 The Polynomial-time Hierarchy

The notion of “oracle” can also be used in defining the important “Polynomial-
time Hierarchy” (PH). Consider the quantifier formulation of NP and coNP

∃ y < x, y >∈WQ

∀ y < x, y >∉WQ

This uses a (polynomial) time decidable binary relation and a single quantifier.
We could, however, extend this further, e.g.

∃ y1 ∀ y2 W
2
Q(x, y1, y2)

∀ y1 ∃ y2 ¬W 2
Q(x, y1, y2)

or even
∃ y1 ∀ y2 ∃ y3 W

3
Q(x, y1, y2, y3)

∀ y1 ∃ y2 ∀ y3 ¬W 3
Q(x, y1, y2, y3)

and, generally

Q1 y1 Q2 y2 . . . Qk yk W
k
Q(x, y1, y2, . . . , yk)



10 Wolfgang Dvořák, Paul E. Dunne

P

NP = ΣP
1

coNP = ΠP
1

ΘP
2

ΣP
2

ΠP
2

ΘP
3

ΣP
3

ΠP
3

. . .

level 0 level 1 level 2 level 3

Figure 1. Levels of the polynomial-hierarchy. An edge denotes that all problems
in the class on the left side are also contained in the class on the right side.
Notice that only classes relevant for this chapter are shown.

In the last case we have k alternating quantifiers (that is ∃ is followed by
∀ and vice-versa) and the predicate W k

Q(x, y1, y2, . . . , yk) is decidable in time
polynomial in ∣x∣. When the opening (Q1) quantifier is ∃ this defines the class of
languages ΣP

k ; when this quantifier is ∀ we have ΠP
k . The polynomial-hierarchy

(PH) is

PH =
∞
⋃
k=0

ΣP
k =

∞
⋃
k=0

ΠP
k

We sometimes refer to levels of the polynomial-hierarchy, where the k-th level
is formed by the classes ΣP

k and ΠP
k . For instance on the first level there are

the classes NP and coNP while on the second level there are the classes ΣP
2 and

ΠP
2 . Moreover, we will later introduce a further family of complexity classes

ΘP
k , and will consider the class ΘP

k to be in the k-th level of the polynomial
hierarchy (cf. Figure 1).

How does this relate to the concept of “oracle machines”? The answer to this
is given by examining the quantifier structure in more depth. We have required
the inner most (k+1)-ary predicate W k

Q to be (deterministic) polynomial-time
computable. If we have an oracle for the decision problem implied by removing
the first quantifier then this class of languages (when Q1 = ∃) is formed by
languages which belong to NP given access to a ΣP

k−1 oracle, conventionally

denoted NPΣP
k−1 , while ΠP

k (first quantifier is ∀) are those problems computable
in coNP with a ΣP

k−1 oracle.
For example, consider the “quantified sat problem” one version of which in-

volves two disjoint sets of propositional variables, X and Y , and asks of a given
formula ϕ(X,Y ) whether ∃ αX∀ βY ϕ(αX , βY ), that is, “can we find an assign-
ment of values to the X variables (αX) which renders the formula ϕ(αX , Y ) a
tautology?”. Given an oracle for satisfiability we can test ϕ(αX , Y ) ≡ ⊺ to be
a “single step”, by testing the negated formula for satisfiability. The implied
NP question (“can we find ...”) is handled by a “polynomial” algorithm with
access to this oracle so that ΣP

2 = NPNP. Notice that, in our example we can
also directly use an oracle for the coNP problem of tautology which gives us
NPNP = NPcoNP. That is, for an oracle machine it does not matter whether it



Computational Problems in Formal Argumentation and their Complexity 11

has access to a NP or coNP oracle (or more generally to a ΣP
k−1 or ΠP

k−1 oracle)
as it can easily switch “yes” and “no” answers after an oracle call.

In total we can treat PH as groups of problems described via alternation of a
fixed number (k) of quantifiers or in terms of polynomial-time oracle machines
exploiting oracles to the immediately lower level, i.e. both ΣP

k and ΠP
k use

access to a ΣP
k−1 oracle.

Moreover, we consider related oracle complexity classes that have only re-

stricted access to their oracle. Concretely, the class ΘP
k = PΣP

k−1[log(∣x∣)] contains
problems decidable by a deterministic polynomial-time algorithm that is al-
lowed to make a logarithmic number (w.r.t. input size) of ΣP

k−1-oracle calls.
An alternative characterisation for ΘP

k is that the deterministic algorithm is
allowed to make linearly (in the input size) so called non-adaptive calls to the
ΣP
k−1-oracle, that is all oracle calls are evaluated in parallel. When using this

alternative characterisation the class ΘP
k is sometimes also denoted as P

ΣP
k−1

∥ .
Notice that all complexity classes we consider can be solved by in worst-

case exponential time algorithms that only require polynomial space. However,
problems on different levels of the polynomial hierarchy behave quite differently,
and methods that work reasonable for problems at the NP, coNP level might
not work as well for ΣP

2 or ΠP
2 -hard problems.6

2.2 Reductions, Hardness and Completeness

At the conclusion of the preceding sub-section we referred to particular prob-
lems as “among the hardest ΠP

2 problems”. This (at the time of writing) does
not mean we can formally demonstrate that every problem that can be clas-
sified as belonging to ΠP

2 may be solved by a (deterministic) algorithm whose
run-time is no worse than that of the best algorithm for, e.g., semi-stable skep-
tical reasoning. It does, however, mean the following: if we can find an NP (or
even P) algorithm for skeptical semi-stable reasoning then we can construct NP
(resp. P) algorithms for every problem in the class ΠP

2 , i.e. it would follow that
the classes ΠP

2 and NP (resp. P) contained exactly the same decision problems.
Despite this, throughout this work we will follow the standard assumptions
in computational complexity theory and consider problems in higher levels of
the polynomial hierarchy to be harder than problems in the lower levels of the
polynomial-hierarchy.7

2.2.1 Polynomial Reducibility

The key idea used to support this claim is that of polynomial reducibility.
Suppose we have two decision problems – F and G say. These have sets of
instances IF and and IG. Now, while we may not be able to formally prove

6In the context of formal argumentation such a behaviour can be observed at the results
of the First International Competition on Computational Models of Argumentation [Thimm
and Villata, 2015; Thimm et al., 2016].

7This relates to two famous open problems in complexity theory, namely to show that
P /= NP and to show that the polynomial hierarchy is an infinite hierarchy and does not
collapse at a certain level, i.e, ΣP

k /= ΣP
k+1 for all k > 0. Both statement are widely believed

but (at the time of writing) there are no formal proofs.



12 Wolfgang Dvořák, Paul E. Dunne

that either problem is intractable we can argue, using the following approach,
that if G is decidable in polynomial time then F is also.

Build an efficient procedure, τ , transforming any instance of F into an
instance of G, i.e., τ ∶ IF → IG and with the property that x ∈ IF is a positive
instance of F iff τ(x) ∈ IG is a positive instance G.

With such a transformation procedure any algorithm for G can be used as
a sub-routine to give an algorithm for F . So were it the case that G ∈ P, as
τ is efficient, it follows that F ∈ P also. By contraposition, it can be shown
that if F ∉ P it must be the case that G ∉ P. When such a transformation
can be found between decision problems F and G as above, we say that “F
is polynomially-reducible to G” using the notation F ≤p G to describe this
relationship.

Notice that the form of instances for F and G do not have to be identical:
G could, for example, be a decision problem concerning propositional formulae
and F one whose instances are afs: a transformation between the two would
define how a formula is constructed from a given af.

2.2.2 Hardness and Completeness

The concept of reducibility offers a means to argue that the class NP differs
from the class P and formalise the notion of “hardest” problem of a complexity
class. Intuitively we consider a problem to be among the “hardest” problems
of a complexity class if an efficient method for the problem would yield efficient
methods for all problems in the class. That is, an efficient method for just one
of the “hardest” problems would yield efficient methods for all problems in the
class. Formally, for any complexity class, C, a decision problem G is said to be
C-hard if

∀ F ∈ C F ≤p G

If, in addition G ∈ C then G is said to be C-complete.

So the class of NP-complete problems are those problems in NP to which any
other problem in NP can be polynomially reduced. The class of known NP-
complete problems includes many well-studied combinatorial, logic, and graph
problems for which no efficient algorithm has been discovered, in some cases
after several centuries of study. Among these are: deciding if a propositional
formula has a model (sat); deciding if a graph has a path that contains every
vertex exactly once (a variant of the so-called Travelling Salesperson Problem),
deciding if a given argument is acceptable w.r.t. Dung’s stable semantics.

It is considered highly unlikely that every single one of these problems can
be solved efficiently. In order to prove that no NP-complete problem can be
solved in polynomial time it would suffice to show that just one could not be.

Thus, a proof that a problem G is NP-complete is seen as very strong ev-
idence that F is intractable. Given the transitivity of ≤p all that is required
to proof NP-hardness is a known NP–hard problem (F say) and a transforma-
tion, τ , to witness F ≤p G. In order to obtain NP-completeness one has to
additionally give a procedure that decides G and fits the definition of NP, we



Computational Problems in Formal Argumentation and their Complexity 13

sometimes call such a procedure a NP-algorithm (more generally C-algorithm
for complexity class C).

Next let us briefly reconsider our restrictions on reductions. All the complex-
ity classes C considered in this handbook chapter, except L, are closed under
polynomial reductions, that is whenever a problem A can be polynomial-time
reduced to a problem B ∈ C then also A belongs to C. Notice that any problem
in the class P and in particular those in the class L would be complete for P
with respect to polynomially-reducibility. Thus when differentiating between
problems in L and P one uses the concept of logspace-reducibility where the
transforming procedure is required to work in logarithmic space. In particular,
P-completeness results are stated w.r.t. logspace-reducibility.

2.2.3 Complete Problems for the Polynomial Hierarchy.

To show that a problem A is hard for a specific complexity class C one typically
starts from a problemB that is complete for the class C and provides a reduction
from B to A. In the following we briefly introduce some canonical complete
problems for the complexity classes in the polynomial-hierarchy.

As already mentioned a famous NP-complete problem is deciding if a propo-
sitional formula has a model (sat). On the other side standard coNP-complete
problems are verifying that a propositional formula is a tautology (taut)
or that a propositional formula has no model (unsat). The canonical DP-
complete problem is the earlier mentioned SAT−UNSAT problem.

The complete problems for classes ΣP
k and ΠP

k are given by quantified SAT
problems (cf. Section 2.1.3). That is, one is given a propositional formula
ϕ whose variables are split up in k disjoint sets X1, . . .Xk and the possible
assignments for these sets X1 are quantified with alternating existential and
universal quantifiers. A quantified boolean formula (QBF) is then of the form

Q1X1Q2X2 . . .QkXk ϕ(X1, . . .Xk)

with Qi being alternating ∃,∀ quantifiers (i.e., ∃ is followed by ∀ and vice
versa). Deciding whether a QBF with k quantifiers and Q1 = ∃ is valid is the
canonical ΣP

k -complete problem while deciding whether a QBF with k quanti-
fiers and Q1 = ∀ is valid is the canonical ΠP

k -complete problem.
As the second level of the polynomial-hierarchy is of special interest in the

setting of formal argumentation we next introduce minimal model satisfiability
(minsat) as another problem that is ΣP

2 -complete [Eiter and Gottlob, 1993].
In the minsat problem one is given a propositional formula ϕ over variables X
and a variable x thereof and has to decide whether the variable is true in some
minimal model of ϕ.

2.3 Parametrized Complexity

Classical complexity theory deals with the complexity of problems w.r.t. the
size of the instance. However, often the complexity of a problem does not
mainly depend on the size of an instance but on some (structural) properties
of the instance. That is, we can solve huge instances efficiently as long as some



14 Wolfgang Dvořák, Paul E. Dunne

property is satisfied or the obstacles in the structure are bounded independent
of the size. The field of parametrized complexity theory8 deals with this ob-
servation. The idea is to consider parametrized problems, i.e., the problem
description contains a designated parameter (typically an integer) which is in-
stantiated by each problem instance. An example for a parametrized problem
is given a graph G and an integer parameter k deciding whether G has a clique
of size k.

Definition 2.1 A parametrized (decision) problem is called fixed-parameter
tractable (or in FPT) if it can be determined in time f(k) ⋅ ∣x∣O(1) for a com-
putable function f .

Now given that a problem is in FPT and just consider those instances where
the parameter is bounded by some constant then we can decide an instance
with a polynomial-time algorithm. Only the constants in the polynomial-time
bound are affected by the parameter, but not the order of the polynomial.

Beside FPT there is also a weaker form of tractability w.r.t. a parameter
allowing the order of the polynomial to depend on the parameter.

Definition 2.2 A parametrized (decision) problem is slice-wise polynomial (or
in XP) if it can be determined in time f(k) ⋅ ∣x∣g(k) for computable functions
f, g.

A problem in XP can be solved in polynomial time if we bound the parameter,
but distinguishing it from FPT the order of the polynomial may highly depend
on the bound of the parameter.

Let us briefly present the relations between the classes FPT, XP and P:

P ⊆ FPT ⊆ XP

When considering unparametrized problems and talking about FPT we have
to mention the used parameter explicitly. Thus we say a problem P is fixed-
parameter tractable w.r.t. the parameter k iff the corresponding parametrized
problem (P , k) is fixed-parameter tractable.

3 Complexity of Dung’s Abstract Argumentation

We start our analysis with Dung’s Abstract Argumentation Frameworks. These
frameworks consist of a set of abstract arguments and a relation representing
directed conflicts or attacks between these arguments. Then rules, so called
semantics, are defined to select coherent sets of arguments that can be accepted
simultaneously. That is, abstract argument frameworks focus on the core issue
of argumentation, i.e., resolving conflicts between arguments.

This part of the chapter is organised as follows: In Section 3.1 we recall
the basic definitions of Dung’s Abstract Argumentation Frameworks and the

8We just briefly introduce the concepts relevant for this chapter; for comprehensive in-
troductions to parametrized complexity the reader is referred to [Flum and Grohe, 2006;
Niedermeier, 2006; Cygan et al., 2015].



Computational Problems in Formal Argumentation and their Complexity 15

most popular semantics for it. That is, beside the semantics introduced by
Dung [Dung, 1995], we consider ideal [Dung et al., 2007], semi-stable [Verheij,
1996; Caminada et al., 2012], stage [Verheij, 1996] and cf2 [Baroni et al., 2005]

semantics. Then in Section 3.2 we discuss the core computational Problems of
Abstract Argumentation and define formal variants that serve as basis for the
complexity analysis in Section 3.3. In Section 3.4 we consider potential compu-
tational advantages when the argumentation frameworks fall into some specific
graph class. The potential of techniques from parametrized complexity theory
is discussed in Section 3.5. In Section 3.6 we discuss some computational issues
specific to labelling-based argumentation semantics. Finally, in Section 3.7 we
summarise and discuss the presented results and give additional pointers to
literature.

3.1 Dung’s Abstract Argumentation Frameworks

In this section we introduce (abstract) argumentation frameworks [Dung, 1995]

and recall the semantics we study (for a comprehensive introduction the reader
is referred to [Baroni et al., 2011a] or the earlier chapter of this handbook
dedicated to Dung’s Abstract Argumentation Frameworks).

Definition 3.1 An argumentation framework (AF) is a pair F = (A,R) where
A is a (finite) set of arguments and R ⊆ A ×A is the attack relation. The pair
(a, b) ∈ R means that a attacks b. We say that an argument a ∈ A is defended
(in F ) by a set S ⊆ A if, for each b ∈ A such that (b, a) ∈ R, there exists c ∈ S
such that (c, b) ∈ R.

Indeed when studying computational complexity we are only interested in
AFs where the set A is finite.

Semantics for argumentation frameworks are defined as functions σ which
assign to each AF F = (A,R) a set σ(F ) ⊆ 2A of extensions. We consider for
σ the functions na, gr , st , ad , co, cf2 , id , pr , sst and stg which stand for
naive, grounded, stable, admissible, complete, cf2, ideal, preferred, semi-stable
and stage semantics, respectively. Towards the definition of these semantics we
have to introduce a few more formal concepts.

Definition 3.2 Given an AF F = (A,R), the characteristic function FF ∶
2A → 2A of F is defined as FF (S) = {x ∈ A ∣ x is defended by S}.

Definition 3.3 For a set S ⊆ A and an argument a ∈ A, we say S attacks a
(resp. a attacks S) in case there is an argument b ∈ S, such that (b, a) ∈ R (resp.
(a, b) ∈ R). Moreover, for a set S ⊆ A, we denote the set of arguments attacked
by (resp. attacking) S as S+R = {x ∣ S attacks x} (resp. S−R = {x ∣ x attacks S}),
and define the range of S as S⊕R = S ∪ S+R.

We are now prepared to give the formal definitions of the abstract argu-
mentation semantics we will consider. Notice that we restrict ourselves to
extension-based semantics, but some aspects of labelling-based semantics are
discussed in Section 3.6).



16 Wolfgang Dvořák, Paul E. Dunne

Definition 3.4 Let F = (A,R) be an AF. A set S ⊆ A is conflict-free (in F ),
if there are no a, b ∈ S, such that (a, b) ∈ R. cf (F ) denotes the collection of
conflict-free sets of F . For a conflict-free set S ∈ cf (F ), it holds that

� S ∈ na(F ), if there is no T ∈ cf (F ) with T ⊃ S;

� S ∈ st(F ), if S+R = A ∖ S;

� S ∈ ad(F ), if S ⊆ FF (S);

� S ∈ co(F ), if S = FF (S);

� S ∈ gr(F ), if S ∈ co(F ) and there is no T ∈ co(F ) with T ⊂ S;

� S ∈ pr(F ), if S ∈ ad(F ) and there is no T ∈ ad(F ) with S ⊂ T ;

� S ∈ id(F ) if S is ⊆-maximal among {S′ ∣ S′ ∈ ad(F ) and S′ ⊆ E for each
E ∈ pr(F )}.

� S ∈ sst(F ), if S ∈ ad(F ) and there is no T ∈ ad(F ) with S⊕R ⊂ T⊕R ;

� S ∈ stg(F ), if there is no T ∈ cf (F ), with S⊕R ⊂ T⊕R .

We recall that for each AF F , the grounded semantics yields a unique extension,
the grounded extension, which is the least fixed-point of the characteristic
function FF .

Finally, we give the recursive definition of cf2 semantics (see [Baroni et al.,
2005; Gaggl and Woltran, 2013] for further reference).

Definition 3.5 Given an argumentation framework F = (A,R), then E ∈
cf2 (F ), if

� E ∈ na(F ) if ∣SCCsF ∣ = 1, and

� ∀S ∈ SCCsF (E ∩ S) ∈ cf2 (F ↓UPF (S,E)) otherwise.

Here SCCsF denotes the set of strongly connected components of F , and for
any E,S ⊆ A, UPF (S,E) = {a ∈ S ∣ ∄b ∈ E∖S ∶ (b, a) ∈ R}. Moreover, for S ⊆ A
we use F ↓S to denote the AF (A ∩ S,R ∩ S × S), i.e., the AF that one obtains
when restricting F to the arguments in S.

We recall some basic properties of these semantics. For each AF F we have
the following subset relations:

st(F ) ⊆ stg(F ) ⊆ na(F ) ⊆ cf (F ),

st(F ) ⊆ sst(F ) ⊆ pr(F ) ⊆ co(F ) ⊆ ad(F ) ⊆ cf (F ),
and st(F ) ⊆ cf2 (F ) ⊆ na(F ). Furthermore, for any of the considered semantics
σ except stable semantics we have that σ(F ) ≠ ∅ holds, i.e., these semantics
always propose at least one extension. Grounded and ideal semantics always



Computational Problems in Formal Argumentation and their Complexity 17

yield exactly one extension, thus we also say that they are unique status se-
mantics, and the ideal extension is always a complete extension. With slight
abuse of notation we sometimes use gr(F ), resp. id(F ), to refer to the unique
grounded, resp. ideal, extension of F . Moreover, stable, semi-stable, and stage
semantics coincide for AFs with at least one stable extension.

3.2 Computational Problems

In general an argumentation semantics assigns several extensions to a single
framework, but at the end of the day we want to make a conclusion about
arguments. There are different ways to aggregate the acceptance status of an
argument from the set of extensions, which mirrors different levels of scepticism.
First it is quite clear that an argument which is in no extension at all should not
be accepted, but in certain situations it might be fine to accept an argument
that appears in just one extension, this is what we will call credulous reasoning.
On the other hand in situations where one has to be cautious one might demand
that an argument is in all extensions, we refer to this as skeptical reasoning.

These reasoning modes give rise to the following computational problems for
argumentation semantics σ.

� Credulous Acceptance Credσ: Given AF F = (A,R) and an argument
a ∈ A. Is a contained in some S ∈ σ(F )?

� Skeptical Acceptance Skeptσ: Given AF F = (A,R) and an argument
a ∈ A. Is a contained in each S ∈ σ(F )?

If an AF has no stable extensions, according to our definition of skeptical
acceptance, all arguments are skeptically accepted. This may be unwanted
and hence one might consider a variation of the skeptical acceptance problem
asking whether an argument is contained in all extensions and there exists at
least one extension [Dunne and Wooldridge, 2009].

In practice, one often is interested in computing all extensions or a certain
number of extensions. However, complexity theory provides much better tools
for decision problems than for function problems and thus one usually sticks
to decision problems when analysing the computational problems, in our case
credulous and skeptical acceptance. Nevertheless, the complexities of credulous
and skeptical acceptance together give a good impression of the complexity to
actually compute the extensions.

Beside these reasoning problems there are also several other computational
problems in the field of abstract argumentation. In this work we consider the
most prominent ones of them. First of all one might be interested in verifying
given extensions, which may come from another agent or potentially corrupted
file, or simply as part of a reasoning algorithm.

� Verification of an extension Verσ: Given AF F = (A,R) and a set of
arguments S ⊆ A. Is S ∈ σ(F )?



18 Wolfgang Dvořák, Paul E. Dunne

Another task is deciding whether an AF provides any coherent conclusion.
That can be deciding whether it has at least one extension, in the case of stable
semantics, or whether it has an extension different from the empty set, for all
the other semantics under our consideration.

� Existence of an extension Existsσ: Given AF F = (A,R). Is σ(F ) ≠ ∅?

� Existence of a non-empty extension Exists¬∅σ : Given AF F = (A,R).
Does there exist a set S ≠ ∅ such that S ∈ σ(F )?

Finally, we will also consider the problem of deciding whether a semantics
yields a unique extension for a given an AF (cf. Chapter 18 of this handbook).

� Uniqueness of the solution Uniqueσ: Given AF F = (A,R). Is there a
unique set S ∈ σ(F ), i.e., is σ(F ) = {S}?

3.3 Computational Complexity

A typical complexity analysis of a problem consists of two parts. First, we
have to give an upper bound for the complexity of the problem. That is, we
have to either give an algorithm showing the problem can be solved within a
class C or we reduce the problem to another problem already shown to be in
the class C. Second, we want to prove lower bounds for the complexity of the
problem. That is, we consider a problem that was shown to be hard for some
complexity class C′ and reduce it to the current problem. That is, we show the
problem to be C′-hard. In case that the classes C and C′ coincide we obtain
that the studied problem is C-complete, and have an exact classification of the
complexity of the problem.

The complexity landscape of abstract argumentation semantics is given in
Table 1 and discussed below. For Dung’s semantics the “in P” and “trivial“ are
immediately by properties of the corresponding semantics [Dung, 1995]; results
for naive semantics are due to Coste-Marquis et al. [2005]; results for stable,
admissible and preferred semantics follow from results on logic programs by
Dimopoulos and Torres [1996], except for the ΠP

2 -completeness of Skeptpr which

is due to Dunne and Bench-Capon [2002]; the complexity of ideal semantics is
due to Dunne [2009]; results for complete semantics are due to Coste-Marquis
et al. [2005]; results for semi-stable and stage semantics are due to Caminada
et al. [2012] and Dvořák and Woltran [2010]; the results for cf2 semantics are
due to Gaggl and Woltran [2013] and the analysis of polynomial-time problems
that distinguishes problems that can be solved in L from problems that are
P-complete is due to Dvořák and Woltran [2011] [Dvořák, 2012a].

In accordance with the above we will first consider upper bounds for the
introduced reasoning problems and then discuss hardness results for them.

3.3.1 Upper Bounds for the Computational Complexity

Most of the problems we introduced in the previous section will fall into one
of the complexity classes based on non-deterministic algorithms, e.g. NP and



Computational Problems in Formal Argumentation and their Complexity 19

Table 1. Complexity of Dung’s abstract argumentation (C-c denotes complete-
ness for class C).

σ Credσ Skeptσ Verσ Existsσ Exists¬∅σ Uniqueσ

cf in L trivial in L trivial in L in L

na in L in L in L trivial in L in L

gr P-c P-c P-c trivial in L trivial

st NP-c coNP-c in L NP-c NP-c DP-c

ad NP-c trivial in L trivial NP-c coNP-c

co NP-c P-c in L trivial NP-c coNP-c

cf2 NP-c coNP-c in P trivial in L in P

id ΘP
2 -c ΘP

2 -c ΘP
2 -c trivial ΘP

2 -c trivial

pr NP-c ΠP
2 -c coNP-c trivial NP-c coNP-c

sst ΣP
2 -c ΠP

2 -c coNP-c trivial NP-c in ΘP
2

stg ΣP
2 -c ΠP

2 -c coNP-c trivial in L in ΘP
2

coNP, and thus most of the upper bound are by guess and check algorithms
that first non-deterministically guess a potential extension and then verify that
it is indeed an extension and satisfies the desired properties.

Standard Reasoning Procedures. The standard algorithm for credulous
acceptance first non-deterministically guesses a set of arguments, and then
verifies that the set is an extension for the considered semantics and contains
the argument under question. The answer to the credulous acceptance query
is yes if at least one of the possible guesses evaluates to true. Now let V be the
complexity for verifying an extension then the above gives use a NPV algorithm
for credulous acceptance. We next consider skeptical acceptance and show that
it has a coNPV algorithm. To show that a problem falls into a coNPC class one
could follow the definition of coNP and give an algorithm that first guesses a
potential witness and then tests whether the potential witness satisfies certain
conditions that can be tested in PV. This conditions have to be such that an
instance is positive iff all possible guesses evaluate to true. However, often
it is more convenient to consider the complementary problem and provide a
NPC algorithm for that problem. That is, instead of skeptical acceptance we
consider the problem of showing that an argument is not skeptically accepted.
The standard algorithm non-deterministically guesses a set of arguments, and
then verifies that it is an extension and does not contain the argument under
question. The answer to the skeptical acceptance query is yes only if each
possible guess evaluates to false. Let V be again the complexity for verifying an
extension then the above gives use a coNPV algorithm for skeptical acceptance.
Towards upper bounds for Cred and Skept we next consider upper bounds for
the verification problems.



20 Wolfgang Dvořák, Paul E. Dunne

Verifying Extensions. For conflict-free, naive, stable, admissible and com-
plete semantics we only have to check whether for the given set certain attacks
exist, respectively do not exist. For instance to verify a stable extension we
have to verify that (a) between arguments in the extension there is no attack
and (b) that all arguments not in the extension are attacked by at least one
argument in the extension. This can clearly be done in polynomial time and
as it only needs two pointers to arguments also in logarithmic space.9 Since
polynomial time oracles do not add any computational power they can be ne-
glected, i.e., NPP = NP and coNPP = coNP. This gives NP, resp. coNP, upper
bounds for credulous and skeptical acceptance under these semantics.

Next consider semantics that require maximisation, that are pr , sst , stg (we
will see later that for ideal semantics no maximisation is required). Again
the basic criterion of being admissible or conflict-free can be easily checked in
polynomial time but the maximality criterion adds some complexity. To show
that checking whether a set S is an extension is in coNP we again give a non-
deterministic algorithm for the complimentary problem, of falsifying the set S
to be an extension. This is done by first testing whether S is not admissible (for
pr , sst) or not conflict-free (for stg) and then guessing a set T ⊃ S and testing
whether it is admissible (for pr , sst) or conflict-free (for stg). The algorithm
successfully falsifies the set S to be an extension iff the first test succeeds or
the second test succeeds for at least one guess. In other words, the set S is an
extension only if the first and the second tests fails for all possible guessed sets
T . Combined with the NPV, coNPV resp., algorithm for credulous, skeptical
resp., acceptance the above coNP-algorithms for verification give ΣP

2 , resp. ΠP
2

algorithms, for the credulous, resp. skeptical, acceptance problems.

Improved Procedures. For many semantics the above upper bounds are
already optimal, but there are some cases where we can improve over them.

First, consider conflict-free and naive sets. If an argument is not self-
attacking then it certainly will appear in a conflict-free set and thus also in
a naive extension. Thus credulous acceptance can be decided by just testing
whether the argument under question is self-attacking. Considering skeptical
acceptance we have that the empty set is always conflict-free and admissible.
Thus for conflict-free and admissible semantics we can reply “no” to each skep-
tical acceptance query without looking at the actual framework.

For naive sets we know that an argument is in a naive set iff it has no self-
attack and none of its neighbours is in the set. Thus for skeptical acceptance
we just have to test whether the argument is not self-attacking and all of its
neighbours are not credulously accepted, i.e., they are self-attacking.

The grounded semantics can be computed by iterating the characteristic
function until the least fixed-point is reached [Dung, 1995]. The characteristic
function can be computed in polynomial time and, as the least fixed-point is
reached after at most linearly many iterations. That is, the grounded extension

9For the corresponding result for cf2 semantics see [Nieves et al., 2009; Gaggl and Woltran,
2013].



Computational Problems in Formal Argumentation and their Complexity 21

can be computed in polynomial time and the decision problems can then be
easily answered. Moreover, as the grounded extension is the unique minimal
complete extension skeptical acceptance for complete semantics is exactly the
problem of testing whether an argument is contained in the grounded extension
and thus in polynomial time.

As each admissible set can be extended to a preferred extension and each
preferred extension is admissible we have Credad = Credpr . That is, for credu-
lous acceptance under preferred semantics it suffices to consider admissible sets
and thus an NP algorithm suffices.

Finally, for ideal semantics there is an alternative characterisation that al-
lows for a ΘP

2 algorithm [Dunne, 2009]. That is, the ideal extension is the
maximal admissible set that is not attacked by any other admissible set. The
algorithm first computes the credulously accepted arguments (w.r.t. preferred
semantics) via an NP-oracle and then considers the set of arguments that are
credulously accepted but not attacked by any credulous accepted argument.
Within this set one then computes the ideal extension by a polynomial-time
algorithm that iteratively removes arguments which are not defended.

3.3.2 Hardness results

Given the complexity upper bounds from above we are now going for hardness
results that show that these upper bounds are optimal. We start with what
we call the standard translation from propositional formulae to argumentation
frameworks and then discuss some prototypical hardness results that extend
the standard translation.

Standard Translation. On the one hand the standard translation will give us
our first hardness results and on the other hand it is part of almost all reductions
in abstract argumentation. To show hardness one typically starts from the
standard translation and adds modifications to match the actual problem and
semantics.

Reduction 3.6 Given a propositional formula ϕ in CNF given by a set of
clauses C over the atoms Y , we define the standard translation from ϕ as
Fϕ = (A,R), where

A ={ϕ} ∪C ∪ Y ∪ Ȳ
R ={(c,ϕ) ∣ c ∈ C}∪

{(x, c) ∣ x ∈ c, c ∈ C} ∪ {(x̄, c) ∣ x̄ ∈ c, c ∈ C}∪
{(x, x̄), (x̄, x) ∣ x ∈ Y }

The AF Fϕ from Reduction 3.6 is illustrated in Figure 2. The intuition
behind the construction is as follows. Assume we are arguing whether the
formula ϕ is true. For an atom yi we have two arguments, yi claiming the
atom is true, ȳi claiming the atom is false and thus ¬yi is true. As exactly one
of yi and ȳi is true they are mutually attacking. Now consider the argument ϕ,



22 Wolfgang Dvořák, Paul E. Dunne

ϕ

c1 c2 c3

y1 ȳ1 y2 ȳ2 y3 ȳ3 y4 ȳ4

Figure 2. Illustration of the standard translation Fϕ, for the propositional
formula ϕ with clauses {{y1, y2, y3},{ȳ2, ȳ3, ȳ4)},{ȳ1, ȳ2, y4}}.

which can be interpreted as ”the formula ϕ is true“. This argument is attacked
by the arguments ci which can be read as ”clause ci is not satisfied“. Clearly
if one clause is false the whole formula is not satisfied. Finally, if one of the
literals in a clause is true the whole clause is true and thus an argument ci is
attacked by all arguments corresponding to literals in ci.

Credulous Acceptance. For the NP-hardness of credulous acceptance con-
sider the AF Fϕ constructed by the above reduction. It is not to hard to show
that each model IY

10 of ϕ corresponds to a stable extension of Fϕ that consists
of the argument ϕ, the arguments yi for yi ∈ IY , and the arguments ȳi for
yi ∈ Y ∖ IY . Moreover also the converse holds, i.e., each stable extension of
Fϕ containing the argument ϕ corresponds to a model of ϕ. Thus, Fϕ has a
stable extension containing ϕ iff ϕ has a model. The same holds for admissible
sets, complete, preferred and cf2 extensions. Thus Reduction 3.6 is a reduction
from SAT to credulous reasoning under these semantics and as it can be clearly
performed in polynomial time we obtain that credulous reasoning under these
semantics is NP-hard.

Skeptical Acceptance. To show coNP-hardness of skeptical acceptance for
stable, preferred and cf2 semantics we extend the standard translation Fϕ by
an additional argument ϕ̄ that is attacked by ϕ. In the resulting AF Gϕ
the argument ϕ̄ is skeptically accepted w.r.t. the mentioned semantics iff ϕ is
not credulously accepted iff ϕ is unsatisfiable [Dimopoulos and Torres, 1996;
Gaggl and Woltran, 2013]. Thus we have a reduction from UNSAT to skeptical
acceptance showing coNP-hardness. Notice that this reduction does not work
for admissible and complete semantics as for both the empty set is an extension
neither containing ϕ nor ϕ̄.

Skeptical Acceptance with Preferred Semantics. Skeptical acceptance
with preferred semantics is a prototypical problem for the second level of the
polynomial-hierarchy. The hardness proof is reported in [Dunne and Bench-
Capon, 2002] and we next discuss a slight variation of the reduction presented

10A model IY is a subset of the variables Y such that if we set all variables in IY to true
and all arguments in Y ∖ IY to false the formula ϕ evaluates to true.



Computational Problems in Formal Argumentation and their Complexity 23

ϕ

c1 c2 c3

ϕ̄

y1 ȳ1 y2 ȳ2 y3 ȳ3 y4 ȳ4

Figure 3. Illustration of the reduction Gϕ, for the propositional formula ϕ with
clauses {{y1, y2, y3},{ȳ2, ȳ3, ȳ4)},{ȳ1, ȳ2, y4}}.

there. That is, we give a reduction from the ΠP
2 -complete problem QSAT 2

∀ of
deciding whether a QBF 2

∀ formula is valid to skeptical acceptance with pre-
ferred semantics. That is, given a QBF 2

∀ formula ∀Y ∃Z ϕ(Y,Z) with ϕ being
a CNF formula we construct an AF as follows. We first apply the standard
reduction from propositional CNF formulae to AFs and then add an additional
argument ϕ̄ which is attacked by ϕ, attacks itself and attacks all arguments z,
z̄ for z ∈ Z (but not the arguments y, ȳ for y ∈ Y ). The full reduction is given
below and illustrated in Figure 4.

Reduction 3.7 Given a QBF 2
∀ formula Φ = ∀Y ∃Z ϕ(Y,Z) with ϕ being a

CNF formula given by a set of clauses C over atoms X = Y ∪Z, we define the
following translation from Φ to HΦ = (A,R), where

A = {ϕ, ϕ̄} ∪C ∪X ∪ X̄
R = {(c,ϕ) ∣ c ∈ C} ∪ {(x, x̄), (x̄, x) ∣ x ∈X}∪

{(x, c) ∣ x ∈ c, c ∈ C} ∪ {(x̄, c) ∣ x̄ ∈ c, c ∈ C}∪
{(ϕ, ϕ̄), (ϕ̄, ϕ̄)} ∪ {(ϕ̄, z), (ϕ̄, z̄) ∣ z ∈ Z}

In the Reduction 3.7 we have that each interpretation IY ⊆ Y corresponds
to an admissible set {y ∣ y ∈ IY } ∪ {ȳ ∣ y ∈ Y ∖ IY } in HΦ while arguments z
and z̄ are attacked by ϕ and thus can only be in an admissible set if also ϕ is
in that set. To make ϕ admissible we have to find IY ⊆ Y and IZ ⊆ Y that
together satisfy ϕ. Moreover, as each c ∈ C is in conflict with ϕ and attacked
by either z and z̄ for some z ∈ Z none of them can be in an admissible set. We
then have that a set {y ∣ y ∈ IY } ∪ {ȳ ∣ y ∈ Y ∖ IY } is a preferred extension,
i.e., a subset maximal admissible set, iff there is no IZ such IY ∪ IZ satisfies
ϕ. That is, there is a preferred extension in HΦ not containing the argument
ϕ iff the QBF 2

∀ formula ∀Y ∃Z ϕ(Y,Z) is false. Thus, we have a polynomial
reduction from the ΠP

2 -complete problem of QSAT 2
∀ to skeptical acceptance

with preferred semantics which proves the ΠP
2 -hardness of the latter.



24 Wolfgang Dvořák, Paul E. Dunne

ϕ

c1 c2 c3

y1 ȳ1 y2 ȳ2 z3 z̄3 z4 z̄4

ϕ̄

Figure 4. Illustration of the reduction for ΠP
2 -hardness of Skeptpr . The AF HΦ,

for Φ = ∀y1y2∃z3z4 ((y1 ∨ y2 ∨ z3) ∧ (y2 ∨ ¬z3 ∨ ¬z4) ∧ (y2 ∨ z3 ∨ z4)).

Acceptance with Grounded Semantics. Here we consider the problem
of deciding whether an argument is in the grounded extension and show that
it is P-hard. To this end we first have to introduce the P-complete problem
HORNSAT. A definite Horn-clause c is a disjunction over literals from a count-
able domain U such that c contains exactly one positive literal. A definite
Horn-formula is the conjunction over definite Horn-clauses. For example con-
sider the definite Horn-formula ϕ = x ∧ (¬x ∨ ¬y ∨ z) ∧ (¬y ∨ ¬z ∨ x). A more
convincing way to denote definite Horn-formulae is as set of clauses and more-
over denoting clauses as (logically equivalent) rules. Thus, our example formula
ϕ can be denoted as ϕ = {→ x,x ∧ y → z, y ∧ z → x}. It is well-known that a
definite Horn-formula has a unique minimal model which can be computed in
polynomial time. Moreover, the problem HORNSAT of deciding whether an
atom is in the minimal model of a definite Horn formula is P-complete [Kasif,
1986].

Next, in order to show P-hardness of Credgr , we give a logspace-reduction
from the P-complete problem HORNSAT, to Credgr (see Figure 5). Starting
from a definite Horn formula one constructs an AF with one argument for each
Horn clause; one argument x̄ for each variable x; and an additional argument
z for the variable that we are asking for being in the minimal model. All
the arguments x̄ are self attacking. Each argument corresponding to a rule
is attacked by all arguments x̄ for which the variable x is in the body of the
rule and the argument attacks the argument h̄ where h is the head of the rule.
Finally, the argument z is only attacked by z̄ but attacks all x̄ arguments. The
reduction is formally stated below.

Reduction 3.8 Let ϕ = {rl ∶ bl,1 ∧⋯ ∧ bl,il → hl ∣ 1 ≤ l ≤ n} be a definite Horn



Computational Problems in Formal Argumentation and their Complexity 25

→ x x ∧ y → z y ∧ z → x

x̄ ȳ z̄

z

Figure 5. Illustration of the reduction for P-hardness of Credgr , that is Fϕ,z for
ϕ = {→ x,x ∧ y → z, y ∧ z → x}.

theory over atoms X. We construct the AF Fϕ,z = (A,R) as follows:

A =ϕ ∪ X̄ ∪ {z}
R ={(x̄, x̄), (z, x̄) ∣ x ∈X} ∪ {(z̄, z)} ∪

{(rl, hl), (bl,j , rl) ∣ rl ∈ ϕ,1 ≤ j ≤ il)}

The intuition behind the above reduction is that an argument corresponding
to a rule is in the grounded extension only if all atoms in the rule body are in the
minimal model of ϕ and an argument x̄ is attacked by the grounded extension
only if x is in the minimal model. That is, when computing the grounded
extension via iteratively applying the characteristic function we simulate the
following algorithm for deciding whether z is in the minimal model of ϕ. The
algorithm starts with the rules with empty body and adds their rule heads
to the minimal model. Then it iteratively considers all rules with the body
already being part of the minimal model and adds their heads to the minimal
model until either z is added or a fixed-point is reached. Notice that as soon
as z is added to the grounded extension all arguments corresponding to rules
are defended and thus also added to the grounded extension. We then have
that z is in the minimal model of the Horn-formula ϕ iff z is in the grounded
extension of Fϕ,z iff {rl ∣ 1 ≤ l ≤ n} ∪ {z} is the grounded extension of Fϕ,z.
This shows the P-hardness of credulous acceptance as well as of verifying the
grounded extension.

3.3.3 Existence and Uniqueness of Extensions

Next, let us consider the results for the existence of (non-trivial) extensions
and the uniqueness of solutions in Table 1.

Existence problems. First notice that the Existsσ problem is only relevant
for stable semantics as all the other semantics always lead at least one exten-
sions. Moreover, for AFs with at least one argument the problems Existsst and
Exists¬∅st coincide. The standard (non-deterministic) algorithm for Exists¬∅σ
first guesses a non-empty set and then verifies that it is an extension. Now let



26 Wolfgang Dvořák, Paul E. Dunne

be V be the complexity for verifying an extension then the above gives use a
NPV algorithm for Exists¬∅σ . However, the algorithm is only adequate for st ,
ad , co, and id semantics, for the other semantics the problem can be solved
more efficiently: for cf and na semantics it suffices to find one argument that
is no self-attacking; for gr semantics one tests whether there is an argument
that is not attacked by other arguments; for cf2 and stg semantics the problem
reduce to test whether there is a non-empty conflict-free set; and finally for pr
and sst semantics the problem reduces to check whether there is a non-empty
admissible set.

Uniqueness. When testing for the uniqueness of extensions again stable se-
mantics has a special behaviour. While for all the other semantics we are
guaranteed that there is at least one extension for stable semantics we have to
perform an additional check that there exists an extension. To check that there
are not two (or more) extensions we use the following NPV procedure that shows
that an AF has at least two extensions. It first non-deterministically guesses
two sets and then verifies that they are different from each other and both are
extensions (for the latter the V oracle is used). That is we have an coNPV for
testing that an AF has at most one extension, which for all semantics, except
stable, is equivalent to Uniqueσ.

Let us now briefly discuss the results for the specific semantics listed in
Table 1 (cf. [Dvořák, 2017]). First, cf semantics yields a unique extension iff
all arguments in the AF are self-attacking, and naive semantics yields a unique
extensions if there is no conflict between non-self-attacking arguments. Both
criteria can be easily tested in L. Second, gr and id always yield a unique
extension and thus an algorithm can answer “yes” without any computation.
For st , ad , and co we can use the coNPV algorithm. However, for stable
we have to use an additional NP-algorithm to test whether there exists an
extension, resulting in a DP algorithm for Uniquest . The situation of cf2 is
different. As shown in [Kröll et al., 2017] one can enumerate cf2 extensions
with polynomial delay and thus can also test uniqueness in polynomial time (by
computing the first two cf2 extensions). For pr semantics the coNPV algorithm
can be improved by the observations that an AF has two (or more) preferred
extensions iff it has two admissible sets that are in conflict with each other.
Thus it suffices to guess two sets, and verify that both sets are admissible and
there is a conflict between the two sets. For sst , and stg the exact complexity
is still open but one can also do better than the standard algorithm. That is,
the standard algorithm would give a ΠP

2 -algorithm but one can actually decide
uniqueness with a ΘP

2 -algorithm [Dvořák, 2017].

3.4 Computational Advantages of Specific Graph-Classes

As most of the reasoning tasks are hard for most of the semantics, one is
interested in criteria that make concrete instances tractable. Here we consider
special graph classes such that abstract argumentation frameworks within this
graph class can be evaluated efficiently. However, these tractability results
often only hold for specific semantics and not for the others. This section is



Computational Problems in Formal Argumentation and their Complexity 27

based on [Dunne, 2007] and follow up work. In the following we omit semantics
where the reasoning tasks are already in L in the general case.

3.4.1 Acyclic AFs

For acyclic AFs we have that each argument is either contained in the grounded
extension or attacked by an argument in the grounded extension. Thus the
grounded extension is the only stable extension and all the semantics under
our consideration coincide. Thus, for all semantics reasoning reduces to com-
puting the grounded extension, but which itself remains P-hard even for acyclic
bipartite AFs [Dvořák, 2012a]. The results are summarised in Table 2. Notice
that Skeptad is trivially false even in the general case.

Table 2. Complexity for acyclic AFs.

σ gr st ad co pr sst stg cf2 id

Credσ P-c P-c P-c P-c P-c P-c P-c P-c P-c

Skeptσ P-c P-c trivial P-c P-c P-c P-c P-c P-c

For admissibility based semantics there is a conceptual difference how they
deal with even (length) and odd (length) cycles. In an even-cycle there are
three admissible sets, the empty set, the set of odd numbered arguments and
the set of even numbered arguments, while for an odd-cycle the only admissible
set is the empty set. Due to different treatments even and odd-cycles have a
quite different impact on the computational complexity.

Even-cycle free AFs. Let us first consider the impact of even-cycles for ad-
missibility based semantics. By an observation in [Dunne and Bench-Capon,
2001] each AF with at least two preferred extensions has an even-cycle. This
even holds for complete extensions, i.e., each AF with two complete extensions
has an even-cycle [Dvořák, 2012a]. The number of even-cycles in an AF bounds
the number of complete and thus also preferred extensions. Thus if an AF has
no even-cycles the grounded extension is as well the unique preferred exten-
sion and therefore the only candidate for being a stable extension. Again the
reasoning tasks for the admissibility based semantics reduce to computing the
grounded extension.

Table 3. Complexity results for even-cycle free AFs.

σ gr st ad co pr sst stg cf2 id

Credσ P-c P-c P-c P-c P-c P-c ΣP
2 -c NP-c P-c

Skeptσ P-c P-c trivial P-c P-c P-c ΠP
2 -c coNP-c P-c

The picture is different for stage and cf2 semantics which are not based on
admissibility and handle odd and even-cycles in a similar way. Both maintain
their full complexity for even-cycle free AFs [Dvořák and Gaggl, 2016]. The
results for even-cycle free AFs are summarised in Table 3.



28 Wolfgang Dvořák, Paul E. Dunne

Odd-cycle free AFs. Odd-cycles are of interest as they distinguish stable
from preferred semantics. By a result from [Dung, 1995] in the absence of odd-
cycles stable and preferred semantics coincide, i.e., the AF is coherent. As this
implies that there is at least one stable extension also semi-stable and stage
semantics coincide with stable and preferred semantics in odd-cycle free AFs.
But then the complexity of preferred, semi-stable and stage drops down to the
complexity of stable, which however stays the same as in the general case. Also
admissible, complete and cf2 are not profiting from the absence of odd-cycles,
which is proven by the fact that both the standard translation and the modifi-
cation for skeptical acceptance do not make use of odd-cycles [Dimopoulos and
Torres, 1996; Gaggl and Woltran, 2013]. An overview is given in Table 4.11

Table 4. Complexity results for odd-cycle free AFs.

σ gr st ad co pr sst stg cf2 id

Credσ P-c NP-c NP-c NP-c NP-c NP-c NP-c NP-c coNP-c

Skeptσ P-c coNP-c trivial P-c coNP-c coNP-c coNP-c coNP-c coNP-c

3.4.2 Bipartite AFs

Bipartite AFs, AFs where the arguments can be partitioned on two conflict-free
sets, are a special case of odd-cycle free AFs and thus again stable, preferred,
semi-stable, and stage semantics coincide. There is a polynomial time algorithm
for computing the credulously accepted arguments [Dunne, 2007], which is
based on the following observation. Let the arguments be partitioned in two
conflict-free sets A, B. Arguments in A are only attacked by arguments in B
and can only be defended by arguments in A. Now the algorithms starts with
the set A and tests if it is admissible. If yes then all arguments in the set A
are credulously accepted, otherwise all arguments in A which are not defended
can not be in any admissible set, i.e., they are not credulously accepted. In
the latter case the algorithm removes the undefended arguments and tests the
new set for being admissible. It proceeds until it reaches an admissible set
(which might be empty). At the end we have that all arguments which are
in the computed admissible set are credulously accepted and the remaining
arguments in A are not. We then apply the same algorithm to the set B to
compute the remaining credulously accepted arguments.

To decide skeptical acceptance we can use that for stable semantics an argu-
ment is skeptically accepted iff none of its attackers is credulously accepted.12

Hence given that we can compute all credulously accepted arguments in poly-
nomial time we can also decide skeptical acceptance in P.

11The result for ideal has not been stated before, but is immediate by a generic result in
[Dunne et al., 2013] stating that Credid belongs to coNPV where V is the complexity of Verpr
and the fact that the reduction for coNP hardness in [Dunne, 2008] constructs an odd-cycle
free AF.

12Each stable extension has to either contain the argument or one of its attackers.



Computational Problems in Formal Argumentation and their Complexity 29

In [Dvořák and Gaggl, 2016] it was shown that the above algorithm also
works for cf2 semantics. The result for ideal semantics follows from the result
for preferred semantics and the polynomial-time algorithm in [Dunne et al.,
2013] that computes the ideal extension given the skeptically accepted argu-
ments w.r.t. preferred semantics.

The results are summarised in Table 5. Notice that while in bipartite AFs
we can efficiently compute credulous and skeptical acceptance, in contrast to
previous tractable fragments, we cannot compute all extensions nor have a
good handle on them. This is mirrored by the fact that deciding whether two
arguments appear together in one extension is NP-hard [Dunne, 2007]. One can
also imagine to consider generalisations of bipartite graphs, so called k-partite
graphs, where the arguments can be divided into k conflict-free sets. However,
for k ≥ 3 there are no computational advances from k-partite graphs [Dunne,
2007].

Table 5. Complexity results for bipartite AFs.

σ gr st ad co pr sst stg cf2 id

Credσ P-c P-c P-c P-c P-c P-c P-c P-c P-c

Skeptσ P-c P-c trivial P-c P-c P-c P-c P-c P-c

3.4.3 Symmetric AFs

Here we consider AFs where each attack is symmetric. As each attacker is
immediately defended by the symmetric attack the notion of admissibility re-
duces to conflict-freeness. Considering grounded semantics, in each non-trivial
connected component of arguments all arguments are attacked by at least one
other argument and thus none of them can be in the grounded extension.
Thus computing the grounded extension reduces to find all isolated arguments
which can be done in L. Hence all reasoning tasks for grounded, admissible,
complete, and preferred semantics are in L. Moreover, also cf2 coincides with
naive semantics [Dvořák and Gaggl, 2016]. Finally for symmetric AFs the set
of skeptically accepted arguments is always admissible and thus the skeptically
accepted arguments coincide with the ideal extension.

Table 6. Complexity results for symmetric AFs.

σ gr st ad co pr sst stg cf2 id

Credσ L L/NP-c L L L L/ΣP
2 -c L/ΣP

2 -c L L

Skeptσ L L/coNP-c trivial L L L/ΠP
2 -c L/ΠP

2 -c L L

For symmetric AFs one often also requires [Coste-Marquis et al., 2005] that
the AF is irreflexive, i.e., it has no self attacks. In that case each naive extension
is also a stable extension and thus also semi-stable, and stage coincides with



30 Wolfgang Dvořák, Paul E. Dunne

Table 7. Complexity of acceptance problems, parametrized by the distance
from graph classes that allows for efficient algorithms.

graph class ad co pr sst st stg cf2 id

acyclic FPT FPT FPT FPT FPT hard hard FPT

noeven XP XP XP XP XP hard hard XP

bipartite hard hard hard hard hard hard hard hard

symmetric hard hard hard hard hard hard hard hard

naive. That is, the corresponding reasoning tasks become tractable. However,
if we allow self-attacks in the framework then these three semantics maintain
their full complexity [Dvořák, 2012a].

3.5 Fixed-Parameter Tractable Fragments

In the previous section we considered properties of the graph structure that
make argumentation problems tractable. In this section we study parameters
that are quantitative measures for some kind of structure in the graph, with
the goal to find parameters such that the complexity of the problem rather
scales with the parameter than with input size. That is, we are looking for
parameters that allow for fixed-parameter tractable algorithms.

Backdoors for abstract argumentation. One approach to fixed-parameter
tractable algorithms is the so called backdoor approach [Dvořák et al., 2012a].
The idea is to start from a tractable fragment, define some kind of distance
to the tractable fragment, and then use the distance as a parameter for the
reasoning problem. The hope behind this approach is that the running time will
scale with the distance to the tractable fragment instead of jumping instantly
to the full problem complexity when leaving the fragment. In argumentation
one can use the graph classes discussed above as tractable fragments and as
distance one considers the number of arguments that have to be deleted from
an AF to fall into the graph class.

Definition 3.9 Let G be a graph class and F = (A,R) an AF. We define
distG(F ) as the minimal number k such that there exists a set S ⊆ A (the
backdoor set) with ∣S∣ = k and (A ∖ S,R ∩ ((A ∖ S) × (A ∖ S)) ∈ G. If there is
no such set S we define distG(F ) =∞.

We will see that this parametrization only works for certain fragments and
semantics, while for other fragments and semantics we have the full complexity
even for AFs with constant distance to the fragment. Table 7 summarises the
results for the semantics under our considerations (again we omit semantics
already tractable in the general case). All results are due to [Ordyniak and
Szeider, 2011; Dvořák et al., 2012a] 13, except the results for cf2 semantics

13Notice, that ideal semantics is not explicitly mentioned in [Dvořák et al., 2012a], but the



Computational Problems in Formal Argumentation and their Complexity 31

which are due to [Dvořák and Gaggl, 2016]. The entries in Table 7 are to
be read as follows. FPT: all reasoning tasks are in FPT; XP: all reasoning
tasks are in XP; hard: all problems are as hard as for general graphs even for
instances with a fixed distance to the fragment (and are at least NP/coNP-hard
for distance 1).

In the remainder of the section we will first present the algorithm that un-
derlies the FPT and XP results and then exemplify some hardness results.

FPT backdoor-algorithms. The positive results are all based on the fact
that the number of complete extensions is small and we can compute them effi-
ciently. As soon as we have the complete extensions all the reasoning tasks for
admissibility based semantics can be answered efficiently. The algorithms for
complete semantics consist of two parts: first one has to compute the backdoor
set; second given the backdoor set one has to compute the complete extensions.

Let us first consider computing a backdoor. The detection of acyc-backdoors
for AFs is equivalent to the so-called directed feedback vertex set problem
in graph theory, which is known to be fixed-parameter tractable [Chen et
al., 2008]. For detecting noeven-backdoors in AFs the following algorithm
is known, which only shows the problem to be in XP. By a result of Robertson
et al. [1999] one can test in polynomial time whether a graph is in noeven or
not. Now, to find a backdoor of size k one can simply iterate over all sets of
size k and test whether removing these arguments break all even-cycles. As
there are Θ(nk) many such sets the algorithm is not fixed-parameter tractable
and thus only shows the problem to be in XP.

Now let us assume we already have a backdoor set. We consider labels for
arguments that correspond to their status in the extension. An argument is
labelled in if it is in the extension, out if it is not in the extension but attacked
by an argument in the extension, and undec otherwise. The algorithm tests
all possible assignments of labels to the arguments in the backdoor set (these
are 3k many) and for each of them propagates the labels to the remaining AF
(which is acyclic or noeven) according to the characteristic function. That is,
a node gets label out as soon as one attacker is labelled in, label in if all
attackers are labelled out and label undec if all attackers are labelled and none
of the above applies. Finally, one considers the set of arguments labelled in

and keeps the set if it is a complete extension or withdraws them otherwise. As
we do this for each possible labelling of the backdoor set we finally get the set
of all complete extensions, which is of size at most 3k. As one can propagate
the labels in polynomial time the, total running time of the algorithm is 3k

multiplied by some polynomial and thus in FPT.

Finally combining the results for computing a backdoor set and for evaluat-
ing an AF given a backdoor we have an FPT algorithm for acyclic AFs and an
XP algorithm for noeven AFs. Notice that the XP complexity for noeven AFs
comes solely from the algorithm for computing the backdoor, the evaluation
itself is in FPT.

results follow immediately from the results presented for preferred semantics.



32 Wolfgang Dvořák, Paul E. Dunne

ϕ

c̄x3x2x1

cx̄3x̄2x̄1

Figure 6. Hardness reduction for Credad and backdoors to bipartite graphs,
illustrated for the propositional formula ϕ, with clauses c = {x1, x2}, and c̄ =
{x̄1, x̄2, x̄3}.

Hardness Results. The hardness proofs work very much like for the gen-
eral case, one has to give a reduction from a hard problem but additionally
take into account the graph structure [Dvořák et al., 2012a; Dvořák, 2012c;
Dvořák et al., 2014a; Dvořák and Gaggl, 2016]. We exemplify such a reduction
for credulous reasoning under admissible, complete, preferred and cf2 seman-
tics and backdoors for bipartite graphs. To this end consider the standard
translation from proposition logic and the NP-hard problem monotone SAT,
of deciding whether a formula in CNF where each clause either contains solely
positive or solely negative literals is satisfiable. As each clause either contains
solely positive literals or solely negative literals the graph constructed by the
standard translation is almost bipartite (cf. Figure 6). That is, there are no
edges between the arguments corresponding to positive literals and negative
clauses and no edges between the arguments corresponding to negative literals
and positive clauses. Thus, when deleting ϕ from the graph the graph becomes
bipartite with two independent sets, one containing the positive literals and
the negative clauses, and one containing the negative literals and the positive
clauses. We obtain that credulous reasoning is NP-hard even for graphs with
distance 1 to bipartite graphs.

Further FPT Results. Besides backdoors to tractable fragments several
other approaches for parametrizations can be found in the literature. One
approach is to consider graph parameters that measure structural properties,
most prominently tree-width, a parameter that, roughly speaking, measures
how tree-like a graph is. Results for tree-width (and the related parame-
ter clique-width) can be either obtained by dynamic programming algorithms
that exploit the structural properties or by powerful meta-theorems. These
meta-theorems basically say that every property which can be characterised
by a formula from monadic-second order logic (MSO) over a graph struc-
ture can be tested in FPT w.r.t. tree-width and clique-width. Results via
the MSO meta-theorems are given in [Dunne, 2007; Dvořák et al., 2012c] con-
crete dynamic programming algorithms are given in [Dvořák et al., 2012b;
Charwat, 2012] for tree-width and in [Dvořák et al., 2010] for clique-width.
Moreover, in [Dvořák et al., 2012b] a lot of parameters specific to directed



Computational Problems in Formal Argumentation and their Complexity 33

graphs, e.g. directed tree-width, are shown to be not applicable for FPT algo-
rithms in abstract argumentation.

Finally for semantics harder than NP one can also think about backdoors
to graph classes that allow to solve problems in NP or coNP [Dvořák et al.,
2014a]. While this does not give FPT results it still reduces complexity, with
notable effects on the practical resolvability.

3.6 Computational Problems related to Labelling-Based Semantics

So far our complexity analysis was in terms of extension-based semantics (which
is in accordance with the literature), in this section we discuss some computa-
tional aspects related to labelling-based semantics.

Labelling-based semantics. Beside the so-called extension-based semantics
we have considered so far, there are several approaches defining argumentation
semantics via certain kinds of argument labellings. As an example we consider
the popular approach of 3-valued labellings by Caminada and Gabbay [2009]

and in particular their complete labellings. Basically, such a labelling is a
three-valued function Lab that assigns one of the labels in, out and undec

to each argument, with the intuition behind these labels being the following.
An argument is labelled with: in if it is accepted, i.e., it is defended by the
in labelled arguments; out if there are strong reasons to reject it, i.e., it is
attacked by an accepted argument; undec if the argument is undecided, i.e.,
neither accepted nor attacked by accepted arguments. Complete labellings
can be one-to-one mapped to complete extensions by considering the set of in
labelled arguments and vice versa, by labelling all arguments in the extension
with in all arguments attacked by the extension with out and the remaining
arguments with undec [Caminada and Gabbay, 2009]. Notice that this is not
only a property of complete semantics but this one-to-one correspondence holds
for most argumentation semantics.

Computational problems. Given the above correspondence between la-
bellings and extensions, the tasks of computing all labellings and all extensions
are, from a computational point of view, equivalent and the same holds for
credulous and skeptical reasoning. However, three-valued labellings allow for
more fine-grained acceptance statuses of arguments. Wu and Caminada 2010
introduced the notion of justification status of an argument w.r.t. a seman-
tics which is given by the set of labels that are assigned by at least one la-
belling of the semantics. That is, given an AF F and a labelling-based se-
mantics σLab the justification status JSσLab(F,a) of an argument a in F is
given by JSσLab(F,a) = {Lab(a) ∣ Lab ∈ σLab(F )}. The above definition gives
rise to eight different justification statuses, most prominently the set {in}
called strong accept, which corresponds to skeptical acceptance, and the set
{in,undec} called weak accept.14 We are now faced with the computational
problem of verifying the justification status of an argument, which was studied
in [Dvořák, 2012b].

14Notice that credulous acceptance of argument a corresponds to the query in ∈ JSσ(F, a).



34 Wolfgang Dvořák, Paul E. Dunne

ϕ

c1 c2

ψ

c3 c4

x1 x̄1 x2 x̄2 x3 x̄3 y1 ȳ1 y2 ȳ2

Figure 7. Reduction for showing the DP-hardness of weak acceptance. AF Fϕ,ψ
for the propositional formulae ϕ, with clauses {x1, x2, x̄3},{x̄1, x̄2, x̄3}, and ψ,
with clauses {y1, ȳ2}, {ȳ1, y2}.

Algorithms. Compared with credulous and skeptical acceptance, where we
either search for an extension containing a specific argument or for an extension
not containing a specific argument, the problem of testing whether an argument
has a specific justification status, e.g., whether it is a weakly accepted, has
two sources of complexity. First, we have to search for labellings that assign
the labels appearing in the justification status, e.g., in and undec for weak
acceptance, and second we have to make sure that no labelling assigns one of
the labels not in the in the justification status, e.g., out for weak acceptance,
to a. For complete semantics this means we have to perform both an NP search
for the good labels and a coNP search for the bad labels, which together gives
a DP algorithm.

Hardness. To prove DP-hardness of weak acceptance w.r.t. complete seman-
tics one starts from an instance (ϕ,ψ) of the DP-complete SAT−UNSAT prob-
lem and constructs the AF Fϕ,ψ (see Figure 7) as follows. First one applies
the standard translation to each of the two formulae and then makes the argu-
ments c corresponding to clauses unacceptable, by adding self-attacks. Finally
the arguments ϕ and ψ are connected by a mutual attack. As in the stan-
dard translation we have that ϕ, respectively ψ, is credulously accepted iff ϕ,
respectively ψ, is satisfiable. Moreover, (a) ϕ is labelled out iff ψ is labelled
in by some labelling, i.e., if ψ is credulously accepted, and (b) the grounded
labelling maps all arguments to undec and thus undec ∈ JSσLab(Fϕ,ψ, ϕ). We
then have that the argument ϕ is weakly accepted iff ϕ is satisfiable and ψ is
unsatisfiable, that is iff (ϕ,ψ) is a “yes” instance of SAT−UNSAT. Thus we
have a reduction from SAT−UNSAT to weak acceptance and can conclude that
also the latter is DP-hard.

3.7 Discussion

As illustrated in Table 1 there is a significant difference in the computa-
tional complexity between the different semantics. Let us first consider the
polynomial-time computable semantics. Grounded semantics distinguishes it-
self from the remaining semantics by the fact that it has a unique extension



Computational Problems in Formal Argumentation and their Complexity 35

which can be efficiently computed in an iterative fashion by applying the char-
acteristic function. For conflict-free and naive sets the good complexity comes
from the fact that we can decide the reasoning problems without computing the
actual conflict-free, respectively naive, sets. However, there are AFs with expo-
nentially many conflict-free, respectively naive, sets and there are non-standard
problems the are computationally hard, for instance counting the number of
conflict-free, respectively naive, sets [Baroni et al., 2010].

On the NP, coNP layer of the polynomial-hierarchy we have semantics with
potentially exponentially many extensions but where each set itself can be
easily tested to be an extension. That is, the source of the computational
hardness is the fact that one, in the worst case, has to check many sets to
find a witness for credulous acceptance, respectively to find a counter-example
for skeptical acceptance. However, these problems can be efficiently encoded
in formalisms where the corresponding problems are NP- and coNP-hard, like
propositional logic, and then can be evaluated with corresponding systems for
these formalisms [Besnard and Doutre, 2004].

Finally, we have semantics that require some sort of subset maximisation
which adds an additional source of complexity. Thus, these semantics are
harder than NP and located at the second level of the polynomial-hierarchy.
For reduction-based approaches this implies that one cannot efficiently translate
them to a single instance of propositional logic but has either to consider richer
formalisms like QBFs [Egly and Woltran, 2006; Arieli and Caminada, 2012] or
ASP [Egly et al., 2010] or consider iterative approaches [Cerutti et al., 2014;
Dvořák et al., 2014a] that make several calls to a SAT-Solver. The different
levels of hardness of different semantics are also mirrored by the results of
the First International Competition on Computational Models of Argumenta-
tion [Thimm and Villata, 2015; Thimm et al., 2016], where the computational
tasks for preferred semantics appear significantly harder than the corresponding
tasks for stable or complete semantics.

Notice that there are several established semantics which are beyond the
scope of this chapter. First there is the scheme of resolution-based seman-
tics [Baroni et al., 2011c], with resolution-based grounded semantics being
the most prominent instantiation. A comprehensive complexity analysis for
resolution-based grounded semantics can be found in [Baroni et al., 2011c],
which is complemented by results in [Dvořák et al., 2012c; Dvořák et al.,
2014b]. Another semantics we neglected is eager semantics [Caminada, 2007],
whose complexity was studied in the generalised setting of parametrized ideal
semantics [Dunne et al., 2013].



36 Wolfgang Dvořák, Paul E. Dunne

4 Complexity of Assumption-based Argumentation

With Dung’s abstract argumentation frameworks we focused on the issue of
finding coherent sets of simultaneously acceptable arguments, but neglected
the effort for constructing these frameworks and for drawing conclusions from
the accepted arguments. With Assumption-based Argumentation [Bondarenko
et al., 1997] we now switch to a formalism that covers the whole argumentation
process. That is, arguments and conflicts are constructed from a knowledge
base, then acceptable sets, i.e., extensions, are identified, and finally one draws
conclusions from the extensions. We are in particular interested in how these
additional steps affect the overall computational complexity.

In this section will discuss complexity results for Assumption-based Argu-
mentation which are due to the work of Dimopoulos et al. [1999; 2000; 2002]

and the later work on ideal semantics [Dunne, 2009].15 We first briefly in-
troduce assumption-based frameworks and the different semantics thereof and
define the core reasoning problems in assumption-based argumentation. We
then discuss procedures to solve the reasoning problems, which give us upper
bounds for the computational complexity. As most of these procedures are of
high complexity we also discuss the special case of flat ABFs which allows for a
milder complexity. Finally, we discuss some hardness results showing that the
presented procedures are essentially optimal.

4.1 Assumption-based Argumentation

We first briefly recall the definitions of assumption-based argumentation, for a
comprehensive introduction the reader is referred to [Toni, 2014] or the chapter
on Assumption-based Argumentation in this handbook.

For an assumption-based framework we assume a deductive system (L,R),
where L is a formal language and R a set of inference rules that induces a
derivability relation ⊢. Given a theory T ⊆ L the deductive closure Th(T ) of T
is defined as Th(T ) = {α ∈ L ∣ T ⊢ α}.

Definition 4.1 An abstract assumption-based framework (ABF) is a tuple
⟨L,R,A, ⟩ with (L,R) a deductive system, A ⊆ L is a (non-empty finite) set,

with elements referred to as assumptions; and the contrary function , a total
mapping from A into L.

An extension of an ABF is a set of assumptions ∆ ⊆ A meeting some re-
quirements.

Definition 4.2 Given an ABF and an assumption set ∆ ⊆ A we say that ∆
attacks an assumption α ∈ A if ᾱ ∈ Th(∆). Further we say that an assumption
set ∆ attacks an assumption set ∆′ if ∆ attacks at least one α ∈ ∆′

We will further require that assumptions sets are closed, i.e., we can not
derive additional assumptions.

15The complexity of Assumption-based Argumentation was also briefly discussed in the
earlier survey on the complexity of argumentation [Dunne and Wooldridge, 2009].



Computational Problems in Formal Argumentation and their Complexity 37

Definition 4.3 We call an assumption set ∆ closed if Th(∆) ∩A = ∆.

It is often the case that the derivability relation is such that all assumption
sets are closed, in that case we call the ABF flat.

We are now prepared to define the standard semantics for ABFs.

Definition 4.4 Given an ABF F and an assumption set ∆ ⊆ A. ∆ is called

� stable extension (∆ ∈ st(F )), if ∆ is closed, ∆ does not attack itself, and
∆ attacks each assumption α ∈ A ∖∆.

� admissible set (∆ ∈ ad(F )), if ∆ is closed, ∆ does not attack itself, and
for all closed assumption sets ∆′ ⊆ A, if ∆′ attacks ∆ then also ∆ attacks
∆′.

� preferred extension (∆ ∈ pr(F )), if ∆ is a subset-maximal admissible
assumption set.

Moreover, for flat frameworks also ideal semantics can be defined [Dung et al.,
2006; Dung et al., 2007]. The unique ideal extensions id(F ) is the maximal
admissible set ∆ that is contained in all preferred extensions.16

We have that every stable assumption set is also a preferred assumption
set, and every preferred assumption set is an admissible assumptions set, but
not vice versa. However, each admissible assumption set is a subset of some
preferred assumption set. Moreover, if the ABF is flat the empty assumption
set is always admissible.

4.2 Reasoning Problems

As for abstract argumentation we are mainly interested in computing accep-
tance statuses of statements instead of extensions. However, the reasoning
tasks we consider will give us a good impression of the complexity of comput-
ing extensions. That is, we again consider credulous and skeptical acceptance
but now of a sentence ϕ ∈ L instead of an argument. More concretely we either
want to decide whether there is at least one extension that entails ϕ (credu-
lous reasoning) or whether ϕ is entailed by each extension. This gives rise to
the following computational problems for an assumption-based argumentation
semantics σ.

� Credulous Acceptance Credσ: Given ABF F and a sentence ϕ ∈ L. Is
ϕ ∈ Th(∆) for some assumption set ∆ ∈ σ(F )?

� Skeptical Acceptance Skeptσ: Given ABF F and a sentence ϕ ∈ L. Is
ϕ ∈ Th(∆) for all assumption sets ∆ ∈ σ(F )?

Beside the above reasoning problems we again consider the task of verifying
extensions, i.e., one is given an assumption set and has to verify that it is an
extension of a given semantics σ.

16Notice that uniqueness and other properties of the ideal extension are only guaranteed
for flat ABFs.



38 Wolfgang Dvořák, Paul E. Dunne

Table 8. Complexity upper bounds for different types of ABFs. C denotes the
complexity of deciding the ⊢ relation.

General ABFs Flat ABFs

σ Credσ Skeptσ Verσ Credσ Skeptσ Verσ

st NPC coNPC PC NPC coNPC PC

ad NPNPC coNPNPC coNPC NPC C PC

id – – – PNPC

∥ PNPC

∥ PNPC

∥

pr NPNPC coNPNPNPC

NPNPC NPC coNPNPC NPC

� Verification of an Extension Verσ: Given ABF F = ⟨T,A, ¯ ⟩ and an
assumption set ∆ ⊆ A. Is ∆ ∈ σ(F )?

4.3 Procedures to solve ABA Reasoning Problems

In ABA, new computational challenges come up when compared with Dung’s
abstract argumentation. While in Dung’s abstract argumentation arguments
and attacks are given explicitly, they are only given implicitly in ABFs and
depend on the set of assumptions and the derivability relation ⊢. That is, we
get two additional sources of complexity: (1) the construction of arguments,
and (2) the identification of conflicts between them. Both highly depend on
the complexity of deciding the derivability relation ⊢. Thus, upper bounds
for the complexity in assumption-based argumentation usually assume that
the derivability relation ⊢ can be decided in some complexity class C and the
actual complexity results are then given in terms of some C-oracle complexity
classes.

Verifying an Assumption Set. First, we consider the problem of verifying
an assumption set ∆ as an extension and start with stable semantics. We have
to check that (i) ∆ is closed, (ii) ∆ is conflict-free, and (iii) ∆ attacks every
assumption α ∈ A ∖∆. Each of these checks can be done in PC as follows: For
(i) one has to check whether ∆ ⊢ α for α ∈ A ∖∆ which just requires a linear
number of ⊢ computations. For (ii) one has to check whether ∆ /⊢ ᾱ for α ∈ ∆
which again just requires a linear number of ⊢ computations. Finally, (iii) can
also be checked by a linear number of ⊢ computations and thus a stable set can
be verified in PC . For admissible semantics verification is a bit harder. Here
instead of condition (iii) we have to verify that for all closed assumption sets
∆′ ⊆ A, if ∆′ attacks ∆ then also ∆ attacks ∆′. This can be done with a coNPC-
algorithm that guesses a counter-example ∆′ and then verifies via the C oracle
that ∆′ is closed, ∆′ attacks ∆, and ∆′ is not attacked by ∆. In total we have
that verifying an admissible extension is in coNPC . For preferred semantics we
additionally have to take into account the maximality check which leads to a

coNPNPC -algorithm.



Computational Problems in Formal Argumentation and their Complexity 39

Reasoning. The complexity upper bounds for skeptical and credulous reason-
ing are immediate by the algorithms for verifying extensions. We can decide the
acceptance of a sentence by first guessing an assumption set, second verifying
that the guessed set is an extension and finally deciding via a C oracle whether
the extension entails the queried sentence. The corresponding complexity re-
sults are given in the left part of Table 8 (recall that ideal semantics was only
introduced for flat ABFs). As for Dung’s AFs, credulous reasoning with pre-
ferred semantics reduces to credulous reasoning with admissible semantics and
thus has a lower complexity than skeptical reasoning. Moreover, in contrast to
Dung’s AFs, we have a complexity gap between stable and admissible seman-
tics, which is due to the fact that for admissible extensions for each attacking
assumption set we have to test whether it is closed or not.

Flat ABFs. Flat ABFs as a special class of ABFs that provide milder com-
plexity. Recall that in flat ABFs each assumption set is already closed and we
thus do not have to check this in the algorithms. Let us now reconsider the
problem of verifying an admissible extension ∆. As ∆ is closed we only have to
check whether (i) ∆ is conflict-free, and (ii) for all assumption sets ∆′ ⊆ A, if
∆′ attacks ∆ then also ∆ attacks ∆′. The latter simplifies to checking whether
{α ∈ A ∣ ∆ /⊢ ᾱ} does not attack ∆, which can be decided in PC . Thus, verifying
admissible extensions in flat ABFs is in PC and hence also verifying preferred
extensions is in coNPC . This gives improved complexity bounds for credulous
and skeptical acceptance listed in in Table 8 in the column flat. Finally, notice
that in flat ABFs the empty set is always admissible and thus only the assump-
tions contained in Th(∅) are skeptically accepted. That is, skeptical reasoning
reduces to testing whether ϕ ∈ Th(∅), which is in C.

The ideal extension can be computed by the same algorithm as for Dung
AFs [Dunne, 2009]. That is, one first determines the credulously accepted
assumptions w.r.t. admissible semantics that are not attacked by other cred-
ulously accepted assumptions. Given those arguments one iteratively removes
assumptions that can not be defended until an admissible set, the ideal ex-

tension, is reached. Overall, this gives an PNPC

∥ algorithm for credulous and
skeptical reasoning as well as for the verification problem.

4.4 Complexity lower bounds

While the upper bounds can be given in a generic fashion, which immediately
gives upper bounds/algorithms for each instantiation, hardness results only ex-
ist for concrete formalisms. However, the complexity results for the concrete
instantiations [Dimopoulos et al., 2002] show that the generic upper bounds
are tight in the sense that there are formalisms where the lower bounds match
the generic upper bounds. In Table 9 we list the complexity results for Au-
toepistemic Logic (AEL) [Moore, 1985], Logic Programming (LP) [Gelfond and
Lifschitz, 1988], and Default Logic (DL) [Reiter, 1980] all the results are due to
Dimopoulos et al. [2002] and Dunne [2009]. For Autoepistemic Logic we have
that the ABF is not flat and deciding the ⊢ relation is coNP-complete. Thus



40 Wolfgang Dvořák, Paul E. Dunne

the complexity results in Table 9 exactly match the generic upper bounds for
general ABFs. In contrast, Logic Programming and Default Logic result flat
ABFs and for the former the ⊢ relation is in P and for the latter the ⊢ rela-
tion is coNP-complete. In both cases the complexity results in Table 9 exactly
match the generic upper bounds for flat ABFs.

Table 9. Completeness results for instantiations of ABA.

type stability Admissibility Preferability Ideal

cred. skept. cred. skept. cred. skept. cred.

AEL general ΣP
2 -c ΠP

2 -c ΣP
3 -c ΠP

3 -c ΣP
3 -c ΠP

4 -c –

LP flat NP-c coNP-c NP-c P-c NP-c ΠP
2 -c ΘP

2 -c

DL flat ΣP
2 -c ΠP

2 -c ΣP
2 -c coNP-c ΣP

2 -c ΠP
3 -c ΘP

3 -c

For a hardness proof in ABA one has to construct a certain knowledge base
in the considered formalism instead of arguments interlinked with conflicts.
Thus hardness proofs in the context of ABA are of a different nature than in
Dung’s abstract argumentation. To exemplify such an hardness proof we next
present the hardness result for credulous admissible reasoning in Default Logic
which is ΣP

2 -complete [Dimopoulos et al., 2002].

Default logic as ABA. A Default theory (W,D) that consists of a set W of
propositional formulae17, called background theory, and a set D of default rules
of the form α∶Mβ1...Mβn

γ
, where α, βi, γ are sentences in propositional logic, can

be interpreted as assumption-based framework ⟨L,R,A, ⟩ [Bondarenko et al.,

1997]. As deductive system one uses the deductive system of propositional
logic extended by the set D of default rules, where the intuitive meaning of
a default rule is that if we know α is the case and have no basis on which to
suppose any ¬βi holds it is reasonable to assume γ. The ABF is now built as
follows: the set of assumptions A consists of the expressions of the form Mβ,
the contrary Mβ of an assumption Mβ is ¬β and the derivability relation ⊢ is
given by ∆ ⊢ φ iff φ ∈ ThDL(W ∪∆) where ThDL is the deductive closure of
the deductive system described above.

Hardness of credulous admissible reasoning in DL. To show hardness
for credulous admissible reasoning in Default Logic, we give a reduction from
the ΣP

2 -hard problem QSAT 2
∃ of deciding whether a QBF 2

∃ is valid. That is, we
start with a QBF ∃Y ∀Z ϕ(Y,Z) and construct a DL theory (∅,D) and thus
the corresponding ABF F as follows. To construct the set of default rules D,
we add the two default rules (i) My

y
and (ii) M¬y

¬y for each variable y ∈ Y . This

corresponds to the ABF F with A = {My,M¬y ∣ y ∈ Y } and My = ¬y, M¬y = y
for all y ∈ Y . By that we have that an admissible set can only contain either
My or M¬y but not both, and thus that the admissible sets correspond to the

17Notice that instead of using propositional logic one could also define Default logic on top
of first-order logic or any other formal logic.



Computational Problems in Formal Argumentation and their Complexity 41

partial truth assignments of Y . Moreover for an admissible set E we have that
E ⊢ ϕ iff ϕ(Y,Z) is true for all assignments Z under the partial assignment
given for Y . That is, ϕ is credulously accepted iff there is a partial assignment
of Y such that for each assignment to Z the formula ϕ(Y,Z) evaluates to true,
that is iff ∃Y ∀Zϕ(Y,Z) is valid.

Example 4.5 Consider the QBF Φ = ∃y1, y2∀z1, z2 (y1∨z2∨¬z3)∧(¬y2∨z3).
The above reduction would construct

� the default rules My1
y1

, My2
y2

, M¬y1
¬y1 and M¬y1

¬y1 ;

� the assumption set A = {My1,My2,M¬y1,M¬y2}; and

� the contrary function with My1 = ¬y1, My2 = ¬y2, M¬y1 = y1, and
M¬y2 = ¬y2.

Now, by the above, it must be that Φ is valid if and only if there is an admissible
set E ⊆ A such that E ⊢ (y1 ∨ z2 ∨ ¬z3) ∧ (¬y2 ∨ z3). The formula Φ is valid
as setting y1 to true and y2 to false makes both clauses true no matter which
truth value is assigned to the variables z1 and z2. On the other hand also
the set E = {My1,M¬y2} is admissible and, by our default rules, we have
E ⊢ (y1 ∨ z2 ∨ ¬z3) ∧ (¬y2 ∨ z3). ◊

4.5 Discussion

The upper bounds for the complexity of the reasoning problems in Table 8 indi-
cate that assumption-based argumentation indeed has a higher complexity than
just Dung style argumentation. However, by the discussed results for flat argu-
mentation in Table 8 and the concrete instantiations of ABA in Table 9 one can
see that the actual complexity heavily depends on the complexity of derivabil-
ity relation ⊢ and the type of the assumption-based framework. For instance
for LP we have a flat assumption-based framework and a tractable derivability
relation and end up with the same complexity bounds as for Dung’s abstract
argumentation frameworks. The complexity of deciding the derivability rela-
tion directly corresponds to the costs of constructing an argument, or drawing
some conclusion when already given an extension. Thus the parameter C in
Table 8 can be interpreted as the costs of these two steps, i.e., constructing
arguments and drawing conclusions, in the argumentation process.

For general ABFs the complexity of assumption-based argumentation is quite
high and thus it is promising to consider some restrictions of the formalism to
get better algorithms. In this chapter we considered flat ABFs which reduced
the complexity significantly. In [Dimopoulos et al., 2002] also two other classes,
namely so called simple and normal ABFs, are studied and shown to have
computational advantages for certain problems.



42 Wolfgang Dvořák, Paul E. Dunne

5 Computational Problems in Abstract Dialectical
Frameworks

In this section we consider abstract dialectical frameworks, a generalisation
of Dung style abstract argumentation frameworks. While arguments are still
abstract entities abstract dialectical frameworks allow for more complex rela-
tions between the arguments. That is, each abstract dialectical framework has
a link relation between the arguments, which is not necessarily an attack re-
lation. The semantics of the links is given by acceptance conditions for each
argument that define the acceptance status of an argument in dependence on
the acceptance status of the predecessor arguments. This allows for classical
binary attacks between arguments but also for joint attacks, support and more
complex dependencies.

This section is based on the works of Brewka et al. [2013], Wallner [2014,
Chapter 4], and Strass and Wallner [2015] and organised as follows. We first
define abstract dialectical frameworks and semantics thereof. We then discuss
and formally define the core computational problems and consider the gen-
eral computational complexity of abstract dialectical frameworks. Moreover,
we discuss a restricted class of ADFs, so called bipolar ADFs, that only al-
low for links that are attacking or supporting (but might be both), and their
computational advantages.

5.1 Abstract Dialectical Frameworks (ADFs)

Here we give a very brief discussion of Abstract Dialectical Frameworks.18

Notice that in the literature there are several proposals how to define semantics
for ADFs, here we will follow the lines of Brewka et al. [Brewka et al., 2013].

Definition 5.1 ([Brewka et al., 2013]) An abstract dialectical framework
is a tuple D = (S,L,C) where

� S is a (finite) set of abstract arguments / statements,

� L ⊆ S × S is a set of links,

� C = {Cs}s∈S is a set of total functions Cs ∶ 2par(s) → {t, f}, one for each
statement s ∈ S. Cs is called acceptance condition of s.

Here, we will assume that each acceptance condition Cs is given by a propo-
sitional formula ϕs over the predecessors of s. An example is provided in
Figure 8.

As first semantics we define (two-valued) models of ADFs. To this end we
consider two-valued interpretations I that to each s ∈ S assign either t or f .
Given an interpretation I we will use It to denote the set {s ∈ S ∣ I(s) = t} and
If to denote the set {s ∈ S ∣ I(s) = f}.

18For a more detailed discussion the reader is referred to the the chapter of this handbook
dedicated to ADFs or [Brewka et al., 2013].



Computational Problems in Formal Argumentation and their Complexity 43

aca ∶ ⊺ b cb ∶ b ∧ ¬c

ccc ∶ a ∨ b d cd ∶ ¬b

Figure 8. Illustration of an ADF D = (S,L,C) with S = {a, b, c, d}, L =
{(a, c), (b, b), (b, c), (c, b), (b, d)}, and C = {ca ∶ ⊺, cb ∶ b ∧ ¬c, cc ∶ a ∨ b, cd ∶ ¬b}).

Definition 5.2 Let D = (S,L,C) be an ADF, a two-valued interpretation I
defined over S is a two-valued model of D if I ⊧ ϕs for each s ∈ It and I /⊧ ϕs
for each s ∈ If .

Most of the ADF semantics are based on 3-valued interpretations [Kleene,
1952] that map each argument in S to one of the values t, f and u. The
three values t, f , u are ordered, by <i, such that u <i t, u <i f , and t,f are
incomparable. This ordering is then extended to interpretations such that for
3-valued interpretations I, J we have I ≤i J iff I(s) ≤i J(s) for all s ∈ S. We
say that a two-valued interpretation I extends a 3-valued interpretation J iff
I ≤i J . That is, all arguments mapped to f or t by J are mapped to the same
by I and all arguments that are mapped to u by J are mapped to either t
or f by I. Given a 3-valued interpretation J , by [J]2 we denote the set of all
two-valued interpretations that extend J .

In Dung’s abstract argumentation frameworks the characteristic function
and its fixed-points are central in the definition of the semantics. We next de-
fine the operator ΓD that will be central in our definitions of ADF semantics.
ΓD generalises the characteristic function in two directions: (i) it gives a three
valued assignment on arguments, i.e., beside marking arguments as accepted
it also explicitly marks arguments as rejected; and (ii) it allows for the more
general acceptance conditions of ADFs.19 Given an interpretation I, the oper-
ator ΓD computes the arguments that should be set to t or f under the current
interpretation I.

Definition 5.3 For an ADF D and a three-valued interpretation I, the inter-
pretation ΓD(I) is given by

ΓD(I)(s) =⊓{w(ϕs) ∣ w ∈ [I]2}

where ⊓ is the consensus operation that assigns t ⊓ t = t, f ⊓ f = f , and assigns
u otherwise.

We are now prepared to define admissibility based semantics.

19For a in depth discussion of the relation between the characteristic function in AFs and
the ΓD operator in ADFs in the context of approximation fixed-point theory the reader is
referred to the chapter about Abstract Dialectical Frameworks in this handbook.



44 Wolfgang Dvořák, Paul E. Dunne

Definition 5.4 ([Brewka et al., 2013]) A three-valued interpretation I for
an ADF D is

� the grounded interpretation iff it is the least fixed point of ΓD.

� admissible iff I ≤i ΓD(I);

� complete iff I = ΓD(I).

� preferred iff it is ≤i-maximal admissible.

Finally, one can define stable semantics which, in order to avoid cyclic sup-
port, makes use of a reduced ADF in the definition.

Definition 5.5 ([Brewka et al., 2013]) Let D = (S,L,C) be an ADF with
C = {ϕs}s∈S. A two-valued model I of D is a stable model of D iff EI = {s ∈ S ∶
I(s) = t} equals the set of statements that are t in the grounded interpretation
of the reduced ADF DI = (EI , LI ,CI), where LI = L∩ (EI ×EI) and for s ∈ EI
we set ϕIs = ϕs[b/f ∶ I(b) = f].

5.2 Computational Problems

As the nature of abstract dialectical frameworks is quite similar to the nature of
Dung’s abstract argumentation frameworks also the core computational prob-
lems coincide. That is, we first have credulous reasoning, i.e., an argument
is accepted if it is mapped to t by at least one interpretation, and skepti-
cal reasoning, i.e., an argument is accepted only if it is mapped to t by all
interpretations. These two reasoning modes again give rise to the following
computational problems for argumentation semantics σ.

� Credulous Acceptance Credσ: Given ADF D = (S,L,C) and an argument
a ∈ S. Is there an interpretation I ∈ σ(D) with I(a) = t?

� Skeptical Acceptance Skeptσ: Given ADF D = (S,L,C) and an argument
a ∈ S. Is I(a) = t for each interpretation I ∈ σ(D)?

Beside these reasoning problems we also consider the problem of verifying
a given interpretation, and deciding whether an ADF provides any coherent
conclusion. Depending on the actual semantics the latter can corresponds to
deciding whether the ADF has at least one interpretation, or whether the ADF
has an interpretation that maps at least one statement to either t or f .

� Verification of an interpretation Verσ: Given an ADF D = (S,L,C) and
an interpretation I. Is I ∈ σ(F )?

� Existence of an interpretation Existsσ: Given an ADF D = (S,L,C). Is
σ(F ) ≠ ∅?

� Existence of a non-trivial interpretation Exists¬∅σ : Given an ADF D =
(S,L,C). Does there exist an interpretation I with I(a) ∈ {t, f} for some
argument a ∈ S.



Computational Problems in Formal Argumentation and their Complexity 45

Table 10. Complexity of ADFs (C-c denotes completeness for class C).
σ Credσ Skeptσ Verσ Existsσ Exists¬∅σ

gr coNP-c coNP-c DP-c trivial coNP-c

model NP-c coNP-c in P NP-c NP-c

st ΣP
2 -c ΠP

2 -c coNP-c ΣP
2 -c ΣP

2 -c

ad ΣP
2 -c trivial coNP-c trivial ΣP

2 -c

co ΣP
2 -c coNP-c DP-c trivial ΣP

2 -c

pr ΣP
2 -c ΠP

3 -c ΠP
2 -c trivial ΣP

2 -c

5.3 Complexity Results for ADFs

The ability of ADFs to express more complex relations between arguments
resulted in more evolved definitions of the semantics and as we will discuss next
also increases the complexity of the core reasoning tasks. As the complexity
results for ADFs in Table 10 show, all the non-trivial reasoning tasks are one
level higher in the polynomial-hierarchy than for Dung’s AFs. The main reason
for that is the complexity of the ΓD operator which replaces the characteristic
function. While the characteristic function can be evaluated in polynomial
time (and even logarithmic space) deciding problems associated with the ΓD
operator are in general NP/coNP-hard.20

In this section we discuss the complexity of admissible and grounded seman-
tics in more detail.

Complexity of admissible semantics. Again the most fundamental prob-
lem is to verify that an interpretation is admissible. To show that the problem
is in coNP we give an NP algorithm [Wallner, 2014] to falsify the admissibility
of an interpretation I. Such an algorithm would guess an argument s, such that
(i) I(s) = t or (ii) I(s) = f , and a 2-valued interpretation J ∈ [I]2 extending
I such that either, in case (i), J(ϕs) = f or, in case (ii), J(ϕs) = t. As I is
admissible iff no such pair s, J exists this is a NP algorithm that falsifies I be-
ing admissible and thus the complementary problem of verifying an admissible
interpretation is in coNP.

The coNP-hardness is by reduction from the coNP-complete UNSAT prob-
lem [Wallner, 2014] of testing whether a propositional formula is unsatisfiable.
To this end consider a propositional formula ϕ over variables X and construct
an ADF D = (S,L,C) as follows: The set of arguments S consists of X and
an additional argument a, each x ∈ X is linked towards a, and the acceptance
conditions are given by cx = x for x ∈ X and ca = ϕ. Now we consider the
interpretation I mapping all x ∈ X to u and a to f . We have that the two-
valued interpretations J ∈ [I]2 correspond to the two-valued interpretations
of ϕ and thus ΓD(I)(a) = f iff ϕ has no model. That is, I is admissible iff

20For instance testing whether an argument is mapped to t is basically the validity problem
of propositional logic.



46 Wolfgang Dvořák, Paul E. Dunne

aca ∶ ϕ

x

cx ∶ x
y

cy ∶ y
z

cz ∶ z

Figure 9. Illustration of the ADF constructed in the reduction from UNSAT to
the problem of verifying an admissible interpretation in an ADF, for a propo-
sitional formula ϕ over atoms x, y, z.

ϕ is unsatisfiable and, as the ADF D can be constructed in polynomial time,
coNP-hardness follows.

Combining the coNP verification algorithm for admissible semantics with
the standard guess and check algorithms gives a ΣP

2 upper bound for credulous
reasoning with admissible, complete and preferred semantics, and a ΠP

2 upper
bound for verifying a preferred interpretation. The latter then gives a ΠP

3

algorithm for skeptical reasoning with preferred semantics.

Complexity of grounded semantics. The computational properties of
grounded semantics in ADFs are quite in contrast to the computational prop-
erties of grounded semantics in AFs. When considering grounded semantics in
ADFs, a straight forward algorithm is, starting from the three-valued model
mapping all arguments to u, and then iteratively apply the operator ΓD until a
fixed-point is reached. The straight forward algorithm is only a PNP-algorithm,
because of the costly evaluation of ΓD. However, due to a sophisticated char-
acterisation of grounded semantics [Wallner, 2014] there is a more efficient way
to test whether an argument is mapped to t in the grounded interpretation of
an ADF. Also notice that verifying the grounded interpretation is in DP as we
have to do verify both the t, f assignments and the u assignments.

The DP-hardness of verifying the grounded interpretation is by a reduc-
tion from the DP-complete SAT−UNSAT problem [Brewka and Woltran, 2010;
Wallner, 2014]. To this end consider an instance (ϕ,ψ) of SAT−UNSAT where
ϕ is a propositional formula over atoms X and ψ is a propositional formula over
different atoms Y . In polynomial time we construct the ADF D = (S,L,C)
with S =X∪Y ∪{d, s, v}, L = {(x, s) ∣ x ∈X}∪{(y, v) ∣ y ∈ Y }∪{(d, s)} and the
acceptance conditions cx = x for x ∈ X ∪ Y , cd = d, cs = ϕ ∧ d and cv = ψ. Now
we consider the interpretation I with I(v) = f and I(a) = u for all the other
arguments a ∈ S∖{v}. We next argue that I is the grounded model iff (ϕ,ψ) is
a “yes” instance of SAT−UNSAT. Let G be the grounded model. First notice
that the arguments a ∈ X ∪ Y ∪ {d} do not have incoming edges from other
arguments. Whenever J(a) = u then there are both an I1 ∈ [J]2 with I1(a) = t
and an I2 ∈ [J]2 with I2(a) = f , and thus also ΓD(J)(a) = u. That is, the
grounded model G maps all arguments in X ∪ Y ∪ {d} to u. Now consider the



Computational Problems in Formal Argumentation and their Complexity 47

dcd ∶ d s

cs ∶ ϕ ∧ d
v

cv ∶ ψ

x1

cx1 ∶ x1

x2

cx2 ∶ x2

x3

cx3 ∶ x3

y1

cy1 ∶ y1

y2

cy2 ∶ y2

y3

cy3 ∶ y3

Figure 10. Illustration of the ADF constructed in the reduction from
SAT−UNSAT to the problem of verifying the grounded model of an ADF, for
an propositional formulae ϕ, ψ over atoms X = {x1, x2, x3} and Y = {y1, y2y3}
respectively.

argument s and cs = ϕ∧d. The two-valued interpretations J ∈ [G]2 correspond
to the two-valued interpretations over X ∪ Y ∪ {d}. That is, either (a) ϕ has
a model and we can satisfy ϕ ∧ d by setting d to t as well as falsify ϕ ∧ d by
setting d to f and thus ΓD(G)(s) = G(s) = u, or (b) ϕ is unsatisfiable and thus
ΓD(J)(s) = G(s) = f . One the other hand, for v and cv = ψ, we have that
either ψ is unsatisfiable and ΓD(G)(v) = G(v) = f , ψ is satisfiable but not valid
and ΓD(G)(v) = G(v) = u, or ψ is valid and ΓD(G)(v) = G(v) = t. Hence, we
have that G = I iff ϕ is satisfiable and ψ is unsatisfiable.

5.4 Complexity of Bipolar ADFs with Known Link Types

Again there are certain instances of ADFs that do not have the worst-case
complexity, but can be processed with milder complexity. Here we discuss so
called Bipolar ADFs which put some restriction on the link structure, i.e., each
link has to be supporting or attacking (but might be both). For a given set
X ⊆ S let IX be the two-valued interpretation with It = X and If = S ∖X.
A link (a, b) is called supporting if there is no X ⊆ S such that IX ⊧ ϕb and
IX∪{a} /⊧ ϕb; whereas it is called attacking if there is no X ⊆ S such that IX /⊧ ϕb
and IX∪{a} ⊧ ϕb. While in general testing the link type is itself coNP-complete
[Brewka and Woltran, 2010; Ellmauthaler, 2012] there are certain applications
of ADFs where the link type is known beforehand [Brewka and Gordon, 2010;
Strass, 2013]. This motivates the research on bipolar AFs with know link types
which we discuss in the remainder of this section.

The main observation that leads to the better complexity results for bipolar
AFs (see Table 11) is that the operator ΓD can be efficiently computed when
all the links are attacking or supporting. The matching hardness results are
then by the lower bounds for Dung’s abstract argumentation (cf. Table 1) and
the observation that AFs can be interpreted as bipolar ADFs with known link
types [Brewka et al., 2013] as follows.21 Given an AF (A,R) the equivalent

21Notice that both ADF semantics models and stable models are generalisations of Dung’s
stable semantics.



48 Wolfgang Dvořák, Paul E. Dunne

Table 11. Complexity of Bipolar ADFs with know link types (C-c denotes
completeness for class C).

σ Credσ Skeptσ Verσ Existsσ Exists¬∅σ

gr P-c P-c P-c trivial in P

model NP-c coNP-c in P NP-c NP-c

st NP-c coNP-c in P NP-c NP-c

ad NP-c trivial in P trivial NP-c

co NP-c P-c P-c trivial NP-c

pr NP-c ΠP
2 -c coNP-c trivial NP-c

ADF is given by (A,R,C) with C = {ca ∶ ⋀(b,a)∈R ¬b ∣ a ∈ A}. Notice that all
the links are indeed attacking.

To compute ΓD(I) in general ADFs, we have to consider all 2-valued inter-
pretations that extend I, which is coNP-hard, but given the link type of each
link we only have to check two 2-valued interpretations for each argument as
follows [Wallner, 2014; Strass and Wallner, 2014]. Let Supp be the set of sup-
porting links and Att the set of attacking links, but there might be links that
are both supporting and attacking (such links are called redundant links). For
s ∈ S consider the the formula ϕs and the interpretations J1, J2 as follows.

1. J1(s) =
⎧⎪⎪⎨⎪⎪⎩

t if I(s) = t, or I(s) = u and (s, a) ∈ Supp
f if I(s) = f , or I(s) = u and (s, a) ∈ Att ∖ Supp

2. J2(s) =
⎧⎪⎪⎨⎪⎪⎩

t if I(s) = t, or I(s) = u and (s, a) ∈ Att
f if I(s) = f , or I(s) = u and (s, a) ∈ Supp ∖Att

The interpretation J1 sets all yet undecided supporters to true and all yet
undecided (non-redundant) attackers to false. If J1(ϕs) = f then no 2-valued
interpretation extending I satisfies ϕs, and thus ΓD(I)(s) = f . Otherwise
if J1(ϕs) = t then clearly ΓD(I)(s) ≠ f . The interpretation J2 sets all yet
undecided (non-redundant) supporters to false and all yet undecided attackers
to true. Now, whenever J2(ϕs) = t then all 2-valued interpretations extending
I satisfy ϕs, and thus ΓD(I)(s) = t. Otherwise if J2(ϕs) = f then clearly
ΓD(I)(s) ≠ t. Hence, we can compute ΓD(I) by just considering J1 and J2 and
set ΓD(I)(s) = t if J2(ϕs) = t; ΓD(I)(s) = f if J1(ϕs) = f ; and ΓD(I)(s) = u
otherwise.

Now, as ΓD(I) can be computed in polynomial time, we can also (i) effi-
ciently compute the grounded model by iteratively applying ΓD(I). Moreover,
(ii) verifying an admissible or complete interpretation just requires to apply the
ΓD operator once and thus can be done in polynomial time. The remaining
results in Table 11 are by the combination of the polynomial-time verification



Computational Problems in Formal Argumentation and their Complexity 49

algorithms with the standard guess and check algorithms as used for Dung’s
AFs.

6 Discussion

In this chapter we presented complexity results for the three argumentation
formalisms of Dung’s Abstract Argumentation Frameworks, Assumption-based
Argumentation and Abstract Dialectical Frameworks. We have identified sev-
eral sources of computational complexity: (i) the construction of arguments and
the interlinking structure, e.g., the attack relation, (ii) the search for coherent
sets of arguments, and (iii) the decision about certain conclusions. Points (i)
and (iii) are present in the complexity results for Assumption-based Argumen-
tation where the complexity of algorithms heavily depends on the complexity
of the derivability relation, which is the essential ingredient to build arguments,
identify conflicts, and draw conclusions. Point (ii) is present in all three for-
malisms. The discussed results show that the actual computational complexity
in this step may highly depend on the chosen semantics and reasoning task.
Moreover, faced with the typically high complexity we discussed approaches to
identify instances with lower complexity and solve them more efficiently.

Implications for the Design of Systems and Algorithms. First given
the upper bounds of the complexity analysis we have first guidelines how to
implement argumentation semantics, and on the computational resources re-
quired for that. An efficient system should process any instance within the
resources given by the upper bound but moreover also should perform better
on easier instances. In particular an efficient system should also be able to
process instances that fall into one of the tractable fragments with milder com-
plexity more efficiently. A system for abstract argumentation that is explicitly
built around this idea is CEGARTIX [Dvořák et al., 2014a], that is based on
easier fragments for semantics on the second level of the polynomial-hierarchy.

The complexity classification of a semantics is also crucial for reduction-
based implementations. To get an appropriate reduction the target formalism
should have a similar complexity as the argumentation semantics, or one should
only use a fragment of the target formalism with similar complexity. One ex-
ample is the ASPARTIX [Egly et al., 2010] system that encodes abstract argu-
mentation problems in logic-programming in a query-based fashion. That is,
the system provides fixed encodings for the supported argumentation semantics
(the queries) that are then evaluated on the encoding of considered AF (the in-
put data).22 The polynomial-time computable grounded semantics is encoded
as stratified logic program, a fragment whose data-complexity is in polynomial
time (even P-complete), the semantics at the NP, coNP level are encoded as
programs without disjunction in the rule heads, the data-complexity of this
kind of logic programs is on the NP / coNP level, and the full expressiveness of
disjunctive logic programs is only used for the argumentation semantics whose

22The specific encoding of an AF as logic program has became popular beyond the logic
programming setting as the so-called ASPARTIX-format for encoding AFs.



50 Wolfgang Dvořák, Paul E. Dunne

complexity is at the second level of the polynomial-hierarchy.23

Another example is the work on intertranslatability of abstract argumenta-
tion semantics where one aims to efficiently translate one argumentation se-
mantics to another, by modifying the argumentation framework [Dvořák and
Woltran, 2011; Dvořák and Spanring, 2016]. Here a gap in the complexities of
the semantics immediately gives a negative result.

Function Complexity. In this chapter we restricted ourselves to what we
consider to be the core computational problems and in particular to decision
problems. In terms of computational complexity function problems, problems
where one wants to compute a number, extensions or the set of extensions, are
only rarely studied, notable exceptions are the research line on ideal seman-
tics [Dunne, 2009; Dunne et al., 2013], the work on counting the number of
extensions [Baroni et al., 2010], and the work on computing an admissible set
that results in a minimal socratic discussion [Caminada et al., 2016]. Recently,
Kröll et al. started the research on enumeration complexity in abstract argu-
mentation [Kröll et al., 2017], where one is interested in the computational cost
per extension.

Fine-Grained Lower Bounds. Lower bounds from classical computational
complexity theory like NP-hardness indicate that there are no polynomial-time
algorithms. However, they neither indicate lower bounds for the constants in
the exponent of exponential running times nor rule out subexponential algo-
rithms at all. That is, there is still some gap between the best known algo-
rithms for the hard problems, they are exponential-time (see, e.g., [Nofal et al.,
2014]), and the existing lower bounds. To overcome this gap, in the field of
combinatorial algorithms, so called conditional lower bounds are studied (see,
e.g., [Abboud and Williams, 2014]). That is, one uses conjectures about lower
bounds for well studied algorithmic problems. To obtain a lower bound for a
new problem one then reduces the problem from the conjecture to the prob-
lem under question such that a faster algorithm for the new problem would
imply a faster algorithm for the original problem and thus would contradict
the conjecture. By that one gets an algorithmic lower bound for the new
problem conditioned on the original conjecture. Probably the most prominent
such conjecture is the (strong) exponential-time hypothesis (S)ETH [Impagli-
azzo and Paturi, 1999], with ETH conjecturing that there is no subexponential
algorithm for 3-SAT, and SETH conjecturing that there is no algorithm for
CNF-SAT that runs in time 2(1−ε)n ⋅ poly(n,m), for every constant ε > 0 and
polynomial poly(n,m). As many of the existing reductions in formal argumen-
tation are based on propositional logic (S)ETH is also a promising starting
point for closing these complexity gaps in formal argumentation.

Complexity Analysis of further Argumentation Formalisms. In this
chapter we only cover three argumentation formalisms, while there are many
more around and many of them come with a complexity analysis. Below we
give a brief overview and pointers to the relevant literature. First, there are

23For a survey on the complexity of logic-programs see [Dantsin et al., 2001].



Computational Problems in Formal Argumentation and their Complexity 51

formalisms, e.g. AFRAs [Baroni et al., 2011b], that extend Dung’s Abstract
argumentation frameworks and can be efficiently reduced to them. For such
formalisms the complexity results for AFs directly extend to the new formalism.
Second, there are extensions of AFs that can not be reduced in such a direct
way and thus need their own complexity analysis. Most prominently: The com-
plexity of Extended argumentation frameworks was studied in [Dunne et al.,
2010] and later complemented by a result in [Dvořák et al., 2015]; Valued-based
argumentation has been discussed in an earlier survey [Dunne and Wooldridge,
2009] on the complexity of abstract argumentation and more recent results
can be found in, e.g., [Dunne, 2010; Kim et al., 2011]; weighted argumenta-
tion systems and their complexity have been studied in [Dunne et al., 2011];
and Constrained Argumentation Frameworks [Coste-Marquis et al., 2006]. Fi-
nally, there are complexity results for logic-based argumentation formalisms.
Complexity aspects of Deductive Argumentation were for instance considered
in [Besnard et al., 2009; Creignou et al., 2011], while the complexity of Defea-
sible Logic Programming (DeLP) was studied in [Cecchi et al., 2006].

Complexity Analysis in Formal Argumentation. At the current state of
the field of formal argumentation in most argumentation formalisms we already
have a good understanding of the computational complexity of the fundamen-
tal problems and the important semantics. However, this by no means says
that all research questions in that direction are solved. Indeed the field of
formal argumentation is very active and with almost every new research topic
there come associated computational problems that should be analysed w.r.t.
their computational complexity. Let us exemplify three such occasion where a
complexity analysis can deepen our understanding: (a) For a newly proposed
semantics the complexity of the fundamental reasoning problems should be
analysed in order to compare it with existing semantics and identified com-
putational benefits/drawbacks. (b) When expanding existing argumentation
formalisms with additional (syntactic) concepts one is interested in the (addi-
tional) computational costs of these concepts. That is by how much the com-
plexity increases or whether one can add these concepts without any computa-
tional drawbacks. (c) When considering novel tasks for argumentation systems
a complexity classification gives a first impression on the feasibility of the new
task and guides the way to efficient implementations. For instance, recently the
field of dynamics of argumentation received some attention [Diller et al., 2015;
Snaith and Reed, 2016; Wallner et al., 2016; Kim et al., 2013] and raised a
couple of computational problems, e.g., the so-called extension enforcement
problem [Baumann and Brewka, 2010] where one aims to modify an AF such
that a certain set of arguments becomes acceptable. The work of [Wallner et
al., 2016] first gives a comprehensive complexity analysis of the enforcement
problem and then turns these results into algorithms and the prototype system
Pakota 24.

24https://www.cs.helsinki.fi/group/coreo/pakota/



52 Wolfgang Dvořák, Paul E. Dunne

Acknowledgments

The authors are grateful to Hannes Strass, Johannes P. Wallner and an anony-
mous reviewer for their thoughtful comments on earlier versions of this chapter
which helped to improve the quality of presentation.

BIBLIOGRAPHY
[Abboud and Williams, 2014] Amir Abboud and Virginia Vassilevska Williams. Popular

conjectures imply strong lower bounds for dynamic problems. In 55th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA,
October 18-21, 2014, pages 434–443. IEEE Computer Society, 2014.

[Arieli and Caminada, 2012] Ofer Arieli and Martin W. A. Caminada. A general QBF-based
formalization of abstract argumentation theory. In Bart Verheij, Stefan Szeider, and
Stefan Woltran, editors, Computational Models of Argument: Proceedings of COMMA
2012, Vienna, Austria, September 10-12, 2012, volume 245 of Frontiers in Artificial
Intelligence and Applications, pages 105–116. IOS Press, 2012.

[Arora and Barak, 2009] Sanjeev Arora and Boaz Barak. Computational Complexity: A
Modern Approach. Cambridge University Press, New York, NY, USA, 1st edition, 2009.

[Baroni et al., 2005] Pietro Baroni, Massimiliano Giacomin, and Giovanni Guida. SCC-
recursiveness: A general schema for argumentation semantics. Artif. Intell., 168(1-2):162–
210, 2005.

[Baroni et al., 2010] Pietro Baroni, Paul E. Dunne, and Massimiliano Giacomin. On exten-
sion counting problems in argumentation frameworks. In Pietro Baroni, Federico Cerutti,
Massimiliano Giacomin, and Guillermo Ricardo Simari, editors, Computational Models of
Argument: Proceedings of COMMA 2010, Desenzano del Garda, Italy, September 8-10,
2010, volume 216 of Frontiers in Artificial Intelligence and Applications, pages 63–74.
IOS Press, 2010.

[Baroni et al., 2011a] Pietro Baroni, Martin Caminada, and Massimiliano Giacomin. An
introduction to argumentation semantics. Knowledge Eng. Review, 26(4):365–410, 2011.

[Baroni et al., 2011b] Pietro Baroni, Federico Cerutti, Massimiliano Giacomin, and Gio-
vanni Guida. AFRA: Argumentation framework with recursive attacks. Int. J. Approx.
Reasoning, 52(1):19–37, 2011.

[Baroni et al., 2011c] Pietro Baroni, Paul E. Dunne, and Massimiliano Giacomin. On the
resolution-based family of abstract argumentation semantics and its grounded instance.
Artif. Intell., 175(3-4):791–813, 2011.

[Baumann and Brewka, 2010] Ringo Baumann and Gerhard Brewka. Expanding argumen-
tation frameworks: Enforcing and monotonicity results. In Pietro Baroni, Federico
Cerutti, Massimiliano Giacomin, and Guillermo Ricardo Simari, editors, Computational
Models of Argument: Proceedings of COMMA 2010, Desenzano del Garda, Italy, Septem-
ber 8-10, 2010, volume 216 of Frontiers in Artificial Intelligence and Applications, pages
75–86. IOS Press, 2010.

[Besnard and Doutre, 2004] Philippe Besnard and Sylvie Doutre. Checking the acceptability
of a set of arguments. In James P. Delgrande and Torsten Schaub, editors, Proceedings
of the 10th International Workshop on Non-Monotonic Reasoning (NMR 2004), pages
59–64, 2004.

[Besnard et al., 2009] Philippe Besnard, Anthony Hunter, and Stefan Woltran. Encoding de-
ductive argumentation in quantified boolean formulae. Artificial Intelligence, 173(15):1406
– 1423, 2009.

[Bondarenko et al., 1997] Andrei Bondarenko, Phan Minh Dung, Robert A. Kowalski, and
Francesca Toni. An abstract, argumentation-theoretic approach to default reasoning.
Artif. Intell., 93:63–101, 1997.

[Brewka and Gordon, 2010] Gerhard Brewka and Thomas F. Gordon. Carneades and ab-
stract dialectical frameworks: A reconstruction. In Pietro Baroni, Federico Cerutti, Mas-
similiano Giacomin, and Guillermo Ricardo Simari, editors, Computational Models of
Argument: Proceedings of COMMA 2010, Desenzano del Garda, Italy, September 8-10,
2010, volume 216 of Frontiers in Artificial Intelligence and Applications, pages 3–12. IOS
Press, 2010.



Computational Problems in Formal Argumentation and their Complexity 53

[Brewka and Woltran, 2010] Gerhard Brewka and Stefan Woltran. Abstract dialectical
frameworks. In Fangzhen Lin, Ulrike Sattler, and Miroslaw Truszczynski, editors, Prin-
ciples of Knowledge Representation and Reasoning: Proceedings of the Twelfth Interna-
tional Conference, KR 2010, Toronto, Ontario, Canada, May 9-13, 2010, pages 780–785.
AAAI Press, 2010.

[Brewka et al., 2013] Gerhard Brewka, Hannes Strass, Stefan Ellmauthaler, Johannes Peter
Wallner, and Stefan Woltran. Abstract dialectical frameworks revisited. In Francesca
Rossi, editor, IJCAI 2013, Proceedings of the 23rd International Joint Conference on
Artificial Intelligence, Beijing, China, August 3-9, 2013, pages 803–809. IJCAI/AAAI,
2013.

[Caminada and Gabbay, 2009] Martin Caminada and Dov M. Gabbay. A logical account of
formal argumentation. Studia Logica, 93(2):109–145, 2009.

[Caminada et al., 2012] Martin Caminada, Walter A. Carnielli, and Paul E. Dunne. Semi-
stable semantics. J. Log. Comput., 22:1207–1254, 2012.

[Caminada et al., 2016] Martin Caminada, Wolfgang Dvořák, and Srdjan Vesic. Preferred
semantics as socratic discussion. J. Log. Comput., 26:1257–1292, 2016.

[Caminada, 2007] Martin Caminada. Comparing two unique extension semantics for formal
argumentation: ideal and eager. In Proceedings of the 19th Belgian-Dutch Conference on
Artificial Intelligence (BNAIC 2007), pages 81–87, 2007.

[Cecchi et al., 2006] Laura A. Cecchi, Pablo R. Fillottrani, and Guillermo R. Simari. On the
complexity of DeLP through game semantics. In 11th. Intl. Workshop on Nonmonotonic
Reasoning, pages 386–394, 2006.

[Cerutti et al., 2014] Federico Cerutti, Massimiliano Giacomin, Mauro Vallati, and Marina
Zanella. An SCC recursive meta-algorithm for computing preferred labellings in abstract
argumentation. In Chitta Baral, Giuseppe De Giacomo, and Thomas Eiter, editors, Prin-
ciples of Knowledge Representation and Reasoning: Proceedings of the Fourteenth Inter-
national Conference, KR 2014, Vienna, Austria, July 20-24, 2014, pages 42–51. AAAI
Press, 2014.

[Charwat, 2012] Günther Charwat. Tree-decomposition based algorithms for abstract argu-
mentation frameworks. Master’s thesis, Vienna University of Technology, 2012. Stefan
Woltran and Wolfgang Dvořák advisors.

[Chen et al., 2008] Jianer Chen, Yang Liu, Songjian Lu, Barry O’Sullivan, and Igor Razgon.
A fixed-parameter algorithm for the directed feedback vertex set problem. J. ACM,
55(5):21:1–21:19, 2008.

[Coste-Marquis et al., 2005] Sylvie Coste-Marquis, Caroline Devred, and Pierre Marquis.
Symmetric argumentation frameworks. In Lluis Godo, editor, Proceedings of the 8th
European Conference on Symbolic and Quantitative Approaches to Reasoning with Un-
certainty (ECSQARU 2005), volume 3571 of Lecture Notes in Computer Science, pages
317–328. Springer, 2005.

[Coste-Marquis et al., 2006] Sylvie Coste-Marquis, Caroline Devred, and Pierre Marquis.
Constrained argumentation frameworks. In Patrick Doherty, John Mylopoulos, and
Christopher A. Welty, editors, Proceedings, Tenth International Conference on Princi-
ples of Knowledge Representation and Reasoning, Lake District of the United Kingdom,
June 2-5, 2006, pages 112–122. AAAI Press, 2006.

[Creignou et al., 2011] Nadia Creignou, Johannes Schmidt, Michael Thomas, and Stefan
Woltran. Complexity of logic-based argumentation in Post’s framework. Argument &
Computation, 2(2-3):107–129, 2011.

[Cygan et al., 2015] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov,
Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized
Algorithms. Springer, 2015.

[Dantsin et al., 2001] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov.
Complexity and expressive power of logic programming. ACM Comput. Surv., 33(3):374–
425, 2001.

[Diller et al., 2015] Martin Diller, Adrian Haret, Thomas Linsbichler, Stefan Rümmele, and
Stefan Woltran. An extension-based approach to belief revision in abstract argumenta-
tion. In Qiang Yang and Michael Wooldridge, editors, Proceedings of the Twenty-Fourth
International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Ar-
gentina, July 25-31, 2015, pages 2926–2932. AAAI Press, 2015.



54 Wolfgang Dvořák, Paul E. Dunne

[Dimopoulos and Torres, 1996] Yannis Dimopoulos and Alberto Torres. Graph theoretical
structures in logic programs and default theories. Theor. Comput. Sci., 170(1-2):209–244,
1996.

[Dimopoulos et al., 1999] Yannis Dimopoulos, Bernhard Nebel, and Francesca Toni. Pre-
ferred arguments are harder to compute than stable extension. In Thomas Dean, editor,
Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, IJ-
CAI 99, Stockholm, Sweden, July 31 - August 6, 1999. 2 Volumes, 1450 pages, pages
36–43. Morgan Kaufmann, 1999.

[Dimopoulos et al., 2000] Yannis Dimopoulos, Bernhard Nebel, and Francesca Toni. Find-
ing admissible and preferred arguments can be very hard. In Anthony G. Cohn, Fausto
Giunchiglia, and Bart Selman, editors, KR 2000, Principles of Knowledge Representa-
tion and Reasoning Proceedings of the Seventh International Conference, Breckenridge,
Colorado, USA, April 11-15, 2000., pages 53–61. Morgan Kaufmann, 2000.

[Dimopoulos et al., 2002] Yannis Dimopoulos, Bernhard Nebel, and Francesca Toni. On
the computational complexity of assumption-based argumentation for default reasoning.
Artif. Intell., 141(1/2):57–78, 2002.

[Dung et al., 2006] Phan Minh Dung, Paolo Mancarella, and Francesca Toni. A dialec-
tic procedure for sceptical, assumption-based argumentation. In Paul E. Dunne and
Trevor J. M. Bench-Capon, editors, Computational Models of Argument: Proceedings
of COMMA 2006, September 11-12, 2006, Liverpool, UK, volume 144 of Frontiers in
Artificial Intelligence and Applications, pages 145–156. IOS Press, 2006.

[Dung et al., 2007] Phan Minh Dung, Paolo Mancarella, and Francesca Toni. Computing
ideal sceptical argumentation. Artif. Intell., 171(10-15):642–674, 2007.

[Dung, 1995] Phan Minh Dung. On the acceptability of arguments and its fundamental
role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell.,
77(2):321–358, 1995.

[Dunne and Bench-Capon, 2001] Paul E. Dunne and Trevor J. M. Bench-Capon. Com-
plexity and combinatorial properties of argument systems. Technical report, Dept. of
Computer Science, University of Liverpool, 2001.

[Dunne and Bench-Capon, 2002] Paul E. Dunne and Trevor J. M. Bench-Capon. Coherence
in finite argument systems. Artif. Intell., 141(1/2):187–203, 2002.

[Dunne and Wooldridge, 2009] Paul E. Dunne and Michael Wooldridge. Complexity of ab-
stract argumentation. In Guillermo Simari and Iyad Rahwan, editors, Argumentation in
Artificial Intelligence, pages 85–104. Springer US, 2009.

[Dunne et al., 2010] Paul E. Dunne, Sanjay Modgil, and Trevor J. M. Bench-Capon. Compu-
tation in extended argumentation frameworks. In ECAI 2010 - 19th European Conference
on Artificial Intelligence, Lisbon, Portugal, August 16-20, 2010, Proceedings, volume 215
of Frontiers in Artificial Intelligence and Applications, pages 119–124. IOS Press, 2010.

[Dunne et al., 2011] Paul E. Dunne, Anthony Hunter, Peter McBurney, Simon Parsons,
and Michael Wooldridge. Weighted argument systems: Basic definitions, algorithms, and
complexity results. Artif. Intell., 175(2):457–486, 2011.

[Dunne et al., 2013] Paul E. Dunne, Wolfgang Dvořák, and Stefan Woltran. Parametric
properties of ideal semantics. Artif. Intell., 202(0):1 – 28, 2013.

[Dunne, 2007] Paul E. Dunne. Computational properties of argument systems satisfying
graph-theoretic constraints. Artif. Intell., 171(10-15):701–729, 2007.

[Dunne, 2008] Paul E. Dunne. The computational complexity of ideal semantics I: Abstract
argumentation frameworks. In Philippe Besnard, Sylvie Doutre, and Anthony Hunter,
editors, Computational Models of Argument: Proceedings of COMMA 2008, Toulouse,
France, May 28-30, 2008, volume 172 of Frontiers in Artificial Intelligence and Applica-
tions, pages 147–158. IOS Press, 2008.

[Dunne, 2009] Paul E. Dunne. The computational complexity of ideal semantics. Artif.
Intell., 173(18):1559–1591, 2009.

[Dunne, 2010] Paul E. Dunne. Tractability in value-based argumentation. In Pietro Baroni,
Federico Cerutti, Massimiliano Giacomin, and Guillermo Ricardo Simari, editors, Compu-
tational Models of Argument: Proceedings of COMMA 2010, Desenzano del Garda, Italy,
September 8-10, 2010, volume 216 of Frontiers in Artificial Intelligence and Applications,
pages 195–206. IOS Press, 2010.



Computational Problems in Formal Argumentation and their Complexity 55

[Dvořák and Gaggl, 2016] Wolfgang Dvořák and Sarah Alice Gaggl. Stage semantics and the
SCC-recursive schema for argumentation semantics. J. Log. Comput., 26(4):1149–1202,
2016.

[Dvořák and Spanring, 2016] Wolfgang Dvořák and Christof Spanring. Comparing the ex-
pressiveness of argumentation semantics. J. Log. Comput., in press (available online),
2016.

[Dvořák and Woltran, 2010] Wolfgang Dvořák and Stefan Woltran. Complexity of semi-
stable and stage semantics in argumentation frameworks. Inf. Process. Lett., 110(11):425–
430, 2010.

[Dvořák and Woltran, 2011] Wolfgang Dvořák and Stefan Woltran. On the intertranslata-
bility of argumentation semantics. J. Artif. Intell. Res. (JAIR), 41:445–475, 2011.

[Dvořák et al., 2010] Wolfgang Dvořák, Stefan Szeider, and Stefan Woltran. Reasoning in
argumentation frameworks of bounded clique-width. In Pietro Baroni, Federico Cerutti,
Massimiliano Giacomin, and Guillermo Ricardo Simari, editors, Computational Models of
Argument: Proceedings of COMMA 2010, Desenzano del Garda, Italy, September 8-10,
2010, volume 216 of Frontiers in Artificial Intelligence and Applications, pages 219–230.
IOS Press, 2010.

[Dvořák et al., 2012a] Wolfgang Dvořák, Sebastian Ordyniak, and Stefan Szeider. Augment-
ing tractable fragments of abstract argumentation. Artif. Intell., 186(0):157–173, 2012.

[Dvořák et al., 2012b] Wolfgang Dvořák, Reinhard Pichler, and Stefan Woltran. Towards
fixed-parameter tractable algorithms for abstract argumentation. Artif. Intell., 186(0):1
– 37, 2012.

[Dvořák et al., 2012c] Wolfgang Dvořák, Stefan Szeider, and Stefan Woltran. Abstract argu-
mentation via monadic second order logic. In Eyke Hüllermeier, Sebastian Link, Thomas
Fober, and Bernhard Seeger, editors, Scalable Uncertainty Management - 6th Interna-
tional Conference, SUM 2012, Marburg, Germany, September 17-19, 2012. Proceedings,
volume 7520 of Lecture Notes in Computer Science, pages 85–98. Springer, 2012.

[Dvořák et al., 2014a] Wolfgang Dvořák, Matti Järvisalo, Johannes Peter Wallner, and Ste-
fan Woltran. Complexity-sensitive decision procedures for abstract argumentation. Artif.
Intell., 206(0):53 – 78, 2014.

[Dvořák et al., 2014b] Wolfgang Dvořák, Thomas Linsbichler, Emilia Oikarinen, and Stefan
Woltran. Resolution-based grounded semantics revisited. In Simon Parsons, Nir Oren,
Chris Reed, and Federico Cerutti, editors, Computational Models of Argument: Proceed-
ings of COMMA 2014, Atholl Palace Hotel, Scottish Highlands, UK, September 9-12,
2014, volume 266 of Frontiers in Artificial Intelligence and Applications, pages 269–280.
IOS Press, 2014.

[Dvořák et al., 2015] Wolfgang Dvořák, Sarah Alice Gaggl, Thomas Linsbichler, and Jo-
hannes Peter Wallner. Reduction-based approaches to implement Modgil’s extended ar-
gumentation frameworks. In Thomas Eiter, Hannes Strass, Miroslaw Truszczynski, and
Stefan Woltran, editors, Advances in Knowledge Representation, Logic Programming,
and Abstract Argumentation - Essays Dedicated to Gerhard Brewka on the Occasion of
His 60th Birthday, volume 9060 of Lecture Notes in Computer Science, pages 249–264.
Springer, 2015.

[Dvořák, 2012a] Wolfgang Dvořák. Computational Aspects of Abstract Argumentation. PhD
thesis, Vienna University of Technology, Institute of Information Systems, 2012.

[Dvořák, 2012b] Wolfgang Dvořák. On the complexity of computing the justification sta-
tus of an argument. In Sanjay Modgil, Nir Oren, and Francesca Toni, editors, Theory
and Applications of Formal Argumentation - First International Workshop, TAFA 2011.
Barcelona, Spain, July 16-17, 2011, Revised Selected Papers, volume 7132 of Lecture
Notes in Computer Science, pages 32–49. Springer, 2012.

[Dvořák, 2012c] Wolfgang Dvořák. Technical note: Exploring ΣP2 / ΠP2 -hardness for ar-
gumentation problems with fixed distance to tractable classes. CoRR, abs/1201.0478,
2012.

[Dvořák, 2017] Wolfgang Dvořák. Technical note: On the complexity of the uniqueness
problem in abstract argumentation. Technical Report DBAI-TR-2008-xy, Technische Uni-
versität Wien, 2017.

[Egly and Woltran, 2006] Uwe Egly and Stefan Woltran. Reasoning in argumentation frame-
works using quantified boolean formulas. In Paul E. Dunne and Trevor J. M. Bench-Capon,
editors, Computational Models of Argument: Proceedings of COMMA 2006, September



56 Wolfgang Dvořák, Paul E. Dunne

11-12, 2006, Liverpool, UK, volume 144 of Frontiers in Artificial Intelligence and Appli-
cations, pages 133–144. IOS Press, 2006.

[Egly et al., 2010] Uwe Egly, Sarah Alice Gaggl, and Stefan Woltran. Answer-set program-
ming encodings for argumentation frameworks. Argument and Computation, 1(2):147–
177, 2010.

[Eiter and Gottlob, 1993] Thomas Eiter and Georg Gottlob. Propositional circumscription
and extended closed-world reasoning are ΠP2 -complete. Theor. Comput. Sci., 114(2):231–
245, 1993.

[Ellmauthaler, 2012] Stefan Ellmauthaler. Abstract dialectical frameworks: Properties,
complexity, and implementation. Master’s thesis, Vienna University of Technology, 2012.
Stefan Woltran and Johannes Peter Wallner advisors.

[Flum and Grohe, 2006] Jörg Flum and Martin Grohe. Parameterized Complexity Theory.
Texts in Theoretical Computer Science. An EATCS Series. Springer, 2006.

[Gaggl and Woltran, 2013] Sarah Alice Gaggl and Stefan Woltran. The cf2 argumentation
semantics revisited. J. Log. Comput., 23(5):925–949, 2013.

[Gelfond and Lifschitz, 1988] Michael Gelfond and Vladimir Lifschitz. The stable model
semantics for logic programming. In Robert A. Kowalski and Kenneth A. Bowen, editors,
Logic Programming, Proceedings of the Fifth International Conference and Symposium,
Seattle, Washington, August 15-19, 1988 (2 Volumes), pages 1070–1080. MIT Press, 1988.

[Greenlaw et al., 1995] Raymond Greenlaw, H.James Hoover, and Walter L. Ruzzo. Limits
to parallel computation: P-completeness theory. Oxford University Press, 1995.

[Impagliazzo and Paturi, 1999] Russell Impagliazzo and Ramamohan Paturi. Complexity of
k-sat. In Proceedings of the 14th Annual IEEE Conference on Computational Complexity,
Atlanta, Georgia, USA, May 4-6, 1999, pages 237–240. IEEE Computer Society, 1999.

[Kasif, 1986] Simon Kasif. On the parallel complexity of some constraint satisfaction prob-
lems. In Tom Kehler, editor, Proceedings of the 5th National Conference on Artificial
Intelligence. Philadelphia, PA, August 11-15, 1986. Volume 1: Science, pages 349–353.
Morgan Kaufmann, 1986.

[Kim et al., 2011] Eun Jung Kim, Sebastian Ordyniak, and Stefan Szeider. Algorithms and
complexity results for persuasive argumentation. Artif. Intell., 175(9-10):1722–1736, 2011.

[Kim et al., 2013] Eun Jung Kim, Sebastian Ordyniak, and Stefan Szeider. The complexity
of repairing, adjusting, and aggregating of extensions in abstract argumentation. In Eliz-
abeth Black, Sanjay Modgil, and Nir Oren, editors, Theory and Applications of Formal
Argumentation - Second International Workshop, TAFA 2013, Beijing, China, August
3-5, 2013, Revised Selected papers, volume 8306 of Lecture Notes in Computer Science,
pages 158–175. Springer, 2013.

[Kleene, 1952] S.C. Kleene. Introduction to Metamathematics. Bibliotheca Mathematica.
North-Holland, 1952.

[Kröll et al., 2017] Markus Kröll, Reinhard Pichler, and Stefan Woltran. On the complexity
of enumerating the extensions of abstract argumentation frameworks. In IJCAI 2017 (to
appear), 2017.

[Moore, 1985] Robert C. Moore. Semantical considerations on nonmonotonic logic. Artif.
Intell., 25(1):75–94, 1985.

[Niedermeier, 2006] Rolf Niedermeier. Invitation to fixed-parameter algorithms, volume 31.
Oxford University Press, USA, 2006.

[Nieves et al., 2009] Juan Carlos Nieves, Mauricio Osorio, and Claudia Zepeda. Expressing
extension-based semantics based on stratified minimal models. In Hiroakira Ono, Makoto
Kanazawa, and Ruy J. G. B. de Queiroz, editors, Logic, Language, Information and
Computation, 16th International Workshop, WoLLIC 2009, Tokyo, Japan, June 21-24,
2009. Proceedings, volume 5514 of Lecture Notes in Computer Science, pages 305–319.
Springer, 2009.

[Nofal et al., 2014] Samer Nofal, Katie Atkinson, and Paul E. Dunne. Algorithms for deci-
sion problems in argument systems under preferred semantics. Artif. Intell., 207:23–51,
2014.

[Ordyniak and Szeider, 2011] Sebastian Ordyniak and Stefan Szeider. Augmenting tractable
fragments of abstract argumentation. In Toby Walsh, editor, IJCAI 2011, Proceedings of
the 22nd International Joint Conference on Artificial Intelligence, Barcelona, Catalonia,
Spain, July 16-22, 2011, pages 1033–1038. IJCAI/AAAI, 2011.



Computational Problems in Formal Argumentation and their Complexity 57

[Papadimitriou, 1994] Christos H. Papadimitriou. Computational Complexity. Addison-
Wesley, Reading, Massachusetts, 1994.

[Reiter, 1980] Raymond Reiter. A logic for default reasoning. Artif. Intell., 13(1-2):81–132,
1980.

[Robertson et al., 1999] Neil Robertson, P. D. Seymour, and Robin Thomas. Permanents,
Pfaffian orientations, and even directed circuits. Ann. of Math. (2), 150(3):929–975, 1999.

[Snaith and Reed, 2016] Mark Snaith and Chris Reed. Argument revision. J. Log. Comput.,
in press (available online), 2016.

[Strass and Wallner, 2014] Hannes Strass and Johannes P. Wallner. Analyzing the Com-
putational Complexity of Abstract Dialectical Frameworks via Approximation Fixpoint
Theory. In Chitta Baral, Giuseppe De Giacomo, and Thomas Eiter, editors, Proceedings
of the 14th International Conference on Principles of Knowledge Representation and
Reasoning, KR 2014, pages 101–110. AAAI Press, 2014.

[Strass and Wallner, 2015] Hannes Strass and Johannes Peter Wallner. Analyzing the com-
putational complexity of abstract dialectical frameworks via approximation fixpoint the-
ory. Artif. Intell., 226:34–74, 2015.

[Strass, 2013] Hannes Strass. Instantiating knowledge bases in abstract dialectical frame-
works. In João Leite, Tran Cao Son, Paolo Torroni, Leon van der Torre, and Stefan
Woltran, editors, Computational Logic in Multi-Agent Systems - 14th International Work-
shop, CLIMA XIV, Corunna, Spain, September 16-18, 2013. Proceedings, volume 8143
of Lecture Notes in Computer Science, pages 86–101. Springer, 2013.

[Thimm and Villata, 2015] Matthias Thimm and Serena Villata. System descriptions of
the first international competition on computational models of argumentation (iccma’15).
CoRR, abs/1510.05373, 2015.

[Thimm et al., 2016] Matthias Thimm, Serena Villata, Federico Cerutti, Nir Oren, Hannes
Strass, and Mauro Vallati. Summary report of the first international competition on
computational models of argumentation. AI Magazine, 37(1):102, 2016.

[Toni, 2014] Francesca Toni. A tutorial on assumption-based argumentation. Argument &
Computation, 5(1):89–117, 2014.

[Verheij, 1996] Bart Verheij. Two approaches to dialectical argumentation: admissible sets
and argumentation stages. In J. Meyer and L. van der Gaag, editors, Proceedings of the
8th Dutch Conference on Artificial Intelligence (NAIC’96), pages 357–368, 1996.

[Wallner et al., 2016] Johannes Peter Wallner, Andreas Niskanen, and Matti Järvisalo.
Complexity results and algorithms for extension enforcement in abstract argumentation.
In Dale Schuurmans and Michael P. Wellman, editors, Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA.,
pages 1088–1094. AAAI Press, 2016.

[Wallner, 2014] Johannes P. Wallner. Complexity Results and Algorithms for Argumentation
- Dung’s Frameworks and Beyond. PhD thesis, Vienna University of Technology, Institute
of Information Systems, 2014.

[Wu and Caminada, 2010] Yining Wu and Martin Caminada. A labelling-based justification
status of arguments. Studies in Logic, 3(4):12–29, 2010.

Wolfgang Dvořák
Institute of Information Systems
TU Wien
Vienna, Austria
Email: dvorak@dbai.tuwien.ac.at

Paul E. Dunne
Department of Computer Science
University of Liverpool
Liverpool, United Kingdom
Email: ped@csc.liv.ac.uk


