INTRODUCTION TO SPARK

Theresa Csar

DBAI Research Seminar, October |2th, 2017

HISTORY

ﬁj- Graph A

or

cassandra

APACHE

'Apache Hadoop Ecosystem . Fhaﬁs

MAPREDUCE - FRUITCOUNT

Input: ,,Apple, Pear, Kiwi, Pear*

|. Map to key-value pairs: (Apple, |), (Pear, 1), (Kiwi, I), (Pear, I)

2. Shuffle: (Apple, 1) (Pear, 1), (Pear,) (Kiwi, 1)

3. Reduce (sum): (Apple, |) (Pear, 2) (Kiwi,)

MAPREDUCE -> SPARK

Spark is the answer to Hadoop Mapreduces Disadvantages

> Slow
* Batch-processing

* Lots of reads and writes to the file system

PREGEL COMPUTATION — THINK LIKE A
VERTEX

vertices send messages to each other (along edges)
In each superstep the vertex executes a vertex
program on tthe received messages

The state of a vertex is set to ,,inactive” if it does
not receive a message, or if it votes to halt

inactive

Receives a message

The computation stops when all vertices are inactive

APACHE SPARK

* Runs both locally or distributed on a cluster

* Gains a lot of speed in comparison to traditional mapreduce/hadoop by
perfoming computations in memory.

* Key concept: Resilient Distributed Datasets (RDDs) and lazy evaluation

RDDS - RESILIENT DISTRIBUTED
DATASETS

* Spark’s core abstraction for working with data

* Immutable distributed collection of objects
(split into multiple partitions)

* Three possible operations in Spark (= lazy evaluation)

* Create a new RDD
* Transform an exisiting RDD

* Action: call an operation on RDDs to compute a result

RDDS — OPERATIONS / LAZY
EVALUATION

* Creating: load a dataset, or distribute a collection of objects (parallelize())

* Transformations: for example filtering creates a new RDD

¢ are computed only on action

* Actions: calculated right away and return a result or save it to a storage

CREATE RDDS

* Parallelize existing collection of object

* Usually not practicable since it requries you to have the whole dataset in memory on
one machine

* Read from Files in a storage (SparkContext.textFile())

RDDS — PERSISTY()

* RDDs are by default recomputed each time you run an action

* If you want to run multiple queries on the same dataset use persist() to keep
the RDD in memory or on disk

RDDS - BASIC TRANSFORMATIONS

rdd= {1,2,2,3}

* rdd.map(x => x*x) {1,4,4,9}

* rdd.flatMap(x => x.to(3)) {1,2,3,2,3,2,3,3}
* rddfilter(x => x!=2) {1,3}

* rdd.distinct() {1,3}

rdd.groupBy(), rdd.orderBy(), rdd.union(other), rdd.intersection(other),
rdd.subtract(other), rdd.cartesian(other)

RDDS - ACTIONS

rdd= {1,2,2,3}
val sum = rdd.reduce((x,y) => x+y)

Similar actions: aggregate(), fold()

RDD — KEY VALUES

» rdd.groupByKey()
* rdd.reduceByKey()

EXAMPLE |

* www.dbai.tuwien.ac.at/staff/csar/spark

* Create a useraccount at databricks

* Import notebook to workspace

http://www.dbai.tuwien.ac.at/staff/csar/spark

SPARK — OTHER DATATYPES THAN RDDS

* Dataframes (Spark [.6)

* Immutable distributed collection of data

* Organized into named columns

* Untyped Rows -> Does not support compile time type safety
* Datasets (Spark [.6)

* Typed Rows = Supports compile time type safety

= RDD, Dataframes and Datasets are slowly merging into one datatype: DataSet

https://databricks.com/blog/2016/07/14/a-tale-of-three-apache-spark-apis-rdds-
dataframes-and-datasets.html

https://databricks.com/blog/2016/07/14/a-tale-of-three-apache-spark-apis-rdds-dataframes-and-datasets.html

SPARK PACKAGES

Machine Learning: Mlib
Analytics: SparkR
Spark Streaming

GraphX

Many more: https://spark.apache.org/third-party-projects.html

https://spark.apache.org/third-party-projects.html

SPARK SQL

Only works on relational data (dataframes or datasets).

SparkSQL can connect to many different Database systems (Hbase, Hive,
Cassandra, ...)

SparkSQL always returns DataFrames

Spark SQL Language Manual: https://docs.databricks.com/spark/latest/spark-
sgl/index.html#spark-sql-language-manual

https://docs.databricks.com/spark/latest/spark-sql/index.html#spark-sql-language-manual

SPARK SQL — CREATE TABLE

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] [db_name.]table_name
[(col_namel col_typel...)]
USING datasource
[OPTIONS (keyl=vall, key2=val2,...)]
[PARTITIONED BY (col_namel, col_name2, ...)]
[CLUSTERED BY (col_name3, col_name4,...) INTO num_buckets BUCKETS]
[LOCATION path]
[TBLPROPERTIES (key | =vall, key2=val2, ...)]
[AS select_statement]

EXAMPLE 2

PREGEL COMPUTATION — THINK LIKE A
VERTEX

vertices send messages to each other (along edges)
In each superstep the vertex executes a vertex
program on tthe received messages

The state of a vertex is set to ,,inactive” if it does
not receive a message, or if it votes to halt

inactive

Receives a message

The computation stops when all vertices are inactive

GRAPHX

GraphX is built on top of spark

extends the Resilient Distributed Dataset by the Resilient Distributed
Property Graph

fundamental graph operation

collection of graph algorithms (page rank, triangle counting, ...)

Pregel API

GRAPHX

* Graph[VD, ED] = Graph(vertices, edges)

* vertices: RDD[(Vertexld,VD)]
Each vertex has aVertexID and a value of type VD

* edges: RDD[Edge[ED]]
Each edge connects two vertices (src and dst VertexIDs) and has an edge
attribute of type ED

EXAMPLE 3

RECENT DEVELOPMENTS

* The concept of DataFrames and are an extension to RDDs

* GraphFrames is a new alternative to GraphX and is based on DataFrames
(where GraphX was based on RDDs)

REFERENCES (PAPERYS)

* GraphX: Graph Processing in a Distributed Dataflow Framework, Gonzalez et
al, OSDI ’ 14

* Pregel: A System for Large-Scale Graph Processing, Malewicz et al., SIGMOD’ 10

* MapReduce: Simplified Data Processing on Large Clusters, Jeffrey Dean and
Sanjay Ghemawat, in Proc. 6th USENIX Symp. on Operating Syst. Design and
Impl., 2004

REFERENCES (BOOKS)

* Hadoop:The Definitive Guide 4™ Edition, Tom White, O’Reilly Media, April
2015

* Learning Spark, Lightning-Fast Big Data Analysis, Matei Zaharia et al., O’Reilly
Media, Mai 2015

* High Performance Spark, Best Practices for Scaling and Optimizing Apache
Spark, Holden Karau and Rachel Warren, O’Reilly Media, June 2017

REFERENCES (LINKS)

https://hadoop.apache.org/
https://spark.apache.org/
https://spark.apache.org/graphx/
https://community.cloud.databricks.com/

https://docs.databricks.com/spark/latest/spark-sql/index.html#spark-sql-
language-manual

WHERE TO GO FROM HERE?

Get your own local installation of spark

Use a virtual machine:

* https://de.hortonworks.com/products/sandbox/

* https://www.cloudera.com/downloads/quickstart vms/5-12.html

Rent a cluster:

* https://aws.amazon.com/de/ec2/?nc2=h_m]

* https://cloud.google.com/compute/

* https://azure.microsoft.com/de-de/

(in my opinion) best point to start programming your own scala code on a spark
cluster: https://de.hortonworks.com/tutorial/setting-up-a-spark-development-
environment-with-scala/

Tutorials by Databricks, Cloudera, Hortonworks

https://de.hortonworks.com/products/sandbox/
https://www.cloudera.com/downloads/quickstart_vms/5-12.html
https://aws.amazon.com/de/ec2/?nc2=h_m1
https://cloud.google.com/compute/
https://azure.microsoft.com/de-de/
https://de.hortonworks.com/tutorial/setting-up-a-spark-development-environment-with-scala/

THANK YOU FOR YOUR ATTENTION!

