
INTRODUCTION TO SPARK

Theresa Csar

DBAI Research Seminar, October 12th, 2017

HISTORY

MAPREDUCE - FRUITCOUNT

Input: „Apple, Pear, Kiwi, Pear“

1. Map to key-value pairs: (Apple,1), (Pear, 1), (Kiwi, 1), (Pear, 1)

2. Shuffle: (Apple,1) (Pear, 1), (Pear, 1) (Kiwi, 1)

3. Reduce (sum): (Apple, 1) (Pear, 2) (Kiwi,1)

MAPREDUCE -> SPARK

Spark is the answer to Hadoop Mapreduces Disadvantages

• Slow

• Batch-processing

• Lots of reads and writes to the file system

PREGEL COMPUTATION – THINK LIKE A
VERTEX

• vertices send messages to each other (along edges)

• In each superstep the vertex executes a vertex

program on tthe received messages

• The state of a vertex is set to „inactive“ if it does

not receive a message, or if it votes to halt

• The computation stops when all vertices are inactive

active inactive

Receives a message

APACHE SPARK

• Runs both locally or distributed on a cluster

• Gains a lot of speed in comparison to traditional mapreduce/hadoop by

perfoming computations in memory.

• Key concept: Resilient Distributed Datasets (RDDs) and lazy evaluation

RDDS - RESILIENT DISTRIBUTED
DATASETS

• Spark‘s core abstraction for working with data

• Immutable distributed collection of objects

(split into multiple partitions)

• Three possible operations in Spark ( lazy evaluation)

• Create a new RDD

• Transform an exisiting RDD

• Action: call an operation on RDDs to compute a result

RDDS – OPERATIONS / LAZY
EVALUATION

• Creating: load a dataset, or distribute a collection of objects (parallelize())

• Transformations: for example filtering creates a new RDD

• are computed only on action

• Actions: calculated right away and return a result or save it to a storage

CREATE RDDS

• Parallelize existing collection of object

• Usually not practicable since it requries you to have the whole dataset in memory on

one machine

• Read from Files in a storage (SparkContext.textFile())

RDDS – PERSIST()

• RDDs are by default recomputed each time you run an action

• If you want to run multiple queries on the same dataset use persist() to keep

the RDD in memory or on disk

RDDS - BASIC TRANSFORMATIONS

rdd = {1,2,2,3}

• rdd.map(x => x*x) {1,4,4,9}

• rdd.flatMap(x => x.to(3)) {1,2,3,2,3,2,3,3}

• rdd.filter(x => x!=2) {1,3}

• rdd.distinct() {1,3}

rdd.groupBy(), rdd.orderBy(), rdd.union(other), rdd.intersection(other),

rdd.subtract(other), rdd.cartesian(other)

RDDS - ACTIONS

rdd = {1,2,2,3}

val sum = rdd.reduce((x,y) => x+y)

Similar actions: aggregate(), fold()

RDD – KEY VALUES

• rdd.groupByKey()

• rdd.reduceByKey()

EXAMPLE 1

• www.dbai.tuwien.ac.at/staff/csar/spark

• Create a useraccount at databricks

• Import notebook to workspace

http://www.dbai.tuwien.ac.at/staff/csar/spark

SPARK – OTHER DATATYPES THAN RDDS

• Dataframes (Spark 1.6)

• Immutable distributed collection of data

• Organized into named columns

• Untyped Rows -> Does not support compile time type safety

• Datasets (Spark 1.6)

• Typed Rows  Supports compile time type safety

 RDD, Dataframes and Datasets are slowly merging into one datatype: DataSet

https://databricks.com/blog/2016/07/14/a-tale-of-three-apache-spark-apis-rdds-
dataframes-and-datasets.html

https://databricks.com/blog/2016/07/14/a-tale-of-three-apache-spark-apis-rdds-dataframes-and-datasets.html

SPARK PACKAGES

• Machine Learning: Mlib

• Analytics: SparkR

• Spark Streaming

• GraphX

• Many more: https://spark.apache.org/third-party-projects.html

https://spark.apache.org/third-party-projects.html

SPARK SQL

• Only works on relational data (dataframes or datasets).

• SparkSQL can connect to many different Database systems (Hbase, Hive,

Cassandra, …)

• SparkSQL always returns DataFrames

• Spark SQL Language Manual: https://docs.databricks.com/spark/latest/spark-

sql/index.html#spark-sql-language-manual

https://docs.databricks.com/spark/latest/spark-sql/index.html#spark-sql-language-manual

SPARK SQL – CREATE TABLE

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] [db_name.]table_name

[(col_name1 col_type1. ..)]

USING datasource

[OPTIONS (key1=val1, key2=val2, ...)]

[PARTITIONED BY (col_name1, col_name2, ...)]

[CLUSTERED BY (col_name3, col_name4, ...) INTO num_buckets BUCKETS]

[LOCATION path]

[TBLPROPERTIES (key1=val1, key2=val2, ...)]

[AS select_statement]

EXAMPLE 2

PREGEL COMPUTATION – THINK LIKE A
VERTEX

• vertices send messages to each other (along edges)

• In each superstep the vertex executes a vertex

program on tthe received messages

• The state of a vertex is set to „inactive“ if it does

not receive a message, or if it votes to halt

• The computation stops when all vertices are inactive

active inactive

Receives a message

GRAPHX

GraphX is built on top of spark

- extends the Resilient Distributed Dataset by the Resilient Distributed

Property Graph

- fundamental graph operation

- collection of graph algorithms (page rank, triangle counting, …)

- Pregel API

GRAPHX

• Graph[VD, ED] = Graph(vertices, edges)

• vertices: RDD[(VertexId,VD)]

Each vertex has aVertexID and a value of typeVD

• edges: RDD[Edge[ED]]

Each edge connects two vertices (src and dst VertexIDs) and has an edge

attribute of type ED

EXAMPLE 3

RECENT DEVELOPMENTS

• The concept of DataFrames and are an extension to RDDs

• GraphFrames is a new alternative to GraphX and is based on DataFrames

(where GraphX was based on RDDs)

REFERENCES (PAPERS)

• GraphX: Graph Processing in a Distributed Dataflow Framework, Gonzalez et

al, OSDI ’14

• Pregel: A System for Large-Scale Graph Processing, Malewicz et al., SIGMOD’10

• MapReduce: Simplified Data Processing on Large Clusters, Jeffrey Dean and

Sanjay Ghemawat, in Proc. 6th USENIX Symp. on Operating Syst. Design and

Impl., 2004

REFERENCES (BOOKS)

• Hadoop: The Definitive Guide 4th Edition, Tom White, O’Reilly Media, April

2015

• Learning Spark, Lightning-Fast Big Data Analysis, Matei Zaharia et al., O’Reilly

Media, Mai 2015

• High Performance Spark, Best Practices for Scaling and Optimizing Apache

Spark, Holden Karau and Rachel Warren, O’Reilly Media, June 2017

REFERENCES (LINKS)

• https://hadoop.apache.org/

• https://spark.apache.org/

• https://spark.apache.org/graphx/

• https://community.cloud.databricks.com/

• https://docs.databricks.com/spark/latest/spark-sql/index.html#spark-sql-

language-manual

WHERE TO GO FROM HERE?

• Get your own local installation of spark

• Use a virtual machine:

• https://de.hortonworks.com/products/sandbox/

• https://www.cloudera.com/downloads/quickstart_vms/5-12.html

• Rent a cluster:

• https://aws.amazon.com/de/ec2/?nc2=h_m1

• https://cloud.google.com/compute/

• https://azure.microsoft.com/de-de/

• (in my opinion) best point to start programming your own scala code on a spark
cluster: https://de.hortonworks.com/tutorial/setting-up-a-spark-development-
environment-with-scala/

• Tutorials by Databricks, Cloudera, Hortonworks

https://de.hortonworks.com/products/sandbox/
https://www.cloudera.com/downloads/quickstart_vms/5-12.html
https://aws.amazon.com/de/ec2/?nc2=h_m1
https://cloud.google.com/compute/
https://azure.microsoft.com/de-de/
https://de.hortonworks.com/tutorial/setting-up-a-spark-development-environment-with-scala/

THANK YOU FOR YOUR ATTENTION!

