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Abstract. Kemeny’s voting rule is a well-known and computationally
intractable rank aggregation method. In this work, we propose an algo-
rithm that finds an embeddable Kemeny ranking in d-Euclidean elec-
tions. This algorithm achieves a polynomial runtime (for a fixed di-
mension d) and thus demonstrates the algorithmic usefulness of the d-
Euclidean restriction. We further investigate how well embeddable Ke-
meny rankings approximate optimal (unrestricted) Kemeny rankings.

1 Introduction

Rank aggregation is the problem of combining a collection of rankings into a
social “consensus” ranking, with applications ranging from multi-agent plan-
ning [22] and collaborative filtering [32] to internet search [5, 17]. The classic
application of rank aggregation is voting and thus rank aggregation methods are
extensively studied in social choice theory, where rankings correspond to voters’
preferences. A prominent rank aggregation method is Kemeny’s voting rule, also
known as Kemeny-Young method. This method is based on the Kendall-tau dis-
tance between rankings and outputs a consensus ranking (or Kemeny ranking)
that minimizes the sum of distances to the input rankings.

Kemeny’s voting rule is of particular importance for two reasons: First, it is
the only rank aggregation method satisfying three desirable properties (neutral-
ity, consistency, and being a Condorcet method) [39]. Second, it is the maximum
likelihood estimator for the “correct” ranking if the input is viewed as noisy per-
ceptions of a ground truth (assuming a very natural noise model) [40]. However,
Kemeny’s rule has a main disadvantage: its computational complexity [7, 27]. In
particular, computing the Kemeny score is NP-hard even for four voters [17].

Due to the importance of Kemeny’s rule, much algorithmic research has been
conducted with the goal to overcome this computational barrier. The majority of
this work has focused on approximation algorithms, parameterized algorithms
and heuristical methods (see related work below). In this paper, we take an
approach that is widely used in computational social choice: to restrict the
input to a smaller preference domain [20]. If the input rankings possess a fa-
vorable structure, it may be possible to circumvent hardness results that hold
in the general case. For Kemeny’s rule, this is the case if the input has a cer-
tain 1-dimensional structure; more specifically, Kemeny’s rule is polynomial-time



computable for single-peaked rankings [11] and for rankings with bounded single-
peaked or single-crossing width [14]. In contrast, Kemeny’s rule remains NP-hard
for preferences that are single-peaked on a circle [34] and, as very recently shown
in [24], for d-Euclidean preferences with d ≥ 2. In fact, both preference domains
admit an interesting connection: In [38] it has been shown that preferences that
are single-peaked on a circle can capture specific 2-Euclidean preferences.

The d-Euclidean preference domain [10, 21] is a d-dimensional spatial model
based on the assumption that voters and candidates can be placed in Rd and
a voter’s preference ranking is derived from the Euclidean distance between her
coordinates and the candidates—closer candidates being more preferable. This
model captures situations where voters’ preferences are mainly determined by
real-valued attributes of candidates (e.g., a political candidate may be placed in a
two-dimensional space with axes corresponding to her position on economic and
social issues, or a textbook might be judged on its focus on theory/applications
and on its complexity level). It is intuitively clear that a one-dimensional model
is too simplistic to capture most real-world situations, and more dimensions
greatly increase the applicability of this domain. However, as mentioned before,
it is not the case that simply restricting the input to d-Euclidean preferences
yields a computational advantage as the problem remains NP-hard [24].

The goal of our paper is to find an efficient algorithm for Kemeny’s vot-
ing rule given d-Euclidean preferences (for d ≥ 2) by additionally imposing
reasonable restrictions on the output. We work under the assumption that an
embedding witnessing the d-Euclidean property is known and that the consensus
ranking (i.e., the output) has to be embeddable via the same embedding. The
embeddability of the consensus ranking is a sensible assumption as it extends the
explanation of the preference structure to the consensus ranking, i.e., if voters’
preferences can be understood as points in a d-dimensional space, then also the
output should be explainable via this space. Our main result is that this problem
can be solved in time in O(|C|4d) for strict orders and Õ(|C|4.746·d+2) for weak
orders (with ties), i.e., it is solvable in polynomial time for a fixed dimension d.
This algorithm makes use of a correspondence between embeddable rankings and
faces of a hyperplane arrangement in which each hyperplane is equidistant to two
embedded candidates. The determination of an embeddable consensus ranking
is then performed on an appropriately constructed vertex- and edge-weighted
graph, which is extracted from the arrangement.

We further show that this algorithm can be adapted to an egalitarian variant
of the Kemeny problem, which minimizes the maximum Kendall-tau distance.
Finally, we study the restriction of requiring an embeddable consensus ranking in
more detail. We prove that an embeddable consensus ranking has at most twice
the Kemeny score of the optimal, unrestricted Kemeny ranking. In numerical
experiments, we show that the embeddable Kemeny ranking and the optimal
Kemeny ranking coincide in most small instances.

Related work. In addition to the results by Escoffier et al. [24] who showed NP-
hardness of Kemeny’s voting rule given d-Euclidean preferences for d ≥ 2, the
work of Peters [33] on the recognition of d-Euclidean elections is of particular



importance to our problem. Peters shows that this problem is NP-hard for d ≥ 2
[33] (it is even ∃R-complete). Thus, one cannot hope for a polynomial-time al-
gorithm for our problem if the embedding is removed from the input. Instead,
we assume that the embedding is either found in a preprocessing stage (with
sufficient time available) or is known due to understanding the origin of pref-
erences (which adhere to a d-dimensional geometry). In contrast, recognizing
1-Euclidean elections is possible in polynomial time [16, 29].

As mentioned before, Kemeny’s rule has attracted much attention from an
algorithmic perspective: exponential-time search-based techniques [6, 13, 15], ap-
proximation algorithms [1, 28], parameterized algorithms [8, 14], and heuristical
algorithm [2, 36]. As Kemeny’s voting rule is of practical importance, much work
has also been invested in runtime benchmarks [3].

2 Preliminaries

A weak order � over a set X is a complete (x � y or y � x for all x, y ∈ X)
and transitive binary relation. We write x � y if x � y but not y � x. Further,
we write x ∼ y if x � y and y � x. A weak order � is a strict order if it has no
ties, i.e., if x 6= y then either x � y or y � x.

We define an election (C,V, (�v)v∈V) as a set of candidates C, a set of voters
V, and for each v ∈ V, a weak order �v over the candidates called the preference
(order) of v. Whenever c �v c

′, we say that v prefers c over c′

Let d be positive integer and let p : C ∪ V → Rd be an embedding in the
d-dimensional space. Further, let ‖ · ‖d denote the Euclidean norm in Rd. We
say that a voter’s preference order �v for v ∈ V on C is p-embeddable if for all
c, c′ ∈ C, c � c′ if and only if ‖p(v) − p(c)‖d ≤ ‖p(v) − p(c′)‖d. Generally for
a weak order � on C that do not coincide with a voter’s preference order, we
say � is p-embeddable if there is some x ∈ Rd such that for all c, c′ ∈ C, c � c′

if and only if ‖x − p(c)‖d ≤ ‖x − p(c′)‖d. An election (C,V, (�v)v∈V) is said to
be p-embeddable if �v for all v ∈ V are p-embeddable. Finally, an election is
d-Euclidean if it it is p-embeddable for some p.

We define the Kendall-tau distance of two weak orders �,�′ over C as

K(�,�′) =
∑
{x,y}⊆C

d�,�′(x, y), where

d�,�′(x, y) =


2 if (x � y and y �′ x) or (y � x and x �′ y)

1 if (x ∼ y and x 6∼′ y) or (x 6∼ y and x ∼′ y)

0 otherwise (i.e., � and �′ agree on the order of x and y).

Equivalently,

K(�,�′) = |{{x, y} ⊆ C | (x � y ∧ y �′ x) ∨ (y � x ∧ x �′ y)}|
+ |{(x, y} ⊆ C | (x �′ y ∧ y � x) ∨ (y �′ x ∧ x � y)}|.



For strict orders � and �′, this definition simplifies to the number of ordered
candidate pairs on which the two orders disagree, i.e., K(�,�′) = |{(x, y) ∈ C2 |
(x � y ∧ y �′ x) ∨ (y � x ∧ x �′ y)}|.

We can now define Kemeny’s voting rule and the corresponding consensus
rankings, which we refer to as optimal Kemeny rankings in the following.

Definition 1. Given an election (C,V, (�v)v∈V), a strict order � on C is an
optimal Kemeny ranking if there is no other strict order �′ on C with∑

v∈V
K(�′,�v) <

∑
v∈V

K(�,�v),

i.e., an optimal Kemeny ranking minimizes the sum of Kendall-tau distances to
the preference orders. We refer to

∑
v∈V K(�,�v) as the Kemeny score of �.

We note that Definition 1 could be adapted to define Kemeny rankings as
weak orders; this would not change our results.

From a computational viewpoint, Kemeny’s voting rule is captured by the
following NP-hard decision problem [7, 17, 27]:

Kemeny Score
Instance: An election (C,V, (�v)v∈V) and an objective value z ∈ N.
Question: Is there a strict order � on C such that

∑
v∈V K(�,�v) ≤ z?

We furthermore consider an egalitarian variant which minimizes the maximal
dissatisfaction of each voter.

Definition 2. Given an election (C,V, (�v)v∈V), we say that a strict order �
on C is an egalitarian Kemeny ranking if there is no other strict order �′ 6= �
on C with maxv∈V K(�′,�v) < maxv∈V K(�,�v).

Like for Kemeny Score, the corresponding decision problem Egalitarian
Kemeny Score, i.e., given (C,V, (�v)v∈V), z ∈ N, decide whether there is a
strict order � on C such that maxv∈V K(�,�v) ≤ z, is NP-hard even for four
voters which was independently proved by Biedl et al. [9] and Popov [35].

3 Embeddable Kemeny Rankings

The main focus of this paper is on the constrained setting of d-Euclidean elec-
tions, that is, we assume that the input is an embedding p as well as a p-
embeddable election. In addition, we require that the output (i.e., the Kemeny
ranking) is also p-embeddable.

Definition 3. Given an embedding p : C ∪ V → Rd and a p-embeddable election
(C,V, (�v)v∈V), a strict order � on C is a p-embeddable Kemeny ranking if �
is p-embeddable and there is no other p-embeddable strict order �′ on C such
that

∑
v∈V K(�′,�v) <

∑
v∈V K(�,�v).
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Fig. 1: Election from Example 1.
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Fig. 2: Election from Example 2

A p-embeddable egalitarian Kemeny ranking is defined analogously.
First we observe that a p-embeddable Kemeny ranking does not need to

coincide with any optimal Kemeny rankings for a given p-embeddable election.

Example 1. Consider the voting setting depicted in Figure 1. The preferences
of voter v1 are given by c2 �1 c3 �1 c1 �1 c4, the preferences of voter v2 are
c4 �2 c3 �2 c2 �2 c1 and v3 prefers c1 �3 c4 �3 c2 �3 c3. The unique Kemeny
ranking is c4 � c2 � c3 � c1 (with a Kemeny score of 14) since K(�,�1) = 6,
K(�,�2) = 2, K(�,�3) = 6, and

∑
i≤3 K(�′,�vi) > 14 for all �′ 6=�. Now

observe that � is not embeddable in Figure 1. Among embeddable rankings, the
Kemeny score is minimized by �1, �2, and �3, all of which achieve a Kemeny
score of 16. These are the embeddable Kemeny rankings.

One may ask whether it is sensible to use an ordinal voting rule such as
Kemeny’s rule in our setting where voters and candidates can be represented in
a coordinate space. It is important to note that we do not assume that a voter’s
position in Rd, given by an embedding, is actually a correct representation of this
voter’s preferences. In particular, we do not assume that distances between voters
and candidates is an accurate measure of intensities. That is, a voter prefers a
candidate with distance 1 over a candidate with distance 2, but not necessarily
twice as much. Hence, our assumption of embeddability in d-Euclidean space
is significantly weaker than assuming a model where distances correspond to
voters’ utilities. In such a model, ordinal voting rules indeed are less useful
and choosing the geometric median of the set of voter points1 is more natural
than computing a Kemeny ranking (in contrast to Kemeny’s rule, the geometric
median can be computed efficiently [12]). The next example shows that these
two concepts differ.

1 The geometric median of a set of points S is a point that minimizes the sum of
distances to points in S (as does the Kemeny ranking albeit for a different metric).



Example 2. Consider a 2-Euclidean election with two candidates C = {c1, c2}
and three voters V = {v1, v2, v3}. The embedding p is given by p(c2) = −p(c1) =
(1, 0); p(v1) = (3, 6), p(v2) = (3,−6), p(v3) = (−10, 0). Voters v1, v2 prefer c2
over c1 while voter v3 prefers c1 over c2. The optimal Kemeny ranking is thus
c2 � c1 (which is clearly p-embeddable). In contrast, the geometric median m is
the point ≈ (−0.46, 0) which lies on the side of p(c1) and thus corresponds to the
ordering c1 � c2. The crucial point here is that if we changed the embedding so
that p(v1) = (4, 6), p(v2) = (4,−6), the geometric median would lie at ≈ (0.54, 0)
and thus correspond to the Kemeny ranking.

A similar observation can be made in the case of the egalitarian Kemeny
ranking; minimizing the maximum Euclidean distance is known as the 1-center
problem or smallest enclosing ball problem.

For the 1-dimensional case, the question is easy to answer.

Proposition 1. In a p-embeddable 1-Euclidean election, any optimal Kemeny
ranking is also p-embeddable and coincides with the geometric median.

As we have seen before, Proposition 1 does not extend to higher dimensions:
Examples 1 and 2 are counter-examples for d = 2.

4 Computing Embeddable Kemeny Rankings

In this section, we give a brute-force algorithm to determine all p-embeddable
Kemeny rankings of a given p-embeddable election. In order to traverse all strict
p-embeddable orders, we observe their correspondence to faces of the hyperplane
arrangement that contains all hyperplanes consisting of points equidistant to any
two embedded candidates. This correspondence is also important for our main
algorithm (Section 5), which drastically improves the asymptotic runtime.

Consider a d-Euclidean election (C,V, (�v)v∈V) embedded via p : C∪V → Rd.
For any pair c, c′ ∈ C of candidates we consider the hyperplane Sc,c′ = {x ∈ Rd |
‖x − p(c)‖d = ‖x − p(c′)‖d}. Each Sc,c′ divides Rd into two halfspaces — one
containing p(c), we also say this halfspace lies on the same side of Sc,c′ as c; and
one containing p(c′). Each halfspace is assumed to be closed, that is, it contains
its bounding hyperplane. A face of the hyperplane arrangement {Sc,c′ | c, c′ ∈ C}
is a connected non-empty subspace of Rd obtained by intersecting halfspaces of
the arrangement with at least one halfspace chosen for each hyperplane Sc,c′ .
We write P to denote the set of all faces of the arrangement.

Let f ∈ P be a face. For any pair of candidates c, c′ ∈ C, we say that f
lies on the same side of Sc,c′ as c, if it is a subset of the halfspace that lies
on the same side of Sc,c′ as c. This allows us to identify f by the set X =
{(c, c′) ∈ C2 | c and the subspace lie on the same side of Sc,c′}; we write fX to
denote the face identified by X, i.e., fX = f . A face f is called k-face if it has
dimension k. Observe that for every face fX , either (c, c′) ∈ X or (c′, c) ∈ X
for every pair c, c′ ∈ C. Further note that X can also contain both tuples (c, c′),
(c′, c)—in that case, fX ⊆ Sc,c′ . For a face fX , if (c, c′) ∈ X then fX ⊆ {x ∈



Rd | ‖x−p(c)‖d ≤ ‖x−p(c′)‖d}. Additionally we denote the set of d-dimensional
faces as R and refer to them as regions. In the following, we use the standard
notation f◦ for the interior of a set f .

Intuitively, each face fX corresponds to a weak p-embeddable order for the
given d-Euclidean election and embedding p. This correspondence is formally
captured by the following result.

Lemma 1. Let Φ : P → {� ⊆ C2 | � is a p-embeddable weak order} be a func-
tion defined by Φ(fX) =� where c � c′ ⇔ (c, c′) ∈ X. Then Φ is a bijection.

Since we require that Kemeny rankings are strict, the following observation
showing that each region corresponds to a strict p-embeddable ordering for the
given embedded d-Euclidean election is also useful.

Lemma 2. Let Φ′ : R → {� ⊆ C2 | � is a p-embeddable strict order} be the
restriction of Φ (from Lemma 1) to regions. Also Φ′ is a bijection.

For a face f ∈ P, we write �f instead of Φ(f) (this is a weak order). Further,
for a region R, we write �R instead of Φ′(R) (this is a strict order).

We can now use the preceding correspondences to give a straightforward
polynomial time algorithm that enumerates all p-embeddable strict orders.

Theorem 1. Determining all p-embeddable Kemeny rankings for a d-
Euclidean election (C,V, (�v)v∈V) given by p : C ∪ V → Rd is possible in time
polynomial in |C|, more specifically in time in O(|C|6d).

Proof. Consider the d-Euclidean preference profile given by the function p :
C ∪ V → Rd. For every f ∈ P, let #(f) denote the number of voters in f , i.e.
#(f) = |{v ∈ V | p(v) ∈ f}|. By comparing the corresponding values for each
R ∈ R, we can determine R ∈ R which minimizes

∑
f ′∈P #(f ′)·K(�f ′ ,�R), and

denote such an R by Rmin. We return �Rmin
as p-embeddable Kemeny ranking.

Correctness. For R ∈ R and f ′ ∈ P,∑
f ′∈P

#(f ′) ·K(�f ′ ,�R) =
∑
f ′∈P

∑
v∈V

p(v)∈f ′

K(�f ′ ,�R)

=
∑
f ′∈P

∑
v∈V

p(v)∈f ′

K(�v,�R)

=
∑
v∈V

K(�v,�R)

Since we are looking for a p-embeddable Kemeny ranking, it has to have the
form �R for some R ∈ R by Lemma 2, which implies correctness.



Running time. The hyperplane arrangement induces O(|C|2d) faces (by [26,

Corollary 28.1.2] as we consider at most
(|C|

2

)
distinct hyperplanes) and can

be computed in time in O(|C|2d) [18, Theorem 7.6]. For each face R ∈ R, the
computation and comparison of the objective function naively requires time
in O(|P|2) ⊆ O(|C|4d). Thus the overall complexity of the procedure lies in
O(|C|6d).

An analogous procedure works for the egalitarian variant.

5 Increasing Efficiency

To achieve a better runtime—in particular for large d—we conduct a more in-
depth graphical analysis of the relation of p-embeddable orders to each other.
Specifically, this section is dedicated to proving our following main result.

Theorem 2 (Main Theorem). Determining all p-embeddable Kemeny rank-
ings for a d-Euclidean election (C,V, (�v)v∈V) given by p : C∪V → Rd is possible
in time in Õ(|C|2(d·ω+1)), where ω < 2.373 [4] is the exponent of matrix multi-
plication.

5.1 Preference Graph

We define the preference graph Gpref as the edge-weighted graph given by setting

– V (Gpref) = {vf | f ∈ P};
– E(Gpref) = {{vf , vf ′} | (dim(f) = dim(f ′) − 1 ∧ f ⊂ f ′) ∨ (dim(f ′) =

dim(f)− 1 ∧ f ′ ⊂ f)}; and
– w : E(Gpref) → N, {vf , vf ′} 7→ |{{c, c′} ⊆ C | (dim(f ′ ∩ Sc,c′) = dim(f ′) ∧

dim(f ∩ Sc,c′) 6= dim(f)) ∨ (dim(f ∩ Sc,c′) = dim(f) ∧ dim(f ′ ∩ Sc,c′) 6=
dim(f ′))}|.

In other words, vertices corresponding to faces one of which is contained in
the other are connected to each other by edges in Gpref whenever the dimension
of one face differs from the other by exactly one. The edge weights correspond to
the number of pairs (c, c′) of candidates inducing this respective hyperplane. An
example is given in Figure 3. By a bound on the number of faces [26, Corollary

28.1.2] and since we consider at most
(|C|

2

)
different hyperplanes, we can bound

the number of vertices by |V (Gpref)| ∈ O(|C|2d).
Gpref without weights coincides with the incidence graph of a hyperplane ar-

rangement as defined in [18] which is constructed in O(|C|2d)-time [18, Theorem
7.6]. We modify this procedure to include appropriate edge weights for Gpref .

Lemma 3. Gpref can be constructed in time in O(|C|2d).



Fig. 3: Gpref for candidates
as given in Example 1.
Vertex shapes encode the
dimensions of the corre-
sponding faces, and dash-
styles encode weights where
edges without weight la-
bels have unit-weight. Ex-
emplary vertices are anno-
tated with the correspond-
ing p-embeddable orders.
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c2 � c3 � c1 � c4

c4 � c3 � c2 � c1

c1 �3 c4 �3 c2 �3 c3

c4 ∼ c3 � c2 � c1

c3 � c4 � c2 � c1

Note that at this point, we have set up or shown natural bijective correspon-
dences between: the vertices of Gpref , the faces in P, all p-embeddable orders of
C and sets of pairs of candidates in C which explicitly encode the pairwise com-
parisons according to such p-embeddable orders. In this way, it will be natural
to write any v ∈ V (Gpref) as vf for some f ∈ P, any p-embeddable order of C
as �f for some f ∈ P, and any f ∈ P as fX for some X ⊆ C2.

5.2 Shortest Paths in the Preference Graph

The crucial property of the preference graph, apart from capturing p-embeddable
orders through its vertices, is that the chosen edge weights reflect the Kendall-tau
distance between embeddable orders. We first can show this for single edges.

Lemma 4. For {vf , vf ′} ∈ E(Gpref), w({vf , vf ′}) = K(�f ,�f ′).

This previous lemma acts as the base case for the general correspondence of
distances in Gpref and the Kendall-tau distance between the orders associated to
the vertices of Gpref (i.e. the p-embeddable orders). We denote by distGpref

(v, w)
the length of a shortest (in terms of summed edge weights) v-w-path in Gpref .

Lemma 5. For f, f ′ ∈ P, K(�f ,�f ′) = distGpref
(vf , vf ′).

Proof Sketch. We present a proof by induction over the length ` of cardinality-
minimal shortest vf -vf ′ -paths (i.e., a path having minimum number of vertices
among all weight-minimal paths between vf , vf ′). The proof makes use of the
observation that the Kendall-Tau distance between two faces fX , fY corresponds
to the symmetric difference |X∆Y |. The base case ` = 2 is covered by Lemma 4.

Now assume that the statement holds for any cardinality-minimal shortest
path of length ` − 1 and observe that each proper subpath of a cardinality-
minimal shortest vf -vf ′ -path consisting of ` vertices in Gpref is cardinality-
minimal; otherwise one can replace the subpath with a cardinality-minimal short-
est path, contradicting the assumption on vf . . . vf ′ . Together with the triangle-
inequality for the Kendall-tau distance, we get K(�f ,�f ′) ≤ distGpref

(vf , vf ′).



To show distGpref
(vf , vf ′) ≤ K(�f ,�f ′), we construct a vf -vf ′ -path of weight

K(�f ,�f ′) by connecting two arbitrary points pf ∈ f◦ and pf ′ ∈ f ′
◦

via a
straight line l and extracting a path along the traversal of l from pf to pf ′ . The
path consists of vertices vg with l ∩ g 6= ∅ such that g ∈ P satisfies dim(g) <
dim(g′) for all g′ ∈ P with l ∩ g = l ∩ g′; also, we connect every two vertices
vi, vi+1 which are—w.r.t. the ordering along the line traversal —”adjacent” but
not connected via an edge (i.e., |dim(fi)− dim(fi+1)| > 1 for the corresponding
faces fi, fi+1) via a weight- and vertex-minimal path.

Let vf = vf1 . . . vfs = vf ′ denote the constructed vf -vf ′-path P and let
X1, . . . , Xs ⊆ C2 denote the pairs of candidates such that fi = fXi according to
our notation introduced in Section 4. We verify that the constructed path P has
the desired weight K(�f ,�f ′) = |X14Xs| by showing that a pair (c, c′) ∈ C2
contributes to the weight of P exactly once if and only if (c, c′) ∈ X14Xs.
Indeed, it can be shown that there is at most one edge {vfi , vfi+1

} ∈ P satisfying
fi ∩Sc,c′ = ∅ but fi+1 ∩Sc,c′ 6= ∅; also there is at most one edge {vfi , vfi+1} ∈ P
satisfying fi ∩ Sc,c′ 6= ∅ but fi+1 ∩ Sc,c′ = ∅; i.e., P ”enters” and ”exists” a
hyperplane Sc,c′ only once. This follows from the construction and by the fact
that a straight line intersects a hyperplane at most once.

5.3 The Algorithm

Having established the correspondence between the Kendall-tau distance and the
shortest paths in the edge-weighted graph Gpref we obtain the following result.

Theorem 2 (Main Theorem). Determining all p-embeddable Kemeny rank-
ings for a d-Euclidean election (C,V, (�v)v∈V) given by p : C∪V → Rd is possible
in time in Õ(|C|2(d·ω+1)), where ω < 2.373 [4] is the exponent of matrix multi-
plication.

Proof. Consider the d-Euclidean preference profile given by the function p :
C ∪ V → Rd. We construct the corresponding preference graph Gpref using
Lemma 3. We then apply the Shoshan-Zwick all-pairs shortest path algorithm
for undirected graphs with integer weights (proposed in [37] and corrected in
[19]) which returns a matrix Mdist ∈ NV (Gpref )×V (Gpref ) containing the length
of the shortest path between every pair of vertices in Gpref . For every vertex
vf ∈ V (Gpref), let #(vf ) denote the number of voters in f , i.e. # : V (Gpref)→ N
with #(vf ) = |{v ∈ V | p(v) ∈ f}|, or equivalently #(vf ) = |{v ∈ V |�v=�f}|.
By comparing the corresponding values for each R ∈ R, we can determine all
R ∈ R which minimize

∑
f ′∈P #(vf ′)·distGpref

(vf ′ , vR), and denote such an R by
Rmin. We return the (set of) all such �Rmin

as p-embeddable Kemeny rankings.
Correctness follows from the Lemmas 5, 2, and 1.

Running time. The construction of the preference graph takes time in O(|C|2d)
by Lemma 3. By [19, 37], the all-pairs shortest path algorithm for undirected
graphs with integer weights runs in time in Õ(M · |V (Gpref)|ω) where M is the
largest edge weight and ω < 2.373 is the exponent of matrix multiplication.



Since M ≤
(|C|

2

)
we get Õ(M · |V (Gpref)|ω) = Õ(|C|2(dω+1)) The computation

and comparison of the objective function for each f ∈ P naively requires time
in O(|P|2) ⊆ O(|C|4d). Thus the overall complexity lies in Õ(|C|2(dω+1)).

Weak Kemeny Rankings. We remark that whenever we allow p-embeddable Ke-
meny rankings to be weak rather than strict, we can easily adapt our algorithm
by comparing the values of

∑
f ′∈P #(vf ′) · distGpref

(vf ′ , vf ) for each f ∈ P, de-
noting an f that minimizes this value by fmin, and returning �fmin

as Kemeny
ranking. Correctness then follows immediately from Lemma 1.

Egalitarian Kemeny rankings. An analogous result for the p-embeddable egal-
itarian Kemeny method can be obtained by an appropriate adaption of the
objective function in the proof of Theorem 2.

Strict Preferences. Conversely whenever we restrict ourselves to instances in
which all voters have only strict p-embeddable orders as preferences, we can focus
on a proper minor of Gpref rather than the whole graph. More specifically we can
restrict ourselves to the vertex set given by {v ∈ V (Gpref) | ∃R ∈ R v = vR};
where edges between the vertices correspond to traversals of single hyperplanes:
We contract paths of length 2 in Gpref between such vertices to single edges while
summing up the weight of contracted edges. More explicitly instead of Gpref we
can consider the graph Hpref given by the following information:

– V (Hpref) = {vR | R ∈ R};
– E(Hpref) = {{vR, vR′} | ∃c, c′ ∈ C dim(R ∩R′ ∩ Sc,c′) = d− 1}; and
– w : E(Hpref)→ N, {vR, vR′} 7→ 2|{{c, c′} ⊆ C | dim(R∩R′∩Sc,c′) = d−1}|.

Without weights, this graph is also known as the region graph or the dual graph
of the embedded election induced hyperplane arrangement. Using the represen-
tation of the region graph as medium, i.e., as a system of states and transitions
between states via tokens[23], we can employ a faster quadratic time all-pairs-
shortest-paths algorithm [23] to achieve a better runtime for strict orders.

Theorem 3. Determining all p-embeddable Kemeny rankings for a d-
Euclidean election (C,V, (�v)v∈V) in which all voters have strict preferences
given by p : C ∪ V → Rd is possible in time in O(|C|4d).

6 Approximating the Kemeny Score

Our main algorithm fundamentally rests on the assumption that we are inter-
ested in an embeddable Kemeny ranking. As we have already seen in Example 1,
such an embeddable Kemeny ranking may differ from an optimal Kemeny rank-
ing. It is thus natural to ask

1. how often embeddable Kemeny rankings differ from optimal Kemeny rank-
ings; and



2. how far these rankings can be apart (measured by their Kendall-tau dis-
tance).

We investigate these questions via numerical experiments and prove a bound on
the worst-case approximation ratio of embeddable Kemeny rankings.

6.1 Approximation

Our goal is to quantify how much an embeddable Kemeny ranking and an opti-
mal Kemeny ranking may differ. This can be phrased as an approximability re-
sults for computing Kemeny’s voting rule in d-Euclidean elections. We can show
that p-embeddable Kemeny rankings 2-approximate optimal Kemeny rankings.

Proposition 2. Let ≺ be an optimal Kemeny ranking, and ≺res be a p-embeddable

Kemeny ranking for a given embedding p. Then
∑

v∈V K(≺res,≺v)∑
v∈V K(≺,≺v)

≤ 2.

However, it is unclear whether our ratio 2 is tight (even for d = 2). The
largest ratio we are aware of is 8/7 and arises, e.g., in Example 1.

6.2 Experiments

We conducted numerical experiments on randomly generated 2-Euclidean elec-
tions to test the approximation quality of embeddable Kemeny rankings and to
record how often embeddable Kemeny rankings do not achieve an optimal Ke-
meny score. In brief, our experiments suggest that the optimal Kemeny ranking
is p-embeddable in 98.9% of the cases when considering up to 7 candidates.

To compute optimal Kemeny scores, we implemented Kemeny’s rule with a
trivial brute-force algorithm. The implementation for the p-embeddable Kemeny
score used in these experiments2 does not exploit all runtime improvements from
the algorithm for strict orderings described in Section 5.3; its runtime currently
inhibits experiments on larger instances. We randomly generated instances of
2-Euclidean elections with n voters, 3 ≤ n ≤ 15, with strict preferences and
m candidates, 4 ≤ m ≤ 7, both of which we identify with points in [0, 1000]2. For
each pair (m,n), we generated 150 instances: 50 each assuming that (a) candi-
dates and voters are component-wise uniformly distributed; that (b) candidates
and voters are component-wise truncated normally distributed with mean 500
and variance 150; and that (c) candidates are uniformly distributed and voters
are truncated normally distributed with mean 500 and variance 150.

In total, we ran 7800 tests; among them, only 84 exhibited a p-embeddable
Kemeny ranking that differs from the optimal Kemeny ranking. In these 84
instances, the ratio r of embeddable and optimal Kemeny rankings is between
1.0077 and 1.11. A difference in the scores of the optimal and the p-embeddable

2 We construct the preference graph Hpref by adapting the dual arrangement construc-
tion from CGAL (The CGAL Project, https://www.cgal.org) and apply Johnson’s
all-pairs shortest path algorithm to determine the p-embeddable Kemeny rankings.

https://www.cgal.org


Fig. 4: Percentage of instances with ratio r > 1.

Kemeny rankings occurred slightly more often in uniformly distributed instances
— 1.85% of uniformly distributed instances have ratios r > 1, which is the
case for only ≈ 0.7% for other distributions. Figure 4 gives an overview of the
percentage of instances where r > 1. The results indicate that an increasing
number of voters does not cause a significant rise in the numbers of instances with
suboptimal p-embeddable Kemeny rankings. Interestingly, instances with an odd
number of voters have suboptimal p-embeddable Kemeny rankings significantly
more often (77 out of 84), possibly due to fewer ties. On the other hand, the
results indicate a positive correlation between the number of candidates and the
number of instances with suboptimal p-embeddable Kemeny ranking (for m = 4,
there is only one of 1950 instances with r > 1 (≈ 0.05%), while for m = 7, 52
instances out of 1950 admit ratio r > 1 (≈ 2.66%)). This suggests that the low
overall percentage is due to the choice of the candidate range. Further tests with
a larger number of candidates remains—due to limited computational power and,
in terms of runtime, suboptimal implementation of the p-embeddable Kemeny
ranking computation—a point on our future agenda.

7 Conclusions and Open Problems

We have shown that p-embeddable Kemeny rankings can be computed in time
in O(|C|4d) for strict orders and Õ(|C|4.746·d+2) for weak orders. Apart from
improving these runtimes, it would be interesting to provide lower bounds on
the computational complexity. In particular, a W-hardness result for computing
p-embeddable Kemeny rankings could show that the dimension d has to occur
in the exponent.

Further, our polynomial time solvability result juxtaposes the NP-hardness
for the Kemeny Score problem on d-Euclidean elections, i.e., when one assumes
p-embeddable preferences (given by p) but allows non-embeddable Kemeny rank-
ings. To slightly relax our embeddability requirement on solutions with the hope



of still remaining in P it would also be interesting to consider the problem where
one requires a solution to be embeddable together with all voter preferences in
the same dimension as the input, but allows the embedding to differ from the
input embedding.

Let us end with a conceptual note. While d-Euclidean preferences are well-
motivated and used in applications [21, 30, 31], there have been no successful
attempts to leverage their structural properties for tractability results for d ≥ 2,
to the best of our knowledge. A likely reason for this is that combinatorial
properties implied by d-Euclidean preferences seem to be difficult to derive. Our
constructions of Gpref (and Hpref for strict preferences) in Section 5 may thus
be of independent interest as a concise representation of d-Euclidean preferences
and their mutual Kendall-tau distances under a fixed embedding. We would like
to encourage the study of d-Euclidean preferences also for other computationally
hard voting rules (such as Dodgson, Young).On this note, very recently many
approval based multiwinner voting rules which are polynomial times solvable on
1-Euclidean elections were shown to be NP-hard on 2-Euclidean elections [25].
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