
ASPARTIX-V19 - An Answer-set Programming

based System for Abstract Argumentation

Wolfgang Dvořák, Anna Rapberger,
Johannes P. Wallner, and Stefan Woltran

Institute of Logic and Computation, TU Wien, Vienna, Austria

Abstract

We present ASPARTIX-V, a tool for reasoning in abstract argumen-
tation frameworks that is based on answer-set programming (ASP), in
its 2019 release. ASPARTIX-V participated in this year’s edition of the
International Competition on Computational Models of Argumentation
(ICCMA’19) in all classical (static) reasoning tasks. In this paper we
discuss extensions the ASPARTIX suite of systems has undergone for IC-
CMA’19. This includes incorporation of recent ASP language constructs
(e.g. conditional literals), domain heuristics within ASP, and multi-shot
methods. In particular, with this version of ASPARTIX-V we partially
deviate from an earlier focus on monolithic approaches (i.e., one-shot solv-
ing via a single ASP encoding) to further enhance performance. We also
briefly report on the results achieved by ASPARTIX-V in ICCMA’19.

1 Introduction

Abstract argumentation frameworks (AFs) as introduced by Dung [4] are a core
formalism for many problems and applications in the field of formal argumen-
tation. In a nutshell, AFs formalize statements as arguments together with a
relation denoting conflicts between arguments. Semantics of these AFs give a
handle to resolve the conflicts between statements by selecting coherent sub-
sets of the arguments. This selection is solely based on the relation between
the arguments and considers arguments as abstract entities. Several different
semantics to select coherent subsets of arguments have already been proposed
by Dung [4] but numerous other semantics have been introduced later on which
lead to a multitude of argumentation semantics (see [1]).

A prominent line of research in the field of computational argumentation has
focused on implementations of reasoning procedures for abstract argumentation
(see, e.g., [2]) and cumulated in the biennial International Competition on Com-
putational Models of Argumentation (ICCMA)1 which has been established in

1www.argumentationcompetition.org

1

www.argumentationcompetition.org

2015. There are two kinds of approaches to such systems. First, the direct ap-
proach of implementing dedicated algorithms for argumentation problems which
are often based one some kind of labelling propagation (see, e.g., [20]). Second,
the reduction-based approach where the argumentation problem is encoded in
some other formalism for which sophisticated solvers already exist. Prominent
target formalisms for the later are answer-set programming (ASP) [17, 18] and
propositional logic with SAT-solving technology; see [3] for an overview.

In this paper we consider the ASPARTIX2 system that exploits ASP technol-
ogy to solve argumentation reasoning problems and describe the ASPARTIX-V
(Answer Set Programming Argumentation Reasoning Tool - Vienna) version in
its 2019 edition which is dedicated to the reasoning tasks of ICCMA’19. We
discuss the specifics of ASPARTIX-V19 and differences to earlier versions of AS-
PARTIX. This includes incorporation of recent ASP language constructs (e.g.
conditional literals), domain heuristics within ASP, and multi-shot methods.
In particular, with this version of ASPARTIX-V we partially deviate from an
earlier focus on monolithic approaches (i.e., one-shot solving via a single ASP
encoding) to further enhance performance. Moreover, we give a first analysis of
the results achieved by ASPARTIX-V in ICCMA’19.

In the remainder of the paper we first recall the necessary argumentation
background and the tracks of this years ICCMA competition. We then give an
overview on the ASPARTIX system and explain the aim of our ASPARTIX-V19
edition. In the main part we discuss technical specifics of the ASPARTIX-V19
edition. Finally, we briefly discuss the performance of our system at ICCMA’19.

2 Preliminaries

In this section we briefly introduce the necessary background on abstract argu-
mentation and discuss the tracks of the ICCMA’19 competition.

2.1 Abstract Argumentation

Let us introduce argumentation frameworks [4] and recall the semantics relevant
for this work (for a comprehensive introduction, see [1]).

Definition 1. An argumentation framework (AF) is a pair F = (A,R) where
A is a finite set of arguments and R ⊆ A × A is the attack relation. The pair
(a, b) ∈ R means that a attacks b, and we say that a set S ⊆ A attacks (in F)
an argument b if (a, b) ∈ R for some a ∈ S. An argument a ∈ A is defended
(in F) by a set S ⊆ A if each b with (b, a) ∈ R is attacked by S in F .

Semantics for argumentation frameworks are defined as functions σ which
assign to each AF F = (A,R) a set σ(F) ⊆ 2A, with each set S ∈ σ(F) called an
extension. We consider for σ the functions cf , grd , stb, adm, com, ideal , prf ,
sem and stg which stand for conflict-free, grounded, stable, admissible, com-
plete, ideal, preferred, semi-stable and stage extensions, respectively. Towards

2www.dbai.tuwien.ac.at/research/argumentation/aspartix/

2

www.dbai.tuwien.ac.at/research/argumentation/aspartix/

the definition of these semantics we introduce the following notation. For a set
S ⊆ A, we denote the set of arguments attacked by (resp. attacking) S in F
as S+

F = {x | S attacks x in F} (resp. S−
F = {x | x attacks some s ∈ S in F}),

and define the range of S in F as S⊕
F = S ∪ S+

F .
We are now prepared to give the formal definitions of the abstract argumen-

tation semantics we will consider.

Definition 2. Let F = (A,R) be an AF. A set S ⊆ A is conflict-free (in F),
if there are no a, b ∈ S, such that (a, b) ∈ R. cf (F) denotes the collection of
conflict-free sets of F . For a conflict-free set S ∈ cf (F), it holds that

• S ∈ stb(F), if each a ∈ A \ S is attacked by S in F ;

• S ∈ adm(F), if each a ∈ S is defended by S in F ;

• S ∈ com(F), if S ∈ adm(F) and each a ∈ A defended by S in F is
contained in S;

• S ∈ grd(F), if S ∈ com(F) and there is no T ⊂ S such that T ∈ com(F);

• S ∈ prf (F), if S ∈ adm(F) and there is no T ⊃ S such that T ∈ adm(F);

• S ∈ ideal(F), if S is a ⊆-maximal admissible set that is contained in each
preferred extension of F ;

• S ∈ sem(F), if S ∈ adm(F) and there is no T ∈ adm(F) with S⊕
R ⊂ T

⊕
R ;

• S ∈ stg(F), if there is no T ∈ cf (F), with S⊕
R ⊂ T

⊕
R .

Notice that grd(F), ideal(F) respectively, always yields a unique extension,
the grounded, ideal respectively, extension of F .

Example 1. Consider the AF F = (A,R), with arguments A = {a, b, c, d, e}
and attacks R = {(a, b), (c, b), (c, d), (d, c), (d, e), (e, e)}. The graph represen-
tation of F is as follows.

a b c d e

Considering the extensions of F , we have stb(F) = stg(F) = sem(F) = {{a, d}}.
The admissible sets of F are ∅, {a}, {c}, {d}, {a, c} and {a, d} and thus the set
of preferred extensions is prf (F) = {{a, c}, {a, d}} and the complete extensions
are {a}, {a, c} and {a, d}. Finally, the grounded extension is {a} and coincides
with the ideal extension. �

3

2.2 Tracks of ICCMA’19

ICCMA’19 3 is the third edition of the International Competition on Compu-
tational Models of Argumentation (ICCMA) and had two types of tracks, the
classical tracks and the novel dynamic tracks. In the classical tracks the solver
is given an argumentation framework and has to solve a specific reasoning task
while in the dynamic tracks the solver is given an initial argumentation frame-
works and a list of updates to that framework and the reasoning task has to
be evaluated after each update to the framework. As the ASPARTIX-V system
supports only the classical tracks we will focus on these tracks here.

For the classical tracks ICCMA’19 considers the following four reasoning
tasks, that correspond to the standard reasoning problems studied in the liter-
ature (see, e.g., [7]).

• DC-σ: Decide Credulous acceptance of an argument w.r.t. a semantics
σ: Given F = (A,R), a ∈ A decide whether a ∈ E for some extension
E ∈ σ(F).

• DS-σ: Decide Skeptical acceptance of an argument w.r.t. a semantics σ:
Given F = (A,R), a ∈ A decide whether a ∈ E for all extensions E ∈
σ(F).

• SE-σ: compute Some σ-Extension: Given F = (A,R) return some E ∈
σ(F).

• EE-σ: Enumerate all σ-Extensions: Given F = (A,R) enumerate all E ∈
σ(F).

For σ, seven semantics were considered, namely complete, preferred, stable,
semi-stable, stage, grounded and ideal. This resulted in a total number of 24
classical tracks, as for σ ∈ {ideal , grd} (the semantics with a unique extension)
we have DC-σ = DS-σ and SE-σ = EE-σ.

3 The ASPARTIX System and its V19 Edition

The ASPARTIX system was one of the first systems that supported efficient
reasoning for a broad collection of abstract argumentation semantics starting
with the work of Gaggl et al. (see, e.g., [11]) and has been continuously expanded
and improved since then (see, e.g., [8, 9, 13, 21, 10]). However, the system is not
limited to abstract argumentation frameworks but also supports enhancements
of AFs by, e.g., preferences or recursive attacks. It is thus frequently used as
reference system in the literature.

ASPARTIX is based on answer-set programming (ASP) and the idea of char-
acterizing argumentation semantics via ASP encodings. With such an encoding
of a semantics one can easily apply state-of-art systems for ASP to solve diverse
reasoning tasks or to enumerate all extensions of a given AF. Given an AF as

3https://www.iccma2019.dmi.unipg.it/

4

https://www.iccma2019.dmi.unipg.it/

ASP-solver

arg(a).
arg(b).
att(a,b).

input

ASP-Encoding
of semantics

ASP-Encoding of
reasoning task

[[a]]

resultASPARTIX

Figure 1: Basic workflow of ASPARTIX

input, in the apx format of ICCMA, ASPARTIX delegates the main reasoning
to an answer set programming solver (e.g., [15]), with answer set programs en-
coding the argumentation semantics and reasoning tasks. The basic workflow
is shown in Figure 1, i.e., the AF is given in apx format (facts in the ASP lan-
guage), and the AF semantics and reasoning tasks are encoded via ASP rules,
possibly utilizing further ASP language constructs. For more information on
the ASPARTIX system and its derivatives in general the interested reader is
referred to the systems web-page:

www.dbai.tuwien.ac.at/research/argumentation/aspartix/

In this work we shall focus on ASPARTIX-V19 which is a derivative of AS-
PARTIX tuned towards the tracks of ICCMA’19. That is, ASPARTIX-V19 is
restricted to AFs and supports all the standard tasks of ICCMA’19, i.e. cred-
ulous/skeptical acceptance and computing all/some extension(s) for complete,
preferred, stable, semi-stable, stage, grounded, and ideal semantics. In the
following we highlight specifics of the current version and in particular differ-
ences to prior versions. In this instance of the argumentation competition, the
software systems were collected as docker containers. The competition version
ASPARTIX-V19 is available at

https://hub.docker.com/r/aspartix19/aspartix19-repo.

In this competition version of the ASPARTIX system we deviate from clas-
sical ASPARTIX design virtues. First, while traditional ASPARTIX encodings
are modular in the sense that fixed encodings for semantics can be combined
with the generic encodings of reasoning tasks, we use semantics encodings spe-
cific to a reasoning task. Second, when appropriate, we apply multi-shot meth-
ods for reasoning, which is in contrast to the earlier focus on so-called monolithic
encodings, where one uses a single ASP-encoding and runs the solver only once
(as illustrated in Figure 1). Third we make use of advanced features of the
ASP-language, and utilize clingo v5.3.0 and v4.4.0 4 [15].

Next, we list and overview some of the ASP-techniques novel to the ASPAR-
TIX system. First, we exploit the concept of conditional literals [14, Section

4https://potassco.org/

5

www.dbai.tuwien.ac.at/research/argumentation/aspartix/
https://hub.docker.com/r/aspartix19/aspartix19-repo
https://potassco.org/

3.1.11], which has first been applied for ASP-encodings of argumentation seman-
tics in [13]. For example we simplified the encoding of grounded semantics (cf.
Listing 1). Moreover, conditional literals enable us to give ASPARTIX style
encodings of the translations from AF semantics to ASP semantics provided
in [22]. Second, we exploit clingo domain heuristics [16] (see also [14, Chap-
ter 10]), in order to compute subset-maximal extensions while only specifying
constraints for the base semantics [12].

4 Implementation Details

When not stated otherwise, for a supported semantics we provide an ASP-
encoding such that when combined with an AF in the apx format the answer-
sets of the program are in a one-to-one correspondence with the extensions of
the AF. Given an answer-set of such an encoding the corresponding extension is
given by the in(·) predicate, i.e., an argument a is in the extensions iff in(a) is
in the answer-set. With such an encoding we can exploit a standard ASP-solver
to compute some extension (SE) by computing an answer-set; enumerate all
extensions (EE) by enumerating all answer-sets; decide credulous acceptance
(DC) of an argument a by adding the constraint ← in(a) to the program and
testing whether the program is satisfiable, i.e., a is credulously accepted if there
is at least one answer set; and decide skeptical acceptance (DS) of an argument
a by adding the constraint← not in(a) to the program and testing whether the
program is unsatisfiable, i.e., a is skeptically accepted if there is no answer set.

4.1 Conditional Literals

We make use of the conditional literal [14]. In the head of a disjunctive rule
literals may have conditions, e.g. consider the head of rule “p(X) : q(X) ←”.
Intuitively, this represents a head of disjunctions of atoms p(a) where also q(a)
is true. Rules might as well have conditions in their body, e.g. consider the body
of rule “← p(X) : q(X)”, which intuitively represents a conjunction of atoms
p(a) where also q(a) is true.

A bottleneck of previous encodings for grounded semantics was the ground-
ing step of the solver, i.e., the instantiation of variables with constants typi-
cally produces large programs. By utilizing conditional literals we were able to
provide a compact encoding (cf. Listing 1) with significant smaller grounded
programs.

Listing 1: Encoding for grounded semantics (using conditional literals)

in(X) ← arg(X), defeated(Y) : att(Y,X).
defeated(X) ← arg(X), in(Y), att(Y,X).

Moreover, conditional literals allow for an ASPARTIX style implementation
of the translations from argumentation framework to grounded logic programs
provided in [22]. For example consider our one line encoding of stable semantics
in Listing 2 and the encoding of preferred semantics in Listing 3.

6

Listing 2: Encoding for stable semantics (using conditional literals)

in(Y) ← arg(Y), not in(X) : att(X,Y).

Listing 3: Encoding for preferred semantics (using conditional literals)

defended(X) | defeated(X) ← arg(X).
defended(X) ← arg(X), defeated(Y) : att(Y,X).
defeated(X) ← defended(Y), att(Y,X).
← defended(X), not defeated(Y), att(Y,X).
← defeated(X), not defended(Y) : att(Y,X).
in(X) ← defended(X), not defeated(X).

4.2 Domain Heuristics

Clingo provides an option to specify user-specific domain heuristics in the ASP-
program which guides the ASP-solver. In particular one can define heuristics
in order to select the answer-sets that are subset-maximal/minimal w.r.t. a
specified predicate. Inspired by [12] we use such heuristics to compute preferred
extensions by utilizing an encoding for complete semantics and identifying the
subset-maximal answer-sets w.r.t. the in(·) predicate (cf. Listing 4). Moreover,
we use domain heuristics and three-valued labelling-based characterizations of
complete semantics via the predicates in(·), out(·), and undec(·) in order to
compute the subset-maximal ranges of complete and conflict-free sets, i.e. we
compute the subset-minimal answer-sets w.r.t. the undec(·) predicate. This can
be exploited for computing some semi-stable or stage extensions. However, the
domain heuristics only return one witnessing answer-set for each minima and
thus this technique is not directly applicable to the corresponding enumerations
tasks (we would miss some extensions if several extensions have the same range).
In the next section we present a multi-shot method addressing this problem.

Listing 4: Encoding for preferred semantics (using domain heuristics)

%% Complete labellings
in(X) | out(X) | undec(X) ← arg(X).
in(X) ← arg(X), out(Y) : att(Y,X).
out(X) ← in(Y), att(Y,X).
← in(X), not out(Y), att(Y,X).
← out(X), not in (Y): att(Y,X).
← in(X), out(X).
← undec(X), out(X).
← undec(X), in(X).
%% We now apply heuristics to get the complete labeling with subset−maximal in(.) set
#heuristic in(X) : arg(X). [1,true]

4.3 Multi-shot Methods

We utilize multi-shot strategies and pre-processing of the AF for several se-
mantics and reasoning tasks. In the current section, we briefly describe these

7

methods.
For credulous and skeptical reasoning with complete, preferred, grounded,

and ideal semantics we do not need to consider the whole framework but only
those arguments that have a directed path to the query argument (notice that
this does not hold true for stable, semi-stable and stage semantics). We perform
pre-processing on the given AF that removes arguments without a directed path
to the queried argument before starting the reasoning with an ASP-solver.

For computing the ideal extension we follow a two-shot strategy that is
inspired by algorithms proposed earlier for ideal semantics [5, 6]. That is, we
first use an encoding for complete semantics and the brave reasoning mode of
clingo to compute all arguments that are credulously accepted/attacked w.r.t.
preferred semantics. Second, we use the outcome of the first call together with
an encoding that computes a fixed-point corresponding to the ideal extension.
For reasoning with ideal semantics we use an encoding for ideal sets and perform
credulous reasoning on ideal sets in the standard way.

Semi-stable extensions correspond to those complete labellings for which the
set of undecided arguments is subset-minimal. In our approach, we utilize an
encoding for complete semantics extended by an undec(·) predicate and pro-
cess the answer-sets. We check whether models without an undec(·) predicate
have been computed; in that case, semi-stable extensions coincide with sta-
ble extensions. In the other case, we compute all subset-minimal sets among
all undecided sets using the set class in python and return the corresponding
models.

For enumerating stage extensions we use a multi-shot strategy. First we use
the domain heuristics to compute the maximal ranges w.r.t. naive semantics
(as each range maximal conflict-free set is also subset-maximal it is sufficient
to only consider naive sets, i.e. subset-maximal conflict free sets). Second, for
each of the maximal ranges we start another ASP-encoding which computes
conflict-free sets with exactly that range (this is equivalent to computing stable
extension of a restricted framework). Each of these extensions corresponds to a
different stage extension of the AF.

For reasoning with semi-stable and stage semantics we use a multi-shot strat-
egy similar to that for enumerating the stage extensions. First we use domain
heuristics to compute the maximal ranges w.r.t. complete or naive semantics. In
the second step we iterate over these ranges and perform skeptical (credulous)
reasoning over complete extensions (conflict-free sets) with the given range. For
skeptical acceptance, we answer negatively as soon as a counterexample to a pos-
itive answer is found when iterating the extensions; otherwise, after processing
all maximal ranges we answer with YES. Analogously, for credulous acceptance,
we check in each iteration whether we can report a positive answer; otherwise,
after processing all maximal ranges, we return NO.

8

5 Discussion

We next briefly discuss the performance of our system at ICCMA’19 (detailed
results of the competition are published at https://www.iccma2019.dmi.unipg.
it/results/results-main.html). The competition was dominated by the µ-toksia
system by Niskanen and Järvisalo [19], an optimized system based on modern
SAT-solving technology which won all the tracks of the competition and only
failed to solve two of the benchmark instances in the given time-limit of 600
seconds.

The ASPARTIX-V19 system scored third in the overall evaluation of the
competition, scored second in 8 of the 24 tracks and scored second in the ag-
gregated evaluation of complete and stable semantics. Moreover, for 16 tracks
ASPARTIX-V19 solved all instances of the competition within the given time-
limit. Noteworthy, ASPARTIX-V19 was to only system to solve the enumeration
task under stage semantics for the n256p3q08n.apx instance.

The ICCMA’19 results also reported different kinds of errors in the results of
the ASPARTIX-system, which we investigated and shall discuss in the following.
This errors include wrong results, malformed output, crashed computations
and for enumeration tasks incomplete list of extensions which are not due to a
timeout. The affected tasks are skeptical acceptance under preferred and semi-
stable semantics, credulous acceptance under semi-stable semantics, stage and
ideal semantics and enumeration of semi-stable and stage semantics.

The main reason for these errors seems to be side-effects of concurrent calls
to the solver. Towards understanding the erroneous results, we performed addi-
tional experiments. For these experiments we considered all skeptical and cred-
ulous acceptance instances of the competition where ASPARTIX-V19 returned
an erroneous result or crashed and reran the ASPARTIX-V19 docker on these
instances in an isolated setting. For all but one instance we got the correct re-
sults. In this isolated setting ASPARTIX-V19 only reported one wrong result for
skeptical reasoning with semi-stable semantics on the Small-result-b86.apx

instance. This seems to be due to a bug in the used ASP solver, which can be
resolved by using an earlier version of the solver (we got correct results with
clingo 4.4.0). We maintain an updated and extended version of ASPARTIX-V19,
available at the systems web-page 5. For the enumeration tasks we investigated
selected instances with erroneous / incomplete results and again got correct
results when running them in an isolated setting and on the other hand could
generate erroneous results by concurrent calls to the solver.

From our development work and the results achieved in the international
competition, we conclude that (i) a performance increase was achieved by uti-
lizing advanced language features of ASP, across multiple reasoning tasks cover-
ing several levels of complexity of the polynomial hierarchy (e.g., argumentative
reasoning tasks considered in the ICCMA range from polynomial-time decidable
to being complete for a class on the second level of the polynomial hierarchy),

5https://www.dbai.tuwien.ac.at/research/argumentation/aspartix/dung.html#
iccma interface.

9

https://www.iccma2019.dmi.unipg.it/results/results-main.html
https://www.iccma2019.dmi.unipg.it/results/results-main.html
https://www.dbai.tuwien.ac.at/research/argumentation/aspartix/dung.html#iccma_interface
https://www.dbai.tuwien.ac.at/research/argumentation/aspartix/dung.html#iccma_interface

(ii) said language features, furthermore, provide means for compact and acces-
sible modeling of problem shortcuts in the ASP language, however care needs
to be taken when designing systems that interface ASP solvers, and (iii) while
our prototype was outperformed by the SAT based approach of µ-toksia, per-
formance of ASPARTIX-V19 does not lag behind for several cases. Indeed,
as witnessed by the uniquely solved instance only by ASPARTIX-V19, certain
shortcuts included in ASPARTIX-V19 can lead to complementary performance
for families of instances.

Acknowledgments. The authors are grateful to a reviewer for suggesting
directions for further improvements in the encodings.

This work has been funded by the Austrian Science Fund (FWF): P30168-
N31, W1255-N23, and I2854.

References

[1] Pietro Baroni, Martin Caminada, and Massimiliano Giacomin. Abstract
argumentation frameworks and their semantics. In Pietro Baroni, Dov Gab-
bay, Massimiliano Giacomin, and Leendert van der Torre, editors, Handbook
of Formal Argumentation, chapter 4. College Publications, February 2018.

[2] Federico Cerutti, Sarah A. Gaggl, Matthias Thimm, and Johannes P. Wall-
ner. Foundations of implementations for formal argumentation. In Pietro
Baroni, Dov Gabbay, Massimiliano Giacomin, and Leendert van der Torre,
editors, Handbook of Formal Argumentation, chapter 15. College Publica-
tions, February 2018. Also available as an article in the IfCoLog Journal
of Logics and their Applications 4(8):2623–2706.

[3] Günther Charwat, Wolfgang Dvořák, Sarah Alice Gaggl, Johannes Peter
Wallner, and Stefan Woltran. Methods for solving reasoning problems in
abstract argumentation - A survey. Artif. Intell., 220:28–63, 2015.

[4] Phan Minh Dung. On the Acceptability of Arguments and its Fundamen-
tal Role in Nonmonotonic Reasoning, Logic Programming and n-Person
Games. Artif. Intell., 77(2):321–358, 1995.

[5] Paul E. Dunne. The computational complexity of ideal semantics. Artif.
Intell., 173(18):1559–1591, 2009.

[6] Paul E. Dunne, Wolfgang Dvořák, and Stefan Woltran. Parametric prop-
erties of ideal semantics. Artif. Intell., 202:1–28, 2013.

[7] Wolfgang Dvořák and Paul E. Dunne. Computational problems in for-
mal argumentation and their complexity. In Pietro Baroni, Dov Gabbay,
Massimiliano Giacomin, and Leendert van der Torre, editors, Handbook of
Formal Argumentation, chapter 14. College Publications, February 2018.
Also available as an article in the IfCoLog Journal of Logics and their
Applications 4(8):2557–2622.

10

[8] Wolfgang Dvořák, Sarah A. Gaggl, Johannes P. Wallner, and Stefan
Woltran. Making use of advances in answer-set programming for ab-
stract argumentation systems. In Hans Tompits, Salvador Abreu, Johannes
Oetsch, Jörg Pührer, Dietmar Seipel, Masanobu Umeda, and Armin Wolf,
editors, Proc. INAP, Revised Selected Papers, volume 7773 of Lecture Notes
in Artificial Intelligence, pages 114–133. Springer, 2013.

[9] Wolfgang Dvořák, Sarah Alice Gaggl, Thomas Linsbichler, and Jo-
hannes Peter Wallner. Reduction-based approaches to implement Modgil’s
extended argumentation frameworks. In Thomas Eiter, Hannes Strass,
Miroslaw Truszczynski, and Stefan Woltran, editors, Advances in Knowl-
edge Representation, Logic Programming, and Abstract Argumentation -
Essays Dedicated to Gerhard Brewka on the Occasion of His 60th Birth-
day, volume 9060 of Lecture Notes in Computer Science, pages 249–264.
Springer, 2015.

[10] Wolfgang Dvořák, Alexander Greßler, and Stefan Woltran. Evaluating
SETAFs via answer-set programming. In Matthias Thimm, Federico
Cerutti, and Mauro Vallati, editors, Proc. SAFA co-located with COMMA
2018, volume 2171 of CEUR Workshop Proceedings, pages 10–21. CEUR-
WS.org, 2018.

[11] Uwe Egly, Sarah Alice Gaggl, and Stefan Woltran. Answer-set program-
ming encodings for argumentation frameworks. Argument & Computation,
1(2):147–177, 2010.

[12] Wolfgang Faber, Mauro Vallati, Federico Cerutti, and Massimiliano Gi-
acomin. Enumerating preferred extensions using ASP domain heuristics:
The ASPrMin solver. In Sanjay Modgil, Katarzyna Budzynska, and John
Lawrence, editors, Proc. COMMA, volume 305 of Frontiers in Artificial
Intelligence and Applications, pages 459–460. IOS Press, 2018.

[13] Sarah Alice Gaggl, Norbert Manthey, Alessandro Ronca, Johannes Peter
Wallner, and Stefan Woltran. Improved answer-set programming encodings
for abstract argumentation. Theory and Practice of Logic Programming,
15(4-5):434–448, 2015.

[14] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Marius Lindauer,
Max Ostrowski, Javier Romero, Torsten Schaub, and Philipp Wanko
Sven Thiele. Potassco guide version 2.2.0. https://github.com/potassco/
guide/releases/tag/v2.2.0, 2019.

[15] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten
Schaub. Clingo = ASP + control: Preliminary report. CoRR,
abs/1405.3694, 2014.

[16] Martin Gebser, Benjamin Kaufmann, Javier Romero, Ramón Otero,
Torsten Schaub, and Philipp Wanko. Domain-specific heuristics in answer

11

https://github.com/potassco/guide/releases/tag/v2.2.0
https://github.com/potassco/guide/releases/tag/v2.2.0

set programming. In Marie desJardins and Michael L. Littman, editors,
Proc. AAAI, pages 350–356. AAAI Press, 2013.

[17] Victor W. Marek and Miros law Truszczyński. Stable models and an alter-
native logic programming paradigm. In The Logic Programming Paradigm
– A 25-Year Perspective, pages 375–398. Springer, 1999.

[18] Ilkka Niemelä. Logic programming with stable model semantics as a con-
straint programming paradigm. Ann. Math. Artif. Intell., 25(3–4):241–273,
1999.

[19] Andreas Niskanen and Matti Järvisalo. µ-toksia participating in ICCMA
2019. https://www.iccma2019.dmi.unipg.it/papers/ICCMA19 paper 11.
pdf, 2019.

[20] Samer Nofal, Katie Atkinson, and Paul E. Dunne. Algorithms for decision
problems in argument systems under preferred semantics. Artif. Intell.,
207:23–51, 2014.

[21] Alessandro Ronca, Johannes Peter Wallner, and Stefan Woltran.
ASPARTIX-V: utilizing improved ASP encodings. http://
argumentationcompetition.org/2015/pdf/paper 11.pdf, 2015.

[22] Chiaki Sakama and Tjitze Rienstra. Representing argumentation frame-
works in answer set programming. Fundam. Inform., 155(3):261–292, 2017.

12

https://www.iccma2019.dmi.unipg.it/papers/ICCMA19_paper_11.pdf
https://www.iccma2019.dmi.unipg.it/papers/ICCMA19_paper_11.pdf
http://argumentationcompetition.org/2015/pdf/paper_11.pdf
http://argumentationcompetition.org/2015/pdf/paper_11.pdf

	Introduction
	Preliminaries
	Abstract Argumentation
	Tracks of ICCMA'19

	The ASPARTIX System and its V19 Edition
	Implementation Details
	Conditional Literals
	Domain Heuristics
	Multi-shot Methods

	Discussion

