

LOGICAL METHODS IN COMPUTER SCIENCE

A Claim-centric View in Argumentation

Instantiation-based Argumentation

- 1. start from a knowledge base (KB), which is potentially inconsistent;
- 2. construct arguments arguments consist of *claim* and *support*;
- 3. relationship between arguments is analysed;
- 4. abstract away from the contents of the arguments and only consider the remaining abstract argumentation framework (AF);
- 5. semantics for AFs deliver a collection of sets of arguments ("extensions") which are understood as jointly acceptable;
- 6. re-interpret extensions in terms of their claims to restate problem in the domain of original setting.
- Re-interpretation can be performed in different steps of evaluation. \hookrightarrow Step (6) of instantiation process can be interpreted in different ways

Example

Consider the following AF F where each argument is labelled with its claim.

$$(a_1 \leftrightarrow b_1 \rightarrow c_1 \qquad a_2 a \qquad b_2 b \\ a \qquad b \qquad c \qquad d_1 d$$

- Goal: Determine *preferred claim-based extensions*, i.e., subset-maximal sets which are *admissible*, i.e., conflict-free and defend themselves • $adm(F) = \emptyset, \{a_1\}, \{b_1\}, \{b_2\}, \{a_1, b_2\}, \{b_1, b_2\}, \{a_2, b_1\}, \{a_1, b_2, c_1\}, \{a_2, b_1, b_2\}$
- \hookrightarrow Admissible claim-sets: $\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}$

Two different variants to determine claim-based preferred extensions: 1. Determine preferred extensions on AF-level: $\{a_1, b_2, c_1\}$ and $\{a_2, b_1, b_2\}$

- \hookrightarrow Outcome in terms of claims: $\{a, b\}$ and $\{a, b, c\}$
- 2. Maximization over admissible claim-sets yields $\{a, b, c\}$

Argument vs. Claim Acceptance

Skeptical Acceptance: Is a particular argument a / claim c covered by all extensions?

Example (ctd.)

Comparing argument-extensions $\{a_1, b_2, c_1\}, \{a_2, b_1, b_2\}$; claim-sets $\{a, b\}, \{a, b, c\}$ (outcome of variant (1)); and claim-set $\{a, b, c\}$ (cf. variant (2)), we observe that • argument b_2 is skeptically accepted;

- claims a, b are skeptically accepted wrt. both variants (1) and (2);
- claim c is skeptically accepted wrt. variant (2).

Observation:

- Argument acceptance alone is insufficient to decide the acceptance of claims.
- Claim-acceptance depends on chosen claim-based evaluation method.

THE COMPLEXITY LANDSCAPE OF CLAIM-AUGMENTED ARGUMENTATION FRAMEWORKS

Wolfgang Dvořák, Alexander Greßler, Anna Rapberger, Stefan Woltran TU Wien, Institute of Logic and Computation, Vienna, Austria

mentation	Claim-centric Complexity Analysis
Frameworks	Claim-centric Reasoning Problems
(AF) is a triple $(A, R, claim);C \subseteq A \times A;$	Given semantics σ , CAF $CF = (A, R, claim)$, claim $c \in C$, and $C \subseteq C$: • $Cred_{\sigma}$: Does $c \in S$ hold for at least one $S \in \sigma(CF)$? • $Skept_{\sigma}$: Does $c \in S$ hold for all $S \in \sigma(CF)$?
m attack the same arguments.	• Ver_{σ} : Does $C \in \sigma(CF)$ hold?
y (but not all) instantiations.	• NE_{σ}^{CAF} : Does $S \neq \emptyset$ hold for some $S \in \sigma(CF)$?
	Complexity of CAFs
Fs	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
n terms of claims (variant (1)). efine its <i>inherited variant</i> as	$ \frac{cl-stb}{adm} = \frac{cl-stb}{cd} + \frac{cl-stb}{cf} = \frac{cl-stb}{cd} + \frac{cl-stb}{cf} = \frac{cl-stb}{cf} + \frac{cl-stb}{$
$(A, R))\}.$ (adm_c) , preferred (prf_c) , naive	$\begin{array}{c c} cl-prf & NP-c & \Pi_2^{P}-c & \underline{DP-c} & NP-c \\ cl-naive & \operatorname{in} P & \underline{\Pi_2^{P}-c} & \underline{DP-c} & \operatorname{in} P \\ cl-sem & \boldsymbol{\Sigma}_2^{P}-c & \underline{\Pi}_2^{P}-c & \boldsymbol{\Sigma}_2^{P}-c & NP-c \end{array}$
(stg_c) semantics.	$\begin{array}{c c} cl \ sch \ D \ D \ D \ D \ D \ D \ D \ D \ D \ $
ntics); and $(\sqrt{2})$	
and $c \in claim(A)$. ith $claim(a) = c$.	$\frac{\sigma}{D} = \frac{Cred_{\sigma}^{wf} Skept_{\sigma}^{wf} Ver_{\sigma}^{wf} NE_{\sigma}^{wf}}{D}$
[?]), naive $(cl\text{-}naive)$, d stage $(cl\text{-}stg)$ semantics.	$sem_{c} \qquad \Sigma_{2}^{\Gamma} - c \qquad \Pi_{2}^{1} - c \qquad \text{coNP-c NP-c}$ $stg_{c} \qquad \Sigma_{2}^{P} - c \qquad \Pi_{2}^{P} - c \qquad \text{coNP-c in P}$
Its all claims in $claim(A) \setminus S$. naximal i-admissible set.	$\begin{array}{c c} cl-stb_{cf} & NP-c & coNP-c & \mathrm{in} \ \mathbf{P} & NP-c \\ cl-stb_{adm} & NP-c & coNP-c & \mathrm{in} \ \mathbf{P} & NP-c \\ cl-naive & \mathrm{in} \ \mathbf{P} & coNP-c & \mathrm{in} \ \mathbf{P} & \mathrm{in} \ \mathbf{P} \\ cl-naive & \mathrm{in} \ \mathbf{P} & coNP-c \\ cl-naive & \mathrm{in} \ \mathbf{P} & \mathrm{in} \ \mathbf{P} \\ cl-naive & \mathrm{in} \ \mathbf{P} \\$
able semantics coincide.	$cl-prf \qquad NP-c \qquad \Pi_2^{P}-c \qquad coNP-c \qquad NP-c$ $cl-sem \qquad \Sigma_2^{P}-c \qquad \Pi_2^{P}-c \qquad coNP-c \qquad NP-c$
	$cl-stg$ $\tilde{\Sigma}_2^{\mathbf{P}}$ -c $\Pi_2^{\mathbf{P}}$ -c $coNP$ -c in P
ntics	Results that deviate from corresp. results for general CAFs are red .
n	
aim),	Main References
CAFs is denoted by Con_{σ}^{wf} .	[1] Dung, P. M. 1995. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2):321-358
ence sem stg	 [2] Dvořák, W.; Rapberger, A; and Woltran, S. 2020. Argumentation Semantics under a Claim-centric View: Properties, Expressiveness and Relation to SETAFs. KR 2020, Drag. 241, 250
$ \Pi_{3}^{P} - c \ \Pi_{3}^{P} - c \Pi_{2}^{P} - c \ \Pi_{2}^{P} - c $	 Proc. 341–350. [3] Dvořák, W.; and Woltran, S. 2020. Complexity of abstract argumentation under a claim-centric view. Artif. Intell, 285:103290.

