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Our experimental analysis of several popular XPath processors reveals a striking fact: Query
evaluation in each of the systems requires time exponential in the size of queries in the worst case.
We show that XPath can be processed much more efficiently, and propose main-memory algorithms
for this problem with polynomial-time combined query evaluation complexity. Moreover, we show
how the main ideas of our algorithm can be profitably integrated into existing XPath processors.
Finally, we present two fragments of XPath for which linear-time query processing algorithms
exist and another fragment with linear-space/quadratic-time query processing.
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1. INTRODUCTION

XPath has been proposed by the W3C [World Wide Web Consortium 1999] as a
practical language for selecting nodes from XML document trees. The importance
of XPath is due to its potential application as an XML query language per se and its
role at the core of several other XML-related technologies, such as XSLT, XPointer,
and XQuery. Since XPath and related technologies will be tested in ever-growing
deployment scenarios, its implementations need to scale well both with respect to
the size of the XML data and the growing size and intricacy of the queries (usually
referred to as combined complexity).

Recently, there has been some work on the query evaluation problem for very
restrictive fragments of XPath (usually in the context of data stream processing)
[Altinel and Franklin 2000; Chan et al. 2002; Green et al. 2003; Peng and Chawathe
2003; Gupta and Suciu 2003; Bar-Yossef et al. 2004] and on related problems such
as structural joins and XML query pattern matching [Bruno et al. 2002; Chan et al.
2002; Al-Khalifa et al. 2002]. However, to the best of our knowledge, no research
results on processing full XPath or even moderately large fragments of this language
have been published which may serve as yardsticks for new algorithms.

Contributions. In this article, we show that it is possible to noticeably improve
the efficiency of existing and future XPath engines. We claim that current imple-
mentations of XPath processors do not live up to their potential. The way XPath
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is defined in [World Wide Web Consortium 1999] motivates an implementation ap-
proach that leads to highly inefficient (exponential-time) XPath processing, and
many implementations seem to have naively followed this intuition. Likewise, the
semantics of a fragment of XPath defined in [Wadler 2000], which uses a fully
functional formalism, motivates an exponential-time algorithm.

To get a better understanding of the state-of-the-art of XPath implementations,
we experiment with four existing XPath processors, namely XALAN, XT, Saxon,
and Microsoft Internet Explorer 6 (IE6). XALAN [Apache Foundation 2004] is
a framework for processing XPath and XSLT which is freely available from the
Apache Foundation. XT [Clark 1999] is a freely available XSLT1 processor written
by James Clark. Saxon [Kay 2003] is a freely available XSLT processor which was
written by Michael Kay. Finally, IE6 [Microsoft Corporation 2001] is a commercial
Web browser which supports the formatting of XML documents using XSL. Our
experiments show that the time consumption of all four systems in general grows
exponentially in the size of XPath queries. This exponentiality is a very practical
problem. Of course, queries tend to be short, but we will argue that meaningful
practical queries are not short enough to allow the existing systems to handle them.

The main contributions of this article, apart from our experiments, are the fol-
lowing:

—We define a formal bottom-up semantics of XPath (i.e., for the full language as
proposed in [World Wide Web Consortium 1999]), which leads to a bottom-up
main-memory XPath processing algorithm that runs in low-degree polynomial
time in terms of the data and of the query size in the worst case. By a bottom-up
algorithm we mean a method of processing XPath while traversing the parse tree
of the query from its leaves up to its root.

—We discuss a general mechanism for translating our bottom-up algorithm into a
top-down one. (“Top-down” again relates to the parse tree of the query.) Both
have the same worst-case bound on running times but the latter may compute
fewer useless intermediate results than the bottom-up algorithm.

—The top-down algorithm is enhanced to a new algorithm MinContext, which
employs several heuristics. This new algorithm also slightly improves the worst-
case complexity bounds.

—We show how the main ideas of our algorithms can be integrated into existing
XPath processors. Practical experiments with Xalan confirm that these mod-
ifications indeed suffice to eliminate the source of exponential time complexity
from these systems.

—We present a linear-time algorithm (in both data and query size) for a practically
useful fragment of XPath, which we will call Core XPath in the sequel.

In the experiments presented in this article, we show that evaluating such queries
in XALAN and XT already takes exponential time in the size of the queries in
the worst case. The processing time of IE6 for this fragment grows polynomially
in the size of queries, but requires quadratic time in the size of the XML data
(when the query is fixed).

1Of course, XSLT allows to embed and execute arbitrary XPath queries.
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Fig. 1. XPath fragments considered in this article.

—We discuss the now superseded language of XSLT Patterns of the XSLT draft
of December 16th, 1998 [World Wide Web Consortium 1998]. Since then, full
XPath has been adopted as the XSLT Pattern language. XSLT Patterns remains
interesting, as it shares many features with XPath and is a useful practical query
language. We extend this language with all of the XPath axes and call it XPat-
terns to keep it short. Surprisingly, XPatterns queries can be evaluated very
efficiently, in linear time in the size of the data and the query.

—We define the Extended Wadler Fragment , a very large fragment of XPath for
which we provide an evaluation algorithm that works in quadratic time and linear
space with respect to the size of the XML document. This fragment is of great
practical value, since the vast majority of useful queries fall into it. Moreover,
it pinpoints those features of XPath that are the most “expensive”, even though
their practical value is questionable.

—Finally, we present the algorithm OptMinContext, which combines the above
results into one query processor with the following properties. (a) It supports all
of XPath, with the runtime bounds obtained for the MinContext algorithm.
Moreover, (b) for (subexpressions of) queries that fall either into the linear-
time Core XPath Fragment or the quadratic-time, linear-space Extended Wadler
Fragment, the OptMinContext algorithm adheres to these best known bounds.

An overview of the various query language fragments considered in this article
and data complexity bounds of the associated algorithms is given in Figure 1. By
L1 ← L2, we denote that language L1 subsumes language L2: XPatterns fully
subsumes the Core XPath language, and subsumes XSLT Patterns’98 (except for a
minor detail). XPatterns is a fragment of XPath. Likewise, the Extended Wadler
Fragment fully subsumes Core XPath. Moreover, the integration of XSLT Pat-
terns’98 into the Extended Wadler Fragment does not lead to a deterioration of the
complexity bounds.

Structure. The structure of this article is as follows. In Section 2, we provide
experimental results for existing XPath processors. Section 3 introduces axes for
navigation in trees. Section 4 presents the data model of XPath and auxiliary
functions used throughout the article. Section 5 defines the semantics of XPath in
a concise way. Section 6 houses the bottom-up semantics definition and algorithm
for full XPath, and Section 7 comes up with the modifications to obtain a top-
down algorithm. In Section 8, we present several heuristics which also improve
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the worst-case complexity of XPath evaluation. The improvement of other XPath
processors by integrating our main ideas into them is dealt with in Section 9.
Section 10 presents linear-time fragments of XPath (Core XPath and XPatterns).
In Section 11, we show how to evaluate the Extended Wadler Fragment in linear
space and quadratic time. We conclude with Section 12.

2. STATE-OF-THE-ART OF XPATH SYSTEMS

In this section, we evaluate the efficiency of four XPath engines, namely Apache
XALAN (the Lotus/IBM XPath implementation which has been donated to the
Apache Foundation), James Clark’s XT, Michael Kay’s Saxon, and Microsoft In-
ternet Explorer 6 (IE6). The latter is a commercial product while the others are,
as we believe, the three most popular freely available XPath engines.

We show by experiments that all four implementations require time exponential
in the size of the queries in the worst case. Furthermore, we show that even the
simplest queries, with which IE6 can deal efficiently in the size of the queries, take
quadratic time in the size of the data. Note that the goal of these experiments is
not to compare the systems against each other, but to test the scalabilities of their
XPath processing algorithms.

XT, Saxon, and IE6 are not literally XPath engines, but are able to process
XPath embedded in XSLT transformations. We used the xsl:for-each performative
to obtain the set of all nodes an XPath query would evaluate to.

The version of XALAN used for the experiments was Xalan-j 2 2 D11 with the
Xerces XML parser. We used the current version of XT with release tag 19991105,
as available on James Clark’s home page, in combination with his XP parser through
the SAX driver. Finally, we used Saxon version 6.5.2 for our experiments. All of
these three systems are Java implementations.

We ran XALAN and XT on a 360 MHz (dual processor) Ultra Sparc 60 with 512
MB of RAM running Solaris. Saxon was run on a Windows 2000 machine with a
700 MHz Pentium III processor and 256 MB of RAM. Finally, IE6 was evaluated
on a Windows 2000 machine with a 1.2 GHz AMD K7 processor and 1.5 GB of
RAM. The timings reported on here for Saxon and IE6 have the precision of ±1
second, since Windows 2000 does not allow for the same accurate timing as Solaris.

For our experiments, we generated simple, flat XML documents. Each document
DOC(i) was of the form

〈a〉 〈b/〉 . . . 〈b/〉
︸ ︷︷ ︸

i times

〈/a〉

and its tree thus contained i + 1 element nodes.
In this section, the reader is assumed familiar with XPath and standard notions

such as axes and location steps (cf. [World Wide Web Consortium 1999]). A formal
definition of XPath follows in subsequent sections of this article.

Experiment 1: Exponential-time Query Complexity of XALAN and XT. In this
experiment, we used the fixed document DOC(2) (i.e., 〈a〉〈b/〉〈b/〉〈/a〉). Queries
were constructed using a simple pattern. The first query was ‘//a/b’. The i + 1-th
query was obtained by taking the i-th query and appending ‘/parent::a/b’. For
instance, the third query was ‘//a/b/parent::a/b/parent::a/b’.

4



Experiment 1: Experiment 2:
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Fig. 2. Query complexity of XT and XALAN (Experiment 1) and of Saxon (Experiment 2).

It is easy to see that the time measurements reported in Figure 2 (Experiment
1), which uses a log scale Y axis, grow exponentially with the size of the query.
The sharp bend in the curves is due to the near-constant runtime overhead of the
Java VM and of parsing the XML document.

Discussion. The runtime behavior observed can be explained with the follow-
ing pseudocode fragment, which seems to appropriately describe the basic query
evaluation strategy of XT and XALAN.

procedure process-location-step(n0, Q)
/* n0 is the context node; query Q is a list of location steps */
begin

node set S := apply Q.head to node n0;
if (Q.tail is not empty) then

for each node n ∈ S do process-location-step(n, Q.tail);
end

It is clear that each application of a location step to a context node may result in
a set of nodes of size linear in the size of the document (e.g., each node may have
a linear number of descendants or nodes appearing after it in the document). If
we now proceed by recursively applying the location steps of an XPath query to
individual nodes as shown in the pseudocode procedure above, we end up consuming
time exponential in the size of the query in the worst case, even for very simple
path queries. As a (simplified) recurrence, we have

Time(|Q|) :=

{
|D| ∗ Time(|Q| − 1) . . . |Q| > 0
1 . . . |Q| = 0

where |Q| is the length of the query and |D| is the document size, or equivalently

Time(|Q|) = |D||Q|.
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Experiment 3: Experiment 4:
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Fig. 3. Exponential-time query complexity of IE6 (Experiment 3) and Quadratic-time data com-
plexity of IE6 (Experiment 4).

The class of queries used puts an emphasis on simplicity and reproducibility
(using the very simple document 〈a〉〈b/〉〈b/〉〈/a〉). Interestingly, each ‘parent::a/b’
sequence quite exactly doubles the times both systems take to evaluate a query, as
we first jump (back) to the tree root labeled “a” and then experience the “branching
factor” of two due to the two child nodes labeled “b”.

Experiment 2: Exponential-time Query Complexity of Saxon. In our second ex-
periment, we executed queries that nest two important features of XPath, namely
paths and relational operators, using Saxon. To this end, we slightly modified our
XML-documents DOC(i) to DOC ′(i) in that the b-elements are no longer empty.
Instead they now all contain a simple text node with contents “c”. Hence, DOC ′(i)
is of the form

〈a〉 〈b〉c〈/b〉 . . . 〈b〉c〈/b〉
︸ ︷︷ ︸

i times

〈/a〉

The first three queries that we ran on the XML-documents DOC ′(i) for i ∈
{2, 3, 10, 200} were

//*[parent::a/child::* = ’c’]

//*[parent::a/child::*[parent::a/child::* = ’c’] = ’c’]

//*[parent::a/child::*[parent::a/child::*[ parent::a/child::* = ’c’] = ’c’] = ’c’]

and it is clear how to continue this sequence.
The timings summarized in Figure 2 (Experiment 2) clearly show that Saxon

requires time exponential in the size of the query.

Experiment 3: Exponential-time Query Complexity of Internet Explorer 6. In our
third experiment, we executed queries that again nest two important features of
XPath, namely paths and arithmetics, using IE6. The first three queries were

//a/b[count(parent::a/b) > 1]
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//a/b[count(parent::a/b[count(parent::a/b) > 1]) > 1]

//a/b[count(parent::a/b[count(parent::a/b[count(parent::a/b) > 1]) > 1]) > 1]

Again it is clear how to continue this sequence.
Also this experiment was carried out for four document sizes (2, 3, 10, and 200).

Figure 3 (Experiment 3) shows that also IE6 requires time exponential in the size
of the query.

Experiment 4: Quadratic-time Data Complexity for Simple Path Queries (IE6).
For our fourth experiment, we took a fixed query and benchmarked the time taken
by IE6 for various document sizes. The query was ‘//a’ + q(20) + ‘//b’ with

q(i) :=

{
‘//b[ancestor::a’ + q(i− 1) + ‘//b]/ancestor::a’ . . . i > 0
‘’ . . . i = 0

(Note: The size of queries q(i) is of course O(i).)
For instance, the query of size two, i.e. ‘//a’ + q(2) + ‘//b’, according to this

scheme is //a//b[ancestor::a//b[ancestor::a//b]/ancestor::a//b]/ancestor::a//b .
The granularity of measurements (in terms of document size) was 5000 nodes.

Figure 3 (Experiment 4) shows that IE6 takes quadratic time w.r.t. the size of the
data already for this simple class of path queries. Note that f ′ and f ′′ in Figure 3
are the first and second derivatives, respectively, of our graph of timings f .

The query complexity of IE6 for such queries is polynomial as well. Due to space
limitations, we do not provide a graph for this experiment.

Queries that cause exponential runtime. It is usually argued that real-world
queries are small, so query complexity is of minor relevance to practice. How-
ever, realistic document sizes allow only for very short queries to be dealt with by
current XPath engines. We demonstrate this in Experiment 3 for IE6, and veri-
fied it for the other systems as well. XPath query engines need to be able to deal
with increasingly sophisticated queries, along the current trend to delegate larger
and larger parts of data management problems to query engines, where they can
profit from their efficiency and can be made subject to optimization. The intuition
that XPath can be used to match a large class of tree patterns [Shasha et al. 2002;
Kilpeläinen 1992; Bruno et al. 2002] in XML documents also implies to a certain
degree that queries may be of some size.

The queries used in the previous experiments employ antagonist axes (such as
“child” and “parent”) to jump back and forth within the input documents. Our
queries may seem contrived, but our goal was to exhibit queries that use only few
XPath language constructs but still cause current XPath engines to take exponential
time. Queries using antagonist axes such as “following” and “preceding” instead of
“child” and “parent” do have practical applications, such as when we want to put
restrictions on the relative positions of nodes in a document.

Moreover, if we make the realistic assumption that the documents are always
much larger than the queries (|Q| << |D|), it is not even necessary to jump back
and forth with antagonist axes. We can use queries such as

//following::*/following::*/. . ./following::*

to observe exponential behavior. We illustrate this by two further experiments. In
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Fig. 4. Complexity of Xalan for queries that employ exclusively forward axes.

both we used Xalan-Java2 (release 2.6.0) with Xerces 2.6.2 on a PC with 128MB
of main memory running FreeBSD 4.10.

Experiment 5: Exponential-time Complexity with Forward Axes only. In the first
experiment, each query of size k was of the form

count(//b /following::b/following::b/. . ./following::b
︸ ︷︷ ︸

k − 1 times

)

The graph of Figure 4 (a) reports on the query complexity of this family of
queries for documents DOC(i) with i ∈ {20, 25, 30, 40, 50}. What shows is that the
complexity is exponential in the size of the query up to a size that depends on the
document, at which the cost of query evaluation in terms of query size stabilizes.

The most frequently used XPath axes are “child” and “descendant”, so we also
present an analogous experiment for the latter axis. Figure 4 (b) shows the evalu-
ation times of queries of the form

count(//b//b . . . //b
︸ ︷︷ ︸

k times

)

(for size k.) The documents here were constructed in a different fashion; a document
of size i was

〈b〉 . . . 〈b〉
︸ ︷︷ ︸

i times

〈/b〉 . . . 〈/b〉
︸ ︷︷ ︸

i times

that is, a (non-branching) path of i b-nodes. The experiments were run for paths
of 20, 25, 30, 40, and 50 b-nodes.

Consider document size 50. What happens here (assuming again the naive al-
gorithm sketched in the discussion of Experiment 1) is basically that the first “de-
scendant” location step evaluates to 50 nodes, for each of which the second location
step evaluates to between zero and 49 nodes (all nodes below the current node),
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and so forth for a recursion k steps deep. XML documents of depth 50 are not
commonplace, but it is easy to see that the same naive algorithm is also very costly
on massive (wide) XML trees of moderate depth.

Of course, simple path queries using only the downward axes (“child” “descen-
dant”, and “descendant-or-self”) can be evaluated more efficiently using special
purpose techniques such as structural joins (cf. [Al-Khalifa et al. 2002] and follow-up
work) and methods developed for evaluating simple XPath queries on data streams
(see e.g. [Altinel and Franklin 2000]). These techniques work only for very small
fragments of XPath. We observed that if we remove the enclosing “count” from
the queries of Experiment 5, Xalan evaluates them much more efficiently. However,
queries that use advanced language features such as “count” are evaluated naively.

Question. The following question naturally arises from our experiments: Is there
an algorithm for processing XPath with guaranteed polynomial-time behavior (com-
bined complexity), or even one that requires only linear time for simple queries? In
Section 6, we are able to provide a positive answer to this.

3. XPATH AXES

In this section, we formally define XPath axes , that is, the interpreted binary rela-
tions that XPath provides for navigating in XML document trees. We also present
techniques for evaluating XPath axes; these take linear time and are thus worst-
case optimal. Special algorithms for evaluating axes that work more efficiently in
practice have been proposed in the context of structural joins (see e.g. [Al-Khalifa
et al. 2002; Bruno et al. 2002]) and XML-frontends for relational database man-
agement systems [Grust et al. 2004], so the main role of this section is to provide a
foundation for the formal semantics of XPath that we will give later on. The actual
techniques for evaluating axes in our efficient XPath processing algorithms will be
interchangeable.

In XPath, an XML document is viewed as an unranked (i.e., nodes may have a
variable number of children), ordered, and labeled tree. Before we make the data
model used by XPath precise (which distinguishes between several types of tree
nodes) in Section 4, we introduce the main mode of navigation in document trees
employed by XPath – axes – in the abstract, ignoring node types. We will point
out how to deal with different node types in Section 4.

All of the artifacts of this and the next section are defined in the context of a
given XML document. Given a document tree, let dom be the set of its nodes, and
let us use the two functions

firstchild, nextsibling : dom→ dom,

to represent its structure2. “firstchild” returns the first child of a node (if there
are any children, i.e., the node is not a leaf), and otherwise “null”. Let n1, . . . , nk

be the children of some node in document order. Then, nextsibling(ni) = ni+1,
i.e., “nextsibling” returns the neighboring node to the right, if it exists, and “null”
otherwise (if i = k). We define the functions firstchild−1 and nextsibling−1 as the
inverses of the former two functions, where “null” is returned if no inverse exists

2Actually, “firstchild” and “nextsibling” are part of the XML Document Object Model (DOM).
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child := firstchild.nextsibling∗

parent := (nextsibling−1)∗.firstchild−1

descendant := firstchild.(firstchild ∪ nextsibling)∗

ancestor := (firstchild−1 ∪ nextsibling−1)∗.firstchild−1

descendant-or-self := descendant ∪ self
ancestor-or-self := ancestor ∪ self
following := ancestor-or-self.nextsibling.nextsibling∗.descendant-or-self
preceding := ancestor-or-self.nextsibling−1.(nextsibling−1)∗.descendant-or-self
following-sibling := nextsibling.nextsibling∗

preceding-sibling := (nextsibling−1)∗.nextsibling−1

Table I. Axis definitions in terms of “primitive” tree relations “firstchild”, “nextsibling”, and their
inverses.

for a given node. Where appropriate, we will use binary relations of the same name
instead of the functions. ({〈x, f(x)〉 | x ∈ dom, f(x) 6= null} is the binary relation
for function f .)

The axes self , child , parent , descendant , ancestor , descendant-or-self , ancestor-
or-self , following , preceding , following-sibling , and preceding-sibling are binary re-
lations χ ⊆ dom× dom. Let self := {〈x, x〉 | x ∈ dom}. The other axes are defined
in terms of our “primitive” relations “firstchild” and “nextsibling” as shown in Ta-
ble I (cf. [World Wide Web Consortium 1999]). R1.R2, R1∪R2, and R∗1 denote the
concatenation, union, and reflexive and transitive closure, respectively, of binary
relations R1 and R2. Let E(χ) denote the regular expression defining χ in Table I.
It is important to observe that some axes are defined in terms of other axes, but
that these definitions are acyclic.

Definition 3.1. (Axis Function) Let χ denote an XPath axis relation. We

define the function χ : 2dom → 2dom as χ(X0) = {x | ∃x0 ∈ X0 : x0χx} (and thus
overload the relation name χ), where X0 ⊆ dom is a set of nodes. 2

Algorithm 3.2. (Axis Evaluation)
Input: A set of nodes S and an axis χ
Output: χ(S)
Method: evalχ(S)

function eval(R1∪···∪Rn)
∗(S) begin

S′ := S; /* S′ is represented as a list */
while there is a next element x in S ′ do

append {Ri(x) | 1 ≤ i ≤ n, Ri(x) 6= null, Ri(x) 6∈ S′} to S′;
return S′;

end;
function evalχ(S) := evalE(χ)(S).
function evalself(S) := S.
function evale1.e2

(S) := evale2
(evale1

(S)).
function evalR(S) := {R(x) | x ∈ S}.
function evalχ1∪χ2

(S) := evalχ1
(S) ∪ evalχ2

(S).

where S ⊆ dom is a set of nodes of an XML document, e1 and e2 are regular
expressions, R, R1, . . . , Rn are primitive relations or their inverses, χ1 and χ2 are
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axes, and χ is an axis other than “self”. 2

Clearly, some of the axes could have been defined in a simpler way in Table I
(e.g., ancestor equals parent.parent∗). However, the definitions, which use a limited
form of regular expressions only, allow to compute χ(S) in a very simple way, as
evidenced by Algorithm 3.2.

Consider the directed graph G = (V, E) with V = dom and E = R1 ∪ · · · ∪ Rn.
The function eval(R1∪···∪Rn)∗(S) computes the set of nodes reachable from any of
the nodes in S in zero or more steps. (This is easier than computing the reflexive
and transitive closure of G as a binary relation). It can be implemented to run in
linear time in terms of the size of the data (corresponding to the edge relation E
of the graph3) in a straightforward manner; (non)membership in S ′ is checked in
constant time using a direct-access version of S ′ maintained in parallel to its list
representation. Naively, this could be an array of bits, one for each member of dom,
telling which nodes are in S ′.4

Lemma 3.3. Let S ⊆ dom be a set of nodes of an XML document and χ be an
axis. Then,

(1 ) χ(S) = evalχ(S) and

(2 ) Algorithm 3.2 runs in time O(|dom|).

Proof (O(|dom|) running time). The time bound is due to the fact that each
of the eval functions can be implemented so as to visit each node at most once and
the number of calls to eval functions and relations joined by union is constant (see
Table I).

4. DATA MODEL

Let dom be the set of nodes in the document tree as introduced in the previous
section. Each node is of one of seven types, namely root, element, text, comment,
attribute, namespace, and processing instruction. As in DOM [World Wide Web
Consortium ], the root node of the document is the only one of type “root”, and is
the parent of the document element node of the XML document. The main type of
non-terminal node is “element”, the other node types are self-explaining (cf. [World
Wide Web Consortium 1999]). Nodes of all types besides “text” and “comment”
have a name associated with them.

A node test is an expression of the form τ() (where τ is a node type or the
wildcard “node”, matching any type) or τ(n) (where n is a node name and τ is a
type whose nodes have a name). τ(∗) is equivalent to τ(). We define a function
T which maps each node test to the subset of dom that satisfies it. For instance,
T (node()) = dom and T (attribute(href)) returns all attribute nodes labeled “href”.

Example 4.1. Consider DOC(4) of Section 2. It consists of six nodes – the
document element node a labeled “a”, its four children b1, . . . , b4 (labeled “b”), and
a root node r which is the parent of a. We have T (root()) = {r}, T (element()) =
{a, b1, . . . , b4}, T (element(a)) = {a} and, finally, T (element(b)) = {b1, . . . , b4}. 2

3Note that |E| ≈ 2 · |T |, where |T | is the size of the edge relation of the document tree.
4A remotely similar idea is used in the TPQSimulation algorithm of [Ramanan 2002].
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Now, XPath axes differ from the abstract, untyped axes of Section 3 (which we
refer to using a subscript 0 below) in that there are special child axes “attribute”
and “namespace” which filter out all resulting nodes that are not of type attribute
or namespace, respectively. In turn, all other XPath axis functions remove nodes of
these two types from their results. We can express this formally, simulating XPath
axes using abstract axes, as

attribute(S) := child0(S) ∩ T (attribute())

namespace(S) := child0(S) ∩ T (namespace())

and for all other XPath axes χ,

χ(S):=χ0(S)− (T (attribute()) ∪ T (namespace())).

Node tests that occur explicitly in XPath queries must not use the types “root”,
“attribute”, or “namespace”5. In XPath, axis applications χ and node tests t always
come in location step expressions of the form χ::t. The node test n (where n is a
node name or the wildcard *) is a shortcut for τ(n), where τ is the principal node
type of χ. For the axis attribute, the principal node type is attribute, for namespace
it is namespace, and for all other axes, it is element. For example, child::a is short
for child::element(a) and child::* is short for child::element(*).

Note that for a set of nodes S and a typed axis χ, χ(S) can be computed in
linear time – just as for the untyped axes of Section 3.

Let <doc be the binary document order relation, such that x <doc y (for two
nodes x, y ∈ dom) iff the opening tag of x precedes the opening tag of y in the
(well-formed) document. The function first<doc

returns the first node in a set w.r.t.
document order. We define the relation <doc,χ relative to the axis χ as follows.
For χ ∈ {self, child, descendant, descendant-or-self, following-sibling, following},
<doc,χ is the standard document order relation <doc. For the remaining axes, it
is the reverse document order >doc. Moreover, given a node x and a set of nodes
S with x ∈ S, let idxχ(x, S) be the index of x in S w.r.t. <doc,χ (where 1 is the
smallest index).

Given an XML Document Type Definition (DTD) [World Wide Web Consortium
2000] that uses the ID/IDREF feature, some element nodes of the document may

be identified by a unique id. The function deref ids : string → 2dom interprets
its input string as a whitespace-separated list of keys and returns the set of nodes
whose ids are contained in that list.

The function strval : dom → string returns the string value of a node, for
the precise definition of which we refer to [World Wide Web Consortium 1999].
Notably, the string value of an element or root node x is the concatenation of the
string values of the nodes in descendant({x})∩T (text()) visited in document order.
The functions to string and to number convert a number to a string resp. a string
to a number according to the rules specified in [World Wide Web Consortium 1999].

This concludes our discussion of the XPath data model, which is complete except
for some details related to namespaces. This topic is mostly orthogonal to our
discussion, and extending our framework to also handle namespaces (without a

5These node tests are also redundant with ‘/’ and the “attribute” and “namespace” axes.
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penalty with respect to efficiency bounds) is an easy exercise6.

5. SEMANTICS OF XPATH

In this section, we present a concise definition of the semantics of XPath [World
Wide Web Consortium 1999]. We assume the syntax of this language known, and
cohere with its so-called unabbreviated form. This means that

—in all occurrences of the child or descendant axis in the XPath expression, the axis
names have to be stated explicitly; for example, we write /descendant::a/child::b
rather than //a/b.

—Bracketed condition expressions [e], where e is an expression that produces a
number (see below), correspond to [position() = e] in unabbreviated syntax. For
example, the abbreviated XPath expression //a[5], which refers to the fifth node
(with respect to document order) occurring in the document which is labeled
“a”, is written as /descendant::a[position() = 5] in unabbreviated syntax.

—All type conversions have to be made explicit (using the conversion functions
string, number, and boolean, which we will define below). For example, we write
/descendant::a[boolean(child::b)] rather than /descendant::a[child::b].

Moreover, as XPath expressions may use variables for which a given binding has to
be supplied with the expression, each variable is replaced by the (constant) value
of the input variable binding.

These assumptions do not cause any loss of generality, but reduce the number of
cases we have to distinguish in the semantics definition below.

The main syntactic constructs of XPath are expressions , which are of one of
four types, namely node set , number , string , or boolean. Each expression evaluates
relative to a context ~c = 〈x, k, n〉 consisting of a context node x, a context position
k, and a context size n [World Wide Web Consortium 1999]. By the domain of
contexts , we mean the set

C = dom× {〈k, n〉 | 1 ≤ k ≤ n ≤ |dom|}.

Let

ArithOp ∈ {+,−, ∗, div, mod}, EqOp ∈ {=, 6=},
RelOp ∈ {=, 6=,≤, <,≥, >}, GtOp ∈ {≤, <,≥, >}.

By slight abuse of notation, we identify these arithmetic and relational operations
with their symbols in the remainder of this article. However, it should be clear
whether we refer to the operation or its symbol at any point. By π, π1, π2, . . . we
denote location paths.

Definition 5.1. (Semantics of XPath) Each XPath expression returns a value
of one of the following four types: number, node set, string, and boolean (abbrevi-
ated num, nset, str, and bool, respectively). Let T be an expression type and the

6To be consistent, we also will not discuss the “local-name”, “namespace-uri”, and “name” core
library functions [World Wide Web Consortium 1999].

Note that names used in node tests may be of the form NCName:*, which matches all names
from a given namespace named NCNAME.
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(* absolute location paths *)
P [[/π]](x) := P [[π]](root)

(* composition of location paths *)
P [[π1/π2]](x) :=

S

y∈P [[π1]](x) P [[π2]](y)

(* “disjunction” of location paths *)
P [[π1|π2]](x) := P [[π1]](x) ∪ P [[π2]](x)

(* location steps *)
P [[χ::t[e1] · · · [em]]](x) :=
begin

S := {y | xχy, y ∈ T (t)};
for 1 ≤ i ≤ m (in ascending order) do

S := {y ∈ S | [[ei]](y, idxχ(y, S), |S|) = true};
return S;

end;

Fig. 5. Standard semantics of location paths.

semantics [[e]] : C→ T of XPath expression e be defined as follows.

[[π]](〈x, k, n〉) := P [[π]](x) [[position()]](〈x, k, n〉) := k
[[string()]](〈x, k, n〉) := strval(x) [[last()]](〈x, k, n〉) := n

[[number()]](〈x, k, n〉) := to number(strval)(x)

For all other kinds of expressions e = Op(e1, . . . , em) mapping a context ~c to a value
of type T ,

[[Op(e1, . . . , em)]](~c) := F [[Op]]([[e1]](~c), . . . , [[em]](~c)),

where F [[Op]] : T1 × · · · × Tm → T is called the effective semantics function of Op.
The function P is defined in Figure 5 and the effective semantics function F is
defined in Table II. 2

To save space, we at times re-use function definitions in Table II to define others.
However, our definitions are not circular and the indirections can be eliminated
by a constant number of unfolding steps. Moreover, we define neither the number
operations floor, ceiling, and round nor the string operations concat, starts-with,
contains, substring (two versions), substring-before, substring-after, string-length,
normalize-space, translate, and lang in Table II, but it is very easy to obtain these
definitions from the XPath Recommendation [World Wide Web Consortium 1999].

The compatibility of our semantics definition (modulo the assumptions made in
this article to simplify the data model) with [World Wide Web Consortium 1999]
can easily be verified by inspection of the latter document.

It is instructive to compare the definition of P [[π1/π2]] in Figure 5 with the pro-
cedure process-location-step of Section 2 and the claim regarding exponential-time
query evaluation made there. In fact, if the semantics definition of [World Wide
Web Consortium 1999] (or of this section, for that matter) is followed rigorously to
obtain an analogous functional implementation, query evaluation using this imple-
mentation requires time exponential in the size of the queries.

6. BOTTOM-UP EVALUATION OF XPATH

In this section, we present a semantics and an algorithm for evaluating XPath
queries in polynomial time which both use a “bottom-up” intuition. We discuss
the intuitions which lead to polynomial time evaluation (which we call the “context-
value table principle”), and establish the correctness and complexity results.

Definition 6.1. (Semantics) We represent the four XPath expression types
nset, num, str, and bool using relations as shown in Table III. The bottom-up
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Expr. E : Operator Signature ⇒ Semantics F [[E]]

F [[constant number v : → num]]() := v

F [[ArithOp : num × num → num]](v1, v2) := v1 ArithOp v2

F [[count : nset → num]](S) := |S|
F [[sum : nset → num]](S) := Σn∈S to number(strval(n))

F [[id : nset → nset]](S) :=
S

n∈S
F [[id]](strval(n))

F [[id : str → nset]](s) := deref ids(s)

F [[constant string s : → str]]() := s

F [[and : bool × bool → bool]](b1, b2) := b1 ∧ b2

F [[or : bool × bool → bool]](b1, b2) := b1 ∨ b2

F [[not : bool → bool]](b) := ¬b

F [[true() : → bool]]() := true

F [[false() : → bool]]() := false

F [[RelOp : nset × nset → bool]](S1, S2) :=
∃n1 ∈ S1, n2 ∈ S2 : strval(n1) RelOp strval(n2)

F [[RelOp : nset × num → bool]](S, v) := ∃n ∈ S : to number(strval(n)) RelOp v

F [[RelOp : nset × str → bool]](S, s) := ∃n ∈ S : strval(n) RelOp s

F [[RelOp : nset × bool → bool]](S, b) := F [[boolean]](S) RelOp b

F [[EqOp : bool × (str ∪ num ∪ bool) → bool]](b, x) := b EqOp F [[boolean]](x)

F [[EqOp : num × (str ∪ num) → bool]](v, x) := v EqOp F [[number]](x)

F [[EqOp : str × str → bool]](s1, s2) := s1 EqOp s2

F [[GtOp : (str ∪ num ∪ bool) × (str ∪ num ∪ bool) → bool]](x1, x2) :=
F [[number]](x1) GtOp F [[number]](x2)

F [[string : num → str]](v) := to string(v)

F [[string : nset → str]](S) := if S = ∅ then “” else strval(first<doc
(S))

F [[string : bool → str]](b) := if b=true then “true” else “false”

F [[boolean : str → bool]](s) := if s 6= “” then true else false

F [[boolean : num → bool]](v) := if v 6= ±0 and v 6= NaN then true else false

F [[boolean : nset → bool]](S) := if S 6= ∅ then true else false

F [[number : str → num]](s) := to number(s)

F [[number : bool → num]](b) := if b=true then 1 else 0

F [[number : nset → num]](S) := F [[number]](F [[string]](S))

Table II. XPath effective semantics functions.

Expression Type Associated Relation R

num R ⊆ C × R

bool R ⊆ C × {true, false}

nset R ⊆ C × 2dom

str R ⊆ C × char∗

Table III. Expression types and associated relations.
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Expr. E : Signature Semantics E↑[[E]]

location step χ::t : → nset {〈x0, k0, n0, {x | x0χx, x ∈ T (t)}〉 |
〈x0, k0, n0〉 ∈ C}

location step E[e] over axis χ: {〈x0, k0, n0, {x ∈ S | 〈x, idxχ(x, S), |S|, true〉
nset × bool → nset ∈ E↑[[e]]}〉 | 〈x0, k0, n0, S〉 ∈ E↑[[E]]}

location path /π : nset → nset C × {S | ∃k, n : 〈root, k, n, S〉 ∈ E↑[[π]]}
location path π1/π2 : {〈x, k, n,

S

{Z | 〈y, k2, n2, Z〉 ∈ E↑[[π2]], y ∈ Y }〉
nset × nset → nset | 1 ≤ k ≤ n ≤ |dom|, 〈x, k1, n1, Y 〉 ∈ E↑[[π1]]}

location path π1 | π2 : {〈x, k, n, S1 ∪ S2〉 | 〈x, k, n, S1〉 ∈ E↑[[π1]],
nset × nset → nset 〈x, k, n, S2〉 ∈ E↑[[π2]]}

position() : → num {〈x, k, n, k〉 | 〈x, k, n〉 ∈ C}
last() : → num {〈x, k, n, n〉 | 〈x, k, n〉 ∈ C}
string() : → str {〈x, k, n, strval(x)〉 | 〈x, k, n〉 ∈ C}
number() : → num {〈x, k, n, to number(strval(x))〉 | 〈x, k, n〉 ∈ C}

Table IV. Expression relations for location paths, position(), last(), string(), and number().

semantics of expressions is defined via a semantics function

E↑ : Expression→ 2C×(nset∪num∪ str∪bool),

given in Table IV and as

E↑[[Op(e1, . . . , em)]] :=

{〈~c,F [[Op]](v1, . . . , vm)〉 | ~c ∈ C, 〈~c, v1〉 ∈ E↑[[e1]], . . . , 〈~c, vm〉 ∈ E↑[[em]]}

for the remaining kinds of XPath expressions. 2

Now, for each expression e and each 〈x, k, n〉 ∈ C, there is exactly one v s.t.
〈x, k, n, v〉 ∈ E↑[[e]], and which happens to be the value [[e]](〈x, k, n〉) of e on 〈x, k, n〉
(see Definition 5.1).

Theorem 6.2. Let e be an arbitrary XPath expression, 〈x, k, n〉 ∈ C a con-
text, and v = [[e]](〈x, k, n〉) the value of e. Then, v is the unique value such that
〈x, k, n, v〉 ∈ E↑[[e]].

The main principle that we propose at this point to obtain an XPath evaluation
algorithm with polynomial-time complexity is the notion of a context-value table
(i.e., a relation for each expression, as discussed above).

Context-value Table Principle. Given an expression e that occurs in the
input query, the context-value table of e specifies all valid combinations of contexts
~c and values v, such that e evaluates to v in context ~c. Such a table for expression e
is obtained by first computing the context-value tables of the direct subexpressions
of e and subsequently combining them into the context-value table for e. Given
that the size of each of the context-value tables has a polynomial bound and each
of the combination steps can be effected in polynomial time (all of which we can
assure in the following), query evaluation in total under our principle also has a
polynomial time bound7. 2

7The number of expressions to be considered is fixed with the parse tree of a given query.
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Query Evaluation. The idea of Algorithm 6.3 below is so closely based on
our semantics definition that its correctness follows directly from the correctness
result of Theorem 6.2.

Algorithm 6.3. (Bottom-up algorithm for XPath)
Input: An XPath query Q;
Output: E↑[[Q]].
Method:

let Tree(Q) be the parse tree of query Q;
R := ∅; (* a set of context-value tables *)
for each atomic expression l ∈ leaves(Tree(Q)) do

compute table E↑[[l]] and add it to R;
while E↑[[root(Tree(Q))]] 6∈ R do

begin

take an Op(l1, . . . , ln) ∈ nodes(Tree(Q)) s.t. E↑[[l1]], . . . , E↑[[ln]] ∈ R;
compute E↑[[Op(l1, . . . , ln)]] using E↑[[l1]], . . . , E↑[[ln]];
add E↑[[Op(l1, . . . , ln)]] to R;

end;
return E↑[[root(Tree(Q))]]. 2

Example 6.4. Consider document DOC(4) of Section 2. Let dom = {r, a, b1,
. . . , b4}, where r denotes the root node, a the document element node (the child of
r, labeled a) and b1, . . . , b4 denote the children of a in document order (labeled b).
We want to evaluate the XPath query Q, which reads as

descendant::b/following-sibling::*[position() != last()]

over the input context 〈a, 1, 1〉. We illustrate how this evaluation can be done using
Algorithm 6.3: First of all, we have to set up the parse tree

�� @@

�� @@

@@��
E2: E3[E4]

E3: following-sibling::* E4: E5 != E6

E6: last()E5: position()

Q: E1/E2

E1: descendant::b

of Q with its 6 proper subexpressions E1, . . . , E6. Then we compute the context-
value tables of the leaf nodes E1, E3, E5 and E6 in the parse tree, and from the
latter two the table for E4. By combining E3 and E4, we obtain E2, which is in
turn needed for computing Q. The tables8 for E1, E2, E3 and Q are shown in
Figure 6. Moreover,

E↑[[E5]] = {〈x, k, n, k〉 | 〈x, k, n〉 ∈ C}

E↑[[E6]] = {〈x, k, n, n〉 | 〈x, k, n〉 ∈ C}

E↑[[E4]] = {〈x, k, n, k 6= n〉 | 〈x, k, n〉 ∈ C}

8The k and n columns have been omitted. Full tables are obtained by computing the Cartesian
product of each table with {〈k, n〉 | 1 ≤ k ≤ n ≤ |dom|}. This kind of restriction to the “relevant
context” will be put on a formal basis in Section 8.
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E↑[[Q]]

x val

r {b2, b3}
a {b2, b3}
b1 { }
b2 { }
b3 { }
b4 { }

E↑[[E1]]

x val

r {b1, b2, b3, b4}
a {b1, b2, b3, b4}
b1 { }
b2 { }
b3 { }
b4 { }

E↑[[E2]]

x val

r { }
a { }
b1 {b2, b3}
b2 {b3}
b3 { }
b4 { }

E↑[[E3]]

x val

r { }
a { }
b1 {b2, b3, b4}
b2 {b3, b4}
b3 {b4}
b4 { }

Fig. 6. Context-value tables of Example 6.4.

The most interesting step is the computation of E↑[[E2]] from the tables for E3 and
E4. For instance, consider 〈b1, k, n, {b2, b3, b4}〉 ∈ E↑[[E3]]. b2 is the first, b3 the
second, and b4 the third of the three siblings following b1. Thus, only for b2 and b3

is the condition E2 (requiring that the position in set {b2, b3, b4} is different from
the size of the set, three) satisfied. Thus, we obtain the tuple 〈b1, k, n, {b2, b3}〉
which we add to E↑[[E2]].

We can read out the final result {b2, b3} from the context-value table of Q. 2

Remark 6.5. An intuition for the Context-value Table Principle and Algo-
rithm 6.3 can also be gained from the nice fact that every acyclic conjunctive
query can be evaluated in polynomial time [Yannakakis 1981]. Now, if we assume
that we have each of the operations readily pre-computed as a relation, each XPath
query can be viewed as an acyclic conjunctive query over these relations, and Al-
gorithm 6.3 is a reformulation of Yannakakis’ Algorithm on such queries (where
context-value tables are intermediate join results). However, this intuition fails in
general because computed XPath values (even numbers) take space polynomial in
the size of the input, and the relations of arithmetical operators or certain string
functions would be of exponential size. Thus, this intuition only works for certain
fragments of XPath. 2

Theorem 6.6. XPath can be evaluated bottom-up in polynomial time (combined
complexity). More precisely, for an XML document D and an XPath query Q, the
bottom-up algorithm 6.3 works in time O(|D|5 · |Q|2) and space O(|D|4 · |Q|2).

Proof. Let |Q| be the size of the query and |D| be the size of the data. During
the bottom-up computation of a query Q using Algorithm 6.3, O(|Q|) relations
(“context-value tables”) are created. All relations have a functional dependency
from the context (columns one to three) to the value (column four). The size of
each relation is O(|D|3) times the maximum size of such values. The size of bool
relations is bounded by O(|D|3) and the size of nset relations by O(|D|4).

Numbers and strings computable in XPath are of size O(|D| · |Q|): “concat” on
strings and arithmetic multiplication on numbers are the most costly operations
(w.r.t. size increase of values) on strings and numbers9. Here, the lengths of the

9For the conversion from a node set to a string or number, only the first node in the set is
chosen. Of the string functions, only “concat” may produce a string longer than the input strings.
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argument values add up such that we get to sizes O(|D| · |Q|) at worst, even in the
relation representing the “top” expression Q itself.

The overall space bound of O(|D|4 · |Q|2) follows. Note that no significant addi-
tional amount of space is required for intermediate computations.

Let each context-value table be stored as a three-dimensional array, such that
we can find the value for a given context 〈x, k, n〉 in constant time. Given m
context-value tables representing expressions e1, . . . , em and a context 〈x, k, n〉, any
m-ary XPath operation Op(e1, . . . , em) on context 〈x, k, n〉 can be evaluated in
time O(|D| · I); again, I is the size of the input values and thus O(|D| · |Q|).
This is not difficult to verify; it only takes very standard techniques to implement
the XPath operations according to the definitions of Table II (sometimes using
auxiliary data structures created in a preprocessing step). The most costly operator
is RelOp : nset×nset→ bool, and this one also takes the most ingenuity. We assume
a pre-computed table

{〈n1, n2〉 | n1, n2 ∈ dom, strval(n1) RelOp strval(n2)}

that can be used to carry out the operation in time O(|D2|) given two node sets.
Each of the expression relations can be computed in time O(|D|3 · |D|2 · |Q|) at

worst when the expression semantics tables of the direct subexpressions are given.
(The |Q| factor is due to the size bound on strings and numbers generated during
the computation.) Moreover, O(|Q|) such computations are needed in total to
evaluate Q. The O(|D|5 · |Q|2) time bound follows.

Remark 6.7. Note that contexts can also be represented in terms of pairs of a
current and a “previous” context node (rather than triples of a node, a position,
and a size), which are defined relative to an axis and a node test (which, however,
are fixed with the query). For instance, the corresponding ternary context for ~c =
〈x0, x〉 w.r.t. axis χ and node test t is 〈x, idxχ(x, Y ), |Y |〉, where Y = {y | x0χy, y ∈
T (t)}. Thus, position and size values can be recovered on demand.

Through this change, it is possible to push down the maximum number of rows
in each context-value table from O(|D|3) to O(|D|2). We thus obtain an improved
worst-case space bound of O(|D|3 · |Q|2) and time bound of O(|D|4 · |Q|2) for XPath
query evaluation by a bottom-up algorithm. Actually, such a restriction to those
context triples that can possibly be generated by the pairs of previous/current con-
text node (w.r.t. some axis χ and node test t) is implicit in the top-down algorithm
to be presented in Section 7. In particular, the improved complexity bounds that
we have just mentioned are exactly the ones that we will get in Theorem 7.5. 2

7. TOP-DOWN EVALUATION OF XPATH

In the previous section, we obtained a bottom-up semantics definition which led
to a polynomial-time query evaluation algorithm for XPath. Despite this favorable
complexity bound, this algorithm is still not practical, as usually many irrelevant
intermediate results are computed to fill the context-value tables which are not
used later on. Next, building on the context-value table principle of Section 6, we

The “translate” function of [World Wide Web Consortium 1999], for instance, does not allow for
arbitrary but just single-character replacement, e.g. for case-conversion purposes.

19



(* absolute location paths *)
S↓[[/π]](X1, . . . , Xk) :=

S↓[[π]]({root}, . . . , {root}
| {z }

k times

)

(* composition of location paths *)
S↓[[π1/π2]](X1, . . . ,Xk) :=

S↓[[π2]](S↓[[π1]](X1, . . . ,Xk))

(* “disjunction” of location paths *)
S↓[[π1 | π2]](X1, . . . , Xk) :=

S↓[[π1]](X1, . . . ,Xk)∪〈〉

S↓[[π2]](X1, . . . ,Xk)

(* location steps *)
S↓[[χ::t[e1] · · · [em]]](X1, . . . , Xk) :=
begin

S := {〈x, y〉 |x ∈
Sk

i=1 Xi, x χ y, and y ∈ T (t)};
for each 1 ≤ i ≤ m (in ascending order) do

begin

for each x, let Sx = {z | 〈x, z〉 ∈ S};
for 〈x, y〉 ∈ S,

let CtS(x, y) = 〈y, idxχ(y, Sx), |Sx|〉;
T := {CtS(x, y) | 〈x, y〉 ∈ S};
let T = {t1, . . . , tl}; (* we fix some order on T *)
〈r1, . . . , rl〉 := E↓[[ei]](t1, . . . , tl);
S := {〈x, y〉 ∈ S | ∃i : ti = CtS(x, y) ∧ ri is true};

end;

for each 1 ≤ i ≤ k do

Ri := {y | 〈x, y〉 ∈ S, x ∈ Xi};
return 〈R1, . . . , Rk〉;

end;

Fig. 7. Top-down evaluation of location paths.

develop a top-down algorithm based on vector computation for which the favorable
(worst-case) complexity bound carries over but in which the computation of a large
number of irrelevant results is avoided.

Given an m-ary operation Op : Dm → D, its vectorized version Op〈〉 : (Dk)m →
Dk is defined as

Op〈〉(〈x1,1, . . . , x1,k〉, . . . , 〈xm,1, . . . , xm,k〉) :=
〈Op(x1,1, . . . , xm,1), . . . , Op(x1,k, . . . , xm,k)〉

For instance, 〈X1, . . . , Xk〉 ∪〈〉 〈Y1, . . . , Yk〉 := 〈X1 ∪ Y1, . . . , Xk ∪ Yk〉. Let

S↓ : LocationPath → List(2dom) → List(2dom)

be the auxiliary semantics function for location paths defined in Figure 7. We
basically distinguish the same cases (related to location paths) as for the bottom-
up semantics E↑[[π]]. Given a location path π and a list 〈X1, . . . , Xk〉 of node sets,
S↓ determines a list 〈Y1, . . . , Yk〉 of node sets, s.t. for every i ∈ {1, . . . , k}, the nodes
reachable from the context nodes in Xi via the location path π are precisely the
nodes in Yi. S↓[[π]] can be obtained from the relations E↑[[π]] as follows. A node y
is in Yi iff there is an x ∈ Xi and some p, s such that 〈x, p, s, y〉 ∈ E↑[[π]].

Definition 7.1. The semantics function E↓ for arbitrary XPath expressions is
of the following type:

E↓ : XPathExpression → List(C) → List(XPathType)

Given an XPath expression e and a list (~c1, . . . ,~cl) of contexts, E↓ determines a list
〈r1, . . . , rl〉 of results of one of the XPath types number, string, boolean, or node
set. E↓ is defined as

E↓[[π]](〈x1, k1, n1〉, . . . , 〈xl, kl, nl〉) := S↓[[π]]({x1}, . . . , {xl})

E↓[[position()]](〈x1, k1, n1〉, . . . , 〈xl, kl, nl〉) := 〈k1, . . . , kl〉
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E↓[[last()]](〈x1, k1, n1〉, . . . , 〈xl, kl, nl〉) := 〈n1, . . . , nl〉

E↓[[string()]](〈x1, k1, n1〉, . . . , 〈xl, kl, nl〉) := 〈strval(x1), . . . , strval(xl)〉

E↓[[number()]](〈x1, k1, n1〉, . . . , 〈xl, kl, nl〉) :=
〈to number(strval(x1)), . . . , to number(strval(xl))〉

and

E↓[[Op(e1, . . . , em)]](~c1, . . . ,~cl) := F [[Op]]〈〉(E↓[[e1]](~c1, . . . ,~cl), . . . , E↓[[em]](~c1, . . . ,~cl))

for the remaining kinds of expressions. 2

Example 7.2. Consider the XPath query

/descendant::a[count(descendant::b/child::c) + position() < last()]/child::d

Let L = 〈〈y1, 1, l〉, . . . , 〈yl, l, l〉〉, where the yi are those nodes reachable from the
root node through the descendant axis and which are labeled “a”. The query is
evaluated top-down as

S↓[[child::d]](S↓[[descendant::a[e]]]({root}))

where e is defined as e := count(descendant::b/child::c) + position() < last().
Moreover, E↓[[e]](L) is computed as

F [[count]]〈〉(X) +〈〉 E↓[[position()]](L) <〈〉 E↓[[last()]](L)

and

X = S↓[[child::c]](S↓[[descendant::b]]({y1}, . . . , {yl})).

Note that the arity of the tuples used to compute the outermost location path is
one, while it is l for e. 2

Example 7.3. Given the query Q, document DOC(4), and context 〈a, 1, 1〉 of
Example 6.4, we evaluate Q as E↓[[Q]](〈a, 1, 1〉) = S↓[[E2]](S↓[[descendant::b]]({a})).
Again, E2 is the subexpression

following-sibling::*[position() != last()].

First, we obtain S↓[[descendant::b]]({a}) = 〈{b1, b2, b3, b4}〉. For the computa-
tion of the location step S↓[[E2]](〈{b1, b2, b3, b4}〉, we proceed as described in the
algorithm of Figure 7. We initially obtain the set

S = {〈b1, b2〉, 〈b1, b3〉, 〈b1, b4〉, 〈b2, b3〉, 〈b2, b4〉, 〈b3, b4〉}

and the contexts ~t = 〈〈b2, 1, 3〉, 〈b3, 2, 3〉, 〈b4, 3, 3〉, 〈b3, 1, 2〉, 〈b4, 2, 2〉, 〈b4, 1, 1〉〉.
The check of condition E4 returns the filter

~r = 〈true, true, false, true, false, false〉.

which is applied to S to obtain S = {〈b1, b2〉, 〈b1, b3〉, 〈b2, b3〉}. Thus, the query
returns 〈{b2, b3}〉. 2

The correctness of the top-down semantics follows immediately from the corre-
sponding result in the bottom-up case and from the definition of S↓ and E↓.
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<?xml version=”1.0”?>
<a id = ”10”>

<b id = ”11”>
<c id = ”12”>21 22</c>
<c id = ”13”>23 24</c>
<d id = ”14”>100</d>

</b>
<b id = ”21”>

<c id = ”22”>11 12</c>
<d id = ”23”>13 14</d>
<d id = ”24”>100</d>

</b>
</a>

Fig. 8. Sample XML document.

Theorem 7.4. (Correctness of E↓) Let e be an arbitrary XPath expression.
Then 〈v1, . . . , vl〉 = E↓[[e]](~c1, . . . ,~cl) iff 〈~c1, v1〉, . . . , 〈~cl, vl〉 ∈ E↑[[e]].

S↓ and E↓ can be immediately transformed into function definitions in a top-
down algorithm. We thus have to define one evaluation function for each case
of the definition of S↓ and E↓, respectively. The functions corresponding to the
various cases of S↓ have a location path and a list of node sets of variable length
(X1, . . . , Xk) as input parameter and return a list (R1, . . . , Rk) of node sets of the
same length as result. Likewise, the functions corresponding to E↓ take an arbitrary
XPath expression and a list of contexts as input and return a list of XPath values
(which can be of type num, str, bool or nset). Moreover, the recursions in the
definition of S↓ and E↓ correspond to recursive function calls of the respective
evaluation functions. Analogously to Theorem 6.6, we get

Theorem 7.5. The immediate functional implementation of E↓ evaluates XPath
queries in polynomial time (combined complexity). More precisely, for an XML doc-
ument D and an XPath query Q, the top-down algorithm based on E↓ as described
above works in time O(|D|4 · |Q|2) and space O(|D|3 · |Q|2).

Finally, note that using arguments relating the top-down method of this section
with (join) optimization techniques in relational databases, one may argue that
the context-value table principle is also the basis of the polynomial-time bound of
Theorem 7.5.

8. THE ALGORITHM MINCONTEXT

8.1 Preliminaries

We shall illustrate our new algorithm MinContext by means of the following
running example:

Example 8.1. Let D be the XML document in Figure 8. Note that every ele-
ment of this document is uniquely determined by the attribute “id”. Hence, in the
context of this example, we use the notation xi to refer to the element whose at-
tribute “id” has the value i. We thus have dom = {r, x10, x11, x12, x13, x14, x21, x22,
x23, x24}, where r is the root node (i.e., the parent of x10).
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Now suppose that we want to evaluate the XPath query Q ≡ /descendant::*/des-
cendant::*[position() > last()*0.5 or self::* = 100] over the XML document D for
the context 〈x10, 1, 1〉.

The parse tree T of Q is depicted in Figure 10. Note that we have replaced “self::*
= 100” at E7 by “string(self::*) = 100” in order to make the type conversion (from
node set to string) explicit. The context-value table of each subexpression of Q
is depicted in Figure 9. By “x”, “p”, and “s”, we denote context-node, context-
position, and context-size. In the last column of each table, we have the result “val”.
In the context-value tables of the subexpressions Q, E1, E2, E3, and E4, we have
omitted the columns for the context-position and the context-size. Analogously to
Example 6.4, this is justified by the fact that “p” and “s” are irrelevant for these
path expressions. We shall come back to this point in Section 8.2.

In all of the tables in Figure 9, we have omitted some rows, which have no
influence on the overall result. Recall that we are evaluating Q for the context
〈x10, 1, 1〉. Hence, in the table of Q, we only consider the context-node x10. In
the tables corresponding to E1 and E2, we only consider the root node r, since
this is the only interesting context-node when we move up from E1 to / E1. On
the other hand, in the tables corresponding to E3 and E4, the root node r is
omitted, since it cannot be reached by the preceding location step “/descendant::*”.
Likewise, for the expressions E5, . . . , E14, we set up the context-value tables only for
those context triples 〈x , p, s〉 which can be reached by the preceding location steps
“/descendant::*/descendant::*”. All of these restrictions of the context-value tables
are due to the considerations on the top-down evaluation according to the semantics
function E↓ from Definition 7.1. In particular, this top-down evaluation guarantees
that no context-value table contains more than |dom|2 entries, corresponding to all
possible pairs of a previous and a current context node w.r.t. the axis in the last
location step. Without this improvement, we would have to consider up to |dom|3

possible triples 〈x , p, s〉 in each context-value table.
The final result of evaluating Q over D for the context 〈x10, 1, 1〉 is {x13, x14, x21,

x22, x23, x24}. It can be read out from the context-value table corresponding to
the input XPath expression Q. 2

In the context of our running example, by slight abuse of notation, we are writ-
ing Ei both to denote subexpressions of the input XPath query Q and nodes in
the parse tree T . However, if the distinction between a node N in the parse tree
and a subexpression E of the input XPath query does matter, then we shall write
expr(N) to denote the XPath expression corresponding to the node N . Conversely,
for an expression E, we write node(E) to denote the node in the parse tree corre-
sponding to E. Given a node N in the parse tree, we shall write table(N) to denote
the context-value table at the node N . Finally, it is convenient to write “≡” for
syntactic equality.

8.2 The Main Ideas

The primary goal of our new algorithm MinContext is to keep the context infor-
mation that has to be considered at each stage as small as possible. This is achieved
by combining several ideas:

Restriction to the relevant context. Suppose that we want to evaluate an
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Q

x val

x10 {x13, x14, x21,

x22, x23, x24}

E1

x val

r {x13, x14, x21,

x22, x23, x24}

E2

x val

r {x10, x11, x12,

x13, x14, x21,

x22, x23, x24}

E3

x val

x10 {x14, x21,

x22, x23,

x24}

x11 {x13, x14}

x12 { }

x13 { }

x14 { }

x21 {x23, x24}

x22 { }

x23 { }

x24 { }

E4

x val

x10 {x11, x12,

x13, x14,

x21, x22,

x23, x24}

x11 {x12, x13, }

x14}

x12 { }

x13 { }

x14 { }

x21 {x22, x23, }

{x24}

x22 { }

x23 { }

x24 { }

E5

x p s val

x11 1 8 false

x12 2 8 false

x13 3 8 false

x14 4 8 true

x21 5 8 true

x22 6 8 true

x23 7 8 true

x24 8 8 true

x12 1 3 false

x13 2 3 true

x14 3 3 true

x22 1 3 false

x23 2 3 true

x24 3 3 true
E6

x p s val

x11 1 8 false

x12 2 8 false

x13 3 8 false

x14 4 8 false

x21 5 8 true

x22 6 8 true

x23 7 8 true

x24 8 8 true

x12 1 3 false

x13 2 3 true

x14 3 3 true

x22 1 3 false

x23 2 3 true

x24 3 3 true

E7

x p s val

x11 1 8 false

x12 2 8 false

x13 3 8 false

x14 4 8 true

x21 5 8 false

x22 6 8 false

x23 7 8 false

x24 8 8 true

x12 1 3 false

x13 2 3 false

x14 3 3 true

x22 1 3 false

x23 2 3 false

x24 3 3 true

E8

x p s val

x11 1 8 1

x12 2 8 2

x13 3 8 3

.

..
.
..

.

..
.
..

x24 8 8 8

x12 1 3 1

x13 2 3 2

x14 3 3 3

x22 1 3 1

x23 2 3 2

x24 3 3 3

E9

x p s val

x11 1 8 4

x12 2 8 4

...
...

...
...

x12 1 3 1.5

...
...

...
...

x24 3 3 1.5

E10

x p s val

x11 1 8 ”21 22 23 24 100”

x12 2 8 ”21 22”

x13 3 8 ”23 24”

x14 4 8 ”100”

x21 5 8 ”11 12 13 14 100”

x22 6 8 ”11 12”

x23 7 8 ”13 14”

x24 8 8 ”100”

x12 1 3 ”21 22”

x13 2 3 ”23 24”

x14 3 3 ”100”

x22 1 3 ”11 12”

x23 2 3 ”13 14”

x24 3 3 ”100”

E11

x p s val

x11 1 8 ”100”

x12 2 8 ”100”

...
...

...
...

x24 3 3 ”100”

E12

x p s val

x11 1 8 8

x12 2 8 8

..

.
..
.

..

.
..
.

x12 1 3 3

.

..
.
..

.

..
.
..

x24 3 3 3

E13

x p s val

x11 1 8 0.5

x12 2 8 0.5

...
...

...
...

x24 3 3 0.5

E14

x p s val

x11 1 8 {x11}

x12 2 8 {x12}

x13 3 8 {x13}
..
.

..

.
..
.

..

.

x24 3 3 {x24}

Fig. 9. Context-value tables of Example 8.1.
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Fig. 10. Parse tree T of Q in Example 8.1.

XPath expression Q via the context-value table principle. Then we have to compute
a table of up to |dom|2 entries for each node in the parse tree of Q. Recall that
this is already an improved bound due to the top-down evaluation via the semantics
function E↓. However, in many cases, the result of a subexpression depends solely on
parts of the context information. Hence, we can restrict the context-value table at
every node N in the parse tree to the “relevant context” Relev(N) ⊆ {‘cn’, ‘cp’, ‘cs’},
which can be computed by a single bottom-up traversal of the parse tree as follows:

—Base cases. If N is a leaf node of the parse tree, then we have to distinguish all
possible cases concerning the form of the subexpression expr(N) corresponding
to N , namely: If expr(N) is a constant or an expression of the form “true()”
or “false()”, then we set Relev(N) := ∅. In case of expr(N) ≡ position() or
expr(N) ≡ last(), we set Relev(N) := {‘cp’} or Relev(N) := {‘cs’}, respectively.
Finally, if expr(N) is a location step or a parameterless XPath core library func-
tion that refers to the context-node (like string(), number(), etc.), then we set
Relev(N) := {‘cn’}.

—Compound expressions. If an inner node N of the parse tree corresponds to a
location step within a location path, then we set Relev(N) := {‘cn’}. In all
other cases, let {N1, . . . , Nk} denote the set of child nodes of N . Then we set

Relev(N) :=
⋃k

i=1 Relev(Ni).

Relev(N) depends on the XPath query Q only (but not on the XML-document).
Obviously, the computation of all these sets Relev(N) can be done in time O(|Q|).

Example 8.2. By a bottom-up traversal of the parse tree T in Figure 10, we
get the following sets of relevant contexts:

Relev(E2) = {‘cn’} Relev(E4) = {‘cn’} Relev(E8) = {‘cp’}
Relev(E12) = {‘cs’} Relev(E13) = { } Relev(E14) = {‘cn’}
Relev(E11) = { } Relev(E9) = Relev(E12) ∪Relev(E13) = {‘cs’}
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Relev(E6) = Relev(E8) ∪ Relev(E9) = {‘cp’, ‘cs’}
Relev(E10) = Relev(E14) = {‘cn’}
Relev(E7) = Relev(E10) ∪Relev(E11) = {‘cn’}
Relev(E5) = Relev(E6) ∪ Relev(E7) = {‘cn’, ‘cp’, ‘cs’}
Relev(E3) = {‘cn’} Relev(E1) = {‘cn’} Relev(Q) = {‘cn’}

Note that Q, E1, and E3 correspond to location steps. That is why the child nodes
of these nodes in the parse tree play no role in computing Relev(Q), Relev(E1),
and Relev(E3).

For the nodes Q, E1 . . . E4, the context-value tables in Figure 9 have already been
reduced to the relevant context. For E5, no reduction is possible, since we have
Relev(E5) = {‘cn’, ‘cp’, ‘cs’}. For the remaining nodes, the reduced context-value
tables are displayed in Figure 11. 2

E6

p s val

1 8 false

2 8 false

3 8 false

4 8 false

5 8 true

6 8 true

7 8 true

8 8 true

1 3 false

2 3 true

3 3 true

E7

x val

x11 false

x12 false

x13 false

x14 true

x21 false

x22 false

x23 false

x24 true

E8

p val

1 1

2 2

3 3

..

.
..
.

8 8

E9

s val

8 4

3 1.5

E10

x val

x11 ”21 22 23

24 100”

x12 ”21 22”

x13 ”23 24”

x14 ”100”

x21 ”11 12 13

14 100”

x22 ”11 12”

x23 ”13 14”

x24 ”100”
E11

val

”100”

E12

s val

8 8

3 3

E13

val

0.5

E14

x val

x11 {x11}

x12 {x12}

x13 {x13}
.
..

.

..

x24 {x24}

Fig. 11. Restriction to the relevant context.

Special treatment of location paths on the outermost level. (i.e., location
paths that do not occur inside another XPath expression). Note that the context-
value table algorithm computes a table of size O(|dom|2) for all location steps of
an input location path (according to the semantics function S↓ in Figure 7). This
is due to the fact that we compute for every possible context-node x the resulting
node set. However, at no stage in the computation, we are really interested in the
whole information as to which next node xj ∈ dom can be reached from which
previous node xi ∈ dom. Instead, it suffices to know the set of all nodes xj ∈ dom
that can be reached from any of the previous nodes xi ∈ dom. Hence, the results
of location steps on the outermost level should be treated as a subset ⊆ dom rather

than as a relation ⊆ dom×2dom. Of course, the final result now has to be read out
from the context-value table corresponding to the last location step (rather than
from the context-value table of the root node of the parse tree).

Example 8.3. The XPath query Q from Example 8.1 has in fact a location
path on the outermost level. Hence, the 2-dimensional context-value tables of
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the location paths “/descendant::*/descendant::*[. . . ]” (at node(Q) in the parse
tree), “descendant::*/descendant::*[. . . ]” (at node(E1)), and “descendant::*[. . . ]
(at node(E3)) can be replaced by the following node sets (or, equivalently, the
1-dimensional tables): X = {r} at node(Q) (i.e., the only node selected by “/”
is the root node r), moreover, Y = {x10, x11, x12, x13, x14, x21, x22, x23, x24} at
node(E1) (i.e., the nodes selected by “descendant::*” when starting from r), and,
finally, Z = {x13, x14, x21, x22, x23, x24} at node(E3) (i.e., the nodes selected by
“descendant::[E5]” when starting from any node in Y ). Then the final result of Q
is the node set Z corresponding to the node E3 in the parse tree. 2

Treating position and size in a loop. The central idea of the context-value
table principle is the simultaneous evaluation of each subexpression for all possible
contexts in a single table. However, a close inspection of the various kinds of
expressions that have to be evaluated (cf. Tables II and IV) reveals that such
a simultaneous evaluation for all possible contexts is only necessary (in order to
avoid exponential time complexity) for the context-node x . In contrast, for the
context-position and/or context-size, a loop over all possible values 〈p, s〉 leads to
a significant improvement of the space complexity without any deterioration of
the time complexity. Hence, the evaluation of any predicate p should be done
as follows: First the subtree in the parse tree corresponding to the predicate p
is traversed so as to evaluate all subexpressions of p that do not depend on the
(current) context-position and/or context-size. Then the evaluation of the predicate
p for the complete context (possibly involving position and/or size) is done in a loop
over all possible values 〈x , p, s〉.

Example 8.4. Recall the query Q from Section 8.1. After the location steps
“/descendant::*/descendant::*”, we are left with the set X = {x11, x12, x13, x14, x21,
x22, x23, x24} of candidates that may possibly be selected by Q ≡ /descendant::*/
descendant::*[E5]. Now X has to be restricted in the following way to the set X ′

of those nodes for which E5 evaluates to “true”.

(1) First, we traverse the subtree of the parse tree rooted at E5 top-down and
evaluate those parts which are independent of the value of p and s at node(E5).
We thus set up the context-value tables of E7, E10, E11, E13, and E14 as in
Figure 11.

(2) Then, in a loop over all O(|dom|2) pairs of previous/current context-nodes
(w.r.t. the “descendant”-axis), we compute the set of those nodes X ′ ⊆ X , for
which the predicate E5 is true, i.e.: X ′ := {x ∈ X | (∃p)(∃s) s.t. E5 evaluates
to “true” for the context 〈x , p, s〉}. Of course, this comes down to checking all
the rows of the context-table of E5 (and also of E6, E8, E9, and E12) However,
in contrast to Figure 9, we do not set up the entire tables at once. Instead, we
treat these contexts 〈x , p, s〉 in a loop, e.g.: for 〈x , p, s〉 = 〈x23, 7, 8〉 we compute
the rows of E5, E6, E8, E9, and E12 for p = 7 and s = 8 only. Moreover, we
look up the row of E7 for the context-node x23. We thus get the overall value
“true” of E5 for this single context 〈x23, 7, 8〉. Hence, x23 is added to X ′. 2
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8.3 Procedures of the Algorithm MinContext

The MinContext algorithm consists of three principal procedures, namely eval
outermost locpath, eval by cnode only , and eval single context. They are briefly
explained below. In the Appendix A, pseudocode presentations will be provided.

—The procedure eval outermost locpath evaluates an input expression e in case
that e is a location path. It takes a node N in the parse tree and a node set
X ⊆ dom as input and returns the set Y of nodes that can be reached via the
path e from any context-node x ∈ X .

—The procedure eval by cnode only takes a node N in the parse tree and a set
X of possible context-nodes as input. It does not return a result value as such.
However, for every node M in the subtree rooted at N , it computes table(M),
provided that expr (M) does not depend on the (current) context-position/size.

—The procedure eval single context evaluates arbitrary XPath expressions for a
single context 〈x , p, s〉. It takes a node N in the parse tree and a context 〈x , p, s〉
as input and returns the result value of expr(N) for this context. The procedure
eval single context may only be called after eval by cnode only has been called
for the node N .

In the Appendix A, we shall also give the pseudocode of the auxiliary procedure
eval inner locpath , which is called inside eval by cnode only in case of a location
path inside a predicate. Note that in all of these procedures, the parse tree of an
input query and the context value tables (i.e., table(N) for nodes N in the parse
tree) are treated as global variables in order to increase the readability.

On the top-level, our XPath evaluation method works as follows:

Algorithm 8.5. (MinContext)
Input: XPath query Q, XML document D, context 〈x , p, s〉;
Output: Result value of Q over D for the context 〈x , p, s〉;
Method:

Let T be the parse tree of Q;
Let R be the root node of T ;
if Q is a location path then return eval outermost locpath(R, {x});
else

begin

eval by cnode only(R, {x});
return eval single context(R, 〈x , p, s〉);

end; 2

The MinContext algorithm will be put to work in a detailed example in Sec-
tion 11. Below, we show that the heuristics introduced here help to reduce the
worst-case complexity:

Theorem 8.6. The MinContext algorithm evaluates arbitrary XPath queries
in time O(|D|4 ∗ |Q|2) and space O(|D|2 ∗ |Q|2), where |D| is the size of the XML-
document and |Q| is the size of the XPath query.

Proof. As far as the space complexity is concerned, note that we only set up
context-value tables where the number of possible contexts is bounded by |dom| <
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|D| (namely for nodes N in the parse tree with Relev(N) ⊆ {‘cn’}). Of course,
there are at most |Q| context-value tables required. Moreover, as was shown in the
proof of Theorem 6.6, the size of the result value of any subexpression e of Q for
any context ~c is restricted by O(|D| ∗ |Q|). We thus get the desired bound on the
space complexity.

As for the time complexity, we evaluate each subexpression e of the input query
Q for at most |dom|2 different contexts (be it in a single context-value table or in
a loop over all possible values 〈x , p, s〉 corresponding to previous/current context-
node). In other words, we consider at most |D|2 ∗ |Q| pairs (e,~c ) consisting of
a subexpression e of Q and a context ~c. Moreover, it was shown in the proof of
Theorem 6.6, that the time required for computing each result value is bounded by
O(|D|2 ∗ |Q|). Hence, we indeed end up with the upper bound O(|D|4 ∗ |Q|2) on
the time complexity.

9. IMPROVEMENT OF EXISTING XPATH PROCESSORS

9.1 Integrating the CVT-principle

During the evaluation process of some input XPath query Q, the existing XPath
processors (in particular, Saxon, Xalan, XT, see [Clark 1999; Kay 2003; Apache
Foundation 2004]) repeatedly evaluate subexpressions e of Q for contexts ~c ∈ C,
where ~c is of the form ~c = 〈x , p, s〉 for some context-node x , context-position p, and
context-size s . As was pointed out in Section 2, these systems, in general, do the
evaluation of the same subexpression e of Q for the same context ~c ∈ C more than
once. This is the very reason why their time complexity is, in general, exponential.
By incorporating data structures analogous to the context-value tables described
in Section 6, multiple evaluations of the same subexpression e of Q for the same
context ~c ∈ C can be avoided, thus reducing the time complexity to polynomial
time. The data structures used for this purpose will be referred to as “data pool”.
It contains triples of the form 〈e,~c, v〉, where e is a subexpression of the input XPath
query Q, ~c ∈ C is a context, and v is the result value obtained when evaluating e for
the context ~c. In other terms, (~c, v) can be considered as a row in the context-value
table corresponding to e. Initially, the data pool is empty, i.e., it contains no such
triples.

In order to guarantee that no evaluation of the same subexpression e for the same
context ~c is done more than once, we have to add two further components to the
existing systems, namely a “storage procedure” and a “retrieval procedure”. Prior
to the evaluation of any subexpression e for any context ~c, the retrieval procedure is
called, which checks whether a triple 〈e′,~c ′, v〉 with e = e′ and ~c = ~c ′ already exists
in the data pool. If this is the case, then the result value v of e for the context ~c
is returned without further computation. On the other hand, after the evaluation
of any subexpression e for any context ~c yielding the result value v, the storage
procedure stores the triple 〈e,~c, v〉 in the data pool.

Let the basic evaluation step of an existing system be referred to as “atomic-
evaluation”, which takes an XPath expression e and a context ~c as an input and
returns the corresponding result value v. Then this “atomic-evaluation” simply
has to be replaced by the following procedure based on the context-value table
principle:
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Algorithm 9.1. (Improved Basic Evaluation Step)
Input: XPath expression e, context 〈x , p, s〉;
Output: Result value of e for the context 〈x , p, s〉;
Method:

function atomic-evaluation-CVT (e, ~c )
begin

if there exists a v, s.t. 〈e,~c, v〉 is in the data pool then

return v; /* retrieval procedure */
else

begin

v := atomic-evaluation (e, ~c ); /* basic evaluation step */
store 〈e,~c, v〉 in the data pool; /* storage procedure */
return v;

end;
end;

9.2 A Polynomial-time Recursive XPath Processor

Recall from Definition 5.1 the formal semantics [[e]] and P [[π]] of arbitrary XPath
expressions e and of location paths π, respectively. It is straightforward to transform
this semantics definition into a recursive XPath evaluation processor. In fact, we
just have to define one evaluation function for each case of the definition of [[·]]
and P [[·]], respectively. The functions corresponding to the various cases of [[·]]
take an arbitrary XPath expression e and a context ~c as input and return an
XPath value (which can be of type num, str, bool or nset). Analogously, the
functions corresponding to P [[·]] have a location path π and a node x ∈ dom as
input parameter and return a node set. Moreover, the recursions in the definition
of [[·]] and P [[·]] correspond precisely to recursive function calls of the respective
evaluation functions.

As was pointed out in Section 2, such a recursive algorithm provides a realistic
model of the evaluation methods of existing XPath processors like Saxon, Xalan,
and XT. Moreover, it also follows from our analysis in Section 2, that the resulting
XPath evaluation method requires exponential time in the worst case. However, the
situation changes completely, if we modify all these function definitions in the sense
of Algorithm 9.1, i.e.: Before any evaluation function corresponding to [[·]] is called
recursively with some input (e,~c ), we first check whether a triple 〈e′,~c ′, v〉 with
e = e′ and ~c = ~c ′ already exists in the data pool. If this is the case, then the result
value v of e for the context ~c is returned without further computation. Likewise,
before an evaluation function corresponding to P [[·]] is called with some input (π, x),
we first check whether some triple 〈e′,~c ′, v〉 with π = e′ and ~c ′ = 〈x, cp, cs〉 for
arbitrary context-position cp and context-size cs already exists in the data pool.

On the other hand, after the evaluation of an expression e for a context ~c yielding
the result value v, we store the triple 〈e,~c, v〉 in the data pool. Likewise, for a
location path π and context-node x yielding the result value v, we may store all
possible triples 〈π,~c, v〉 with ~c = 〈x, cp, cs〉 in the data pool.

This modification of the evaluation procedure leads to the following favorable
complexity result:
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Fig. 12. Repetition of Experiment 3 from Section 2 with Xalan.

Theorem 9.2. The functional implementation of [[·]] and P [[·]] using a data pool,
a storage function, and a retrieval function in the way described above evaluates
XPath queries in polynomial time (combined complexity).

Proof. Let Q denote the input XPath expression and D the XML document
over which Q has to be evaluated. Of course, our evaluation procedure only evalu-
ates subexpressions e of Q and there exist at most O(|Q|) of them. Moreover, the
number of contexts to be considered for every subexpression is bounded by O(|D|3).
By construction, our XPath evaluation algorithm never calls an evaluation proce-
dure twice for evaluating a given subexpression e of Q for a given context ~c. Hence,
the total number of (recursive) function calls is bounded by the maximum number
of distinct tuples 〈e,~c, v〉, i.e., O(|D|3 · |Q|). It thus only remains to show that the
work to be carried out inside every such function (not considering recursive function
calls) is polynomially bounded. But this can be easily checked by inspecting all the
different cases of the definition of [[·]] and P [[·]], respectively.

9.3 Experimental Results

We evaluated the approach proposed in this section by partially integrating a data
pool into Xalan. It turned out that even minor changes can lead to a dramatical im-
provement of the runtime behavior. Specifically, the data pool was only integrated
for the evaluation of XPath functions (but not for location paths, whose handling
by Xalan is basically untraceable). Then the XPath queries from Experiment 3 in
Section 2 (with nested paths and calls of the count-function) were evaluated with
the “original” Xalan and with the slightly modified one, respectively. Similarly as
in Figure 3 (Experiment 3), the exponential time behavior of Xalan is immediately
clear in Figure 12.

In contrast, in Table V, we see that the time required to process the documents
of size 10 and 200 when a data pool is used. Actually, in case of document size 10,
the effort for the XPath evaluation itself is so small compared with the overhead
(e.g. for the Java virtual machine) that we get an (almost) constant time behavior.
On the other hand, for document size 200, the last column of the table shows that
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|Q| Xalan classic Xalan+data pool
10 200 10 200

1 0.7 0.7 0.7 2.5
2 0.7 7.1 0.7 4.8
3 0.7 1343.0 0.7 7.1
4 0.8 - 0.7 9.3
5 1.8 - 0.7 11.6
6 12.0 - 0.7 14.0
7 116.0 - 0.7 16.2
8 1115.0 - 0.7 18.5

Table V. Exponential speed-up of Xalan via a data pool for XPath functions (document sizes 10
and 200; times in seconds).

the computation time increases (almost) linearly with the size of the query.

10. LINEAR-TIME FRAGMENTS OF XPATH

10.1 Core XPath

In this section, we define a fragment of XPath (called Core XPath) which constitutes
a clean logical core of XPath (cf. [Gottlob and Koch 2002]). The only objects that
are manipulated in this language are sets of nodes (i.e., there are no arithmetical or
string operations). Besides from these restrictions, the full power of location paths
is supported, and so is the matching of such paths in condition predicates (with an
“exists” semantics), and the closure of such condition expressions with respect to
boolean operations “and”, “or”, and “not”.

We define a mapping of each query in this language to a simple algebra over the
set operations ∩, ∪, ‘−’, χ (the axis functions from Definition 3.1), and an operation
dom
root (S) := {x ∈ dom | root ∈ S}, i.e. dom

root (S) is dom if root ∈ S and ∅ otherwise.

Note that each XPath axis has a natural inverse: self−1 = self, child−1 = parent,
descendant−1 = ancestor, descendant-or-self−1 = ancestor-or-self, following−1 =
preceding, and following-sibling−1 = preceding-sibling.

Lemma 10.1. For each pair of nodes x, y ∈ dom and axis χ, xχy iff yχ−1x.

(Proof by a very easy induction.)

Definition 10.2. Let the (abstract) syntax of the Core XPath language be
defined by the EBNF grammar

cxp: locationpath | ‘/’ locationpath
locationpath: locationstep (’/’ locationstep)*
locationstep: χ ‘::’ t | χ ‘::’ t ‘[’ pred ‘]’
pred: pred ‘and’ pred | pred ‘or’ pred

| ‘not’ ‘(’ pred ‘)’ | cxp | ‘(’ pred ‘)’

“cxp” is the start production, χ stands for an axis (see above), and t for a “node
test” (either an XML tag or “*”, meaning “any label”). The semantics of Core
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XPath queries is defined by a function S→

S→[[χ::t]](N0) := χ(N0) ∩ T (t)

S→[[/χ::t]](N0) := χ({root}) ∩ T (t)

S→[[π/χ::t]](N0) := χ(S→[[π]](N0)) ∩ T (t)

S→[[π[e]]](N0) := S→[[π]](N0) ∩ E1[[e]]

S←[[χ::t]] := χ−1(T (t))

S←[[χ::t[e]]] := χ−1(T (t) ∩ E1[[e]])

S←[[χ::t/π]] := χ−1(S←[[π]] ∩ T (t))

S←[[χ::t[e]/π]] := χ−1(S←[[π]] ∩ T (t) ∩ E1[[e]])

S←[[/π]] :=
dom

root
(S←[[π]])

E1[[e1 and e2]] := E1[[e1]] ∩ E1[[e2]]

E1[[e1 or e2]] := E1[[e1]] ∪ E1[[e2]]

E1[[not(e)]] := dom− E1[[e]]

E1[[π]] := S←[[π]]

where N0 is a set of context nodes and a query π evaluates as S→[[π]](N0). 2

Example 10.3. The Core XPath query

/descendant::a/child::b[child::c/child::d or not(following::*)]

is evaluated as specified by the query tree

dom
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(There are alternative but equivalent query trees due to the associativity and com-
mutativity of some of our operators.) 2

The semantics of XPath and Core XPath (defined using S←, S→, and E1) coincide
in the following way:
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Theorem 10.4. Let π be a Core XPath query and N0 ⊆ dom be a set of context
nodes. Then,

S←[[π]] = {x | S↓[[π]]({x}) 6= ∅}

E1[[e]] = {x | E↓[[e]]({〈x, 1, 1〉})}

〈S→[[π]](N0)〉 = S↓[[π]](〈N0〉).

This can be shown by easy induction proofs. Thus, Core XPath (evaluated using
S→) is a fragment of XPath, both syntactically and semantically.

Theorem 10.5. Core XPath queries can be evaluated in time O(|D|∗|Q|), where
|D| is the size of the data and |Q| is the size of the query.

Proof. Given a query Q, it can be rewritten into an algebraic expression E over

the operations χ, ∪, ∩, ‘−’, and dom
root using S→, S←, and E1 in time O(|Q|). Each

of the operations in our algebra can be carried out in time O(|D|). Since at most
O(|Q|) such operations need to be carried out to process E, the complexity bound
follows.

10.2 XPatterns

We extend our linear-time fragment Core XPath by the operation id: nset → nset
of Table II by defining “id” as an axis relation

id := {〈x0, x〉 | x0 ∈ dom, x ∈ deref ids(strval(x0))}

Queries of the form π1/id(π2)/π3 are now treated as π1/π2/id/π3.

Lemma 10.6. Let π1/id(π2)/π3 be an XPath query s.t. π1/π2/id/π3 is a query
in Core XPath with the “id” axis. Then, the semantics of the two queries relative
to a set of context nodes N0 ∈ dom coincide:

S↓[[π1/id(π2)/π3]](〈N0〉) = S→[[π1/π2/id/π3]](N0).

Theorem 10.7. Queries in Core XPath with the “id” axis can be evaluated in
time O(|D| ∗ |Q|).

Proof. The interesting part of this proof is to define a function id: 2dom →

2dom and its inverse consistent with the functions of Definition 3.1 which is com-
putable in linear time. We make use of a binary auxiliary relation “ref” which
contains a tuple of nodes 〈x, y〉 iff the text belonging to x in the XML document,
but which is directly inside it and not further down in any of its descendants,
contains a whitespace-separated string referencing the identifier of node y.

For example, let id(i) = ni. Then, for the XML document 〈t id=1〉 3 〈t id=2〉 1
〈/t〉 〈t id=3〉 1 2 〈/t〉 〈/t〉, we have ref := {〈n1, n3〉, 〈n2, n1〉, 〈n3, n1〉, 〈n3, n2〉}.

Relation “ref” can be efficiently computed in a preprocessing step. It does not
satisfy any functional dependencies, but it is guaranteed to be of linear size w.r.t.
the input data (however, not in the tree nodes). Now we can encode id(S) as those
nodes reachable from S and its descendants using “ref”.

id(S) := {y | x ∈ descendant-or-self(S), 〈x, y〉 ∈ ref}
id−1(S) := ancestor-or-self({x | 〈x, y〉 ∈ ref, y ∈ S})

This computation can be performed in linear time.
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“@n”, “@*”, “text()”, “comment()”, “pi(n)”, and “pi()” (where n is a label) are simply sets
provided with the document (similar to those obtained through the node test function T ).

“=s” (s is a string) can be encoded as a unary predicate whose extension can be computed
using string search in the document before the evaluation of our query starts. Clearly, this
can be done in linear time.

first-of-any := {y ∈ dom | 6 ∃x : nextsibling(x, y)}

last-of-any := {x ∈ dom | 6 ∃y : nextsibling(x, y)}

“id(s)” is a unary predicate and can easily be computed (in linear time) before the query
evaluation.

Table VI. Some unary predicates of XLST Patterns.

We may define XPatterns as the smallest language that subsumes Core XPath
and the XSLT Pattern language of [World Wide Web Consortium 1998] (see also
[Wadler 1999] for a good and formal overview of this language) and is (syntactically)
contained in XPath. Stated differently, it is obtained by extending the language
of [World Wide Web Consortium 1998] without the first-of-type and last-of-type
predicates (which do not exist in XPath) to support all of the XPath axes. As
pointed out in the introduction, XPatterns is an interesting and practically useful
query language. Surprisingly, XPatterns queries can be evaluated in linear time.

Theorem 10.8. Let D be an XML document and Q be an XPatterns query.
Then, Q can be evaluated on D in time O(|D| ∗ |Q|).

Proof. XPatterns extends Core XPath by the “id” axis and a number of features
which are definable as unary predicates, of which we give an overview in Table VI.
It becomes clear by considering the semantics definition of [Wadler 1999] that after
parsing the query, one knows of a fixed number of predicates to populate, and this
action takes time O(|D|) for each. Thus, since this computation precedes the query
evaluation – which has a time bound of O(|D| ∗ |Q|) – this does not pose a problem.
“id(c)” (for some fixed string c) may only occur at the beginning of a path, thus
in a query of the form id(c)/π, π is evaluated relative to the set id(c) just as, say,
{root} is for query /π.

Let Σ be a finite set of all possible node names that a document may use (e.g.,
given through a DTD). The unary first-of-type and last-of-type predicates can be
computed in time O(|D| ∗ |Σ|) when parsing the document, but are of size O(|D|):

first-of-type() :=
⋃

l∈Σ

(
T (l)− nextsibling+(T (l))

)

last-of-type() :=
⋃

l∈Σ

(
T (l)− (nextsibling−1)+(T (l))

)

where R+ = R.R∗.

11. A LINEAR-SPACE FRAGMENT OF XPATH

11.1 The Extended Wadler Fragment

In [Wadler 2000], Wadler considers a useful fragment of XPath with predicates
made up of location paths on the one hand and arithmetic expressions with the
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functions position() and last() on the other hand. This fragment is the key to a
big fragment of XPath, which can be processed in linear space and quadratic time
w.r.t. to the size of the XML data. We shall identify some restrictions on XPath
that guarantee the linear space complexity. It will turn out that these restrictions
also suffice to guarantee the quadratic time complexity. In fact, it is easy to check
that the fragment in [Wadler 2000] fulfills these restrictions. Hence, we shall refer
to our XPath fragment as the “Extended Wadler Fragment”.

Suppose that we want to evaluate an XPath expression e. Actually, if the result
type of e is scalar (i.e., num, bool or str), then we can simply evaluate e as in
Section 8. We just have to make sure that the size of scalar values is independent
of the XML data. Hence, we require

Restriction 1. The XPath functions which select data from an XML document,
are not allowed, i.e., local-name, namespace-uri, name, string, number, string-
length, and normalize-space. 2

On the other hand, if the result of e is a (linearly big) node set, then e cannot
simply be evaluated simultaneously for all (linearly many) possible context-nodes,
since this would require quadratic space. Of course, we must not treat the context-
nodes in a loop since this has been identified in Section 2 as the very reason why
previous XPath evaluation algorithms require exponential time. Instead, we need
a different strategy. Recall from Section 5 that we assume that all type conversions
in an XPath expression are made explicit. Hence, (by Restriction 1) expressions
that evaluate to a node set can only occur in one of the following five forms:

(1) boolean(nset) (2) nset RelOp scalar (3) nset RelOp nset

(4) count(nset) (5) sum(nset)

where RelOp ∈ {=, 6=,≤, <,≥, >}, nset denotes an expression whose result is a
node set, and scalar denotes any other expression. Below, we shall present an
optimization for the first two cases. Unfortunately, this method does not work in
case of the latter three ones. We thus require

Restriction 2. Expressions of the form nset RelOp nset as well as calls of the
functions count and sum are not allowed. Moreover, for expressions of the form
nset RelOp scalar we require that scalar does not depend on any context. 2

As for the form that an nset-expression can have, we distinguish two princi-
pal cases, namely location paths or expressions of the form id(e). Of course, the
calls of id can be arbitrarily nested. However, ultimately, we either have e ≡
id(id(. . . (c). . . )) or e ≡ id(id(. . . (π). . . )), where c is a string-expression and π
is a location path. For the latter case, we rewrite id(id(. . . (π). . . )) to the form
π/id/id/. . . /id, i.e., analogously to Section 10.2, we consider “id” as a new axis.
Hence, in this case, expressions of the form id(id(. . . (π). . . )) are treated as location
paths. For the former case, we impose

Restriction 3. In expressions of the form id(id(. . . ( c). . . )), where c is a string-
expression, we require that c must not depend on any context. 2

Actually, nset-expressions of the form id(id(. . . (c). . . )), where c does not depend
on any context, can be simply evaluated by the algorithm from Section 8 in linear
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space. For any other nset-expressions (i.e. location paths, possibly involving the id-
“axis”), we observe that (because of Restriction 2) nset-expressions are only allowed
to occur as operands of expressions that yield a boolean result value. In particular,
the context-value table for the whole expression (of the form “nset RelOp scalar”
or “boolean (nset)”), clearly requires linear space only. We just have to avoid the
explicit computation of the context-value table for the location path nset. This can
be achieved as follows.

Bottom-up evaluation of certain location paths. A location path π inside an
expression of the form boolean(π) or π RelOp c has an ∃-semantics, e.g., boolean(π)
evaluates to “true” for a context-node x , iff there exists at least one node in the
node set resulting from the evaluation of π. Thus, the set of nodes x , for which
boolean(π) or π RelOp c evaluates to “true” can be computed as follows:

—First compute the “initial node set” Y . For an expression boolean(π), we set
Y := dom. An expression π RelOp c with c of type bool is treated like the
expression boolean(π) RelOp c. For any other type of c, we set Y := {x |
self::* RelOp c evaluates to “true” for the context-node x}.

—Compute X by propagating Y backwards via the inverse location steps of π.

As for the backward propagation of a node set via the inverse location steps, we
proceed as follows: If we have π = χ1 :: ∗/χ2 :: ∗/ . . . /χn :: ∗, then we set Xn := Y
and Xi−1 := χ−1

i (Xi) (where χ−1
i denotes the inverse axis from Section 10.1) for

every i ∈ {1, . . . , n}. Hence, X := X0 is the desired node set. Note that if χi

is the id-“axis”, then we have χ−1
i (Xi) = id−1(Xi). Recall from Lemma 3.3 (for

“ordinary” axes) and Theorem 10.7 (for the id-axis), that χ−1
i (Xi) can be computed

in time O(|D|) for any node set Xi ⊆ dom.
Now let π ≡ χ1 :: t1[e11] . . . [e1k1

]/ . . . /χn :: tn[en1] . . . [enkn
]. Then we have

to restrict each node set Xi to the set X ′i of those nodes for which the node
test ti holds and apply the inverse axis function χ−1

i to X ′i . For the predicates
we proceed analogously to the MinContext algorithm, by calling the proce-
dures eval by cnode only and eval single context. In the Appendix A, we give
the pseudocode of a procedure eval bottomup path (plus the auxiliary procedure
propagate path backwards) for expressions π RelOp c and boolean(π), respectively.
Note that in the procedure propagate path backwards we assume (w.l.o.g.) that
all occurrences of “|” have been removed. This can be easily achieved by replac-
ing “boolean(π1|π2| . . . |πk)” and “π1|π2| . . . |πk RelOp c” by “boolean(π1) or . . . or
boolean(πk)” and “(π1 RelOp c) or . . . or (πk RelOp c)”.

11.2 The Algorithm OptMinContext

In order to incorporate the above ideas of a bottom-up evaluation of certain lo-
cation paths, our MinContext algorithm has to be modified to a new algorithm
OptMinContext as follows:

Algorithm 11.1. (OptMinContext)
Input: XPath query Q, XML document D, context 〈x , p, s〉;
Output: Result value of Q over D for the context 〈x , p, s〉;
Method:
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evaluate all “bottom-up location paths” inside Q
(starting with the innermost ones in case of nesting);

call MinContext
(Of course, subexpressions that have already been
evaluated bottom-up are not evaluated again); 2

We illustrate the algorithms OptMinContext and MinContext by the following
example:
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Fig. 13. Parse tree T of Q in Example 11.2.

Example 11.2. Let the XPath query Q be defined as Q ≡ /child::a/descendant::
*[boolean(following::d[(position() != last()) and (preceding-sibling::*/preceding::*
= 100)]/following::d)]. We want to evaluate Q over the XML document D from
Figure 8. We do not need an input context, since Q is an absolute location path.

The parse tree T of Q is depicted in Figure 13. Q has two inner location paths
E5 and E14 which have to be evaluated bottom-up. Note that we have omitted the
explicit type conversion of E14 to string(E14), since this is not needed in case of
our bottom-up evaluation here. Analogously to the running example in Section 8,
we write Ei both to refer to subexpressions of Q and to nodes in the parse tree T .

We start the bottom-up evaluation with the innermost location path, namely
E14: The initial node set is Y := {x14, x24}, which corresponds to all context-
nodes for which “self::* = 100” evaluates to “true”. To this node set, we first
apply following (= preceding−1), which yields the node set {x21, x22, x23, x24}. By
applying following-sibling (= preceding-sibling−1) to this, we get {x23, x24}. Hence,
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the context-value table of the node E11 is the 2-dimensional table ⊆ dom× {true,
false}, s.t. exactly the nodes in {x23, x24} have the value “true” in the second
column.

For the bottom-up evaluation of the path E5, we have to take the node tests
and the predicate E9 into account. We start the evaluation with Y := dom.
Now we have to apply the inverse step of following::d. Hence, we first restrict
Y to the set Y ′ of those nodes for which the node test “d” yields “true”, i.e.
Y ′ = {x14, x23, x24}. By applying preceding (= following−1) to Y ′, we get Y ′′ =
{x11, x12, x13, x14, x22, x23}. Now we have to apply the location step following::d[E9]
backwards. To this end, we first restrict Y ′′ to the elements with name d. We thus
get Y ′′′ = {x14, x23}. Now we have to check for which nodes in Y ′′′ (together
with appropriate values for p and s) the predicate E9 evaluates to “true”. To
this end, we first call the procedure eval by cnode only to evaluate those nodes
in the parse tree rooted at E9 which do not depend on (the current values of) p
and s . Actually, in this case, only the subtree rooted at E11 has this property.
However, table(E11) has already been determined by the bottom-up evaluation de-
scribed above. Hence, the call of procedure eval by cnode only has no effect here.
Note that X = following−1(Y ′′′) = {x11, x12, x13, x14, x22}. In order to evaluate
the predicate E9 also for p and s via the procedure eval single context , we have
to consider all combinations of previous/current context-node (in X × Y ′′′) w.r.t.
the “following”-axis. Actually, both nodes in Y ′′′ can be extended by appropriate
values of p and s to a context triple, s.t. E9 evaluates to “true” for this context,
e.g.: 〈x14, 2, 6〉 and 〈x23, 5, 6〉 (which are both obtained via the previous context-
node x12). Hence, the predicate E9 does not lead to a restriction of Y ′′′. Therefore,
the desired context-value table ⊆ dom× {true, false} of the node E4 has the value
“true” in the second column exactly for the nodes in X .

Finally, we evaluate the location path at the outermost level of Q by calling
the procedure eval outermost locpath . The location step child::a yields the set
{x10} independent of any input context. Moreover, by the step descendant::*, we
get dom − {r, x10}. However, these nodes have to be intersected with the set X
computed above. Hence, the final result of evaluating the query Q is {x11, x12, x13,
x14, x22}. 2

Below, we show that Restrictions 1 through 3 lead to the desired improvement
of the efficiency.

Theorem 11.3. The OptMinContext algorithm evaluates XPath queries from
the Extended Wadler Fragment (i.e., the set of all XPath expressions fulfilling
the Restrictions 1 through 3 from Section 11.1) in space O(|D| ∗ |Q|2) and time
O(|D|2 ∗ |Q|2), where |D| is the size of the XML-document and |Q| is the size of
the XPath query.

Proof. We first consider the space complexity : Of course, an input XPath ex-
pression Q has at most |Q| subexpressions. Hence, it suffices to show that the
information that we have to store for each subexpression e of Q is bounded by
O(|D| ∗ |Q|):

For subexpressions e along an outermost location path, we have to propagate
node sets in dom, whose size is clearly bounded by |D|. For an inner location
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path e, we may assume by Restriction 2 from Section 11.1 that e occurs in the
form boolean(e) or e RelOp c, where the relevant context of c is empty. Then the
backward evaluation of such a location path e again comes down to propagating
node sets in dom.

Now consider the case of the id-function, i.e., by Restriction 3 from Section 11.1,
e is either of the form e ≡ id(id(. . . ( π). . . )) for some location path π or e ≡
id(id(. . . ( c). . . )), where c has an empty relevant context. In the former case, e
is treated like any other inner location path. In the latter case, the context-value
table corresponding to e consists of a single row whose size is of course bounded by
|dom| ≤ |D|.

Finally, suppose that e is any other expression. Then, in particular, e evaluates to
a number, a string, or a boolean value. Recall from Section 8 that we explicitly set
up the context-value table for e only if the relevant context of e is a subset of {‘cn’}.
Hence, the context-value table has at most |D| rows. Moreover, by Restriction 1
from Section 11.1, it is guaranteed that scalar values do not depend on the input
document. They are thus bounded by O(|Q|). Hence, in all of the above cases of the
subexpression e, the information that we have to store is bounded by O(|D| ∗ |Q|).

For the time complexity, we have to show that the time required to deal with
each subexpression e of Q is bounded by O(|D|2 ∗ |Q|). To this end, we distinguish
the same cases as above:

The propagation of node sets can be done in time O(|D|) – be it in forward
direction for location paths on the outermost level or in backward direction for
inner location paths (see Lemma 3.3 for “ordinary” axes and Theorem 10.7 for the
id-function).

For any other expression e, the computation of the result value of e for a single
context ~c takes at most O(|Q|) time, given that the subexpressions of e have already
been evaluated. This is due to Restriction 1 from Section 11.1. Moreover, each
subexpression e of Q has to be evaluated for at most |D|2 contexts. Hence, the total
time required by each subexpression e of Q is indeed bounded by O(|D|2 ∗ |Q|).

In fact, even a slightly stronger property holds for our algorithm, namely:

Corollary 11.4. Let Q be an arbitrary XPath query to which our OptMin-
Context algorithm is applied. Moreover, let e be a subexpression in Q, s.t. e is
in the Extended Wadler Fragment. If e is a location path, then we also require that
either Q ≡ e or Q ≡ π′/e for an arbitrary relative or absolute location path π′ or e
occurs in the form boolean(e) or e RelOp c (where c is independent of any context)
in Q. Then e is evaluated in space O(|D| ∗ |e|2) and time O(|D|2 ∗ |e|2). These
upper bounds apply to the total space and time required by the OptMinContext
algorithm to evaluate e for all relevant contexts.

Proof. As far as the space complexity is concerned, we have to show that the
information to be stored for each subexpression e′ of e is bounded by O(|D| ∗ |e|).

First suppose that e′ evaluates to a node set. If e′ is a location path then, by the
Restrictions 1 and 2 plus the additional restrictions imposed by Corollary 11.4, the
evaluation of e′ comes down to propagating node sets in dom – either in forward
direction (if Q itself is a location path and e′ is a subexpression along this outermost
location path) or in backward direction (if e′ occurs in the form boolean(e′) or
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e′RelOp c). This is also true for the case that e′ is of the form e′ ≡ id(id(. . . (
π). . . )) for some location path π. On the other hand, if e′ is of the form e′ ≡
id(id(. . . ( c). . . )), where c has an empty relevant context, then the context-value
table corresponding to e′ consists of a single row whose size is clearly bounded by
|dom| ≤ |D|.

The case that e′ evaluates to a number, a string, or a boolean value is treated
exactly like in the proof of Theorem 11.3. Likewise, the upper bound on the time
complexity can be established by the same considerations as in the proof of Theo-
rem 11.3.

An analogous result to Corollary 11.4 can also be shown for the Core XPath
Fragment introduced in Section 10.1.

Corollary 11.5. Let Q be an arbitrary XPath query to which our OptMin-
Context algorithm is applied. Moreover, suppose that π is a location path from
Core XPath, s.t. Q ≡ π or Q ≡ π′/π for an arbitrary relative or absolute location
path π′ or π occurs in Q in the form boolean(π) or π RelOp c (where c is independent
of any context).

Then π is evaluated in time O(|D| ∗ |π|). This upper bound applies to the total
time required by the OptMinContext algorithm to evaluate π for all relevant
contexts.

Proof. Core XPath expressions of the form χ :: t[π′] are a short-hand for χ ::
t[boolean(π′)]. Likewise, any occurrence of a location path π as an operand of one of
the logical operators “and”, “or”, and “not” may be replaced by boolean(π) without
changing the meaning of the XPath query (i.e., we just make the type conversion
explicit). Hence, Core XPath is clearly contained in the Extended Wadler Fragment.

Actually, the only reason why we have quadratic time complexity w.r.t. the size
of the data |D| in Corollary 11.4 is that we possibly have to evaluate predicates
in a loop over all (quadratically many) pairs of previous/current context-node in
order to take the context-position and context-size into account. However, in Core
XPath, position() and last() are not allowed and, therefore, no such loop is required.

On the other hand, the quadratic time complexity w.r.t. the size |e| of a subex-
pression e of |Q| in Corollary 11.4 is due to the possible blow up of strings and
numbers by iterated application of XPath core library functions like concat and
arithmetic operations. However, these constructs are not contained in Core XPath.
We thus end up with a linear time upper bound both w.r.t. to the data and the
query for these subexpressions.

12. CONCLUSIONS

In this article, we presented the first XPath query evaluation algorithm that runs
in polynomial time with respect to the size of both the data and of the query.
Our results will allow for XPath engines to deal efficiently with very sophisticated
queries.

Moreover, we have presented several interesting fragments of XPath for which
the query evaluation can be even further optimized. We have also shown how the
ideas presented here can be profitably integrated into existing XPath processors
thus reducing their complexity from exponential to polynomial time.
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|Q| IE6 XMLTaskforce XPath
10 20 200 10 20 200 500 1000 2000

1 0.00 0.00 0.00 0.00 0.00 0.01
2 2 0.00 0.00 0.02 0.12 0.57 2.57
3 346 0.00 0.00 0.02 0.23 1.14 5.07
4 1 - 0.00 0.00 0.05 0.33 1.70 7.58
5 21 - 0.00 0.00 0.07 0.44 2.32 10.09
6 5 406 - 0.00 0.00 0.07 0.54 2.88 12.58
7 42 - - 0.00 0.00 0.09 0.67 3.45 15.42
8 437 - - 0.00 0.00 0.12 0.78 4.03 17.58
9 - - - 0.00 0.00 0.14 0.90 4.59 20.46
10 - - - 0.00 0.00 0.15 0.99 5.13 22.61

20 - - - 0.00 0.01 0.30 2.20 10.80 47.90
30 - - - 0.01 0.01 0.48 3.19 16.72 73.13
40 - - - 0.01 0.02 0.65 4.39 22.37 98.50
50 - - - 0.01 0.02 0.80 5.53 28.13 123.79

Table VII. Benchmark results in seconds for IE6 vs. our implementation (“XMLTaskforce XPath”),

on the queries of Experiment 2 and document sizes 10, 20, and 200.

We have made a main-memory implementation of the top-down algorithm of Sec-
tion 7. Table VII compares it to IE6 along the assumptions made in Experiment
2 (i.e., the queries of which were strictly the most demanding of all three experi-
ments).10 It shows that our algorithm scales linearly in the size of the queries and
quadratically (for this class of queries) in the size of the data. Our implementation
is still an early prototype without sophisticated optimizations. It closely coheres to
the specification given in this article. Our system and further resources related to
this article can be downloaded from http://www.xmltaskforce.com.

In this paper, we have exclusively dealt with XPath 1. Note that XPath 2, which
currently has the status of a W3C working draft (see [World Wide Web Consortium
2004]), significantly extends XPath 1 in many directions. Of course, XPath 1 will
remain an important fragment of XPath 2. Moreover, the ideas presented in this
paper can be easily extended to cope with some of the new XPath 2 features, e.g.:
It is no problem to deal with the simple types of XML Schema in the last column of
our context-value tables. Likewise, most of the new built-in functions and operators
easily fit into the CVT-framework. On the other hand, adding node variables to
XPath 1 immediately leads to NP-completeness of the XPath evaluation problem.
The situation gets even worse if we consider full XPath 2 (including the use of
arbitrary XQuery expressions), which is known to be Turing-complete. Hence,
there is clearly no hope to extend our CVT-principle to these features of XPath 2.

Finally, note that in [Gottlob et al. 2003a], which is based on work subsequent
to the research reported on in this article, the upper bounds on the complexity of

10Note that the performance of the systems should not be directly compared since they were
run on different systems – IE6 is only available on MS Windows. IE6 was benchmarked using
the hardware setup of Experiment 2, while XMLTaskforce XPath (release tag 20040812) was
benchmarked using the hardware setup of Experiment 5. Note that the timings of the IE6 only
have the precision of ±1 second. Hence, we left those entries in Table VII empty where we got
values below 1 second since these values are not meaningful.
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XPath of the present article are complemented by tight lower bounds. It is shown
that full XPath 1 is complete for polynomial time. Further complexity results
related to XPath can be found in [Segoufin 2003]. In [Bar-Yossef et al. 2004],
several memory lower bounds for evaluating XPath queries over XML streams are
shown by communication complexity methods.
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Appendix

A. PSEUDOCODE PRESENTATIONS

Analogously to Section 8, we use the fol-
lowing notation: For a node N in the
parse tree, we write table(N) to denote
the context-value table at N and expr(N)
to denote the subexpression of Q corre-
sponding to N . Conversely, for a subex-
pression e of Q, we denote by node(e)
the corresponding node in the parse tree.
For the sake of better readability, the
parse tree T of the input query Q and
the context value tables table(N) for the
nodes N in T are treated as global vari-
ables.

procedure eval outermost locpath:

input: node N in the parse tree
set X of possible context-nodes

output: set Y of nodes that can be reached
from X via expr(N).

begin

/* case distinction over expr(N) */
if expr(N) = /π then return

eval outermost locpath(node(π), {root});
elseif expr(N) = π1|π2 then

begin

Y1 := eval outermost locpath(node(π1), X);
Y2 := eval outermost locpath(node(π2), X);
return Y1 ∪ Y2;

end;
elseif expr(N) = π1/π2 then

begin

Y := eval outermost locpath(node(π1), X);
return

eval outermost locpath(node(π2), Y );
end;
elseif expr(N) = χ :: t[e1] . . . [eq ] then

begin

Y := nodes reachable from X via χ :: t;
for i := 1 to q do

eval by cnode only(node(ei), Y );
R := ∅;
if (∀i ∈ {1, . . . , q}) ({‘cp’, ‘cs’}∩
Relev(node(ei))) = ∅ holds then

for each y ∈ Y do

if ∀i ∈ {1, . . . , q}
eval single context(node(ei), 〈y, ∗, ∗〉) =
true then R := R ∪ {y};
/* “∗” denotes the wildcard for
irrelevant parts of the context */

else /* some ei depends on ‘cp’ or ‘cs’ */

begin

for each x ∈ X do

begin

Z := {z ∈ Y |xχz};
for i := 1 to q do

begin

let Z = {z1, . . . , zm} be ordered
according to the axis χ; /* i.e., in
document order or reverse order. */

Z′ := ∅;
for j := 1 to m do

if eval single context(node(ei),
〈zj , j,m〉) = true then Z ′ := Z′ ∪ {zj};

Z := Z’; /* i.e., Z = {z ∈ dom |
xχz and e1, . . . , ei hold} */

end; /* for i */
R := R ∪ Z;

end; /* for each x */
end; /* some ei depends on ‘cp’ or ‘cs’ */
return R;

end; /* case distinction over expr(N) */
end;

procedure eval by cnode only:

input: node N in the parse tree
set X of context-nodes (If ‘cn’ 6∈

Relev(N), then X may consist of the
wildcard “∗” only.)

output: modifies the global data table(M) of
nodes M below N in the parse tree.

begin

if {‘cp’, ‘cs’} ∩ Relev(N) 6= ∅ then

begin

let N1, . . . , Nk be the child nodes of N
in the parse tree;

for i := 1 to k do

eval by cnode only(Ni,X);
end;
elseif expr(N) = π then

table(N) := eval inner locpath(π, X);
else

begin

let expr(N) = Op(e1, . . . , ek);
for i := 1 to k do

eval by cnode only(node(ei), X);
table(N) := {(c,F [[Op]](r1, . . . , rk) |
∃c ∈ X s.t. (∀i ∈ {1, . . . , k}) (ci, ri) ∈
table(node(ei)) holds, where ci is the
projection of c to the relevant context
of node(ei)};

end;
end;

procedure eval single context:
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input: node N in the parse tree

single context triple 〈x , p, s〉, s.t. the
wildcard “∗” may be used for any
irrelevant part of the context.

output: result value of expr(N) for the
context 〈x , p, s〉.

begin

if {‘cp’, ‘cs’} ∩ Relev(N) = ∅ then

begin

let (c, r) ∈ table(N) where c is the projection
of 〈x , p, s〉 to the relevant context of N ;

return r;
/* i.e. result value according to table(N) */

end;
else

begin

let expr(N) = Op(e1, . . . , ek);
for i := 1 to k do ri :=
eval single context(node(ei), 〈x , p, s〉);

return F [[Op]](r1, . . . , rk);
end;

end;

procedure eval inner locpath:

input: node N in the parse tree
set X of possible context-nodes

output: table(N) ⊆ dom × 2dom

begin

/* case distinction over expr(N) */
if expr(N) = /π then

begin

R′ := eval inner locpath(node(π), {root});
return {(x0, x) |x0 ∈ X ∧ (root, x) ∈ R′};

end;
elseif expr(N) = π1|π2 then

begin

R1 := eval inner locpath(node(π1), X);
R2 := eval inner locpath(node(π2), X);
return R1 ∪ R2;

end;
elseif expr(N) = π1/π2 then

begin

R1 := eval inner locpath(node(π1), X);
let Y := {x | ∃x0: (x0, x) ∈ R1};
R2 := eval inner locpath(node(π2), Y );
return {(x0, x) | ∃x1: (x0, x1) ∈ R1∧
(x1, x) ∈ R2};

end;
elseif expr(N) = χ :: t[e1] . . . [eq ] then

begin

Y := nodes reachable from X via χ :: t;
for i := 1 to q do

eval by cnode only(node(ei), Y );
if (∀i ∈ {1, . . . , q}) ({‘cp’, ‘cs’}∩

Relev(node(ei))) = ∅ holds then

begin

Y ′ := ∅;
for each y ∈ Y do

if ∀i ∈ {1, . . . , q}
eval single context(node(ei), 〈y, ∗, ∗〉) =
true then Y ′ := Y ′ ∪ {y};

R := {(x, y) | x ∈ X ∧ y ∈ Y ′ ∧ xχy};
end;
else /* some ei depends on ‘cp’ or ‘cs’ */
begin

R := ∅;
for each x ∈ X do

begin

Z := {z ∈ Y |xχz};
for i := 1 to q do

begin

let Z = {z1, . . . , zm} be ordered
according to the axis χ; /* i.e., in
document order or reverse order. */

Z′ := ∅;
for j := 1 to m do if

eval single context(node(ei), 〈zj , j,m〉)
= true then Z′ := Z′ ∪ {zj};

Z := Z’; /* Z = {z ∈ dom |
xχz and e1, . . . , ei hold} */

end; /* for i */
R := R ∪ ({x} × Z);

end; /* for each x */
end; /* some ei depends on ‘cp’ or ‘cs’ */
return R;

end; /* case distinction over expr(N) */
end;

eval bottomup path:

input: node N in the parse tree with
expr(N) ≡ boolean(π) or expr(N) ≡
π RelOp c, s.t. π is a “bottom-up
location path”, c is independent
of the context, and c is of type nset,
str, or num.

output: The global data structure table(N) is

filled in.

begin

/* Step 1: determine the initial node set Y */
if expr(N) = boolean(π) then Y := dom;
elseif expr(N) = π RelOp c then

begin

eval by cnode only(node(s), {∗}); /* note
that c is independent of the context */

if c is of type nset then

begin

Y := {y | ∃z ∈ table(node(c)) |
strval(y) RelOp strval(z)};

end;
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elseif c is of type str then

begin

let val denote the only element in
table(node(s));

Y := {y | strval(y) RelOp val};
end;
elseif c is of type num then

begin

let val denote the only element in
table(node(c));

Y := {y | to number(strval(y)) RelOp val};
end;

end;

/* Step 2: propagate Y backwards via π and
fill in table(N) */
let M1 := node(π); /* i.e., M1 corresponds
to the first location step of π */

let M2 denote the node in the parse tree
corresponding to the last location step of π;

X := propagate path backwards(Y, M1, M2);
table(N) := {(x, true) | x ∈ X}∪
{(x, false) | x ∈ (dom − X)};

end;

propagate path backwards:

input: node set Y ⊆ dom
nodes M1 and M2 in the parse tree

(corresponding to first/last step of a
“bottom-up path” π)

output: node set X ⊆ dom, where
X := {x ∈ dom | ∃y ∈ Y , s.t.
y is reachable from x via π}

begin

if Y = ∅ then return ∅;
/* case distinction over all possible
location steps at M2: */
if location step at M2 is ‘/’ then R := dom;
/* this is the top of an absolute location
path and Y 6= ∅ holds */
elseif location step at M2 is id then

begin

R := F [[Op]]−1(Y );
end;
elseif location step at M2 is χ :: t[e1] . . . [eq]
then begin

Y ′ := {y ∈ Y | node test t is true for y};
for i := 1 to q do

eval by cnode only(node(ei), Y ′);
if (∀i ∈ {1, . . . , q}) ({‘cp’, ‘cs’}∩
Relev(node(ei))) = ∅ holds then

begin

Y ′′ := ∅;
for each y ∈ Y ′ do

if ∀i ∈ {1, . . . , q}
eval single context(node(ei), 〈y, ∗, ∗〉) =

true then Y ′′ := Y ′′ ∪ {y};
R := χ−1(Y ′′);

end;
else /* some ei depends on ‘cp’ or ‘cs’ */
begin

X′ := χ−1(Y ′);
R := ∅;
for each x ∈ X′ do

begin

Z := {z ∈ Y ′ |xχz};
for i := 1 to q do

begin

let Z = {z1, . . . , zm} be ordered
according to the axis χ; /* i.e.,
document order or reverse order. */

Z′ := ∅;
for j := 1 to m do

if eval single context(node(ei),
〈zj , j,m〉) = true then

Z′ := Z′ ∪ {zj};
Z := Z’; /* i.e., Z = {z ∈ dom |
xχz and e1, . . . , ei hold} */

end; /* for i */
if Z 6= ∅ then R := R ∪ {x};

end; /* for each x */
end; /* some ei depends on ‘cp’ or ‘cs’ */

end; /* case distinction over M2 */
if M1 = M2 then return R; /* i.e., we have
reached the top of the location path */

else

begin

let M ′
2 be the father node of M2;

/* i.e., M ′
2 corresponds to the location

step above M2 in π */
return

propagate path backwards(R, M1,M ′
2);

end;
end;
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