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Abstract. Automated reasoning techniques for multi-agent scenarios need to address the
possibility that procedures for collective decision making may fall prey to manipulation by
self-interested agents. In this paper we study manipulation in the context of belief merging,
a framework for aggregating agents’ positions, or beliefs, with respect to a set of issues
represented by propositional atoms. Within this framework agents submit their positions
as propositional formulas that are to be aggregated into a single formula. To reach a fi-
nal decision, we employ well-established acceptance notions and extract the skeptical and
credulous consequences (i.e., atoms true in all and, respectively, at least one model) of the
resulting formula. We find that, even in restricted cases, most aggregation procedures are
vulnerable to manipulation by an agent acting strategically, i.e., one that is able to submit a
formula not representing its true position. Our results apply when the goal of such an agent
is either that of (i) affecting an atom’s skeptical or credulous acceptance status, or (ii) im-
proving its satisfaction with the result. With respect to latter task, we extend existing work
on manipulation with new satisfaction indices, based on skeptical and credulous reasoning.
We also study the extent to which an agent can influence the outcome of the aggregation,
and show that manipulation can often be achieved by submitting a complete formula (i.e., a
formula having exactly one model), yet, the complexity of finding such a formula resides,
in the general case, on the second level of the polynomial hierarchy.
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1 Introduction

Collective decision making often involves the aggregation of multiple, possibly conflicting view-
points. Apart from the matter of how to represent and aggregate such viewpoints, a looming
concern in any deliberation scenario is that the agents involved may have an incentive to misrepre-
sent their positions, and thus manipulate the aggregation result, if doing so can bring an advantage.
Hence, an understanding of the potential for manipulation of any aggregation procedure is a pre-
requisite to its successful deployment in real world contexts.

If agents deliberate with respect to a small number of independent alternatives, as is the case
in a typical election, aggregation [Zwicker, 2016] and manipulation [Conitzer and Walsh, 2016,
Faliszewski and Procaccia, 2010] are well understood due to extensive research in the field of So-
cial Choice. But if agents have to decide on multiple interconnected issues at the same time (as
when electing a committee, or choosing a product specification), then the number of possible al-
ternatives can grow too large to expect agents to have explicit preferences over the whole set.
The problem, known as combinatorial voting in Social Choice [Lang and Xia, 2016], acquires a
knowledge representation dimension as agents need compact ways to express positions over a large
domain, and automatizable procedures to perform reasoning with such preferences.

Here we use belief merging as a framework for aggregating complex positions over
all possible assignments of values to a set of propositional atoms [Konieczny et al., 2002,
Konieczny and Pérez, 2011]. Propositional atoms, in this setting, encode the issues deliberated
upon, while truth-value assignments to atoms, also called interpretations, encode combinations
of issues that could make it into the final result, and over which agents can have preferences. In
this, propositional logic suggests itself as a natural choice for representing the ways in which
issues are interconnected, and lends itself naturally to the modeling of aggregation problems
inspired by Social Choice [Dı́az and Pérez, 2017, Diaz and Perez, 2018, Everaere et al., 2007,
Everaere et al., 2015, Gabbay et al., 2009].

Within the belief merging framework each agent i submits a propositional formula Ki, which
stands for i’s reported belief about what are the best interpretations with respect to the issues be-
ing deliberated upon. A merging operator then aggregates the individual reported beliefs, in the
presence of an integrity constraint that must be satisfied. Its result is a set of “winning” interpreta-
tions, representable as a propositional formula, that respect the integrity constraint of the merging
process.

In general, the set of winning interpretations is not always expected to be the final step in
a reasoning process: without further means, such a set of interpretations does not give a direct
answer to which atoms (alternatives) are to be ultimately accepted. One can view the winning
set as a “tie” between all the interpretations in the set. If the decision procedure needs to be
explicit about every issue under consideration, then a further reasoning mechanism is required,
amounting to a method of breaking ties. To this end, we employ well established acceptance
notions from the field of knowledge representation and reasoning: skeptical and credulous conse-
quences [Strasser and Antonelli, 2018]. An atom is a skeptical consequence of a set of interpreta-
tions if the atom is part of all interpretations, and a credulous consequence if the atom is part of
at least one interpretation in the set. With regards to propositional formulas, skeptical reasoning is
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equivalent to (atom-wise) classical logical entailment.

Example 1. A collective of four agents must decide who to give an award to. There are three
possible candidates, represented by propositional atoms a, b and c, and the collective is operating
under the constraint µ = a ∨ b ∨ c, i.e., at least one (and possibly more) of the candidates can
receive the award. The decision is arrived at by first aggregating the agents’ beliefs under a known
procedure, called a belief merging operator (details of which are reserved for later; see, e.g., Ex. 2).
This produces a collective belief, potentially satisfiable by more than one interpretation: since this
does not lead to an unequivocal decision, an additional tie-breaking step is required. This tie-
breaking step can be thought of as a general strategy, or attitude, the collective adopts for dealing
with uncertainty. In this case, we assume the collective affects a conservative (or, as we will call
it, skeptical) approach: if there is any uncertainty with respect to a candidate, the candidate is not
given the award.

The beliefs of the agents are represented by propositional formulas, as follows. Agent 1 be-
lieves candidate b should get the award, is against candidate a and has no opinion with respect to
candidate c: this is represented by the formula K1 = ¬a ∧ b. Agents 2 and 3 are represented by
formulas K2 = a∧ (b↔ ¬c) and K3 = b∧ (a→ c), respectively. We assume that agent 4 is what
we will call a strategic agent, i.e., it is not itself compelled to submit its true belief. Agent 4’s true
belief happens to be KT

4 = a ∧ ¬b ∧ ¬c and, were it to actually submit KT
4 , the result under the

aggregation procedure would be b∧¬c: candidate b surely gets the award, c is ruled out and there
is no verdict on a. In other words, this particular aggregation procedure offers up two winning
configurations (i.e., the models of the propositional formula b ∧ ¬c): one possible world in which
a gets the award, another in which a does not get it. Thus, under the conservative tie-breaking
procedure mentioned above, the final decision is arrived at by ruling out a: the final verdict is that
b is the sole recipient of the award.

Significantly, if agent 4 reports KF
4 = a∧¬b∧ c instead of KT

4 , the result becomes a∧ c, with
the award now going to a and c. Thus, by misreporting its own belief, agent 4 ensures that its most
preferred candidate a is among the recipients of the award.

Example 1 features the main ingredients of the framework we are working in: propositional logic
as the language in which agents state their beliefs about the best interpretations to be included in
the result, and in which the result is expressed; aggregation via merging operators; the need for
an additional tie-breaking step; and the possibility that one agent acting strategically can influence
the result to its advantage. The example also sets up the main aims of the paper: (i) formalizing
strategic goals of possibly untruthful agents with respect to skeptical and credulous reasoning,
(ii) investigating vulnerabilities of established merging operators to such strategic manipulation,
and (iii) ways in which an agent can change (manipulate) the outcome of the aggregation process,
to the extent that this is possible. Our main contributions are as follows:

• We propose to approach manipulation of skeptical or credulous consequences in two ways:
(a) by considering what we call constructive and destructive manipulation, where the aim is
to usher a desired atom into (or out of) the skeptical or credulous consequences, and (b) by
adapting an earlier approach to manipulation [Everaere et al., 2007] that utilizes satisfaction
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indices to quantify the satisfaction of agents w.r.t. merged outcomes; our contribution here
consists in proposing new indices.

• We give the full landscape of (non-)manipulability: concretely, we show that all main ag-
gregation operators are manipulable (even when enforcing restrictions that yielded non-
manipulability in earlier works [Everaere et al., 2007]); the sole exception is the case when
aggregation is done using only so-called complete bases (i.e., such that each formula has ex-
actly one model) without integrity constraint and using aggregation operator ∆dH ,Σ

> (defined
below), under our new satisfaction indices.

• On the question of how an agent can manipulate, we look at general approaches to influ-
encing the aggregation procedure by promoting or demoting interpretations. Further, we
show that manipulation under skeptical consequences can be carried out by the strategic
agent submitting a complete base, suggesting that manipulation does not require sophisti-
cated propositional structures to succeed; however, in the same light, we show that deciding
the existence of such a complete base is a complex problem, namely a ΣP

2 -complete problem,
for destructive manipulation.

This paper improves on an earlier workshop version [Haret and Wallner, 2018].

2 Belief Merging

Propositional Logic. We assume a finite set P of propositional atoms, with L the set of formulas
generated from P using the usual connectives. A knowledge base K is a formula from L. The
models of a propositional formula µ are the interpretations which satisfy it, and we write [µ] for
the set of models of µ. We typically write interpretations as words where letters are the atoms
assigned to true, e.g., {{a, b}, {b, c}} is written as {ab, bc}. If ϕ1, ϕ2 ∈ L, we say that ϕ1 |= ϕ2 if
[ϕ1] ⊆ [ϕ2], and that ϕ1 ≡ ϕ2 if [ϕ1] = [ϕ2]. A knowledge base K is complete if it has exactly one
model. A formula ϕ is consistent (satisfiable), if [ϕ] 6= ∅. If v and w are interpretations, v4w is
their symmetric difference, defined as v4w = (v \ w) ∪ (w \ v).

Aggregation. A profile P = (K1, . . . , Kn) is a finite tuple of consistent bases, representing the
reported beliefs of n distinct agents. We say that Ki is agent i’s reported belief. The qualification
that the Ki’s stand for reported beliefs is important, as we want to allow for the possibility of
agents participating in the merging process with beliefs other than their truthful ones. We typically
write KT

i for agent i’s truthful belief, and KF
i for an untruthful belief that i reports in the merging

scenario.
If P1 and P2 are profiles, we write P1 + P2 for the profile obtained by appending P2 to P1. If

K is a base and there is no danger of ambiguity, we write P +K instead of P + (K).
A merging operator ∆ is a function mapping a profile P of consistent knowledge bases

and a propositional formula µ, called the constraint, to a propositional formula, written
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∆µ(P ). We focus on semantic operators ∆d, f from the framework of logic-based merg-
ing [Konieczny and Pérez, 2011], the main ingredients of which are a distance d and an aggre-
gation function f . To define these operators we start with a distance d between interpretations.
Given a distance d between interpretations, an interpretation w and a propositional formula ϕ,
the distance d(w,ϕ) from w to ϕ is defined as d(w,ϕ) = min{d(w, v) | v ∈ [ϕ]}. This
makes it possible to order interpretations w.r.t. bases: w1 ≤dK w2 if d(w1, K) ≤ d(w2, K). For
a profile P = (K1, . . . , Kn) and an aggregation function f , the distance df from w to P is
df (w,P ) = f(d(w,K1), . . . , d(w,Kn)). That is, df (w,P ) is the result of aggregating, via f ,
the distances between w and each Ki ∈ P .

We assume that distances from interpretations to profiles can be compared using an order
≤, such that, for any interpretations w1 and w2, we have either df (w1, P ) ≤ df (w2, P ) or
df (w2, P ) ≤ df (w1, P ). We say that w1 ≤d, fP w2 if df (w1, P ) ≤ df (w2, P ). If d is a distance
between interpretations and f is an aggregation function, the propositional merging operator ∆d, f

is defined, for any profile P and constraint µ, as [∆d, f
µ (P )] = min≤d, f

P
[µ]. The result of aggregating

the bases in P thus consists of the models of µ, also called the winning interpretations, at mini-
mum overall distance to the consistent bases in P , with distances specified via d and aggregation
function f .

We will focus on a sample of representative merging operators, constructed using a set of
common distance/aggregation functions. Ifw1 andw2 are interpretations, the drastic and Hamming
distances dD and dH , respectively, are defined as follows:

dD(w1, w2) =

{
0, if w1 = w2,

1, otherwise,
dH(w1, w2) = |w14w2|.

If X = (x1, . . . , xn) is an n-tuple of non-negative integers, the Σ, max and gmax aggregation
functions are defined as follows:

• Σ(X) = Σn
i=1xi,

• max(X) = max({xi | 1 ≤ i ≤ n}), and

• gmax(X) is X in descending order.

For f ∈ {Σ, max} the aggregated value df (w,P ) is an integer and thus interpretations can be or-
dered w.r.t. their distance to P . For f = gmax, dgmax(v, P ) is an n-tuple made up of the numbers
d(w,K1), . . . , d(w,Kn) ordered in descending order. To rank interpretations via gmax we order
vectors lexicographically: (x1, . . . , xn) <lex (y1, . . . , yn) if xi < yi for the first i where xi and yi
differ. We recall that if X = (x1, . . . , xn) and Y = (y1, . . . , yn) are n-tuples of non-negative inte-
gers, z ∈ N, π is a permutation of {1, . . . , n} and f ∈ {Σ, max, gmax} is an aggregation function,
the following properties hold [Konieczny and Pérez, 2011]: f(x1, . . . , xn) = f(xπ(1), . . . , xπ(2))
(symmetry); and if xi ≤ x′i, then f(x1, . . . , xi, . . . , xn) ≤ f(x1, . . . , x

′
i, . . . , xn) (monotony).

Example 2. The scenario described in Example 1 features two aggregation tasks: one involving
the profile P T = (K1, K2, K3, K

T
4 ), containing the true position of agent 4; the other involv-

ing the profile P F = (K1, K2, K3, K
F
4 ), obtained by agent 4 acting strategically. Both tasks

5



Table 1: Example of merging. Gray cells are the permitted models when integrity constraint
µ = (a ∨ b ∨ c). Column 1 contains all interpretations over the alphabet P = {a, b, c}, columns
2-6 show the minimal (Hamming) distances between interpretations and bases (see Example 1 for
what the bases are). Columns 7-10 show the aggregated distances under Σ and gmax with respect
to the profiles P T and P F . Bold numbers indicate models with minimum distance.

[K1] [K2] [K3] [KT
4 ] [KF

4 ]
{b, bc} {ab, ac} {b, bc, abc} {a} {ac} dΣ

H(·, P T ) dΣ
H(·, P F ) dgmaxH (·, P T ) dgmaxH (·, P F )

∅ 1 2 1 1 2 5 6 (2,1,1,1) (2,2,1,1)
a 2 1 2 0 1 5 6 (2,2,1,0) (2,2,1,1)
b 0 1 0 2 3 3 4 (2,1,0,0) (3,1,0,0)
c 1 1 1 2 1 5 4 (2,1,1,1) (1,1,1,1)
ab 1 0 1 1 2 3 4 (1,1,1,0) (2,1,1,0)
ac 2 0 1 1 0 4 3 (2,1,1,0) (2,1,0,0)
bc 0 2 0 3 2 5 4 (3,2,0,0) (2,2,0,0)
abc 1 1 0 2 1 4 3 (2,1,1,0) (1,1,1,0)

occur under the same constraint µ = a ∨ b ∨ c. Table 1 illustrates the results of aggregat-
ing profiles P T and P F under constraint µ with operators ∆dH ,Σ

µ and ∆dH , gmax
µ . The aggrega-

tion result is computed by choosing, from the models of µ, the ones with minimum aggregated
distance. For instance, we have K2 = a ∧ (b ↔ ¬c). Further, we have [K2] = {ab, ac}
and dH(ab,K2) = min{dH(ab, ab), dH(ab, ac)} = min{0, 2} = 0. The following holds:
dΣ
H(ab, P T ) = dH(ab,K1) + dH(ab,K2) + dH(ab,K3) + dH(ab,KT

4 ) = 3. The orders ≤dH ,f
PT

and ≤dH ,f
PF , for f ∈ {Σ, gmax}, are obtained by ordering interpretations according to their ag-

gregated distances to P T and P F , respectively. Finally, we get that [∆dH ,Σ
µ (P T )] = {b, ab},

[∆dH ,Σ
µ (P F )] = {ac, abc}, [∆dH , gmax

µ (P T )] = {ab} and [∆dH , gmax
µ (P F )] = {abc}.

It is worth mentioning that ∆dD,Σ
µ and ∆dD, gmax

µ are equivalent, for any profile P and constraint µ
(i.e., [∆dD,Σ

µ (P )] = [∆dD, gmax
µ (P )]). Further, the operator ∆dD, max

µ delivers [
∧
P ∧µ], if consistent,

and [µ] otherwise.

3 Acceptance and Satisfaction Notions

Merging operators output a set of interpretations, all of which can be seen as tied for the winning
position. In decision terms, this translates as inconclusiveness with respect to the final verdict
(see Example 1). To arrive at a definite opinion on every issue we use well-established notions
of acceptance with respect to a formula. Further, in order to make sense of the way an agent can
manipulate, we need to be able to measure an agent’s satisfaction with respect to the result of a
merging operator. To this end we introduce a set of satisfaction indices that build on the acceptance
notions.
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Acceptance. An acceptance function Acc : L → 2P maps propositional formulas to sets of atoms
in P . We say that Acc(ϕ) are the accepted atoms of ϕ. For a formula ϕ, we define the following
acceptance notions:

Skept(ϕ) =
⋂
w∈[ϕ]

w, Cred(ϕ) =
⋃
w∈[ϕ]

w.

For a formula ϕ, an atom is skeptically accepted if it is true in all models of ϕ (i.e., is in Skept(ϕ));
an atom is credulously accepted if it is true in at least one model of ϕ (i.e., is in Cred(ϕ)).1 Skep-
tical acceptance is equivalent to atom-wise logical entailment, and credulous acceptance indicates
support of an atom in at least one model.

Example 3. In Example 2 we obtain that [∆dH ,Σ
µ (P T )] = {b, ab}. For the acceptance notions

introduced, we have Skept(∆dH ,Σ
µ (P T )) = b and Cred(∆dH ,Σ

µ (P T )) = ab.

These acceptance notions focus on positive literals. Thus, we say that p ∈ Skept(ϕ) if the atom p
is in every model of ϕ, but we do not treat acceptance of negative literals in a similar fashion: for
instance, in Example 3 we do not say something like ‘Skept(∆dH ,Σ

µ (P T )) = b¬c’, even though c
is in none of (and hence rejected by) all the models of ∆dH ,Σ

µ (P T ). This asymmetry is not unusual
in a Social Choice context, where rejection of a candidate is often assimilated to non-acceptance,
but would be worth looking at in a more extensive treatment of acceptance notions.

Satisfaction. A satisfaction index i : L×L → N+ is a function that maps a pair of formulas to a
non-negative integer [Everaere et al., 2007]. If ϕ and ψ are two propositional formulas and Acc is
an acceptance notion, the satisfaction index iAcc is defined as iAcc(ϕ, ψ) = |Acc(ϕ)4Acc(ψ)|. For
the two acceptance notions introduced above, this gives us the satisfaction indices iSkept and iCred.

Example 4. For KT
4 from Ex. 2 we have [KT

4 ] = {a} and [∆dH ,Σ
µ (P T )] = {b, ab}. With

the indices we can measure agent 4’s satisfaction regarding the truthful aggregation result: we
have iSkept(KT

4 ,∆
dH ,Σ
µ (P T )) = |Skept(KT

4 )4Skept(∆dH ,Σ
µ (P T ))| = |a4b| = 2. Analogously,

iCred(K
T
4 ,∆

dH ,Σ
µ (P T )) = |a4ab| = 1.

For arbitrary formulas the numeric results given by the indices iSkept and iCred are generally not
directly correlated, in that each may be higher or lower than the other. However, there is a duality
relation between the indices and aggregation operators defined via skeptical and credulous accep-
tance. The dual ϕ of a formula ϕ is obtained by replacing every literal in ϕ with its negation. If
P = (K1, . . . , Km) is a profile, then the dual P of P is the profile defined as P = (K1, . . . , Km). If
w is an interpretation, the dual w of w is the complement of w, i.e., the interpretation P\w. IfW is
a set of interpretations, the dualW ofW is the set of interpretations defined asW = {w | w ∈ W}.
For a propositional formula ϕ we have [ϕ] = [ϕ]. This transfers to the indices: it holds that

1We note that the notions of skeptical (cautious) and credulous (brave) consequences are not uniformly used
throughout the literature. For instance, skeptical consequences may be defined as those consequences that follow
(e.g. by classical logic) from all formulas in a set of formulas, and skeptical acceptance may refer to membership of
an object in all sets of a given set of sets. We make use of the latter interpretation.
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iSkept(ϕ, ψ) = iCred(ϕ, ψ). Intuitively, this is because an atom p being in the symmetric differ-
ence of the skeptical consequences is equivalent to there being a model of one of the formulas not
containing p, with the dual having p in at least one model. Interestingly, a duality also holds with
respect to merging operators.

Proposition 1. If P is a profile, µ is a constraint, d ∈ {dH , dD} is a distance function, and
f ∈ {Σ, max, gmax} is an aggregation function, then Skept(∆d, f

µ (P )) ≡ Cred(∆d, f
µ (P )).

Proposition 1 builds on an interesting symmetry exhibited by the merging operators we work with:
the result of merging a profile P under a constraint µ and the result of merging P under constraint
µ turn out to be themselves duals of each other. This allows us, once we have found some instance
related to the skeptical index, to automatically adapt it to the credulous index.

Example 5. For the alphabet P = {a, b}, take a profile P = (K1, K2), with K1 = a→ b,
K2 = ¬a and µ = a. We get [∆dH ,Σ

µ (P )] = {ab}, and Skept(∆dH ,Σ
µ (P )) = ab. Taking the

duals, we have K1 = ¬a → ¬b, K2 = a and µ = ¬a. Notice that [K1] = {∅, b, ab} and
[K1] = {ab, a, ∅} = {∅, b, ab} = [K1], i.e., the models of the dual of K1 are the duals of the
models of K1. We get that [∆dH ,Σ

µ (P )] = {∅}, which is the same as [∆dH ,Σ
µ (P )] (this equality also

holds more generally). Lastly, Skept(∆dH ,Σ
µ (P )) = Cred(∆dH ,Σ

µ (P )).

4 Manipulability and Strategyproofness
Manipulation occurs when an agent, called the strategic agent, can influence the merging result in
its favor by submitting a base different from its truthful one. Unless otherwise stated, the agent’s
truthful position is the base KT , and the base with which it manipulates as KF . We represent
the strategic agent’s contribution by appending its submitted base to a pre-existing profile P (e.g.,
P +KT ): intuitively, it is as if the strategic agent joins the aggregation process after everyone else
has submitted their positions. This is merely a notational choice, meant to improve readability, and
no generality is lost in this way: all aggregation functions used here satisfy the symmetry property
(see Section 2) and the result never depends on the merging order.

A profile P , constraint µ, distance d, aggregation function f and acceptance notion Acc are
assumed in most definitions, but, in the interest of concision, are explicitly referred to only under
pain of ambiguity. Unless otherwise stated, d ranges over {dD, dH} and f over {Σ, gmax, max}.

4.1 Constructive and destructive manipulation with respect to an atom
One of the most basic forms of manipulation is one in which the strategic agent has a spe-
cific atom p that it targets for acceptance: the strategic agent may want to see p get ac-
cepted (or rejected) in the final result. This sets up the stage for what we call, along the lines
of similar concepts from Social Choice [Conitzer and Walsh, 2016], constructive and destruc-
tive manipulation. The strategic agent constructively Acc-manipulates P w.r.t. p using KF if
p /∈ Acc(∆µ(P +KT )) and p ∈ Acc(∆µ(P +KF )), and destructively Acc-manipulates P w.r.t. p
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using KF if p ∈ Acc(∆µ(P +KT )) and p /∈ Acc(∆µ(P +KF )). Intuitively, an agent construc-
tively Acc-manipulates w.r.t. p if it can make p be in the accepted atoms of the aggregation result
by submittingKF instead ofKT ; similarly, an agent destructively manipulates w.r.t. p if it can kick
p out of the accepted atoms of the result. We say that an operator ∆ is Acc-strategyproof if there
is no profile P , constraint µ, atom p and bases KT and KF s.t. the strategic agent, having KT as
its truthful position, Acc-manipulates P , either constructively or destructively, w.r.t. p using KF .

We first note that, if KT is the strategic agent’s truthful position, any instance of constructive
manipulation with respect to p using KF is also an instance of destructive manipulation with
respect to p, obtained by swappingKT andKF as the truthful and manipulating bases, respectively.
Next, our results regarding duality (see Proposition 1) imply the following duality for manipulation.

Proposition 2. A strategic agent constructively (destructively) Skept-manipulates P with respect
to p iff it destructively (constructively) Cred-manipulates P with respect to p using KF , with KT

as its truthful position and µ as the constraint.

In other words, an instance of constructive Skept-manipulation has a direct counterpart, via
the duals, in an instance of destructive Cred-manipulation, and likewise for destructive Skept-
manipulation and constructive Cred-manipulation. This simplifies our study as we can focus on
only one acceptance notion, with results for the other notion following by Proposition 2.

Example 6. In Example 2 agent 4 constructively Skept-manipulates the profile P = (K1, K2, K3)
w.r.t the atom a (relative to the operator ∆dH ,Σ and constraint µ = a ∨ b ∨ c), in that a /∈
Skept(∆dH ,Σ

µ (P T )) but a ∈ Skept(∆dH ,Σ
µ (P F )). Consider, now, a merging scenario where every

formula is replaced by its dual. Thus, the truthful position of agent 4 is KT
4 : we get that [KT

4 ] =
{bc}, the constraint is µ = ¬a ∨ ¬b ∨ ¬c, with [µ] = {∅, a, b, c, ab, ac, bc}, and the profile is P .
We get that [∆dH ,Σ

µ (P T )] = {c, ac}, and a ∈ Cred(∆dH ,Σ
µ (P T )). However, if agent 4 now submits

KF
4 , we get that [∆dH ,Σ

µ (KF
4 )] = {∅, b}, with a /∈ Cred(∆dH ,Σ

µ (KF
4 )). Hence, if agent 4’s truthful

position is KT
4 , then it destructively Cred-manipulates P w.r.t a using KF

4 .

Examples 2 and 6 already show that ∆dH ,Σ is constructively Skept-manipulable (and destructively
Cred-manipulable). Indeed, this extends to all operators introduced so far.

Theorem 1. For any n ∈ N and p ∈ P , there exists a profile P = (K1, . . . , Kn) and bases KT ,
KF such that the strategic agent constructively (and destructively, respectively) Acc-manipulates
P w.r.t p using KF , even if µ = > and all Ki, for i ∈ {1, . . . , n}, as well as KT and KF , are
complete.

Theorem 1 suggests that the situation with respect to constructive/destructive manipulation is
acute, for two reasons. Firstly, restrictions on the size of the profile or on the specificity of the
bases (e.g., requiring that all bases are complete), which ensure strategyproofness in other con-
texts [Everaere et al., 2007], turn out not to have any effect in this case. Second, instances of
manipulation exist for any size of the profile P : this is best understood by consulting Example 7.

Example 7. To constructively Skept-manipulate a profile of size n = 4 w.r.t. the atom a, relative
to the constraint µ = > and f ∈ {Σ, gmax}, takeKi, for i ∈ {1, 2, 3, 4},KT andKF as in Table 2.

9



Table 2: Constructive Skept-manipulation of a profile of size 4 w.r.t the atom a

[K1] [K2] [K3] [K4] [KT ] [KF ]
{∅} {∅} {a} {a} {∅} {a} dΣ(·, P T ) dgmax(·, P T ) dΣ(·, P F ) dgmax(·, P F )

∅ 0 0 1 1 0 1 2 (1, 1, 0, 0, 0) 3 (1, 1, 1, 0, 0)
a 1 1 0 0 1 0 3 (1, 1, 1, 0, 0) 2 (1, 1, 0, 0, 0)
b 1 1 2 2 1 2 7 (2, 2, 1, 1, 1) 8 (2, 2, 2, 1, 1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

It is straightforward to see that [∆d, f
µ (P T )] = {∅} and [∆d, f

µ (P F )] = {a}, for d ∈ {dD, dH} and
f ∈ {Σ, gmax} (Table 2 shows results for dH , but the reasoning for dD is entirely similar). This
example easily generalizes to any even n. If n is odd, which we can write as n = 2p+1, for p ∈ N,
we can take [K1] = · · · = [Kp] = {∅}, [Kp+1] = · · · = [Kn] = {a}, and KT , KF as above.

If possible for an agent to constructively or destructively manipulate, it is appropriate to ask how
it can do it: are intricate formulas needed to achieve the goal, or can a ‘simple’ base work just
as well? In Example 7 the strategic agent manipulates using complete bases, suggesting that the
answer lies with the second option. Indeed we can show that, if manipulation is possible at all,
then it can be done with a complete base.

Theorem 2. If the strategic agent constructively/destructively Acc-manipulates P w.r.t. p using
KF , for Acc ∈ {Skept, Cred}, then there exists a complete base KF

∗ such that KF
∗ |= KF and the

agent constructively/destructively Skept-manipulates P w.r.t. p using KF
∗ .

We give here the intuition driving the proof for Skept-manipulation, adding as well the fact that the
base KF

∗ is found in the same way for constructive and destructive manipulation: if manipulation
is possible with KF , then pick a model of KF that is closest to one of the models of µ crucial
for the success of manipulation. In the case of destructive Skept-manipulation, this would be an
interpretation v∗ that ends up being in [∆d, f

µ (P +KF )] and is such that p /∈ v∗: v∗ must exist,
under the assumption that KF successfully achieves destructive Skept-manipulation. We can then
replace KF with KF

∗ , where [KF
∗ ] = {v∗} and still achieve destructive Skept-manipulation.

There is one thing that mitigates the acuteness of the manipulation results. Note that we have
not assumed so far that the strategic agent needs to have p among its accepted atoms, i.e., we
do not require the agent to actually believe p in order to constructively/destructively manipulate
with respect to it. Seeing the merging process as aggregation of agents’ reported beliefs, stressed
in Section 2, comes into play, as it allows for agents to participate with bases that can reflect a
richer cognitive structure (e.g., the effects of bribery, or influence, motivating an agent to alter its
reported beliefs). Thus, here we operate under the assumption that p (its acceptance, or otherwise)
figures for the agent as a goal, regardless of whether it is actually part of its beliefs (manipulation
furthering the truthful beliefs of the strategic agent is treated in Section 4.2).

Can an agent influence the acceptance of an atom it does not believe? We see in Example 7
that the answer is yes: the strategic agent there is able to constructively Skept-manipulate w.r.t.
a even though a is not among the skeptical beliefs of the agent itself. And, in fact, we are able
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to show that, when µ = > and all bases are complete, Skept-manipulation is possible only under
this assumption.

Proposition 3. If the strategic agent constructively Skept-manipulates P with respect to an atom
p, relative to the constraint µ = > and operator ∆dH ,Σ, when all bases are complete, then p /∈
Skept(KT ).

Proposition 3 can be seen as a positive result, one way of reading it being that if the strategic agent
already accepts p (i.e., p ∈ Skept(KT )), then if it cannot impose p by submittingKT itself, for the
given parameters, then there is no other way of doing it. As such, this is the closest we can come
to a strategyproofness result for constructive/destructive manipulation.

4.2 Manipulation with respect to a satisfaction index
Constructive and destructive manipulation deals with the question of whether an agent can affect
the acceptance of an atom in the aggregated outcome, regardless of the beliefs of the agent. In
this section we look at the case when the agent improves the outcome with respect to its beliefs,
where improvement is measured using the skeptical and credulous satisfaction indices iAcc, for
Acc ∈ {Skept, Cred}.

The strategic agent manipulates P with respect to iAcc using KF if it holds that
iAcc(K

T ,∆µ(P +KF )) < iAcc(K
T ,∆µ(P +KT )). In other words, an agent can improve its

satisfaction index by submitting KF instead of KT . We say that an operator ∆ is strategy-proof
with respect to a satisfaction index iAcc if there is no profile P , constraint µ and bases KT and KF

such that the strategic agent, having KT as its truthful position, manipulates P with respect to iAcc
using KF .

Our definition of manipulability based on satisfaction indices is inspired by previous work
on manipulation of propositional merging operators [Everaere et al., 2007] but differs from it in
an important respect: we measure the distance between the accepted atoms of the manipulating
agent and the result, rather than between the sets of models themselves. A more minor (technical)
difference is that, in our case, an agent is more satisfied when its index decreases.2 This reflects
the fact that the manipulated result gets closer to the agent’s beliefs.

Example 8. In Example 2, we have Skept(KT
4 ) = a and Skept(∆dH ,Σ

µ (P T )) = b. Thus,
iSkept(K

T
4 ,∆

dH ,Σ
µ (P T )) = |a4b| = 2. However, by agent 4 submitting KF

4 instead of KT
4 , we

get that Skept(∆dH ,Σ
µ (P F )) = ac and iSkept(KT

4 ,∆
dH ,Σ
µ (P F )) = 1. Thus, by submitting a posi-

tion different from its truthful one, agent 4 is able to bring the (skeptically accepted atoms of) the
merging result closer to its own position.

Example 8 shows that manipulation is possible in the general case for the merging operator ∆dH ,Σ

and the skeptical index. What is, now, the full picture with respect to manipulability? As for
constructive and destructive manipulation, we first note that the identity iSkept(ϕ, ψ) = iCred(ϕ, ψ)

2As such, our indices can be interpreted as dissatisfaction indices; nevertheless we stick to the term satisfaction
index.
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(see Sect. 3) allows us to turn a manipulation instance with respect to iSkept into a manipulation
instance with respect to iCred simply by replacing every formula involved with its dual.

For the operators ∆d, gmax and ∆d, max index manipulation turns out to be, like atom manipula-
tion, unavoidable. This stays so even under heavy restrictions (i.e., complete bases and µ = >),
and for any size n ≥ 2 of the profile.

Theorem 3. For d ∈ {dD, dH}, f ∈ {gmax, max} and any n ≥ 2 there exists a profile P =
(K1, . . . , Kn) and bases KT and KF such that the strategic agent manipulates P with respect to
iAcc, even if µ = > and all bases Ki, for i ∈ {1, . . . , n}, as well as KT and KF , are complete.

The story is different for the operator ∆dH ,Σ: as seen in Proposition 3, constructive manipulation
for skeptical acceptance, complete profiles, and µ = > can only get an atom p into the result if
the agent does not believe p. In other words, the result can be affected for p, but it is worth noting
that the skeptical index does not increase by doing so. It turns out that this holds in general for
the operator ∆dH ,Σ

> , i.e., this operator is strategy-proof with respect to a satisfaction index iAcc, for
Acc ∈ {Skept, Cred}.

Theorem 4. If all bases in the profile, as well as KT and KF , are complete and µ = >, then the
operator ∆dH ,Σ

> is strategy-proof with respect to iSkept and iCred.

Proof. (sketch) For complete profiles, the operator ∆dH ,Σ
> returns models v that reflect majority

opinion, i.e., if an atom p is true in a majority of bases, p is in v; if p is false in a majority of
bases, then p is not in v; and if there is no majority (half of the bases have p in their model), then
the result contains both a v with p and a v′ without p in them. A strategic agent cannot increase
its index: adding something to its model can make this skeptically accepted, but this is not in the
agent’s belief (similarly for other cases).

The restrictions on ∆dH ,Σ in Theorem 4 are essential: weakening any of them results in the operator
being manipulable.

Proposition 4. If it is does not hold that µ = > and all bases in P , as well as the truthful position
of the strategic agent, are complete, then ∆dH ,Σ is manipulable with respect to iAcc.

5 Influence of one agent over the outcome
Section 4 addresses the question of whether the strategic agent can modify the merging result to
its advantage. But it is useful to take a step back and ask whether the strategic agent can modify
the result in the first place, i.e., whether it matters if the strategic agent takes part in the merging
process at all and, if yes, how exactly it can influence it. Given a profile P , an operator ∆, a
constraint µ and a base K, we say that ∆µ(P ) is the intermediary result, and ∆µ(P +K) is the
final result.

There are, a priori, two ways in which the agent can change the intermediary result: one is by
removing interpretations from [∆µ(P )]; i.e., by turning winning interpretations into non-winning
interpretations; the other is by adding interpretations to [∆µ(P )], i.e., by turning non-winning
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interpretations into winners. If w is an interpretation, we say that the strategic agent demotes w
from ∆µ(P ) using K if w ∈ [∆µ(P )] and w /∈ [∆µ(P +K)], and that it promotes w with respect
to ∆µ(P ) using K if w /∈ [∆µ(P )] and w ∈ [∆µ(P +K)].

It turns out that for a significant proportion of the operators we are working with the strate-
gic agent can demote any number of interpretations from the intermediary result, using an easy
strategy: focus on the wanted interpretations, and submit a base with those interpretations as mod-
els; the unwanted interpretations thus receive a penalty that renders them non-winning in the final
result.

Proposition 5. If P is a profile, µ is a constraint, d ∈ {dH , dD}, f ∈ {Σ, gmax} and W ⊂
[∆d, f

µ (P )] is a set of interpretations, then a strategic agent can demote all interpretations in
[∆d, f

µ (P )] \W from ∆d, f
µ (P ) by submitting KW with [KW ] = W .

On the other hand, promoting interpretations is more difficult: the strategic agent’s ability to pro-
mote an interpretation w depends on the margin by which w loses out to the winning interpreta-
tions. We show this here for the operator ∆dH ,Σ.

Proposition 6. If w is an interpretation such that w ∈ [µ] and w /∈ [∆dH ,Σ
µ (P )], then the strategic

agent can promote w with respect to ∆dH ,Σ
µ (P ) iff dΣ

H(w,P )− dΣ
H(wi, P ) ≤ dH(w,wi), for every

wi ∈ [∆dH ,Σ
µ (P )].

Intuitively, dΣ
H(w,P ) − dΣ

H(wi, P ) is the margin by which w loses out to a winning interpretation
wi in ≤d, fP . Proposition 6 then tells us that the strategic agent can reverse the order between w and
wi if and only if this margin is less than the Hamming distance between w and wi. In general, the
amount of support the strategic agent can give to w relative to wi is at most dH(w,wi) and thus, if
w is trailing wi by more than this amount, there is nothing the strategic agent can do for it. Using
this result we note that, if possible for an agent to promote an interpretation w, then it can do so
using a complete base.

Corollary 1. If the strategic agent can promote an interpretation w with respect to ∆d, f
µ (P ), then

it can do so with a base Kw such that [Kw] = {w}.

This result is similar in spirit to Theorem 2, and suggests something like a best strategy if the goal
is to promote w: the strategic agent can always submit a base Kw with w as the sole model, since
if w can be promoted to the final result then Kw is guaranteed to do it; otherwise, it does not matter
what the agent submits.

Example 9. Suppose [µ] = {w1, w2, w3, w4}, [∆d,Σ
µ (P )] = {w1, w2, w3}, for d ∈ {dH , dD}.

The strategic agent submits K with [K] = {w1, w2}. We write dH(w1, P ) = dH(w2, P ) =
dH(w3, P ) = β, dH(w4, P ) = β+ε4 and δ3∗ = min{δ31, δ32}, δ4∗ = min{δ41, δ42} for the distance
from w3 and w4, respectively, to K (see Table 3). Notice now that [∆d,Σ

µ (P +K)] = {w1, w2},
i.e., the strategic agent demotes w3 from ∆d,Σ

µ (P ). To promote w4 to the final result, the obvious
strategy is for the strategic agent to submit K ′, with [K ′] = {w4}. In this case, promoting w4 is
successful only if ε4 ≤ δi4, where δi4 = dH(wi, w4), for i ∈ {1, 2, 3} (again, see Table 3). The same
argument applies to the drastic distance dD, the only difference being that δ3∗ = δ4∗ = δi4 = 1, for
i ∈ {1, 2, 3}.
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With respect to atoms, an analogous question regarding the influence of an agent asks under what
conditions a specific atom can be made part of the final result. The idea here turns out to be that no
single agent can overturn majorities w.r.t. skeptical acceptances of the bases in the complete profile
and µ ≡ >: if more than half of the agents skeptically accept a, then no strategic agent can alter
this. This is the same fact that underwrites strategyproofness of ∆dH ,Σ. For non-complete profiles
strategyproofness is lost, but a related result can be shown.

For a profile P , define agents’ support for acceptances as CredsuppP (a) = |{K ∈ P | a ∈
Cred(K)}| and SkeptsuppP (a) = |{K ∈ P | a ∈ Skept(K)}|. By generalizing a result
from [Delobelle et al., 2016], we show that neither a majority of skeptical support nor a major-
ity of credulous non-support can be altered, for aggregation under ∆dH ,Σ

> .

Proposition 7. Let P = (K1, . . . , Kn−1) be a profile, X = {x | SkeptsuppP (x) > n
2
}, and

Y = {x | CredsuppP (x) < n
2
}. For any base Kn and M = ∆dH ,Σ

> (P + Kn), it holds that
X ⊆ Skept(M), and Y ⊆ (P \ Cred(M)).

A similar result does not hold for operator ∆dH ,max
> , i.e., when using max instead of Σ. Thus, for

max majorities may be overturned, as illustrated in the next example.

Example 10. Take [K1] = {b}, [K2] = {c}, and [KT
3 ] = {abc}. With ∆dH ,max

> the result is {bc}.
When agent 3 reports [KF

3 ] = {ab} instead, the result is {∅, a, b, bc, abc}. Thus, agent 3 can get
a to be true in a model of the output, even if less than half of the agents have a in some model of
their base (in fact only agent 3 accepts a credulously).

6 Complexity of Constructive and Destructive Manipulation
By our results, if an agent can constructively or destructively Skept-manipulate the aggregation
process, then it can do so by submitting a complete base (see Theorem 2). By Proposition 2, Cred-
manipulation can always be achieved by the dual of a complete base (again a complete base), if
manipulation is possible. By these results, for both constructive and destructive manipulation, de-
ciding whether a profile is manipulable is in ΣP

2 . To see this, we first recall that computing the
result of the merging process, i.e., whether ∆d, f

µ (P ) |= ϕ holds, is a problem that can be solved
via a deterministic polynomial time algorithm with access to an NP oracle, for all operators con-
sidered in this paper [Konieczny et al., 2002, Konieczny et al., 2004]. This implies that one can

Table 3: The agent penalizes w3 by not including it in the models of its submitted base, and can
only promote w4 if the margin ε4 by which it trails the other interpretations is sufficiently small.

P {w1, w2} {w4} dΣ
H(·, P +K) dΣ

H(·, P +K ′)

w1 β 0 δ14 β β + δ14

w2 β 0 δ24 β β + δ24

w3 β δ3∗ δ34 β + δ3∗ β + δ34

w4 β + ε4 δ4∗ 0 β + δ4∗ + ε4 β + ε4
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check whether an unmodified (non-altered) profile already returns the desired atom skeptically
(credulously). If not, a non-deterministic construction (“guess”) of a complete base with a subse-
quent new check of the result decides whether the constructed base results in a manipulation. For
operator ∆dH ,Σ

µ and destructive Skept-manipulation, we also can show hardness for this class.

Theorem 5. Deciding whether a profile can be destructively Skept-manipulated w.r.t. an atom
and µ for operator ∆dH ,Σ

µ by submitting a complete base is ΣP
2 -complete.

7 Related work
Existing work on manipulation of belief merging operators [Diaz and Perez, 2018,
Everaere et al., 2007] differs from ours in that satisfaction indices in [Everaere et al., 2007]
are not based on skeptical or credulous acceptance but on the models that the strategic agent
and the result have in common. To highlight this difference, note that under the indices
in [Everaere et al., 2007] the strategic agent in Example 2 would be equally unsatisfied with both
the truthful result ∆dH ,Σ

µ (P T ) and ∆dH ,Σ
µ (P F ), since KT shares no model with either. Under our

interpretation of the indices, ∆dH ,Σ
µ (P F ) ends up delivering a better result for the strategic agent

than ∆dH ,Σ
µ (P T ), as under ∆dH ,Σ

µ (P F ) the atom a is guaranteed to be in the result, and there
is a sense in which this is satisfactory for the strategic agent, as a is an atom that it skeptically
accepts. Then, different to both [Diaz and Perez, 2018, Everaere et al., 2007], we also show
results for acceptance manipulation (not based on indices), i.e., for constructive and destructive
manipulation.

Belief merging invites comparison to multi-winner elections [Amanatidis et al., 2015,
Barrot et al., 2017, Faliszewski et al., 2017, Meir et al., 2008], combinatorial vot-
ing [Lang and Xia, 2016], and Judgment Aggregation [Baumeister et al., 2015,
Baumeister et al., 2017, Endriss, 2016]. We mention here that our use of acceptance no-
tions and satisfaction indices, the compact encoding of sets of interpretations (agents’ “top
candidates”) as propositional formulas, and the fact that we do not require the output to be of a
specific size suggest that existing results in this area are not directly applicable to our setting. Our
work intersects with social choice in the special case when the profile is complete and the number
of bases is odd. In this case the aggregation problem corresponds to a Judgment Aggregation
problem, with ∆dH ,Σ

> delivering the majority opinion on the atoms (considered as issues): this
corresponds to the observation made in the Social Choice literature [Brams et al., 2007] that the
majority opinion minimizes the sum of the Hamming distances to voters’ approval ballots. Our
strategy-proofness result for ∆dH ,Σ

> dovetails neatly with a similar result in Judgment Aggrega-
tion [Baumeister et al., 2017, Endriss, 2016], though our treatment is slightly more general, as it
accommodates both an even and an odd number of bases.

8 Conclusions
We have looked at the potential for manipulation in a belief merging frame-
work [Konieczny et al., 2002, Konieczny and Pérez, 2011], when results are obtained considering
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skeptical or credulous consequences. We have shown that manipulation is not only possible for
well-known aggregation operators, but also that manipulation can be achieved by semantically
simple (i.e., complete) bases, even if the complexity of doing so is in general high.

For future work, our aim is to extend these results to more merging operators, study
best responses (strategies) by agents, manipulability in settings with incomplete informa-
tion, and to consider extended settings of manipulation studied in Social Choice, e.g.,
bribery [Baumeister et al., 2015], where sets of agents can be “bribed” to form a joint manipulating
coalition. We also want to look at properties from Social Choice used to understand strategyproof-
ness at a more abstract level (e.g., monotonicity), and at how to adapt these properties to the merg-
ing framework. This topic has received some attention [Diaz and Perez, 2018, Haret et al., 2016],
but more work is needed to establish connections to manipulation and strategyproofness.
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Full Proofs
These results concern the acceptance notions and satisfaction indices introduced in Section 3,
linking them to the dual formulas.

Lemma 1. If ϕ is a propositional formula, then [ϕ] = [ϕ].

Proof. Induction on the structure of ϕ.

Lemma 2. If ϕ is a propositional formula, then Skept(ϕ) = Cred(ϕ).

Proof. If p is an atom, we have p ∈ Skept(ϕ) iff p /∈ Skept(ϕ) iff p /∈ w, for some w ∈ [ϕ]
iff p ∈ w, for some w ∈ [ϕ], the last step obtained using Lemma 1. This is further equivalent to
p ∈ Cred(ϕ).

Lemma 3. If ϕ and ψ are propositional formulas, then it holds that Skept(ϕ)4Skept(ψ) =
Cred(ϕ)4Cred(ψ).

Proof. The claim follows by noticing that, if p is an atom, then p ∈ (Skept(ϕ) \ Skept(ψ)) iff
p ∈ (Cred(ψ) \ Cred(ϕ)).

Using Lemma 3, Corollary 2 follows immediately.

Corollary 2. If ϕ and ψ are propositional formulas, then iSkept(ϕ, ψ) = iCred(ϕ, ψ).

Corollary 2 is mentioned in Section 3 and, together with Lemma 7, is used in Section 4.2 to turn
instances of index manipulation with respect to one acceptance notion into instances of index
manipulation with respect to the other acceptance notion.

Turning to aggregation of propositional bases, we now show a series of results linking our
notions of acceptance, the indices and the duals.

Lemma 4. If w1 and w2 are two interpretations and d ∈ {dH , dD}, then d(w1, w2) = d(w1, w2).

Proof. For d = dD the claim follows immediately, since w1 = w2 if and only if w1 = w2. For
d = dH , notice first that if p is in atom, then p ∈ (w1 \ w2) if and only if p ∈ (w2 \ w1). It follows
from here that w14w2 = w14w2, which implies the conclusion.

Lemma 5. If K is a base, w is an interpretation and d ∈ {dH , dD}, then d(w,K) = d(w,K).

Proof. By definition, we have d(w,K) = min{d(w,w′) | w′ ∈ [K]}. Applying Lemma 1 and
Lemma 4, we get that {d(w,w′) | w′ ∈ [K]} = {d(w,w′) | w′ ∈ [K]}, which implies the
conclusion.

Lemma 6. If P = (K1, . . . , Km) is a profile, w is an interpretation, d ∈ {dH , dD} and f ∈
{Σ, max, gmax}, then df (w,P ) = df (w,P ).

Proof. Using Lemma 5.
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Lemma 7. If P is a profile, µ is a constraint, d ∈ {dH , dD} and f ∈ {Σ, max, gmax}, then
∆d, f
µ (P ) ≡ ∆d, f

µ (P ).

Proof. Using Lemma 1 and Lemma 6.

Proposition 1. For an atom p, it holds that p /∈ Skept(∆d, f
µ (P )) iff there exists an interpreta-

tion w ∈ [∆d, f
µ (P )] such that p /∈ w. Using Lemma 7, this is equivalent to p ∈ w, for some

interpretation w ∈ [∆d, f
µ (P )], which is in turn equivalent to p ∈ Cred(∆d, f

µ (P )).

The following results concern Section 4.1. First we show that instances of Skept-manipulation
are interchangeable with instances of Cred-manipulation.

Proposition 2. Assume an instance of constructive Skept-manipulation with respect to p. If
p /∈ Skept(∆d, f

µ (P +KT )), then p ∈ Skept(∆d, f
µ (P +KT )). Thus, by Proposition 1, it holds

that p ∈ Cred(∆d, f
µ (P +KT )). Similarly, we get that if p ∈ Skept(∆d, f

µ (P +KF )), then
p /∈ Cred(∆d, f

µ (P +KF )). We have obtained, in this way, an instance of destructive Cred-
manipulation with respect to p.

The proof going from an instance of destructive Skept-manipulation to an instance of con-
structive Skept-manipulation with respect to p is entirely analogous.

Lemma 8. If K is a base, d ∈ {dH , dD}, w1 and w2 are two interpretations and K∗ is a complete
base whose model v∗ is such that v∗ ∈ [K] and d(w1, v∗) = min{d(w1, v) | v ∈ [K]}, then it holds
that:

(i) if w1 <
d
K w2, then w1 <

d
K∗ w2;

(ii) if w1 ≈dK w2, then w1 ≤dK∗ w2.

Proof. We write [K] = {v1, . . . , vm} and d(wk, vj) = δkj , for k ∈ {1, 2}, j ∈ {1, . . . ,m}.
Additionally, we write δmin

k = min{δk1, . . . , δkm}, for k ∈ {1, 2} (see Table 4). By definition, we
have d(wk, K) = δmin

k , for k ∈ {1, 2}.
We start with claim (i): by assumption, it holds that δmin

1 < δmin
2 . We take now an interpretation

v∗ ∈ [K] that is closest to w1 among the models of K, 3 i.e., d(w1, v∗) = min{d(w1, v) | v ∈ [K]},
and a base K∗ such that [K∗] = {v∗}. We now have d(w1, K∗) = min{d(w1, v∗)} = min{δ1∗} =
δ1∗ = δmin

1 , while d(w2, K∗) = δ2∗ = δmin
2 + ε, for some ε ≥ 0. The latter claim is just a rewriting

of the fact that δ2∗ ≥ δmin
2 , and it follows from the fact that δmin

2 = min{δ21, . . . , δ2∗, . . . , δ2m}.
Since, by assumption, δmin

1 < δmin
2 , then it also holds that δmin

1 < δmin
2 + ε, and hence d(w1, K∗) <

d(w2, K∗). For claim (ii), our assumption is equivalent to the fact δmin
1 = δmin

2 , from which it
follows that δmin

1 ≤ δmin
2 + ε and hence d(w1, K∗) ≤ d(w2, K∗).

3There might be more than one interpretation that is equidistant to w1 and fits this description; we pick one at
random.
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Table 4: Replacing K with K∗, with [K∗] = {vi} and vi being the model of K closest to w1,
preserves the order between w1 and w2.

[K] [K∗]
v1 . . . vm d(·, K) v∗ d(·, K∗)

w1 δ11 . . . δ1m δmin
1 δmin

1 δmin
1

w2 δ21 . . . δ2m δmin
2 δmin

2 + ε δmin
2 + ε

Table 5: Replacing K with K∗, where [K∗] = {vi} and vi is the model of K closest to w1,
preserves the order between w1 and w2.

[K] [K∗]
P {v1, . . . , vm} {v∗} dΣ(·, P +K) dΣ(·, P +K∗)

w1 β1 δmin
1 δmin

1 β1 + δmin
1 β1 + δmin

1

w2 β2 δmin
2 δmin

2 + ε β2 + δmin
2 β2 + δmin

2 + ε

Lemma 9. If P is a profile, K is a base, d ∈ {dH , dD}, f ∈ {Σ, gmax, max}, w1 and w2 are two
interpretations and K∗ is a complete base whose model v∗ is such that v∗ ∈ [K] and d(w1, v∗) =
min{d(w1, v) | v ∈ [K]}, then it holds that:

(i) if w1 <
d, f
P+K w2, then w1 <

d, f
P+K∗

w2;

(ii) if w1 ≈d, fP+K w2, then w1 ≤d, fP+K∗
w2;

Proof. We first show the claim for f = Σ, as it provides a nice illustration of the main ideas. For
this, we write dΣ(wk, P ) = βk, for k ∈ {1, 2}. Assuming that [K] = {v1, . . . , vm}, we write
min{d(wk, v) | v ∈ [K]} = δmin

k , for k ∈ {1, 2} (see Table 5). By definition, d(wk, K) = δmin
k ,

for k ∈ {1, 2}. We take now an interpretation v∗ ∈ [K] that is closest to w1 among the models
of K, i.e., d(w1, v∗) = min{d(w1, v) | v ∈ [K]}, and a base K∗ such that [K∗] = {v∗}. We now
have d(w1, K∗) = min{d(w1, v∗)} = min{δ1∗} = δ1∗ = δmin

1 , while d(w2, K∗) = δ2∗ = δmin
2 + ε,

for some ε ≥ 0 (see Lemma 8 for more details). Then, we get that df (w1, P +K) = β1 +
δmin

1 and df (w2, P +K) = β2 + δmin
2 . Additionally, we have df (w1, P +K∗) = β1 + δmin

1 and
df (w2, P +K∗) = β2 + δmin

2 + ε. If β1 + δmin
1 < β2 + δmin

2 , as per the assumption of (i), then
β1 + δmin

1 < β2 + δmin
2 + ε and hence df (w1, P +K∗) < df (w2, P +K∗). If β1 + δmin

1 = β2 + δmin
2 ,

as per the assumption of (ii), then β1 + δmin
1 ≤ β2 + δmin

2 + ε and hence df (w1, P +K∗) ≤
df (w2, P +K∗)

For f ∈ {gmax, max} the argument has to be adapted to the output for each aggregation func-
tion, but is otherwise entirely similar. If f = gmax then the integers β1 and β2 (i.e., the distances
from w1 and w2, respectively, to P ) must be replaced with tuples of integers B1 = (β1

1 , β
1
2 , . . . )

and B2 = (β2
1 , β

2
2 , . . . ). For (i) we then have, by assumption, that gmax(β1

1 , β
1
2 , . . . , δ

min
1 ) <lex

gmax(β2
1 , β

2
2 , . . . , δ

min
2 ). Since δ2∗ ≤ δ2∗ + ε and gmax satisfies the MONOTONICITY prop-

erty (see Section 2), we get that gmax(β1
1 , β

1
2 , . . . , δ1i) <lex gmax(β2

1 , β
2
2 , . . . , δ2i + ε) and thus
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dgmax(w1, P +K∗) ≤ dgmax(w2, P +K∗). The argument for (ii) is entirely similar, and if f = max

the claim follows analogously.

Theorem 1. Without loss of generality, we can assume the target atom p is a. We only showcase
the constructive Skept-manipulation instances, as corresponding Cred-manipulation instances can
be obtained using Proposition 2 and a destructive manipulation instance can be obtained from a
constructive manipulation instance by swappingKT andKF as the truthful and manipulating base,
respectively, of the strategic agent. We assume, throughout, that µ = >.

The following argument applies to operators ∆d, f , for d ∈ {dD, dH} and f ∈ {Σ, gmax}.
To obtain constructive Skept-manipulation, we take KT =

∧
p∈P ¬p. Thus, [KT ] = {∅} and

Skept(KT ) = ∅. We then do a case analysis depending on whether n is odd or even. In both
cases, the agent manipulates using KF = a ∧

∧
p∈P,p 6=a ¬p, with [KF ] = {a}. Each operator is

analyzed in turn.
Case 1 (n is even). We write n = 2k, for k ∈ N. For the operators ∆d, f , for d ∈ {dD, dH} and

f ∈ {Σ, gmax} we take the profile P = (K1, . . . , K2k) such that [K1] = · · · = [Kk] = {∅} and
[Kk+1] = · · · = [K2k] = {a}. Notice that all bases are complete.

(∆dH ,Σ) In the truthful profile P T = P +KT we have dΣ
H(∅, P T ) = k and dΣ

H(∅, P T ) = k+ 1,
while for any other interpretation w we get that dΣ

H(w,P T ) =
∑2k

i=1 δi+δT , where δi = dΣ
H(w,Ki)

and δT = dΣ
H(w,KT ). It is straightforward to see that δi ≥ 1, for any i ∈ {1, . . . , 2k} and

that δT ≥ 1 as well. Thus, ∅ <dH ,Σ
P+KT a and ∅ <dH ,Σ

P+KT w for any other interpretation w, i.e.,
[∆dH ,Σ
> (P T )] = {∅}.
In the manipulated profile P F = P +KF we get that dΣ

H(∅, P +KF ) = k + 1 and
dΣ
H(∅, P +KF ) = k, while for any other interpretation w we get that dΣ

H(w,P T ) =
∑2k

i=1 δi + δF ,
where δF = dΣ

H(w,KF ). It is straightforward to see that δF ≥ 1 and thus a <dH ,Σ
PF ∅ and

a <dH ,Σ
PF w for any other interpretation w, i.e., [∆dH ,Σ

> (P F )] = {a}.
Since a /∈ Skept(∆dH ,Σ

> (P T )) but a ∈ Skept(∆dH ,Σ
> (P F )), this counts as an instance of

constructive manipulation.
(∆dD,Σ) The argument for ∆dH ,Σ works here unchanged, since the argument does not rely on

the fact that any of the numbers involved are greater than 1.
(∆dH , gmax) We reason analogously as for ∆dH ,Σ, using the same profile P . Notice

that dgmaxH (∅, P T ) = (1, . . . , 1︸ ︷︷ ︸
k times

, 0, . . . , 0︸ ︷︷ ︸
(k+1) times

) and dgmaxH (a, P T ) = ( 1, . . . , 1︸ ︷︷ ︸
(k+1) times

, 0, . . . , 0︸ ︷︷ ︸
k times

), while

dgmaxH (w,P T ) = gmax(δ1, . . . , δ2k, δ
T ) for any other interpretation w. It follows then that

[∆dH , gmax
> (P T )] = {∅}, and then that [∆dH , gmax

> (P T )] = {a}.
(∆dD, gmax) This operator is equivalent to the operator ∆dD,Σ (see Section 2).
Case 2 (n is odd). We write n = 2k + 1, for k ∈ N. For the operators ∆d, f , for d ∈ {dD, dH}

and f ∈ {Σ, gmax} we take the profile P = (K1, . . . , K2k+1) such that [K1] = · · · = [Kk] = {∅}
and [Kk+1] = · · · = [K2k+1] = {a}. Notice that all bases are complete. We apply the same
reasoning as above.

For the operators ∆dH , max and ∆dD, max we have to pick a different profile. In this case we do
not need an even/odd distinction, as the same kind of profile works for both cases. Take, then, a
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[K1] [K2] [K3] [K4] [KT ] [KF ]
{∅} {∅} {a} {a} {∅} {a} dΣ(·, P T ) dgmax(·, P T ) dΣ(·, P F ) dgmax(·, P F )

∅ 0 0 1 1 0 1 2 (1, 1, 0, 0, 0) 3 (1, 1, 1, 0, 0)
a 1 1 0 0 1 0 3 (1, 1, 1, 0, 0) 2 (1, 1, 0, 0, 0)

w δ1 δ2 δ3 δ4 δT δF
∑4

1 δi + δT gmax(δ1, . . . , δ4, δ
T )

∑4
1 δi + δF gmax(δ1, . . . , δ4, δ

F )
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 6: Constructive Skept-manipulation of a profile of size 4

profile P = (K1, . . . , Kn) with [Ki] = {a}, for i ∈ {1, . . . , n} .
(∆dH , max) We get that dmaxH (∅, P T ) = 1 and dmaxH (a, P T ) = 1, so ∅ and a are guaranteed to be

winning interpretations, which ensures that a /∈ Skept(∆dH , max
> (P T )). But dmaxH (∅, P F ) = 1 and

dmaxH (a, P F ) = 0, from which we get that [∆dH , max
> (P F )] = {a}, so a ∈ Skept(∆dH , max

> (P F )).
(∆dD, max) Similar as for ∆dH , max.

The following example illustrates the main idea of the proof of Theorem 1, for a profile of size 4.

Example 11. We pick [K1] = [K2] = {∅} and [K3] = [K4] = {a}, and [KT ] = {∅}, [KF ] = {a}.
The merging result is summarized in Table 6.

Theorem 2. We prove the claim for constructive Skept-manipulation first. The fact that the strate-
gic agent Skept-manipulates P using KF implies that there exist interpretations w1, . . . , wl in
[µ] such that p ∈ Skept({w1, . . . , wl}), and [∆d, f

µ (P +KF )] = {w1 . . . , wl}. We pick one of
the interpretations in [∆d, f

µ (P +KF )], say w1. Take, now, v∗ ∈ [KF ] such that d(w1, v∗) =
min{d(w1, v) | v ∈ [KF ]}, i.e., a model of KF that is closest to w1. The claim now is
that we can constructively Skept-manipulate P with KF

∗ , where [KF
∗ ] = {v∗}. This follows

by observing that w1 ≤d, fP+KF wi, for all wi ∈ [µ] and thus, by Lemma 9, it follows that
w1 ≤d, fP+KF

∗
wi, for all wi ∈ [µ]. Thus, w1 stays part of the aggregation result. Additionally, if

w1 <
d, f
P+KF

∗
wi, for some wi ∈ [µ], then, again by Lemma 9, it follows that w1 <

d, f
P+KF

∗
wi. In

summary, by replacing KF with KF
∗ , w1 and possibly some other interpretations in {w1, . . . , wl}

remain winning, and no new winning interpretations are added. Another way of putting this
is that [∆d, f

µ (P +KF
∗ )] ⊆ [∆d, f

µ (P +KF )]. Since p ∈ Skept(∆d, f
µ (P +KF )), we get that

p ∈ Skept(∆d, f
µ (P +KF

∗ )) as well.
For destructive Skept-manipulation, we get that there exists an interpretation w1 ∈

[∆d, f
µ (P +KF )] such that p /∈ w1. We pick, as before, a model v∗ of K that is closest to w1

among the models of K, i.e., d(w1, v∗) = min{d(w1, v) | v ∈ [KF ]}. Using Lemma 9, we again
get that w1 ∈ [∆d, f

µ (P +KF
∗ )]. This guarantees that p /∈ Skept(∆d, f

µ (P +KF
∗ )).

The case for constructive/destructive Cred-manipulation follows by applying Proposition 2.

Proof of Proposition 3. The operator ∆dH ,Σ, for complete bases and µ = > acts as a majority
operator. In other words: if an atom p is accepted by a majority of the agents, then p is in the result;
if p is not accepted by a majority of the agents, then p is not in the result; and if there is equality
with respect to acceptance of p, then the result features a model that contains p and a model that

23



does not. This being said, if an agent can constructively Skept-manipulate with respect to atom p,
then it means, by definition, that p is not in Skept(∆dH ,Σ

µ (P T )), but that p ∈ Skept(∆dH ,Σ
µ (P F )).

This implies that the strategic agent’s influence over the result consists in inducing a majority for
p: the result (with the base of the strategic agent) goes from being undecided with respect to p (and
hence p not being skeptically accepted in the result) when the strategic agent is honest, to being
in favor of p when the strategic agent submits a base different from its truthful on. In this, the
strategic agent is the decisive agent who tips the balance in favor of p: but this can only happen if
p is not in Skept(KT ) to begin with.

The following results concern Section 4.2, on index manipulation.

Theorem 3. We showcase here instances of manipulation with respect to iSkept for a profile P =
(K1, . . . , Kn) of size n ≥ 2. Instances of manipulation with respect to iCred are obtained by taking
the duals of all formulas involved in the instances of manipulation with respect to iSkept. We
assume that µ = >.

(∆dH , gmax) Take [Ki] = {a}, for i ∈ {1, . . . , n}, [KT ] = {∅} and [KF ] = {b}. We get that
[∆dH , gmax

µ (P +KT )] = {a} and [∆dH , gmax
µ (P +KF )] = {∅, ab}.

(∆dH , max) Take [Ki] = {a}, for i ∈ {1, . . . , n−1}, [Kn] = {ab}, [KT ] = {∅} and [KF ] = {c}.
We get that [∆dH , gmax

µ (P +KT )] = {a} and [∆dH , gmax
µ (P +KF )] = {a, b, ac, abc}.

(∆dD, gmax) We make a distinction according to whether n is odd or even. If n = 2k, take
[K1] = · · · = [Kk] = {∅}, [Kk+1] = · · · = [K2k] = {a}, [KT ] = {ab} and [KF ] = {a}. We get
that [∆dH , gmax

µ (P +KT )] = {∅, a} and [∆dH , gmax
µ (P +KF )] = {a}.

If n = 2k + 1, take [K1] = · · · = [Kk] = {∅}, [Kk+1] = · · · = [K2k] = {a},
[K2k+1] = {b}, [KT ] = {ab} and [KF ] = {a}. We get that [∆dH , gmax

µ (P +KT )] = {∅, a}
and [∆dH , gmax

µ (P +KF )] = {a}.
(∆dD, max) Take [Ki] = {a}, for i ∈ {1, . . . , n}, [KT ] = {ab} and [KF ] = {a}. We get that

[∆dH , gmax
µ (P +KT )] = 2P and [∆dH , gmax

µ (P +KF )] = {a}.

Proposition 4. We showcase, again, only instances of manipulation with respect to iSkept for the
operator ∆dH ,Σ, as instances of manipulation with respect to iCred are obtained by taking the duals.
In the following we exhibit instances of manipulation in three cases, obtained by weakening the
conditions of Theorem 4.

Case 1. Suppose µ = > and every base except KT is required to be complete. Then we can
find instances of manipulation for every profile of size n ≥ 1. Take [KT ] = {a, b}.

For n = 1, take a profile P = (K1), with [K1] = {a}. For n ≥ 2 and n = 2k take a profile
P = (K1, . . . , K2k) where [K1] = · · · = [Kk] = {∅} and [Kk+1] = · · · = [K2k] = {a}. For
n ≥ 2 and n = 2k + 1 take a profile P = (K1, . . . , K2k) where [K1] = · · · = [Kk] = {∅} and
[Kk+1] = · · · = [K2k+1] = {a}. In all cases, the profile P is manipulable with respect to iSkept
using [KF ] = {∅}.

Case 2. Suppose, now, that KT , KF and every base in P is required to be complete, except
one. Then we can still find instances of manipulation with respect to iSkept. For n = 2, take
P = (K1, K2), with [K1] = {a}, [K1] = {a, b}, [KT ] = {∅} and [KF ] = {b}.
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Table 7: The agent penalizes interpretation w3 by not including it in the models of its submitted
base.

P {w1, w2} dΣ
H(·, P +K)

w1 β 0 β
w2 β 0 β
w3 β δ3∗ β + δ3∗
w4 β + ε4 δ4∗ β + δ4∗ + ε4

Case 3. If every base in P is complete, as well as KT and KF , but we are allowed to choose µ,
then examples of manipulation are readily available. If [µ] = {a, bc}, then we can take P = (K1),
with [K1] = {∅}, [KT ] = {∅} and [KF ] = {b}. For a profile of size n ≥ 1, taking [K1] = {a} and
[K2] = · · · = [Kn] = {∅}, with KT and KF as before also results in an instance of manipulation
with respect to iSkept.

For the case when all bases in P are complete except one (and, additionally, KT , KF are
complete and µ = >), examples of manipulation can be found for n up to 5 and the conjecture is
that they exist for any n ≥ 2, but an example that works for any n is still forthcoming. Similarly,
there is more work to be done in finding general examples of manipulation when we are allowed
to pick µ.

The following results concern Section 5.

Proposition 5. This follows from classical work on belief merging: operators ∆d, f , for
d ∈ {dH , dD} and f ∈ {Σ, gmax} satisfy the IC postulates IC1−8 [Konieczny et al., 2002,
Konieczny and Pérez, 2011]. This results follows directly by applying postulates IC5−6. A more
intuitive explanation, in semantic terms, is given in Example 12.

Example 12. Suppose [µ] = {w1, w2, w3, w4}, [∆d, f
µ (P )] = {w1, w2, w3}, for d ∈ {dH , dD}

and f ∈ {Σ, gmax}. and the agent submits K, with [K] = {w1, w2}. The claim is that
[∆d, f

µ (P +K)] = {w1, w2}, for d ∈ {dH , dD} and f ∈ {Σ, gmax}, i.e., the interpretation w3,
which is a winning interpretation in ∆d, f

µ (P ), becomes non-winning in ∆d, f
µ (P +K).

We write δ3∗ = min{δ31, δ32} and δ4∗ = min{δ41, δ42} for the distance from w3 and w4, respec-
tively, to K. For ∆dH ,Σ, see Table 7. Notice that w1 and w2 end up being at a minimal distance to
P +K, while the formerly winning interpretation w3 becomes non-winning. Also, the interpreta-
tion w4 stays non-winning. For ∆dH ,gmax, see Table 8. The important thing to notice here is that the
final vectors for w3 and w4 end up being lexicographically greater than the vector for w1 and w2,
regardless of where δ3∗ and δ4∗ get inserted. The same argument applies to the drastic distance
dD, the only difference being that δ3∗ = δ4∗ = 1.

The main idea is that by not including it in the models of its submitted base K, the agent
effectively introduces a penalty for w3. This penalty becomes the margin by which w3 loses.

Next, we show a kind of generalized triangle inequality.
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Table 8: The agent penalizes interpretation w3 by not including it in the models of its submitted
base.

P {w1, w2} dgmaxH (·, P +K)

w1 (β1, . . . , βi, . . . , βn) 0 (β1, . . . , βi, . . . , βn, 0)
w2 (β1, . . . , βi, . . . , βn) 0 (β1, . . . , βi, . . . , βn, 0)
w3 (β1, . . . , βi, . . . , βn) δ3∗ gmax(β1, . . . , βi, . . . , βn, δ3∗)
w4 (β1, . . . , βi + εi4, . . . , β

′
n) δ4∗ gmax(β1, . . . , βi + εi4, . . . , β

′
n, δ4∗)

Table 9: Reversing the order between w1 and w2 by adding K to P is possible only if ε1 ≤ δ12.
P K dΣ

H(·, P +K)

w1 β + ε1 γ1 β + γ1 + ε1
w2 β γ2 β + γ2

Lemma 10. If K is a base and w1 and w2 are interpretations, then dH(w1, K) ≤ dH(w2, K) +
dH(w1, w2).

Lemma 11. If w1 and w2 are two interpretations such that w2 <
Σ
P w1, then there exists a base K

such that w1 ≤Σ
P+K w2 iff dΣ

H(w1, P )− dΣ
H(w2, P ) ≤ dH(w1, w2).

Proof. (“⇒”) We write dΣ
H(w2, P ) = β, dΣ

H(w1, P ) = β + ε1, with ε1 > 0. dH(w1, K) = γ1 and
dH(w2, K) = γ2. This fits with the earlier naming convention, as w2 is a winning interpretation in
a direct contest with w1 (i.e., if [µ] = {w1, w2}). See Table 9 for a nicer picture of this situation.
We have w1 ≤Σ

P+K w2 if and only if:

β + γ1 + ε1 ≤ β + γ2. (1)

By Lemma 10 we have :
γ2 ≤ γ1 + δ12. (2)

Chaining inequalities 1 and 2 we get that β + γ1 + ε1 ≤ β + γ1 + δ12. Simplifying, we get that
ε1 ≤ δ12.

(“⇐”) Take K such that [K] = {w1}. Then we get that dH(w1, K) = 0 and dH(w1, K) = δ12.
This implies that dΣ

H(w1, P +K) = β + ε1 and dΣ
H(w1, P +K) = β + δ12. Since ε1 ≤ δ12, it

follows that w1 ≤Σ
P+K w2.

Proposition 6. Follows from Lemma 11, as the agent has to reverse the order between w and every
model of ∆dH ,Σ

µ (P ).

Lemma 12. Let P = (K1, . . . , Kn) be a profile of complete bases, and M = [∆dH ,Σ
> (P )]. For any

v ∈M , it holds that SkeptsuppP (x) > n
2

implies x ∈ v and SkeptsuppP (x) < n
2

implies x /∈ v.
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Table 10: Reversing the order between w1 and w2 by addingK to P , with [K] = {w1}, is possible
if ε1 ≤ δ12.

P {w1} dΣ
H(·, P +K)

w1 β + ε1 0 β + ε1
w2 β δ12 β + δ12

Proof. Let X = {v | SkeptsuppP (x) > n
2
⇒ x ∈ v, SkeptsuppP (x) < n

2
⇒ x /∈ v}. Suppose

[M ] 6⊆ X , i.e., there is a v ∈ [M ] s.t. v /∈ X . This means there is an x s.t.

• x /∈ v and SkeptsuppP (x) > n
2
, or

• x ∈ v and SkeptsuppP (x) < n
2
.

Suppose the first case, i.e., x /∈ v and SkeptsuppP (x) > n
2

(other case symmetric). Then d(v ∪
{x}, P ) < d(v, P ), since strictly more than half models of the complete bases assign x to true.
Thus, v /∈ [M ].

Suppose X 6⊆ [M ], i.e., there is a v ∈ X s.t. v /∈ [M ]. This means there is a w ∈ [M ] s.t.
d(w,P ) < d(v, P ). By the previous reasoning, we know that [M ] ⊆ X , and that w ∈ X . This
means that for all x if strictly more than half models of the complete bases assign x to true (false),
then x ∈ w (x /∈ w). Thus, x ∈ v iff x ∈ w for all x where there is a strict majority, and x /∈ v
iff x /∈ w where there is a strict majority against (both interpretations are equal when there is a
majority). Therefore, there is a y s.t. y ∈ v and y /∈ w or y /∈ v and y ∈ w where SkeptsuppP (y) =
n
2
. We now claim that d(v, P ) = d(w,P ). For each such y where the interpretations differ it holds

that each complete base contributes a distance of 1 or 0 to the sum of Hamming distances (namely
1 to one of the interpretations and 0 to the other). It holds that exactly n

2
contribute 1 and n

2

contribute 0 for v and the same for w. Since this is the case for each such y, and distances are the
same where the interpretations coincide, it holds that they have the same distance. Thus, v ∈ [M ].
This concludes that [M ] = X .

Theorem 4. This follows from Lemma 12: The skeptical/credulous outcome for each atom is de-
cided dependent only on whether there is a strict majority for or against, or exactly half of the
agents in favour or against. In any case, a strategic agent cannot further its index, since it if an
atom is in its base’s model, but not in the skeptical result, the only option, w.r.t. that atom, is to
remove it, which never furthers the skeptical acceptance of that atom. Similar reasoning suffices
for the other cases.

Lemma 13. Let P = (K1, . . . , Kn−1) be a profile and a ∈ P . If CredsuppP (a) < n
2
, then

a /∈ Cred(∆dH ,Σ
> (P +Kn)) for any base Kn.

Proof. Let P ′ = (K1, . . . , Kn−1, Kn) for any Kn. Further, let v be an interpretation over P with
a ∈ v and @v′ over P s.t. a ∈ v′ and d(v, P ′) < d(v′, P ′) (i.e. v has minimum sum of distances to
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all agents wrt interpretations that include a). We claim that v \{a} = w has strictly lower distance,
i.e., we claim that d(v, P ′) > d(w,P ′). By definition, we have

d(v, P ′) = dH(v,K1) + · · ·+ dH(v,Kn+1) + dH(v,Kn).

Without loss of generality, we can assume that we order the bases Ki whether a /∈ Cred(Ki) or
not (with first those that do not accept a credulously). Let m = Credsupp(a). It holds that

d(v, P ′) = dH(v,K1) + · · ·+ dH(v,Km)︸ ︷︷ ︸
strictly more thann

2

+

dH(v,Km+1) + · · ·+ dH(v,Kn)︸ ︷︷ ︸
strictly less thann

2

.

By assumption, we get that dH(w,K) ≤ dH(v,K) + 1 if a ∈ Cred(K). To see this, consider
w′ ∈ [K] such that dH(v, w′) = dH(v,K) (w′ is a witness of the distance of v to K, thus distance
between v and w′ is minimum). We have dH(w,w′) ≤ dH(v, w′) + 1, since v and w differ only in
assignment of a. Thus, w′ witnesses that distance (w,K) as at most one higher than (v,K). Sim-
ilarly, we get that dH(w,K) ≤ dH(v,K) − 1 when a /∈ Cred(K) (by a similar line of reasoning,
we find that witness w′ implies a lower distance). Overall, we get the inequality

d(w,P ′) ≤ dH(v,K1) + · · ·+ dH(v,Km)−m+

dH(v,Km+1) + · · ·+ dH(v,Kn) + (n−m).

Thus, d(w,P ′) ≤ d(v, P ′) −m + n −m and, since m > n
2
, we have 2 ·m > n and d(w,P ′) <

d(v, P ′). This implies that v /∈ [∆dH ,Σ
> (K1, . . . , Kn−1, Kn)], for any v such that a ∈ v.

Proposition 7. This follows from Lemma 13 and from [Delobelle et al., 2016].

Reduction 1. Let ψ = ∃X∀Y ϕ be a closed QBF in prenex form. Define

• D = {d1, . . . , d3·|Y |+1},

• Xi = {xi | x ∈ X} for 1 ≤ i ≤ n with n = 3 · (|D|+ |Y |) + 1, and

• formula χ =
∧
x∈X x↔ x1 ↔ · · · ↔ xn.

Construct profile P = (K1, K2, K) over vocabulary V = X ∪ (
⋃

1≤i≤nXi) ∪ Y ∪D, with K1 =
K2 = χ ∧

∧
z∈Y ∪D z and K = >. Finalize the instance red(ψ) = (P, µ) with µ = χ ∧ (ϕ →∧

d∈D ¬d) ∧ (¬ϕ→
∧
d∈D d).

Lemma 14. Let ψ = ∃X∀Y ϕ be a closed QBF in prenex form. For red(ψ) = ((K1, K2, K), µ)
and any complete K ′ it holds that if v ∈ [∆dH ,Σ

µ (K1, K2, K
′)], v |= ϕ, and there is a v′ 6|= ϕ such

that v′ ∩X = v ∩X then it holds that for

w = (v ∩ (V \ (Y ∪D))) ∪ (v′ ∩ Y ) ∪D

we have d(w, (K1, K2, K
′)) < d(v, (K1, K2, K

′)).

28



Proof. Assume v ∈ [∆dH ,Σ
µ (K1, K2, K

′)] (i.e., v is a model of the merged result), and there exists
an interpretation v′ not satisfying ϕ such that v′|X = v|X , i.e., both interpretations assign the same
truth value to variables in X . We show that w is in [∆Σ, dH

µ (K1, K2, K
′)], i.e., w is a model of

the merged result. First, note that v satisfies µ and that w does not satisfy ϕ (since v′ does not
satisfy ϕ and w and v′ have the same truth value assignment on the vocabulary of ϕ). This means
w satisfies µ, since w |= χ (due to v satisfying χ) and w |= (¬ϕ →

∧
d∈D d) (the conjunct in the

middle of µ is trivially satisfied, since w 6|= ϕ). We now show that supposing d(v, (K1, K2, K
′)) ≤

d(w, (K1, K2, K
′)) (the contrary to the lemma’s claim) leads to a contradiction. By construction,

w and v differ in their assignment only on variables in Y ∪D. Let us now consider the models of
each base with minimum Hamming distance to v and w:

• xi ∈ {x ∈ [Ki] | d(v, x) ≤ d(v, x′)∀x′ ∈ [Ki]},

• x′ ∈ {x ∈ [K ′] | d(v, x) ≤ d(v, x′)∀x′′ ∈ [K ′]},

• yi ∈ {y ∈ [Ki] | d(w, y) ≤ d(w, y′)∀y′ ∈ [Ki]}, and

• y′ ∈ {y ∈ [K ′] | d(w, y) ≤ d(w, y′)∀y′′ ∈ [K ′]}.

By definition, it holds that d(v, (K1, K2, K
′)) = d(v, x1) + d(v, x2) + d(v, x′) and

d(w, (K1, K2, K
′)) = d(v, y1) + d(v, y2) + d(v, y′). Since the difference is the Hamming

distance, we can phrase the distances also as partitions of the whole vocabulary: d(v, z) =
|v ∩X∆z ∩X|+ |v ∩X1∆z ∩X1| · · · |v ∩Xn∆z ∩Xn|+ |v ∩ Y∆z ∩ Y |+ |v ∩D∆z ∩D|. Let
dZ(v, z) = |v ∩ Z∆z ∩ Z| as an auxiliary notion for considering the Hamming distance on a part
of the vocabulary. By construction, we have dX(v, z) = dX(w, z′) for any z ∈ {x1, x2, x

′} and
z′ ∈ {y1, y2, y

′}, since v ∩ (X
⋃

1≤i≤nXi) is equal to w ∩ (X
⋃

1≤i≤nXi) and there are models of
K1 andK2 for any assignment onX and the values of Y andD are “fixed” in these bases (only one
value). Furthermore x′ = y′ since K ′ is complete. The same holds for dXi for all i. This implies
that the distance of the v and w to the profile differs only by contributions of variables Y and D to
the symmetric differences. Thus,

dY (v, x1) + dY (v, x2) + dY (v, x′) + dD(v, x1) + dD(v, x2) + dD(v, x′) <

dY (w, y1) + dY (w, y2) + dY (w, y′) + dD(w, y1) + dD(w, y2) + dD(w, y′).

Since v |= ϕ and v |= µwe have v assigns allD to false, andw assigns allD to true, by similar rea-
soning. Thus, it holds that the first part of the inequality is dY (v, x1)+dY (v, x2)+dY (v, x′)+|D|+
|D|+dD(v, x′) and if all terms different to |D| are 0 (the lowest value possible) then this is equal to
2 · |D|. On the other hand the right term is dY (w, y1) + dY (w, y2) + dY (w, y′) + 0 + 0 + dD(w, y′),
if all have their highest value we have 3 · |Y | + |D|. Since |D| = 3 · |Y | + 1 we have 2 · |D| =
6 · |Y |+ 2 > 6 · |Y |+ 1 = 3 · |Y |+ |D|. This contradicts the supposition that d(v, (K1, K2, K

′)) ≤
d(w, (K1, K2, K

′)). This implies that d(v, (K1, K2, K
′)) > d(w, (K1, K2, K

′)).

Theorem 5. For membership, compute whether the merging results in a given atom a being skep-
tically entailed, which is a problem in ∆2

P = PNP [Konieczny et al., 2002]. If the atom is not
entailed, non-deterministically construct a complete base K ′ over the given vocabulary (which is
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the same as guessing a truth value assignment), and check whether a is entailed in the merged
result, again a check achievable in polynomial time with an NP oracle. Recall that, if there exists a
base such that destructive manipulation is possible, then there is a complete base achieving the re-
sult, see Proposition 2. For hardness, let ψ = ∃X∀Y ϕ be a closed QBF in prenex form. Construct
red(ψ) = P = (K1, K2, K) (see Reduction 1). We claim that ψ is true iff there exists a complete
base K ′ such that ∃v ∈ [∆dH ,Σ

µ (K1, K2, K
′)] with d1 /∈ v. Assume ψ is true. Then there is an as-

signment on theX variables such that for all assignments on the Y variablesϕ is satisfied. Consider
one such assignment v on X , and consider complete base K ′ =

∧
x∈v x∧

∧
x∈X\v ¬x∧

∧
z∈Y ∪D z.

We claim that ∆dH ,Σ
µ (K1, K2, K

′) |=
∧
x∈v x ∧

∧
x∈X\v ¬x, i.e,, every model of µ selected in the

merged result assigns truth values to the X variables exactly as v. Suppose the contrary, i.e., there
is a w with a different assignment on theX variables that is part of the merged result. Due to χ (see
Reduction 1), both v and w assign to Xi’s the same value as for X (since both are models of µ).
Consider the distance of w to the profile: d(w,P ) is at least 1 +n (since K ′ assigns all variables of
X and Xi’s differently than w by assumption). Consider w′ = (w∩ (Y ∪D)∪ (v∩ (V \ (Y ∪D)),
i.e., w′ assigns all variables in Y ∪ D as w, but the X and Xi variables as v (and K ′). It holds
that d(w′, P ) < d(w,P ), since for both K1 and K2 there is a corresponding model with the same
distances (i.e., their contribution to the overall distance stays the same), and the distance to K ′

decreases by n + 1. (recall K ′ is complete). If there is no assignment on the Y variables, given
the assignment of v to the X variables, that falsifies ϕ, it holds that any model of the merged result
satisfies ϕ (since only models of µ are selected with the same assignment on X as v). This implies
that there is a model of the result with d1 false (due to construction of µ).

For the other direction, assume that there exists a complete base K ′ such that ∃v ∈
[∆dH ,Σ

µ (K1, K2, K
′)] with d1 /∈ v. Note that, since v |= µ (by definition) and due to construc-

tion of µ, it holds that v |= ϕ (any model of µ that falsifies an atom in D satisfies ϕ). We claim that
any interpretation vX with vX ⊇ v ∩ X satisfies ϕ, i.e., vX ∈ [ϕ]. Proving this claim shows that
ψ is true. Suppose the contrary, i.e., there is a v′ 6|= ϕ with v′ ∩X = vX (for the vX’s assignment
on X there is an assignment on Y such that ϕ is falsified). Consider Lemma 14: v and v′ satisfy
the conditions of that lemma (for the equally named interpretations). This implies that for w, as
defined in the lemma, we have d(w,P ) < d(v, P ). This implies that v cannot be part of the merged
result, a contradiction. Thus, there is no v′, with v′ ∩X = vX , that falsifies ϕ, implying that ψ is
true.

Finally, if ϕ is not tautological, then with the original profile P (with K = >), it holds that d1

is a skeptical consequence: a model of µ not satisfying ϕ has a lower distance w.r.t. all models of
µ that satisfy ϕ. That is, if ϕ is refutable, then d1 is not a skeptical consequence and destructive
manipulation is possible iff ψ is true. Further, one can modify ϕ with ϕ ∧ x′ for a fresh x′ that is
existentially quantified such that ψ is true iff ∃X ∪ {x′}∀Y ϕ ∧ x′ is true. Thus, we can assume
w.l.o.g. that ϕ is not a tautology.
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