
TECHNICAL

R E P O R T

Institut für Informationssysteme

Abteilung Datenbanken und

Artificial Intelligence

Technische Universität Wien

Favoritenstr. 9

A-1040 Vienna, Austria

Tel: +43-1-58801-18403

Fax: +43-1-58801-18493

sekret@dbai.tuwien.ac.at

www.dbai.tuwien.ac.at

INSTITUT FÜR INFORMATIONSSYSTEME

ABTEILUNG DATENBANKEN UND ARTIFICIAL INTELLIGENCE

Preliminary Report on Complexity
Analysis of Extension–Based Semantics

of Abstract Dialectical Frameworks

DBAI-TR-2017-103

Sylwia Polberg and Johannes P. Wallner

DBAI TECHNICAL REPORT

2017

DBAI TECHNICAL REPORT

DBAI TECHNICAL REPORT DBAI-TR-2017-103, 2017

Preliminary Report on Complexity Analysis of
Extension–Based Semantics of Abstract Dialectical

Frameworks

Sylwia Polberg 1 and Johannes P. Wallner 2

Abstract. The point of this report is to provide a preliminary analysis of the computational
complexity of the extension–based semantics for abstract dialectical frameworks [Pol15].
We focus on four types of problems – verification, existence, skeptical and credulous rea-
soning. We also provide complexity results for the basic notions used in the construction
of our semantics, such as the decisive interpretations, various types of discarded sets and
evaluations.

1The author is a PhD student of Technische Universität Wien, Austria, and is currently employed by
University College London, United Kingdom.

2Institute for Information Systems 184/2, Technische Universität Wien, Austria.

Acknowledgements: We would like to thank Thomas Linsbichler and Stefan Woltran for their
help, valuable comments and proofreading of this work. This research was funded by projects FWF
I2843 and FWF I1102. Sylwia Polberg is a member of the Vienna PhD School of Informatics and is
currently supported by EPSRC Project EP/N008294/1 “Framework for Computational Persuasion”.
Johannes P. Wallner is currently supported by project FWF I2854.

Copyright c© 2017 by the authors

Contents
1 Introduction 3

2 Abstract Dialectical Frameworks 3
2.1 Preliminaries . 3

2.1.1 Interpretations and decisiveness . 3
2.1.2 Evaluations and acyclicity . 5

2.2 Labeling–Based Semantics . 8
2.3 Extension–Based Semantics . 9

2.3.1 Conflict–free Semantics . 9
2.3.2 Ranges and Discarded Sets . 10
2.3.3 Model and Stable Semantics . 12
2.3.4 Grounded Semantics . 13
2.3.5 Admissible, Preferred and Complete Semantics 14
2.3.6 Properties of Extension–Based Semantics 15

2.4 Comparison of Extension–Based and Labeling–Based Semantics 16

3 Computational Complexity 18

4 Complexity Analysis of ADF Semantics 19
4.1 Basic Components . 21

4.1.1 Decisiveness and Evaluations . 22
4.1.2 Discarded Sets . 24

4.2 Conflict–free Semantics . 25
4.3 Grounded Semantics . 26
4.4 Admissible Semantics . 26
4.5 Complete Semantics . 28
4.6 Preferred Semantics . 29
4.7 Summary . 31

5 Proof Appendix 34
5.1 Abstract Dialectical Frameworks . 34
5.2 Complexity Analysis of Basic Components . 35
5.3 Complexity Analysis of Conflict–free and Grounded Semantics 42
5.4 Complexity Analysis of Admissible Semantics 44
5.5 Complexity Analysis of Complete Semantics . 47
5.6 Complexity Analysis of Preferred Semantics . 49

2

1 Introduction
The point of this report is to provide a preliminary analysis of the computational complexity of
the extension–based semantics for abstract dialectical frameworks [Pol15]. We focus on four types
of problems – verification, existence, skeptical and credulous reasoning. We also provide com-
plexity results for the basic notions used in the construction of our semantics, such as the decisive
interpretations, various types of discarded sets and evaluations.

2 Abstract Dialectical Frameworks
Abstract dialectical frameworks have been defined in [BW10] and till today various results as to
their semantics, instantiation and complexity have already been published in [BES+13, PWW13,
Str13a,Str13b,SW15]. The main goal of ADFs is to be able to express arbitrary relations between
arguments and avoid the need of extending AFs by a new relation sets each time they are needed.
This is achieved by the means of acceptance conditions, which define what sets of arguments
related to a given argument should be present for it to be accepted or rejected.

Definition 1. An abstract dialectical framework (ADF) is a tuple (A,L,C), where A is a set of
abstract arguments (nodes, statements), L ⊆ A × A is a set of links (edges) and C = {Ca}a∈A
is a set of acceptance conditions, one condition per each argument. An acceptance condition is a
total function Ca : 2par(a) → {in, out}, where par(a) = {p ∈ A | (p, a) ∈ L} is the set of parents
of an argument a.

One can also represent the acceptance conditions by propositional formulas over arguments
instead of “boolean” functions [Ell12]. In this case the condition Ca for an argument a ∈ A is a
propositional formula ϕa over the parents of a. Moreover, it is easy to see that linksL are somewhat
redundant and can be extracted from the conditions. Thus, we will use of shortened notation and
assume an ADF D = (A,C) through the rest of this paper. In order to recall the ADF semantics,
we need to explain some basic notions first.

2.1 Preliminaries
2.1.1 Interpretations and decisiveness

Interpretations will be equally important both in labeling and extension–based semantics. In the
first case the semantics produce interpretations instead of extensions (sets of arguments). In the
latter, accepting given arguments can cause rejecting others and interpretations are used to store
this data.

Please note that particularly in the propositional descriptions of ADFs, we can occasionally
observe a certain inconsistency in the notation, where the condition outcomes in and out are in-
terchangeably used with truth values t and f of the propositional formulas. The reason why the
conditions were not assigned the truth values from the very beginning was the need to distinguish
between the status of the condition of an argument and the value a given argument is assigned in

3

e.g. a labeling. However, since for any semantics the truth assignment has to be in accordance with
the condition (i.e. in paired with t, out with f), this abuse of notation is not overly problematic.

A two (three–valued) interpretation is simply a mapping that assigns truth values (respectively
{t, f} and {t, f ,u}) to arguments. We will be making use both of partial (i.e. defined only for a
subset ofA) and full ones. In the labeling–based approach, the values are compared w.r.t. precision
(information) ordering: u ≤i t and u ≤i f . The pair ({t, f,u},≤i) forms a complete meet–
semilattice with the meet operationu assigning values in the following way: tu t = t, fu f = f and
u in all other cases. It can naturally be extended to interpretations: given two interpretations v and
v′ on A, we say that v′ contains more information than v, denoted v ≤i v′, iff ∀s∈A v(s) ≤i v′(s).
We can define the meet of interpretations in a similar manner. In case v ≤i v′ and v is three and v′

two–valued, we say that v′ extends v. Extending an interpretation can also be seen as replacing the
u assignments with t and f . The set of all two–valued interpretations extending v is denoted [v]2.
We will use vx to denote a set of arguments mapped to x by v, where x a truth–value. Given an
acceptance condition Cs for some argument s ∈ A and an interpretation v, we define a shorthand
v(Cs) as Cs(vt ∩ par(s)). For a given propositional formula ϕs and an interpretation v defined
over all of the atoms of the formula, v(ϕs) will just stand for the value of the formula under v.

The notion of decisiveness is a key concept in the extension–based semantics for abstract di-
alectical frameworks. Basically speaking, a (partial) interpretation is decisive for an argument if
no new information will cause the outcome of the acceptance condition to change. For example,
given a condition ϕs = a ∧ ¬b for some argument s dependent on a and b, knowing that b is true
is enough to map ϕs to out in a way that no matter the value of a, it will always stay out. In
order to verify whether our interpretation is decisive for some argument, we will explore how the
interpretations “filling in” the missing values evaluate the argument’s condition. We will refer to
them as completions:

Definition 2. Let D = (A,C) be an ADF, E ⊆ A a set of arguments and v a two–valued interpre-
tation on E . A completion of v to a set Z where E ⊆ Z, is an interpretation v′ defined on Z in a
way that ∀a ∈ E v(a) = v′(a). v′ is an x–completion of v, where x ∈ {t, f}, iff all arguments in
Z \ E are mapped to x.

Remark 1. By the abuse of notation we will also talk about u–completions when comparing exten-
sion and labeling–based approaches. It should be understood as a three–valued interpretation that
assigns u to the “missing” mappings of a given two–valued interpretation.

Remark 2. We would like to draw the attention to the similarity between the concepts of completion
and extending interpretation. Basically, given a three–valued interpretation v defined over A, the
set [v]2 corresponds precisely to the set of completions to A of the two–valued part of v. However,
we will use the completion notion in order not to confuse extending interpretations with extensions,
i.e. sets of arguments.

Definition 3. Let D = (A,C) be an ADF, E ⊆ A a set of arguments and v a two–valued interpre-
tation defined on E . v is decisive for an argument s ∈ A iff for any two completions vpar(s) and
v′par(s) of v to E ∪ par(s), it holds that vpar(s)(Cs) = v′par(s)(Cs). s is decisively out/in w.r.t. v if v
is decisive and all of its completions evaluate Cs to respectively out, in.

4

By dec(x, a), where x ∈ {in, out}, we will denote the set of all decisively x interpretations for
an argument a ∈ A.

Remark 3. In the definition we can actually use any set of completions, not just the one to
E ∪ par(s) – using ones to A would be equally fine. The only important thing is that the set
of completions contains every completion defined for at least par(s).

Example 1. Let ({a, b, c, d, e}, {Ca : >, Cb : ¬a ∨ c, Cc : b, Cd : ¬c ∧ ¬e, Ce : ¬d}) be an ADF.
Examples of decisively in interpretations for b include v1 = {c : t}. This means that knowing that
c is true, we know that the disjunction, and thus the acceptance condition, are satisfied. Formally
speaking, v1 is decisively in for b as both of its completions {c : t, a : f} and {c : t, a : t} satisfy
the condition.

2.1.2 Evaluations and acyclicity

Let D = (A,C) be an ADF and a ∈ A an argument. The acceptance condition of a can tell us
how and on what other arguments a depends. We can see if they need to be accepted or rejected
for the condition to be in our out and can derive a range of decisively in interpretations for a based
on this information. We can then move our attention from a to the arguments in the condition
and investigate them in a similar manner. Repeating this process until no new arguments show up
provides us with a full picture telling us when, how, and if at all, the argument a can be accepted or
rejected, if it can be derived from initial arguments, is it based on cyclic dependencies and so on.
In order to track this procedure we have introduced the notions of positive dependency functions
and evaluations [Pol14, Pol15] 1.

In majority of the argumentation frameworks, the nature of a relation between the arguments is
stated openly in the structure of the framework, e.g. R is the attack,N is the support and so on. This
is not the case in ADFs and in order to say what is the nature of the link between two arguments,
we need to analyze the acceptance condition. In our approach, in order to obtain the arguments
that are required or should be avoided for the acceptance of a given argument, we will make use of
decisive interpretations. We will focus only on the minimal ones, by which we understand that both
vt and vf are minimal w.r.t. ⊆. By min dec(x, s) we will denote the set of minimal two–valued
interpretations that are decisively x for s, where s is an argument and x ∈ {in, out}. Explanation
for this choice will be given at the end of this section.

Let us now recall the concept of a positive dependency function. It basically maps every argu-
ment to one of its minimal decisively in interpretations contained in a given set:

Definition 4. Let D = (A,C) be an ADF and E ⊆ A a set of arguments. A positive de-
pendency function on E is a function pd assigning every argument a ∈ E an interpretation
v ∈ min dec(in, a) s.t. vt ⊆ E orN for null iff no such interpretation can be found. The function
is sound iff no argument is mapped toN . pd is maximally sound on E iff it is a sound function on
E ′ ⊆ E and there is no sound positive dependency function pd′ on E ′′, where E ′ ⊂ E ′′ ⊆ E , s.t.
∀a ∈ E ′, pd(a) = pd′(a).

1We choose to call it positive dependencies rather than support in order not to confuse them with the notions of
attack and support links from BADFs and not to point to any particular interpretation of support.

5

We will now trace the arguments that a given argument requires for its acceptance by the use
of dependency evaluations. Standard evaluations just hold the required and undesired arguments
in sets. While they are quite useful, we will also be interested in the more specialized types that
deal with positive dependency cycles. The informal understanding of a cycle is simply whether
acceptance of an argument depends on this argument. Partially acyclic evaluations can be seen as
refinement of the standard ones, where the set of required arguments is further split into two parts:
one that can be ordered into a sequence s.t. each argument depends only on the predecessors, and
the other for which it is not possible, thus serving as a container for the cycles. The last type of
evaluations, the acyclic ones, are a subclass of partially acyclic. We simply require that the “cycle
container” is empty.

Definition 5. Let D = (A,C) be an ADF, X ⊆ A a set of arguments and pdDE a maximally
sound positive dependency function of X defined over E ⊆ X . A standard positive dependency
evaluation for an argument e ∈ E in D based on pdDE is a pair (F,B), where F ⊆ E is a set of
arguments s.t. e ∈ F , ∀a ∈ F pdDE (a)t ⊆ F , and B =

⋃
a∈F pd

D
E (a)f .

We will refer to F as the pd–set of the evaluation and toB as the blocking set of the evaluation.

Definition 6. Let D = (A,C) be an ADF, X ⊆ A a set of arguments and pdDE a maximally sound
positive dependency function of X defined over E ⊆ X .

A partially acyclic positive dependency evaluation based on pdDE for an argument x ∈ E is
a triple (F, (a0, ..., an), B), where F ⊆ E and B ⊆ A are sets of arguments and (a0, ..., an) is a
sequence of distinct elements of E satisfying the requirements:

• F ∩ {a0, ..., an} = ∅

• if the sequence is non–empty, then an = x; otherwise, x ∈ F

• ∀ni=1, pd
D
E (ai)

t ⊆ F ∪ {a0, ..., ai−1}, pdDE (a0)t ⊆ F

• ∀a ∈ F, pdDE (a)t ⊆ F

• ∀a ∈ F, ∃b ∈ F s.t. a ∈ pdDE (b)

Finally, B =
⋃
a∈F pd

D
E (a)f ∪

⋃n
i=0 pd

D
E (ai)

f , The sequence part of the evaluation will be referred
to as the pd–sequence.

Definition 7. LetD = (A,C) be an ADF,X ⊆ A and pdDE a maximally sound positive dependency
function of X defined over E ⊆ X . A partially acyclic evaluation (F, (a0, ..., an), B) for an
argument x ∈ E is an acyclic positive dependency evaluation for x iff F = ∅.

We will use the shortened notation ((a0, ..., an), B) in order to denote the acyclic evaluations.
We will say a standard evaluation (F,B) based on pdDE can be made acyclic for an argument e ∈ F
and w.r.t. pdDE iff there exists a way to order the elements of F into a sequence satisfying the pd–
sequence requirements. It is also easy to see that any evaluation can be transformed into a standard
one by joining the pd–set and the pd–sequence into a single pd–set.

6

There are two ways we can “attack” an evaluation. Either we accept an argument that the
evaluation rejects or we discard an argument that the evaluation needs. This leads to the following
formulation: 2

Definition 8. Let D = (A,C) be an ADF and (F, (a0, ..., an), B) a partially acyclic evaluation
on a set E ⊆ A for an argument a ∈ E . A two–valued interpretation v defined on a subset of A
blocks (F, (a0, ..., an), B) if ∃b ∈ B s.t. v(b) = t or ∃x ∈ {a0, ..., an} ∪ F s.t. v(x) = f . A set of
arguments X ⊆ A blocks (F, (a0, ..., an), B) if X ∩B 6= ∅.

Remark 4. An evaluation can be self–blocking, i.e. some members of the pd–sequence or the pd–
set are present in the blocking set. Although an evaluation like that will never be accepted in an
extension, it can make a difference in what we consider a valid attacker.

Example 2. Let ({a, b, c, d, e}, {Ca : ⊥, Cb : a ∧ c, Cc : d ∧ ¬e, Cd : d, Ce : >}) be the ADF
depicted in Figure 1. The argument a has no standard evaluation, as it possesses no decisively in
interpretation to start with. Although the argument b has a decisively in interpretation {a : t, c : t},
it depends on a and thus there does not exist a sound pd–function from which we could construct
an evaluation for b. For d we have a simple evaluation ({d}, ∅), and based on it an evaluation
({c, d}, {e}) for c. Finally, e as an initial argument has a trivial evaluation ({e}, ∅). Let us now
consider partially acyclic evaluations. Since e does not depend on any other argument, it can be
easily moved into the pd–sequence and the partially acyclic representation of the standard evalu-
ation is (∅, (e), ∅). This evaluation also happens to be acyclic. Although the standard evaluation
for d looks structurally similar to the one of e, we can observe that the argument depends on itself,
and thus the pd–sequence will be empty. The partial representation is thus ({d}, (), ∅). Finally, let
us look at the evaluation for c. The evaluation ({c, d}, (), ∅) would not satisfy the partially acyclic
requirements, since no argument in the pd–set depends on c. Consequently, we can “push” c into
the sequence and obtain the evaluation ({d}, (c), {e}), which clearly shows where the actual cycle
occurs. Neither c nor d possess acyclic evaluations.

a b c d e
⊥ a ∧ c d ∧ ¬e d >

Figure 1: Sample ADF

We will close this section with a discussion on why we require minimal interpretations in our
construction. Allowing every type of interpretation would not affect our semantics, as we are
mostly interested in the existence of an unblocked evaluation of a given type or in blocking all
evaluations. Existence of an unblocked evaluation built with an arbitrary interpretation implies

2Since every standard evaluation can be made partially acyclic and every acyclic evaluation is also a partial one,
we will only present the most general definition.

7

existence of one built with minimal ones – we can always “remove” unnecessary elements from
the blocking set in order to trim it to minimal interpretations. And if all evaluations are blocked,
then so are the ones constructed with the minimal interpretations. However, using non–minimal
interpretations can introduce “fake cycles”, i.e. show that a cycle exists even if it is not the case.
Consequently, if we want to ensure that e.g. there is no evaluation that cannot be made acyclic (see
Definition 47), minimality makes a difference.

Example 3. Let us consider a simple ADF ({a, b}, {Ca : >, Cb : >}). Both a and b possess
a single minimal decisively in interpretation that is just empty. However, if we consider non–
minimal ones, we would e.g. get interpretations {b : t} and {a : t} for a and b respectively. A
standard evaluation constructed with them cannot be made acyclic and thus we get a false answer
that there is a cycle in our framework. We can now argue that these interpretations go beyond the
parents of the arguments. However, limiting ourselves to interpretations defined only for parents
does not fix this issue. Consider a small modification of our ADF: ({a, b}, {Ca : >∨b, Cb : >∨a}).
We get the same interpretations and evaluations as in the previous case, but we can observe that the
links from b to a and a to b are redundant, i.e. presence of one argument never affects the outcome
of the acceptance condition of the other. Although we can argue that there is a cycle on the links
as such, it should clearly be disregarded due to its inability to affect the arguments.

2.2 Labeling–Based Semantics
There are two main families of labeling–based (or three–valued) semantics for ADFs: the ultimate
[BES+13] and approximate ones [Str13a]. In this section we will focus only on the first, which are
based on a characteristic operator:

Definition 9. Let D = (A,C = {ϕa}a∈A) be an ADF and VA be the set of all three–valued inter-
pretations defined onA, a an argument inA and v an interpretation in VA. The three–valued char-
acteristic operator of D is a function ΓD : VA → VA s.t. ΓD(v) = v′ with v′(a) =

d
w∈[v]2

w(ϕa).

The labeling–based semantics are now as follows:

Definition 10. Let D = (A,C = {ϕa}a∈A) be an ADF and v be a three–valued interpretation for
D and ΓD its characteristic operator. We say that v is:

• a three–valued model of D iff for all a ∈ A we have that v(a) 6= u implies that v(a) =
v(ϕa);

• an admissible labeling of D iff v ≤i ΓD(v);

• a complete labeling of D iff v = ΓD(v);

• a preferred labeling of D iff it is ≤i–maximal admissible labeling; and

• a grounded labeling of D iff it is the least fixpoint of ΓD.

The stable semantics will be described in Section 2.3.3.

8

Example 4. We will now show the extensions of all of the semantics and their sub–semantics on
an example. Let ({a, b, c, d}, {Ca : ¬b, Cb : ¬a, Cc : b ∧ ¬d, Cd : d}) be an ADF, as depicted
in Figure 2. Let us check if v1 = {a : t, b : f , c : u, d : u} is an admissible labeling. It has
in total 4 extending interpretations: [v1]2 = {{a : t, b : f , c : t, d : t}, {a : t, b : f , c : t, d :
f}, {a : t, b : f , c : f , d : t}, {a : t, b : f , c : f , d : f}}. All of them satisfy the condition of a
and none of them satisfies the condition of b. Consequently, the interpretation computed by the
operator is at least as informative as v1 and v1 is admissible. We can however observe that under
these assignments, the condition of c is also never satisfied, while the outcome of d depends on the
extending interpretation. Therefore, v1 is not complete, but v2 = {a : t, b : f , c : f , d : u} is –
again, the condition of d changes and thus the argument can only be assigned u. Nevertheless, v2 is
not preferred – the interpretations v3 = {a : t, b : f , c : f , d : f} and v4 = {a : t, b : f , c : f , d : t}
are both admissible and contain more information than v2. As acceptance of all of the arguments
depends on other arguments, it is not surprising that our grounded labeling consists only of u
assignments: {a : u, b : u, c : u, d : u}.

a b c d
¬b ¬a b ∧ ¬d d

Figure 2: Sample ADF

2.3 Extension–Based Semantics
In [Pol14,Pol15] we have developed a family of extension–based semantics and created a classifi-
cation of them w.r.t. positive dependency cycles. We have distinguished four categories and used
an xy- prefixing system to denote them. The x stated whether only acyclic – a – arguments can
be accepted in an extensions, or would cyclic – c – also do the trick. y then meant if we need
to “defend” only from acyclic – again, a – arguments, or of this restriction is not necessary – c.
We will now recall them briefly and refer the reader to the original work for proofs and further
explanations.

2.3.1 Conflict–free Semantics

The conflict–free extensions of ADFs represent “arguments that can stand together” [BG09]. In
other words, conflict–freeness stands for satisfying the acceptance conditions.

Definition 11. LetD = (A,C) be an ADF. A set of arguments E ⊆ A is a conflict–free extension
of D if for all s ∈ E we have Cs(E ∩ par(s)) = in.

The pd–acyclic version of conflict–freeness needs to take into account also the attacks on the
evaluation level, as seen in the following example:

9

Example 5. Let us now look at the ADF ({a, b}, {Ca : >, Cb : ¬a ∨ b}) depicted in Figure 3.
The conflict–free extensions are ∅, {a}, {b} and {a, b}. We can observe that the last one cannot
intuitively be pd–acyclic conflict–free, as the presence of a forced a self–support cycle on b. Both
arguments possess an acyclic pd–evaluation: ((a), ∅) for a and ((b), {a}) for b. Please note that
the decisively in interpretation {b : t} cannot be used to construct an acyclic pd–evaluation for b.
The evaluation for b is blocked by the set {a, b}, even though the acceptance condition of b still is
satisfied.

a b
> ¬a ∨ b

Figure 3: Sample ADF

Definition 12. Let D = (A,C) be an ADF. A conflict–free extension E ⊆ A of D is a pd–acyclic
conflict–free extension of D iff for every argument a ∈ E , there exists an acyclic pd–evaluation
((a0, ..., an), B) on E s.t. B ∩ E = ∅.

2.3.2 Ranges and Discarded Sets

Admissibility in ADFs is based on the concept of range, which in turn in its original version
required conflict–freeness. We will recall it here and later show that with the use of evaluations,
we can drop the conflict–freeness assumption. The basic concept of range is based on decisive
outing. We start with arguments we can accept and then look for ones that are decisively outed by
our choice. Since discarding one argument can also discard another that depends on it via a chain
reaction, we repeat this search until no further arguments can be found.

Definition 13. Let D = (A,C) be an ADF, E ⊆ A a conflict–free extension of D and vE a partial
two–valued interpretation built as follows:

1. for every a ∈ E set vE (a) = t;

2. for every argument b ∈ A \ vtE that is decisively out w.r.t. vE , set vE (b) = f

3. now repeat the previous step until there are no new mappings are added to vE .

The resulting vE is the range (interpretation) of E . The discarded set of E is defined as E+ =
vfE .

We can also redefine this notion by the use of standard evaluations, which limits the algorithm
to a single iteration. Moreover, it allows us to find arguments discarded by our set without the
conflict–freeness assumption.

10

Lemma 14. Let D = (A,C) be an ADF, E ⊆ A a set of arguments and X = {a ∈ A |
E blocks every standard pd–evaluation for a in D}. If E is conflict–free, then X = E+.

The standard notions of the discarded set and range are quite strong in the sense that they
require an explicit “attack” on arguments that take part in dependency cycles. This is not always a
desirable property, as depending on the approach we might not treat cyclic arguments as valid3:

Definition 15. Let D = (A,C) be an ADF, E ⊆ A a conflict–free extension of D and vaE a partial
two–valued interpretation built as follows:

1. for every a ∈ E set vaE (a) = t.

2. for every argument b ∈ A\ (vaE)f s.t. every acyclic pd–evaluation of b in A is blocked by vaE ,
set vaE (b) = f .

The resulting vaE is the acyclic range (interpretation) of E . The acyclic discarded set of E is
defines as E a+ = (vaE)f .

We can rephrase this definition in the following way, similar to Lemma 14:

Lemma 16. Let D = (A,C) be an ADF, E ⊆ A a set of arguments and X = {a ∈ A |
E blocks every acyclic pd–evaluation for a in D}. If E is conflict–free, then X \ E = E+. If
E is pd–acyclic conflict–free, then X ∩ E = ∅.

The last type of range – the partially acyclic one – can be seen as a certain middle ground
between the standard and acyclic range. We discard an argument if we block all of its acyclic
pd–evaluations unless it is based on a “cycle” that we are ready to accept.

Definition 17. Let D = (A,C) be an ADF, E ⊆ A a set of arguments and X = {a ∈ A | there
is no partially acyclic evaluation (F,G,B) for a in D s.t. B ∩ E = ∅ and F ⊆ E}. If E is
conflict–free, then the partially acyclic discarded set of E is E p+ = X and the partially acyclic
range (interpretation) is vpE s.t. (vpE)t = E and (vpE)f = X .

The three versions of the discarded set can be ordered w.r.t. ⊆:

Lemma 18. Let D = (A,C) be an ADF and E ⊆ A a conflict–free extension of D. Then
E+ ⊆ E p+ ⊆ E a+. If E is pd–acyclic conflict–free, then E p+ = E a+.

Finally, the following properties of ranges and the discarded sets will be useful to us in the
context of this work:

Lemma 19. Let D = (A,C) be an ADF, E ⊆ A a conflict–free set of arguments and v a two–
valued interpretation s.t. vt = E . If every argument in vf is decisively out w.r.t. v, then the partially
acyclic range vaE of E is a completion of v. For any conflict–free set E there is an interpretation v
with vt = E and vf ⊆ E p+ s.t. all arguments in vf are decisively out w.r.t. v.

3This is an updated definition and different from [Pol14]. Please see [Pol15] for explanation.

11

Lemma 20. Let D = (A,C) be an ADF, E ⊆ A a conflict–free set of arguments and X ⊆ A \ E
a set of arguments. Let v be a two–valued interpretation s.t. vt = E and vf = X . Then v is the
partially acyclic range interpretation of E iff all arguments in X are decisively out w.r.t. v and
every x ∈ A \ (E ∪ X) has a partially acyclic evaluation (F x, Gx, Bx) s.t. Bx ∩ E = ∅ and
F x ⊆ E .

Lemma 21. Let D = (A,C) be an ADF, E ⊆ A a conflict–free set of arguments and v a two–
valued interpretation s.t. vt = E . If every argument in vf is decisively out w.r.t. v, then the acyclic
range vaE of E is a completion of v. If E is pd–acyclic conflict–free, then there is an interpretation
v with vt = E and vf ⊆ E a+ s.t. all arguments in vf are decisively out w.r.t. v.

Lemma 22. Let D = (A,C) be an ADF, E ⊆ A a pd–acyclic conflict–free set of arguments and
X ⊆ A \ E a set of arguments. Let v be a two–valued interpretation s.t. vt = E and vf = X .
Then v is the acyclic range interpretation of E iff all arguments in X are decisively out w.r.t. v and
every x ∈ A \ (E ∪X) has an acyclic evaluation (F x, Bx) s.t. Bx ∩ E = ∅.

Example 6. Let us consider the framework ({a, b, c, d, e}, {Ca : a ∧ ¬b, Cb : a, Cc : ¬b, Cd :
¬a, Ce : d, Cf : f}) depicted in Figure 4 and focus on the conflict–free set {a}. We will now
compute its standard range. First of all, the interpretation v = {a : t} decisively outs d. We update
v and now have {a : t, d : f}. Our new interpretation now decisively outs e and we can extend it
to {a : t, d : f , e : f}. No further arguments can be falsified, as for both b and c the conditions are
in w.r.t. {a} and even though the condition of f is for now out, a completion of v mapping f to t
can make it in. Let us now compute the standard range in the evaluation manner. For b we have an
evaluation ({a, b}, {b}), for c ({c}, {b}), for d ({d}, {a}), ({d, e}, {a}) for e and finally ({f}, ∅)
for f . We can observe that only the evaluations for d and e are blocked by {a}. In any case, the
standard range of the set {a} is v = {a : t, d : f , e : f}

Let us now consider the acyclic range. The evaluations for e and d can be made acyclic, and as
their blocking sets contain a, it is easy to see that both of the arguments will also be falsified in the
acyclic range. Since f possesses no acyclic evaluation, it will also be in the discarded set. Finally,
the evaluation ({a, b}, {b}) for b cannot be made acyclic and the argument will be falsified for the
same reason as f . Therefore, the acyclic range of {a} is w = {a : t, b : f , d : f , e : f , f : f}.

In the partially acyclic case, the arguments d, e and f will also be mapped to f by the range.
However, even though argument b does not possess an acyclic evaluation, the partial representation
({a}, (b), {b}) of the standard one ({a, b}, {b}) has its pd–set contained in {a}. Consequently, the
argument does not meet the partially acyclic range requirements.

2.3.3 Model and Stable Semantics

The concept of a model basically follows the intuition that if something can be accepted, it should
be accepted. It was meant as a basis for the stable semantics [BW10]. Due to the problems of
the initial definition of stability, a different reduct–based method using grounded labelings was
proposed [BES+13]. In [Pol14, Pol15] alternative methods were introduced.

12

a b cdef

a ∧ ¬b a ¬b¬adf

Figure 4: Sample ADF

Definition 23. Let D = (A,C) be an ADF. A conflict–free extension E ⊆ A of D is a model of
D if ∀ s ∈ A, Cs(E ∩ par(s)) = in implies s ∈ E .

Definition 24. Let D = (A,C = {ϕa}a∈A) be an ADF and E ⊆ A a set of arguments. The reduct
of D w.r.t. E is a framework DE = (E , CE), where for e ∈ E we set CE

e = ϕe[b/f : b /∈ E].

Definition 25. Let D = (A,C) be an ADF, M ⊆ A a model of D and DM = (M,CM) the reduct
of D w.r.t. M . Let gv be the grounded model of DM . Model M is stable in D iff M = gvt.

Theorem 26. Let D = (A,C) be an ADF. A model E ⊆ A of D is a stable extension of D iff it is
pd–acyclic conflict–free.

Lemma 27. LetD = (A,C) be an ADF. A set E ⊆ A is a stable extension ofD iff it is a pd–acyclic
conflict–free extension of D s.t. E a+ = A \ E .

2.3.4 Grounded Semantics

The extension–based version of grounded semantics has already been introduced in [BW10]. It’s
equivalent formulation is as follows (see [Pol15] for more details).

Proposition 28. Let D = (A,C) be an ADF and v an empty interpretation. For every argument
a ∈ A that is decisively in w.r.t. v, set v(a) = t and for every argument b ∈ A that is decisively
out w.r.t. v, set v(b) = f . Repeat the procedure until no further assignments can be done. The
grounded extension of D is then vt.

The acyclic version is very similar; however, instead of working with the standard range con-
struction, it uses the acyclic version.

Definition 29. Let D = (A,C) be an ADF and v an empty interpretation. For every argument
a ∈ A that is decisively in w.r.t. v, set v(a) = t. For every argument b ∈ A s.t. all of its acyclic
pd–evaluations are blocked by v, set v(b) = f . Repeat the procedure until no further assignments
can be done. The acyclic grounded extension of D is then vt.

13

2.3.5 Admissible, Preferred and Complete Semantics

Let us now focus on admissible, preferred and complete semantics. What is important to under-
stand is the fact that even though there are significant differences between the aa, ac, cc and ca
families, the core concept remains the same as in the usual argumentation semantics– admissibil-
ity represents a defensible stand, preferred extensions are maximal admissible, and completeness
accepts whatever is defended. By replacing defense with decisiveness w.r.t. range, we basically
obtain the ADF semantics. The difference between the approaches lies in the type of range we use
and if acyclicity of the extension is also desired.

Definition 30. Let D = (A,C) be an ADF and E ⊆ A a set of arguments. E is:

• a cc–admissible extension of D iff it is conflict–free in D and every e ∈ E is decisively in
w.r.t. the standard range vE of E .

• an aa–admissible extension of D iff it is pd–acyclic conflict–free in D and every e ∈ E is
has an acyclic pd–evaluation ((a0, .., an, B) on E s.t. all members of B are mapped to f by
the acyclic range vaE of E .

• an ac–admissible extension of D iff it is pd–acyclic conflict–free in D and every e ∈ E has
an acyclic pd–evaluation ((a0, .., an, B) on E s.t. all members of B are mapped to f by the
standard range vE of E .

• a ca1–admissible extension of D iff it is conflict–free in D and every e ∈ E is decisively in
w.r.t. acyclic range vaE of E .

• a ca2–admissible extension of D iff it is conflict–free in D and every e ∈ E is decisively in
w.r.t. partially acyclic range vpE of E .

Just like in pd–acyclic conflict–free semantics we had to check that there are no conflicts arising
on the level of evaluations, in the case of aa and ac–admissible semantics we add the “defense” of
evaluations. It cannot be handled by decisiveness alone, the same way acyclicity could not have
been ensured by the outcome of the condition only. Please note that in the original definition of
these semantics decisiveness was also required [Pol14]. However, it is subsumed by defending the
evaluation: see [Pol15] for discussion.

Definition 31. Let D = (A,C) be an ADF. A set E ⊆ A is an x–preferred extension of D, where
x ∈ {cc, aa, ac, ca1, ca2}, iff it is a maximal (w.r.t. set inclusion) x–admissible extension of D.

Definition 32. Let D = (A,C) be an ADF, E ⊆ A an x–admissible extension of D, where
x ∈ {cc, aa, ac, ca2}, and vxE its appropriate range. E is an x–complete extension of D if every
a ∈ A that is decisively in w.r.t. vxE is in E . A ca1–admissible extension E is ca1–complete if every
a ∈ A \ E a+ that is decisively in w.r.t. vaE is in E .

14

2.3.6 Properties of Extension–Based Semantics

In this section we briefly recall the properties of the ADF semantics from [Pol15] that will be
useful to us:

Proposition 33. Let D = (A,C) be an ADF, E ⊆ A a standard conflict–free and S ⊆ A a
pd–acyclic conflict–free extension of D, with vE , vpE , vaE , vS , vpS and vaS as their corresponding
standard, partially acyclic and acyclic range interpretations. Let s ∈ A be an argument. The
following holds:

1. If vE (s) = f , then s is decisively out w.r.t. vE . The same holds or vpE , but not for vaE .

2. If vS(s) = f , then s is decisively out w.r.t. vS . The same holds for vpE and vaE .

3. If vE (s) = f , then Cs(E ∩ par(s)) = out. The same holds or vpE , but not for vaE .

4. If vS(s) = f , then Cs(S ∩ par(s)) = out. The same holds for vpE and vaE .

Lemma 34. Let D = (A,C) be an ADF and E and E ′ two conflict–free extensions s.t. E ⊆ E ′. It
follows that vE ′ is a completion of vE to some set A′ ⊆ A.

Let E and E ′ be two pd–acyclic conflict–free extensions s.t. E ⊆ E ′. It follows that vaE ′ is a
completion of vaE to some set A′ ⊆ A and that vpE ′ is a completion of vpE to some set A′′ ⊆ A.

Lemma 35. CC/AC/AA/CA2 Fundamental Lemma: Let D = (A,C) be an ADF, E ⊆ A an
x–admissible extension of D where x ∈ {cc, aa, ac, ca2}, vxE its appropriate range interpretation
and a, b ∈ A two arguments decisively in w.r.t. vxE . Then E ′ = E ∪ {a} is x–admissible in D and
b is decisively in w.r.t. vxE ′ .

Lemma 36. Weak CA1 Fundamental Lemma: Let D = (A,C) be an ADF, E ⊆ A a ca1–
admissible extension, vaE its acyclic range interpretation and a, b ∈ A \ E a+ arguments decisively
in w.r.t. vE . Then E ′ = E ∪ {a} is ca1–admissible in D, b is decisively in w.r.t. vE ′ , but it is not
necessarily in A \ E ′a+.

Theorem 37. Let D = (A,C) be an ADF and x ∈ {cc, ac, aa}. The following holds:

1. The sets of all x–admissible extensions of D forms a complete partial order w.r.t. set inclu-
sion. 4

2. D possesses at least one x–preferred extension.

3. For each x–admissible set E ofD, there exists an x–preferred extension E ′ ofD s.t. E ⊆ E ′.

Theorem 38. Let D = (A,C) be an ADF. The following holds:

4There are many definitions of complete partial orders. We will assume that a partial order (A,≤) is a complete iff
it has a least element and each of its directed subsets has a lub.

15

1. Every xy–preferred extension of D is an xy–complete extension of D for x, y ∈ {a, c}, but
not vice versa.

2. The grounded extension of D is the least w.r.t. set inclusion ac and cc–complete extension of
D.

3. The acyclic grounded extension of D is the least w.r.t. set inclusion aa–complete extension
of D and a minimal ca1 and ca2–complete extension of D.

4. The cc, ac and aa–complete extensions of D form complete meet–semilattices w.r.t. set in-
clusion.

Theorem 39. LetD = (A,C) be an ADF s.t. A is finite. Given that x ∈ {ca1, ca2},D possesses at
least one x–preferred extension and for every x–admissible set E of D, there exists an x–preferred
extension E ′ of D s.t. E ⊆ E ′.

Proposition 40. There exists an ADF D = (A,C) s.t. :

1. The grounded extension of D is neither an aa, ca1 nor a ca2–complete extension of D.

2. The ca1 and ca2–complete extensions of D do not form complete meet–semilattices w.r.t. set
inclusion.

2.4 Comparison of Extension–Based and Labeling–Based Semantics
Definition 41. Let D = (A,C) be an ADF, v a three–valued interpretation over A and E ⊆ A a
set of arguments. v and E correspond iff vt = E .

Please note that the correspondence relation between the extensions and labelings, if it exists,
is in general not bijective.

Theorem 42. Let D = (A,C) be an ADF and x ∈ {cc, aa, ac, ca2}. The following holds:

1. Let E ⊆ A be an x–admissible extension of D and vxE its appropriate range. The u–
completion of vxE to A is an admissible labeling of D.

2. Not for every ca1–admissible extension ofD there exists a corresponding admissible labeling
of D.

3. If v is an admissible labeling of D, then vt is a ca1 and ca2–admissible extension of D.

Theorem 43. Let D = (A,C) be an ADF. The following holds:

1. Let E ⊆ A be an aa, ac, cc or ca1–preferred extension. There might not exist a correspond-
ing preferred labeling of D.

16

2. Let E ⊆ A be an ca2–preferred extension. The u–completion of vpE to A is a preferred
labeling of D.

3. Let v be a preferred labeling. Then vt is a ca2–complete extension, but it does not have to be
aa/ac/cc/ca1–complete or aa/ac/cc/ca1/ca2–preferred.

Theorem 44. Let D = (A,C) be an ADF and x ∈ {cc, aa, ac, ca2}. The following holds:

1. Let E ⊆ A be an x–complete extension ofD and vxE its appropriate range. The u–completion
of vxE is a complete labeling of D.

2. Not every complete labeling has a corresponding complete extension of any type.

3. For every complete labeling v of D, vt is contained in some ca2–complete extension.

4. Not every ca1–complete extension of D has a corresponding complete labeling.

As the grounded semantics has a very clear meaning, it is no wonder that both available ap-
proaches coincide, as already noted in [BES+13].

Theorem 45. Let D = (A,C) be an ADF. The two–valued grounded extension of D and the
grounded labeling of D correspond.

However, in the acyclic grounded case, the best we can get is that it has a complete labeling. It
will of course not be the least one, since that corresponds to the standard grounded semantics.

Theorem 46. LetD = (A,C) be an ADF and E its acyclic grounded extension. The u–completion
of the acyclic range of E is a complete labeling of D.

Last, but not least, we will describe a subclass of ADFs for which our classification system
collapses. By this we understand that all xy–subsemantics of a given semantics coincide, e.g.
every aa–admissible extension is cc–admissible and so on. Moreover, this class will also provide
a more precise correspondence between the extension and labeling–based approaches. We will
refer to the frameworks in this subclass as the positive dependency acyclic abstract dialectical
frameworks and denote them as AADF+s.

Definition 47. Let D = (A,C) be an ADF. D is an AADF+ iff every standard evaluation in the
framework can be made acyclic.

Theorem 48. Let D = (A,C) be an AADF+. The following holds:

1. Every conflict–free extension of D is pd–acyclic conflict–free

2. Every model of D is stable

3. Given a conflict–free set of arguments E ⊆ A of D, E+ = E p+ = E a+

17

4. The aa/cc/ac/ca1/ca2–admissible extensions of D coincide

5. The aa/cc/ac/ca1/ca2–complete extensions of D coincide

6. The aa/cc/ac/ca1/ca2–preferred extensions of Dcoincide

7. The grounded and acyclic grounded extensions coincide

Theorem 49. Let D = (A,C) be an AADF+. The following holds:

1. Every admissible labeling of D has a corresponding aa/ac/cc/ca1/ca2–admissible extension
and vice versa.

2. Every complete labeling ofD has a corresponding aa/ac/cc/ca1/ca2–complete extension and
vice versa.

3. Every preferred labeling ofD has a corresponding aa/ac/cc/ca1/ca2–preferred extension and
vice versa.

Finally, it is natural to ask what is the relation between the AADF+ and BADF subclasses. The
answer is that while there exist frameworks belonging to both, there are also some belonging to
one, but not the other. Let us look at an example.

Example 7. Let ({a, b, c}, {Ca = >, Cb = >, Cc = (a ∨ b) ∧ (¬a ∨ ¬b)}) be a simple ADF.
We can observe that c has a condition that is simply an xor on the remaining two arguments. This
framework is not a BADF; the links from a and b to c are neither supporting nor attacking. The
condition of c is out w.r.t. ∅, and will turn to in for {a} and {b}. However, it will then turn to out
again for {a, b}. Nevertheless, this simple framework is an AADF+.

Let ({a}, {Ca = a}) be another simple framework. There is only one link in the framework –
namely, (a, a) – and it is easy to show that it is a supporting one. Thus, our structure is in fact a
BADF. However, the only minimal decisively in interpretation for a is va = {a : f}, and we cannot
use it to construct an acyclic pd–evaluation for a. Therefore, we are clearly not dealing with an
AADF+.

To show that the subclasses are not disjoint, the easiest way is to take a Dung–style ADF. A
structure where only attacks are present, e.g. ({a, b, c}, {Ca = >, Cb = ¬a, Cc = ¬b}), is both a
BADF and an AADF+.

3 Computational Complexity
Complexity theory concerns itself with analyzing how difficult it is to solve a given problem. Such
a problem is described in terms of input and a question to be answered. Depending on how the
question is formulated, we distinguish various types of problems. If the answer is supposed to be
yes or no, we deal with the decision type; this is also what we will focus on in this work. In this

18

report we assume that the reader is familiar with the basics of complexity theory and classes such
as P, NP and coNP [Pap94]. However, we will also go beyond these classes and primarily deal
with those that belong to the polynomial hierarchy:

Definition 50. Let ΣP
0 = ΠP

0 = ∆P
0 = P , where P is the set of decision problems solvable in

polynomial time. For i ≥ 1, we define:

• ∆P
i = PΣP

i−1 ,

• ΣP
i = NPΣP

i−1 ,

• ΠP
i = coNPΣP

i−1 ,

where PA is the set of decision problems solvable in polynomial time with an access to an A–
oracle. Classes NPA and coNPA are defined analogously.

In particular, we can observe that ΣP
1 = NP and ΠP

1 = coNP . The relations between the
classes belonging to polynomial hierarchy are visible in Figure 5.

In addition to the aforementioned classes, we will also deal with DP (difference polynomial
time) problems [SW15]. We say that a problem L is in DP iff it can be characterized as L = L1∩L2

(the intersection of “yes” instances) and L1 ∈ NP and L2 ∈ coNP . For example, SAT–UNSAT
is a known DP–complete problem. The polynomial hierarchy can be naturally extended to account
for higher levels of the DP class, i.e. for i ≥ 1, a problem L is in DP

i iff it can be characterized as
L = L1 ∩ L2 and L1 ∈ ΣP

i and L2 ∈ ΠP
i

5.

P

NP

coNP

DP ∆P
2

ΣP
2

ΠP
2

DP
2 ∆P

3

ΣP
3

ΠP
3

. . .
⊆
⊆ ⊆

⊆
⊆

⊆

⊆ ⊆

⊆
⊆

⊆

⊆

Figure 5: Relation between complexity classes

4 Complexity Analysis of ADF Semantics
In this section we would like to focus on the computational complexity of the presented extension–
based semantics for the abstract dialectical frameworks. We will assume that the frameworks we
are working with are finite, i.e. the set of arguments is finite. We will focus on the four traditional
problems – verification, existence, credulous and skeptical acceptability:

5In this case, DP
1 is simply DP

19

Verification of (V erσ)

Instance: An ADF D = (A,C), a set of arguments X ⊆ A or a labeling Lab : A →
{t, f ,u} and a semantics σ

Problem: Is X (or Lab) a σ–extension (σ–labeling) of D?

Existence of a σ–extension or labeling (Existsσ)
Instance: An ADF D = (A,C) and a semantics σ
Problem: Does there exist a σ–extension (σ–labeling) for D?

Credulous acceptance (Credσ)
Instance: An ADF D = (A,C), an argument a ∈ A and a semantics σ
Problem: Is a contained in any σ–extension (σ–labeling) of D?

Skeptical acceptance (Skeptσ)
Instance: An ADF D = (A,C), an argument a ∈ A and a semantics σ
Problem: Is a contained in every σ–extension (σ–labeling) of D?

The existence problem will receive the least attention, as for the majority of our semantics
this problem is trivial. This is a result of Theorems 37 and 39 and the fact that ∅ is an admis-
sible extension of any type. However, we will introduce a number of smaller problems focusing
on the computational complexity of the building blocks of the extension–based semantics, that
is: decisiveness, evaluations and ranges. Please note that in our analysis we assume that we
are dealing with propositional ADFs, i.e. the acceptance conditions are represented as proposi-
tional formulas. Our study can be seen as an extension of the work in [Wal14] to other families
of the ADF semantics. The existing results for the labeling–based and extension–based seman-
tics [BW10, Wal14, BES+13, SW15] can be seen in Table 1.

Table 1: Existing computational complexity results for ADF semantics.

σ V erσ Existsσ Credσ Skeptσ

LAB

ADM coNP–c trivial ΣP
2 –c trivial

COMP DP–c trivial ΣP
2 –c coNP–c

PREF ΠP
2 –c trivial ΣP

2 –c ΠP
3 –c

GRD DP–c trivial coNP–c coNP–c

EXT
MOD in P NP–c NP–c NP–c
STB coNP–c ΣP

2 –c ΣP
2 –c ΠP

2 –c
GRD coNP–h trivial

20

4.1 Basic Components
Before we analyze our semantics, we would like to focus on the complexity analysis of simpler
notions. In particular, we will address the issues of the verification and existence of particular types
of interpretations, evaluations and ranges. In order to simplify our task, we would like to introduce
somewhat more relaxed versions of our evaluations. In Section 2.1.2, we have observed that the use
of arbitrary decisively in interpretations, not just the minimal ones, would not affect our semantics.
Minimality plays a role in deciding whether a given ADF is an AADF+, however, we will not be
dealing with this problem here. Consequently, we propose the following new notions:

Definition 51. Let D = (A,C) be an ADF and E ⊆ A a set of arguments. A weak positive
dependency function on E is a function wpd assigning every argument a ∈ E an interpretation
v ∈ dec(in, a) orN for null iff no such interpretation can be found. A weak X pd–evaluation for
X ∈ {standard, partially acyclic, acyclic} is an X pd–evaluation constructed using wpd.

Given these notions, we can now define the problem we would like to tackle in this section:

Verification of argument’s decisiveness (V erxdec)
Instance: An ADF D = (A,C), an argument a ∈ A, a partial interpretation v on A and

x ∈ {in, out}.
Problem: Is a decisively x for v in D?

Verification of a weak standard pd–evaluation (V erwst-pd)
Instance: An ADF D = (A,C), an ∈ A and a pair (F,B) with F,B ⊆ A and a ∈ F .
Problem: Is (F,B) a weak standard pd–evaluation on A for a?

Verification of a weak acyclic pd–evaluation (V erwacy-pd)
Instance: An ADF D = (A,C), an ∈ A and a pair (F,B) with F = (a0, . . . , an) being

a sequence of elements on E ⊆ A and B ⊆ A.
Problem: Is (F,B) a weak acyclic pd–evaluation on A for an?

Verification of a weak partially acyclic pd–evaluation (V erwpar-pd)
Instance: An ADF D = (A,C), an ∈ A and a pair (F,G,B) with F,B ⊆ A and

G = (a0, . . . , an) being a sequence of elements on E ⊆ A.
Problem: Is (F,G,B) a weak partially acyclic pd–evaluation on A for an?

Existence of a weak X pd–evaluation (ExistswX-pd)
Instance: An ADF D = (A,C) and an argument a ∈ A.
Problem: Is there an X pd–evaluation on A for a?

Existence of a weak non self–blocking X pd–evaluation (nsb-ExistswX-pd)
Instance: An ADF D = (A,C) and an argument a ∈ A.
Problem: Is there an X pd–evaluation on A for a s.t. its blocking set is disjoint from its

pd–set and/or pd–sequence?

21

Verification of standard discarded set (V erdisst)
Instance: An ADF D = (A,C), a conflict–free set of arguments E ⊆ A and a set

X ⊆ A \ E .
Problem: Is X the standard discarded set of E in D?

Verification of a subset of standard discarded set (sub-V erdisst)
Instance: An ADF D = (A,C), a conflict–free set of arguments E ⊆ A and a set

X ⊆ A \ E .
Problem: Is X a subset of the standard discarded set of E in D?

Verification of partially acyclic discarded set (V erdispar)
Instance: An ADF D = (A,C), a conflict–free set of arguments E ⊆ A and a set

X ⊆ A \ E .
Problem: Is X the partially acyclic discarded set of E in D?

Verification of a subset of partially acyclic discarded set (sub-V erdispar)
Instance: An ADF D = (A,C), a conflict–free set of arguments E ⊆ A and a set

X ⊆ A \ E .
Problem: Is X a subset of the partially acyclic discarded set of E in D?

Verification of acyclic discarded set (V erdisacy)
Instance: An ADF D = (A,C), a conflict–free set of arguments E ⊆ A and a set

X ⊆ A \ E .
Problem: Is X the acyclic discarded set of E in D?

Verification of a subset of acyclic discarded set (sub-V erdisacy)
Instance: An ADF D = (A,C), a conflict–free set of arguments E ⊆ A and a set

X ⊆ A \ E .
Problem: Is X a subset of the acyclic discarded set of E in D?

Verification of acyclic discarded set (acy-V erdisacy)
Instance: An ADF D = (A,C), a pd–acyclic conflict–free set of arguments E ⊆ A and

a set X ⊆ A \ E .
Problem: Is X the acyclic discarded set of E in D?

4.1.1 Decisiveness and Evaluations

First we deal with the problem of verifying the decisiveness of an argument w.r.t. a given inter-
pretation v. In reality, it is little more than deciding whether the acceptance condition turns into
a tautology or becomes unsatisfiable if the occurrences of arguments in the condition are replaced
by the values assigned to them by v (if applicable).

Proposition 52. V erindec is coNP-complete.

22

Proposition 53. V eroutdec is coNP-complete.

With this at hand, we can focus on the verification problems for our evaluations; we focus only
on the weak approach. The first step is checking whether a given interpretation assignment can
serve as a basis for a pd–function. Consequently, we make sure that all of the interpretations are
decisively in for their arguments at the same time:

Proposition 54. Let D = (A,C) be an ADF, X ⊆ A a set of arguments and VX : X → vx a
function assigning partial two–valued interpretations on subsets ofA to arguments inX . Verifying
every interpretation is decisively in for its argument is coNP–complete.

The same results hold for checking whether all interpretations are decisively out, which will be
more useful in the analysis of admissibility.

Proposition 55. Let D = (A,C) be an ADF, X ⊆ A a set of arguments and VX : X → vx a
function assigning partial two–valued interpretations on subsets ofA to arguments inX . Verifying
that every interpretation is decisively out for its argument is coNP–complete.

We will also consider the problem of verifying that there is no argument outside a given inter-
pretation that is decisively in. This will prove useful in the analysis of the complete semantics as it
will allow us to check that there is no argument outside the accepted set of arguments that should
be included in it w.r.t. the desired range:

Proposition 56. Let D = (A,C) be an ADF and v an interpretation defined on E ⊆ A. Verifying
that no argument in A \ E is decisively in w.r.t. v is NP–complete.

From Proposition 54 it also follows that verifying if an assignment is a pd–function is also
in coNP. We can now move on to the problem of verifying whether a given pair (triple) is an
evaluation of the desired type. It practically boils down to guessing an interpretation assignment,
verifying its decisiveness and checking if the conditions of an evaluation are satisfied, which can
be done in ΣP

2 :

Proposition 57. V erwst-pd is ΣP
2 -complete.

Proposition 58. V erwacy-pd is in ΣP
2 .

Proposition 59. V erwpar-pd is in ΣP
2 .

Next comes the problem concerning the existence of evaluations of a given type. In practice,
it basically boils down to guessing a weak pd–function and verifying whether we can construct
a suitable evaluation. Since we are not restricted to non self–blocking evaluations, we can use
full two–valued interpretations in our analysis. This is not unlike considering f–completions of
the minimal decisively in interpretations we would use in the construction of the original pd–
functions and evaluations – in practice, only the blocking set is affected, which is not relevant for
the existence of an evaluation that does not have to meet any special constraints.

23

Proposition 60. Existswst-pd is in NP .

Similar analysis follows for the acyclic pd–evaluations:

Proposition 61. Existswacy-pd is in NP .

These results also imply that the problem of existence of normal standard (acyclic) evaluations
is also in NP – the blocking set can be trimmed down to fit the original approach. Since par-
tially acyclic evaluations are just a refinement of the standard ones, again the NP membership for
existence follows. We can thus sum it up in the following way:

Proposition 62. Existsyx-pd for x ∈ {st, par, acy} and y ∈ {w, n}, where w stands for weak and
n for normal, is in NP.

Apart from the simple existence of an evaluation of any kind, we are also interested in the ones
that are not self–blocking, since they are the ones that arguments in an extension actually form. For
the standard evaluations, we can still create an approach that uses full interpretations and therefore
the problem remains in NP.

Proposition 63. nsb-Existswst-pd is in NP.

Just like in the case of unconstrained existence, the NP result carries over to normal standard
evaluations and to weak (normal) partially acyclic ones. However, the problem becomes slightly
more difficult in the acyclic case. This is due to the fact that we cannot exploit the full interpretation
assignment anymore: given an assignment of partial interpretations with which we can form an
acyclic pd–evaluation, if we “fill the missing mappings” with f , the evaluation can become self–
blocking. If we fill it with t, we can lose acyclicity.

Proposition 64. nsb-Existswacy-pd is in ΣP
2 .

We can thus sum it up in the following way and continue with the analysis of the ranges and
discarded sets.

Proposition 65. nsb-Existsyx-pd for x ∈ {st, par} and y ∈ {w, n}, where w stands for weak and
n for normal, is in NP. nsb-Existsyacy-pd is in ΣP

2 .

4.1.2 Discarded Sets

In this section we will focus on the verification problems concerning the various types of discarded
sets and ranges. We will consider both exact discarded sets and just their subsets, which can be
useful in the case of e.g. admissible semantics.

We start with the standard discarded set; in this case, the membership results we have managed
to obtain are the same both for computing the exact set and only a part of it:

Proposition 66. V erdisst is in ∆P
2 .

24

Proposition 67. sub-V erdisst is in ∆P
2 .

There appears to be little gain in considering only subsets of the partially acyclic range as well:

Proposition 68. V erdispar is in ΣP
2 .

Proposition 69. sub-V erdispar is in ΠP
2 .

Fortunately, the results for the acyclic range are somewhat more encouraging. The general
DP

2 result for the discarded sets paired with conflict–free extensions can be improved either by
searching for a subset of the discarded set (we go down to ΠP

2) or by taking the pd–acyclic conflict–
free extensions as our basis (we obtain the ΣP

2 class).

Proposition 70. V erdisacy is in DP
2 .

Proposition 71. sub-V erdisacy is in ΠP
2 .

Proposition 72. acy-V erdisacy is in ΣP
2 .

These results conclude our section on the “building blocks” of the extension–based ADF se-
mantics. We can now move on to analyzing the actual extensions.

4.2 Conflict–free Semantics
The verification problem for the conflict–free semantics is quite straightforward; checking that the
conditions evaluate to in under a given set of arguments can be done in polynomial time:

Proposition 73. V ercf is in P.

In order to verify that a given set is pd–acyclic conflict–free, we will use the following theorem
that relates these sets to grounded extensions of ADF reducts [Pol15] and the complexity results
for the verification problem of the grounded semantics from [Wal14].

Theorem 74. Let D = (A,C) be an ADF and E ⊆ A a set of arguments. E is pd–acyclic
conflict–free iff it is the grounded extension of the reduct DE = (E , CE) of D w.r.t. E .

Proposition 75. V eracy-cf is in DP.

We close this section with the analysis of the complexity of credulous reasoning for our se-
mantics. A (pd–acyclic) conflict–free extension is in fact nothing more than a non self–blocking
(acyclic) pd–evaluation. Therefore, using Propositions 63 and 64, we can show that our problems
fall into the NP and ΣP

2 classes for standard conflict–free and pd–acyclic conflict–free semantics
respectively. The answer to the skeptical problem is always no, since ∅ is trivially a (pd–acyclic)
conflict–free extension.

Proposition 76. Credcf is in NP.

Proposition 77. Credacy-cf is in ΣP
2 .

25

4.3 Grounded Semantics
In order to verify whether a given set is the grounded or acyclic grounded extension of a given
framework, we can reuse the iterative approaches from Proposition 28 and Definition 29. This
puts our problems in DP and ∆P

3 respectively, though please note that these results are likely to be
improved in the future.

Proposition 78. V ergrd is in DP.

Proposition 79. V eracy-grd is in ∆P
3 .

Due to the fact that every framework produces a unique (acyclic) grounded extension, the
credulous and skeptical problems are one and the same. In the case of the standard grounded
semantics, we can exploit its correspondence to the labeling–based semantics (see Theorem 45).
In other words, an argument is credulously accepted in a grounded extension iff it is credulously
accepted in a grounded labeling. Therefore, the complexity of this particular problem is the same as
in the labeling–based case [Wal14] and is thus coNP–complete. Unfortunately, we cannot proceed
in the same manner in the acyclic grounded case. In order to establish the upper bound for the
difficulty of the credulous (skeptical) reasoning for these semantics, we exploit the fact that it is
the least aa–complete extension. Thus, it suffices to check whether there exists such an complete
extension not containing the desired argument (we will analyze this further in Section 4.5).

Proposition 80. Credgrd is coNP–complete.

Proposition 81. Credacy-grd is in ΠP
2 .

4.4 Admissible Semantics
We can now start with the verification problem for our five types of admissible semantics. We will
heavily depend on the results we have presented concerning the evaluations and ranges in Section
4.1. The proofs for the cc and ca1–semantics follow the same pattern; we start with verifying
whether the desired set is conflict–free to start with, compute the required discarded set and verify
the decisiveness of the accepted arguments. When it comes to the semantics acyclic on the inside,
we guess a pd–function and make sure we are able to create an acyclic pd–evaluation s.t. its
blocking set is contained in the desired discarded set. It is worth noting that based on Theorem 42,
a given set is a ca2–admissible extension iff there exists a corresponding admissible labeling. We
can therefore exploit the results from [Wal14] in order to show that the verification problem for
ca2–admissible semantics is in ΣP

2 . By using Lemma 21, Propositions 52, 53, 54, 66, 71 and 73 we
obtain the following results:

Proposition 82. V ercc-adm is in ∆P
2 .

Proposition 83. V erac-adm is in ΣP
2 .

26

Proposition 84. V eraa-adm is in ΣP
2 .

Proposition 85. V erca1-adm is in ∆P
3 .

Proposition 86. V erca2-adm is in ΣP
2 .

We can observe that the ca1–admissibility membership result is in a higher class than in the case
of other semantics. This is a result of the fact that for this semantics, the arguments in the discarded
set are not necessarily decisively in w.r.t. the acyclic range. Hence, we cannot use Lemma 21 to
verify that the blocking set of the evaluation representing our extension is in the discarded set and
need to resort to Proposition 71.

Let us now move on to the credulous reasoning problem. In all of the cases, with the exception
of the ca1–admissibility, our problem is in ΣP

2 . The fact that we jump to ΣP
3 for the ca1–approach

is caused by similar reasons as in Proposition 85.

Proposition 87. Credcc-adm, Credac-adm, Credaa-adm and Credca2-adm are in ΣP
2 .

Proposition 88. Credca1-adm is in ΣP
3 .

We can now analyze the hardness of the credulous reasoning. In order to do so, we will
modify the method presented in [Wal14]. The proof will depend on reduction from QBF∃,w −
V ALIDITY and will use the following ADF, depicted in Figure 6. Since it is an AADF+, our
results will hold for any semantics.

Lemma 89. Let X, Y be two disjoint sets of propositional variables, and ψ a Boolean formula
over X ∪ Y . Define the ADF Dψ = (S,C) as follows.

• S = X ∪X ∪ Y ∪ {f};

• ϕx = ¬x for x ∈ X;

• ϕx = ¬x for x ∈ X; and

• ϕy = ¬y for y ∈ Y ; and

• ϕf = ψ.

The ADF Dψ is an AADF+.

Proposition 90. Let x, y ∈ {a, c}. Credxy-adm is ΣP
2 –hard.

This gives us the completeness result for the credulous reasoning under the cc, ac, aa and ca2–
admissible semantics. Just like in the case of conflict–free semantics, ∅ is an admissible extension
of any type. Consequently, no argument can ever be skeptically accepted in these semantics and
no further analysis is required.

Proposition 91. Credcc-adm, Credac-adm, Credaa-adm and Credca2-adm are ΣP
2 –complete.

27

f

ψ
x1

¬x1

x1

¬x1 ...

xn

¬xn

xn

¬xn

y1

¬y1

ym

¬ym

...

Figure 6: Constructed AADF+ for Lemma 89

4.5 Complete Semantics
Let us now move on to the complete semantics. The proofs for ac and cc–admissible semantics
depended on the computation of the standard discarded set; consequently, adding one more NP call
(see Proposition 56) in order to verify that no further arguments can be accepted, does not affect our
results. Therefore, the membership results for the ac and cc–complete semantics remain the same
as in the case of admissibility. The same holds for the ca1–semantics; the lack of decisiveness in
the acyclic range of conflict–free sets made it impossible to exploit Lemmas 19 and 21. The proofs
for aa and ca2–complete semantics are similar to the admissible ones, however, we need a more
precise range analysis. Hence, rather than guessing a pd–function for the set we want to verify,
we guess one covering all arguments. We can then construct evaluations for arguments outside the
range to verify that no arguments can be rejected by the range (see Lemmas 22 and 20). Checking
that no elements can be accepted simply adds an NP call as in the ac and cc–complete semantics.

Proposition 92. V ercc-cmp is in ∆P
2 .

Proposition 93. V erac-cmp is in ΣP
2 .

Proposition 94. V eraa-cmp is in ΣP
2 .

Proposition 95. V erca1-cmp is in ∆P
3 .

Proposition 96. V erca2-cmp is in ΣP
2 .

Based on Theorems 37 and 38, we can observe that every cc, ac and aa–admissible extension
will be contained in some cc, ac and aa–complete extension. Moreover, any complete set is also
admissible. Consequently, the credulous reasoning problem for completeness is the same as for
admissibility in the cc, ac and aa–approach. Since we are working with finite frameworks only, the
same can be inferred for the ca1 and ca2–semantics due to Theorems 37 and 39:

Proposition 97. Credcc-cmp, Credac-cmp are Credaa-cmp are ΣP
2 –complete.

28

Proposition 98. Credca2-cmp is ΣP
2 –complete. Credca1-cmp is in ΣP

3 and is ΣP
2 –hard.

Finally, we can observe that due to the structure of the ac, cc and aa–complete semantics
(see Theorem 38), the problem of skeptical reasoning boils down to checking whether a given
argument is contained in the least complete extension, which depending on the approach happens
to be the grounded or acyclic grounded. Therefore, the complexity of this problem is the same as
in Propositions 80 and 81. Unfortunately, for the remaining ca1 and ca2–approaches, we need to
verify whether there exists a complete extension not containing the argument in question.

Proposition 99. Skeptcc-cmp and Skeptac-cmp are coNP–complete.

Proposition 100. Skeptaa-cmp is in ΠP
2 .

Proposition 101. Skeptca1-cmp is in ΠP
3 .

Proposition 102. Skeptca2-cmp is in ΠP
2 .

4.6 Preferred Semantics
Let us move on to the preferred semantics. In order to see whether a given set is preferred, we first
verify that it is admissible and then that there is no “bigger” admissible set in the framework. This
brings us to the following results:

Proposition 103. V ercc-prf is in ΠP
2 .

Proposition 104. V erac-prf , V eraa-prf and V erca2-prf are in DP
2 .

Proposition 105. V erca1-prf is in ΠP
3 .

The credulous reasoning problem for a given x–preferred semantics is the same as for the
associated x–admissible semantics. This depends on the fact that for every admissible extension
there exists a preferred one containing it, which is always true for finite frameworks, even in the
case of ca1 and ca2–approaches (see Theorems 37 and 39). Hence, what is left to analyze is the
complexity of skeptical reasoning. We focus on the co–problem, i.e. the existence of a preferred
extension of a given type that does not contain the argument we want.

Proposition 106. Skeptcc-prf is in ΠP
3 .

Proposition 107. Skeptac-prf , Skeptaa-prf and Skeptca2-prf are in ΠP
3 .

Proposition 108. Skeptca1-prf is in ΠP
4 .

29

f

¬f ∨ ψ

x1

¬x1

x1

¬x1 ...

xn

¬xn

xn

¬xn

z1

¬z1

zm

¬zm

...

y1

¬d1 ∧ ¬y1

y1

¬d1 ∧ ¬y1

. . . yk

¬dk ∧ ¬yk

yk

¬dk ∧ ¬yk

d1

¬f
d1

¬f
dk

¬f
dk

¬f

Figure 7: Constructed AADF+ for Lemma 110

We can now analyze the hardness of the skeptical reasoning for our preferred semantics. We
will modify the method presented in [Wal14], similarly as we did in the case of the admissible
semantics, and use the following framework in our proof. Since it is an AADF+, our results will
hold for any semantics.

Lemma 109. Let φ ∈ QBF∀,3 be a closed QBF of the form φ = ∀X∃Y ∀Zψ. We define the ADF
Dpref(ψ) with S = X ∪X ∪ Y ∪ Y ∪D ∪D ∪Z ∪ {f} and the acceptance conditions as follows:

• ϕxi = ¬xi for xi ∈ X

• ϕxi = ¬xi for xi ∈ X

• ϕdi = ¬f for di ∈ D

• ϕdi = ¬f for di ∈ D

• ϕyi = ¬di ∧ ¬yi for yi ∈ Y

• ϕyi = ¬di ∧ ¬yi for yi ∈ Y

• ϕzi = ¬zi for zi ∈ Z

• ϕf = ¬f ∨ ψ

Then Dpref(ψ) is an AADF+.

Proposition 110. Skeptxy−pref is ΠP
3 –hard for ADFs for x, y ∈ {a, c}.

30

This brings us to our final results:

Proposition 111. Skeptcc-prf , Skeptac-prf , Skeptaa-prf and Skeptca2-prf are ΠP
3 –complete.

Skeptca1-prf is ΠP
3 –hard and in ΠP

4 .

Proposition 112. Credcc-prf , Credac-prf and Credaa-prf are ΣP
2 –complete.

Proposition 113. Credca2-prf is ΣP
2 –complete. Credca1-prf is in ΣP

3 and is ΣP
2 –hard.

4.7 Summary
The new and existing results concerning the computational complexity of ADF semantics can be
seen in Table 2. The blue and the green entries represent our findings, with the latter distinguishing
the complete results. We can observe that the xy–semantics are in principle more complex than
their labeling–based counterparts. There are two reasons for this; one is that labelings store more
information (in particular, concerning the f arguments), which the extension–based semantics need
to reconstruct. The other reason is that the xy–semantics are more specialized than the labeling
based ones and require evaluation analysis, not just decisiveness as in the characteristic operator.
Nevertheless, many of the skeptical and credulous reasoning results carry over to our setting as
well.

31

σ V erσ Existsσ Credσ Skeptσ

ST

CF in P trivial in NP trivial
MOD in P NP–c NP–c coNP–c
GRD coNP–h, in DP trivial coNP–c coNP–c

GRD–LAB DP–c trivial coNP–c coNP–c

ACY

CF in DP trivial in ΣP
2 trivial

STB coNP–c ΣP
2 –c ΣP

2 –c ΠP
2 –c

GRD in ∆P
3 trivial in ΠP

2 in ΠP
2

ADM

AA in ΣP
2 trivial ΣP

2 –c trivial
AC in ΣP

2 trivial ΣP
2 –c trivial

CC in ∆P
2 trivial ΣP

2 –c trivial
CA1 in ∆P

3 trivial ΣP
2 –h, in ΣP

3 trivial
CA2 in ΣP

2 trivial ΣP
2 –c trivial

LAB coNP–c trivial ΣP
2 –c trivial

COMP

AA in ΣP
2 trivial ΣP

2 –c in ΠP
2

AC in ΣP
2 trivial ΣP

2 –c coNP–c
CC in ∆P

2 trivial ΣP
2 –c coNP–c

CA1 in ∆P
3 trivial ΣP

2 –h, in ΣP
3 in ΠP

3

CA2 in ΣP
2 trivial ΣP

2 –c in ΠP
2

LAB DP–c trivial ΣP
2 –c coNP–c

PREF

AA in DP
2 trivial ΣP

2 –c ΠP
3 –c

AC in DP
2 trivial ΣP

2 –c ΠP
3 –c

CC in ΠP
2 trivial ΣP

2 –c ΠP
3 –c

CA1 in ΠP
3 trivial ΣP

2 –h, in ΣP
3 ΠP

3 –h, in ΠP
4

CA2 in DP
2 trivial ΣP

2 –c ΠP
3 –c

LAB ΠP
2 –c trivial ΣP

2 –c ΠP
3 –c

Table 2: The currently known complexity classes concerning the verification, existence and skep-
tical (credulous) acceptance problems for extension and labeling–based semantics of ADFs. The
blue and the green entries represent our findings, with the latter distinguishing the complete results.

References
[BES+13] Gerhard Brewka, Stefan Ellmauthaler, Hannes Strass, Johannes Peter Wallner, and Ste-

fan Woltran. Abstract dialectical frameworks revisited. In Francesca Rossi, editor,
Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJ-

32

CAI 2013), pages 803–809. AAAI Press, 2013.

[BG09] Pietro Baroni and Massimiliano Giacomin. Semantics of abstract argument systems. In
Guillermo Simari and Iyad Rahwan, editors, Argumentation in Artificial Intelligence,
pages 25–44. Springer, 2009.

[BW10] Gerhard Brewka and Stefan Woltran. Abstract dialectical frameworks. In Fangzhen
Lin, Ulrike Sattler, and Miroslaw Truszczyński, editors, Proceedings of the 12th In-
ternational Conference on the Principles of Knowledge Representation and Reasoning
(KR 2010), pages 102–111. AAAI Press, 2010.

[Ell12] Stefan Ellmauthaler. Abstract dialectical frameworks: properties, complexity, and im-
plementation. Master’s thesis, Faculty of Informatics, Institute of Information Systems,
Vienna University of Technology, 2012.

[Pap94] Christos H. Papadimitriou. Computational Complexity. Theoretical computer science.
Addison-Wesley, 1994.

[Pol14] Sylwia Polberg. Extension–based semantics of abstract dialectical frameworks. Techni-
cal Report DBAI-TR-2014-85, Institute for Information Systems, Technical University
of Vienna, 2014.

[Pol15] Sylwia Polberg. Revisiting extension–based semantics of abstract dialectical frame-
works. Technical Report DBAI-TR-2015-88, Institute for Information Systems, Tech-
nical University of Vienna, 2015.

[PWW13] Sylwia Polberg, Johannes Peter Wallner, and Stefan Woltran. Admissibility in the
abstract dialectical framework. In Paolo Torroni Leon van der Torre João Leite, Tran
Cao Son and Stefan Woltran, editors, Proceedings of the 14th International Workshop
on Computational Logic in Multi-Agent Systems (CLIMA 2013), volume 8143 of LNCS,
pages 102–118. Springer, 2013.

[Str13a] Hannes Strass. Approximating operators and semantics for abstract dialectical frame-
works. Artificial Intelligence, 205:39 – 70, 2013.

[Str13b] Hannes Strass. Instantiating knowledge bases in abstract dialectical frameworks. In
Paolo Torroni Leon van der Torre João Leite, Tran Cao Son and Stefan Woltran, edi-
tors, Proceedings of the 14th International Workshop on Computational Logic in Multi-
Agent Systems (CLIMA 2013), volume 8143 of LNCS, pages 86–101. Springer, 2013.

[SW15] Hannes Strass and Johannes Peter Wallner. Analyzing the Computational Complexity
of Abstract Dialectical Frameworks via Approximation Fixpoint Theory. Artificial
Intelligence, 226:34–74, 2015.

[Wal14] Johannes P. Wallner. Complexity Results and Algorithms for Argumentation - Dung’s
Frameworks and Beyond. Phd thesis, Vienna University of Technology, Institute of
Information Systems, Vienna, Austria, 2014.

33

5 Proof Appendix

5.1 Abstract Dialectical Frameworks
Lemma 19. Let D = (A,C) be an ADF, E ⊆ A a conflict–free set of arguments and v a two–
valued interpretation s.t. vt = E . If every argument in vf is decisively out w.r.t. v, then the partially
acyclic range vaE of E is a completion of v. For any conflict–free set E there is an interpretation v
with vt = E and vf ⊆ E p+ s.t. all arguments in vf are decisively out w.r.t. v.

Proof. Let vaE be the partially acyclic range of E . Assume it is not a completion of v. As the
t mappings of both interpretations are the same, this means there is an argument a ∈ A s.t.
v(a) = f and vpE is not defined for a. Therefore, the argument a has a partially acyclic evalua-
tion (F, (a0, ..., an), B) s.t. B ∩ E = ∅ and F ⊆ E , and yet is decisively out w.r.t. v.

From decisiveness it follows that v is in “conflict” with any decisively in interpretation v′ for
a, i.e. for every such v′ there is an argument x ∈ A s.t. v′(x) 6= v(x). If it were not the case and
there was no argument mapped to opposite values by the interpretations, then the union of these
interpretations would be a completion of both. It would evaluate the condition of x to in our out.
Thus, it would be impossible either for v to be decisively out or for v′ to be decisively in for x.

Since F ⊆ E , it cannot be the case that any argument in F is decisively out w.r.t. v. Let us
now focus on a0 and its decisively in interpretation va0 with which it entered the partially acyclic
evaluation. Since vfa0 ∩ E = ∅ and vta0 ⊆ E , it is not possible that a0 is decisively out w.r.t. v. As
vfa1 ∩ E = ∅ and vta1 ⊆ E ∪ {a0} and v(a0) 6= f , it is not possible that a1 is decisively out w.r.t. v.
We can continue in the same manner until we reach an and conclude that if an could not have been
decisively out w.r.t. v. Thus, if v maps to f a given argument, then so does vpE and the partially
acyclic range is a completion of v.

The fact that there exists an interpretation v with vf ⊆ E p+ arguments that are decisively out
follows from Proposition 33.

Lemma 20. Let D = (A,C) be an ADF, E ⊆ A a conflict–free set of arguments and X ⊆ A \ E
a set of arguments. Let v be a two–valued interpretation s.t. vt = E and vf = X . Then v is the
partially acyclic range interpretation of E iff all arguments in X are decisively out w.r.t. v and
every x ∈ A \ (E ∪ X) has a partially acyclic evaluation (F x, Gx, Bx) s.t. Bx ∩ E = ∅ and
F x ⊆ E .

Proof. Let us focus on the if–then direction. If v is the partially acyclic range interpretation, then
the decisiveness of the arguments in X holds by Proposition 33. If an argument x is not in the
range, then by Definition 17 it means it has an unblocked partially acyclic evaluation with the
pd–set contained in E . Therefore, this direction holds.

Let us focus on the other way. If all arguments inX are decisively out w.r.t. v, then the partially
acyclic range interpretation of E is a completion of v and v has a chance of being the actual range
by Lemma 19. Since every other argument has an unblocked partially acyclic evaluation with a
pd–set in E , then by the Definition 17 it cannot be the case that there is an argument mapped to f
by the range but not by v. Thus, v is the acyclic range interpretation of E .

34

Lemma 21. Let D = (A,C) be an ADF, E ⊆ A a conflict–free set of arguments and v a two–
valued interpretation s.t. vt = E . If every argument in vf is decisively out w.r.t. v, then the acyclic
range vaE of E is a completion of v. If E is pd–acyclic conflict–free, then there is an interpretation
v with vt = E and vf ⊆ E a+ s.t. all arguments in vf are decisively out w.r.t. v.

Proof. The fact that vaE is a completion of v follows from Lemmas 18 and 19 The fact that there
exists an interpretation v with vf ⊆ E a+ arguments that are decisively out follows from Proposition
33.

Lemma 22. Let D = (A,C) be an ADF, E ⊆ A a pd–acyclic conflict–free set of arguments and
X ⊆ A \ E a set of arguments. Let v be a two–valued interpretation s.t. vt = E and vf = X .
Then v is the acyclic range interpretation of E iff all arguments in X are decisively out w.r.t. v and
every x ∈ A \ (E ∪X) has an acyclic evaluation (F x, Bx) s.t. Bx ∩ E = ∅.

Proof. Let v be an interpretation s.t. vt = E and vf = X . Let us show that v is the acyclic range
interpretation of E iff all arguments in X are decisively out w.r.t. v and every x ∈ A\ (E ∪X) has
an acyclic pd–evaluation (F x, Bx) s.t. Bx ∩ E = ∅. If v is the acyclic range interpretation, then
decisiveness of the arguments holds by Proposition 33 and the fact that every other argument has
an unblocked acyclic pd–evaluation comes from the Lemma 16. If the arguments are decisively
out, then the acyclic range interpretation of E is a completion of v and v has a chance of being the
actual range by Lemma 21. Since every other argument has an unblocked acyclic pd–evaluation,
then by Lemma 16 it cannot be the case that there is an argument mapped to f by the range but not
by v. Thus, v is the acyclic range interpretation of E .

Theorem 39. LetD = (A,C) be an ADF s.t. A is finite. Given that x ∈ {ca1, ca2},D possesses at
least one x–preferred extension and for every x–admissible set E of D, there exists an x–preferred
extension E ′ of D s.t. E ⊆ E ′.

Proof. Since the set of arguments is finite, the collection of x–admissible extensions is finite as
well. Therefore, it will always possess maximal elements, which is precisely what x–preferred
extensions are. It is now easy to verify that every x–admissible set will be contained in some
x–preferred one.

5.2 Complexity Analysis of Basic Components
Proposition 52. V erindec is coNP-complete.

Proof. Let us consider an argument a and its condition Ca = ϕa, where ϕa is a propositional func-
tion. Let v be an interpretation defined on a set E w.r.t. which we want to check for decisiveness.
An interpretation is decisively in for an argument a iff there is no set of arguments S ⊆ A s.t.
vt ⊆ S, S ∩ vf = ∅ and Ca(S ∩ par(a)) = out. We can therefore consider the co–problem. We
guess a set S ⊆ A s.t. vt ⊆ S and S ∩ vf = ∅. Verifying that Ca(S ∩ par(a)) = out is achieved in
polynomial time for propositional acceptance conditions. This problem is in NP, and therefore our
main question is in coNP.

35

In order to show hardness, we consider the problem of checking whether a Boolean formula is
a tautology, which is coNP–complete. Let ϕ be a Boolean formula and X the set of propositional
variables that ϕ is based on. Without the loss of generality, let us assume that b /∈ X . We construct
an ADF (A,C) the following way: A = X ∪ {b}, for every xi ∈ X , Cxi = x, and Cb = ϕ. Let
v be an empty interpretation. We will show that ϕ is a tautology iff b is decisively in w.r.t. v in
(A,C).

Assume that b is decisively in w.r.t. v, but ϕ is not a tautology. This means that there exists a
set S ⊆ X s.t. S 6|= ϕ. Therefore, the t–completion of v to S evaluates Cb = ϕ to out. Hence, v
could not have been decisively in for a and we reach a contradiction with our assumptions.

Let us now assume that ϕ is a tautology, but v is not decisively in for a. Due to the fact that
v is empty, this means that there exists a set of arguments S ⊆ par(a) s.t. Ca(S) = out. Since
par(a) = X by the construction of our ADF, then it has to be the case that S 6|= ϕ. Therefore, ϕ
could not have been a tautology and we reach a contradiction.

Thus, we can conclude that our problem is both in coNP and coNP–hard. Hence, it is coNP–
complete.

Proposition 53. V eroutdec is coNP-complete.

Proof. This proposition can be proved in a similar manner as Proposition 52. Instead of checking
if the formula with substituted values is a tautology, we verify that it is unsatisfiable.

Proposition 54. Let D = (A,C) be an ADF, X ⊆ A a set of arguments and VX : X → vx a
function assigning partial two–valued interpretations on subsets ofA to arguments inX . Verifying
every interpretation is decisively in for its argument is coNP–complete.

Proof. We need to check that
∧
x∈X V er

in
dec(D, x, VX(x)) = yes. The problem

V erindec(D, x, VX(x)) was shown to be coNP-complete in Proposition 52. Hence, by the fact that
the class coNP is closed under conjunction, membership in coNP follows 6

In order to show hardness, we consider the problem of checking whether a Boolean formula is
a tautology, which is coNP–complete. Let ϕ = ψ1∧ψ2...∧ψn be a Boolean formula. LetXi be the
set of propositional variables that ψi is based on and X =

⋃n
i=1Xi the set of variables for ϕ. The

sets do not need to be disjoint. Please note that every ψi is a Boolean formula of its own; neither
ψi nor ϕ have to be in CNF. Without the loss of generality, let us assume that b1, ..., bn /∈ X . We
construct an ADF (A,C) the following way: A = X ∪ {b1, ..., bn}, for every xj ∈ X , Cxj = xj ,
and for every bi, Cbi = ψi. Let v be an empty interpretation. We will show that ϕ is a tautology iff
every bi is decisively in w.r.t. v in (A,C).

Assume that every bi is decisively in w.r.t. v, but ϕ is not a tautology. This means that there
exists a set S ⊆ X s.t. S 6|= ϕ. Consequently, there must also be a formula ψi s.t. S ∩ Xi 6|= ψi.
However, this implies that Cbi(S ∩ par(bi)) = out, which violates the decisiveness of bi w.r.t. v.
Thus, we reach a contradiction.

Let us now assume that ϕ is a tautology, but there is a bi s.t. v is not decisively in for it.
Due to the fact that v is empty, this means that there exists a set of arguments S ⊆ par(bi) s.t.

6A complexity class C is closed under conjunctions iff for any problem Γ ∈ C, the problem of deciding whether
for a finite set of instances of Γ each of these instances is a yes-instance is also in C.

36

Cbi(S) = out. Since par(bi) = Xi by the construction of our ADF, then it has to be the case
that S 6|= ψi and therefore S 6|= ϕ. Therefore, ϕ could not have been a tautology and we reach a
contradiction.

We can conclude that our problem is both in coNP and coNP–hard. Hence, it is coNP–
complete.

Proposition 55. Let D = (A,C) be an ADF, X ⊆ A a set of arguments and VX : X → vx a
function assigning partial two–valued interpretations on subsets ofA to arguments inX . Verifying
that every interpretation is decisively out for its argument is coNP–complete.

Proof. Checking that every interpretation in VX is decisively out requires | X | many independent
coNP checks by Proposition 53. Therefore, our problem is in coNP. In order to show hardness,
we can adapt the construction from the proof of Proposition 54 (instead of conjunction, we use a
disjunction). Thus, our problem is coNP–complete.

Proposition 56. Let D = (A,C) be an ADF and v an interpretation defined on E ⊆ A. Verifying
that no argument in A \ E is decisively in w.r.t. v is NP–complete.

Proof. From Proposition 52 we know that checking whether an argument is decisively in is in
coNP. Hence, checking whether an argument is not decisively in is in NP. Now, we need to consider
a conjunction of these NP problems. Since NP is closed under conjunction, membership follows.

In order to show hardness, we consider a reduction from the co–problem of V erindec, which
given an ADF D′ = (A′, C ′), argument a ∈ A′ and an interpretation v′ defined over a set E ′ ⊆ A′,
verifies whether a is not decisively in w.r.t. v′ in D′. This problem is NP–complete. We construct
the ADF D = (A′, C), where the conditions are as follows: Ca = C ′a, for every b ∈ E , Cb = b,
and for every c ∈ A′ \ (E ′ ∪ {a}), Cc = ¬c. We will show that a is not decisively in w.r.t. v′ in D′

iff no argument in A′ \ E ′ is decisively in w.r.t. v′ in D.
Let a be not decisively in w.r.t. v′ in D′. By the construction of D, it follows that it is not

decisively in w.r.t. v′ in D either. Moreover, for any argument c ∈ A′ \ (E ′ ∪ {a}), Cc = ¬c.
Since v′ is not defined for any such c, we can observe that the t–completion of v′ to E ′ ∪ {c} will
evaluate Cc to out, while the f–completion of v′ to E ′ ∪ {c} will evaluate it to in. Therefore, no
argument in A′ \ E ′ can be decisively in w.r.t. v′ in D.

If no argument is decisively in w.r.t. v′ inD, then by the construction ofD, it cannot be the case
that a is decisively in w.r.t. v′ inD′. Hence, our problem is NP–hard, and based on the membership
result, NP–complete as well.

Proposition 57. V erwst-pd is ΣP
2 -complete.

Proof. Let D = (A,C) be an ADF and (F,B) a pair with F,B ⊆ A. We can guess an interpreta-
tion assignment V = {vx | x ∈ F} s.t. for every vx, vtx ⊆ F . Verifying that every vx is decisively
in for its x is in coNP by Proposition 54. Checking if the requirements of the standard evaluation
hold is achievable in polynomial time. This puts our problem in ΣP

2 .

37

For hardness we reduce from satisfiability of a quantified Boolean formula (QBF) in prenex
normal form with one quantifier alternation, starting with an existential quantifier. Let φ =
∃X∀Y ψ be an arbitrary closed QBF of this form (w.l.o.g. we assume that X ∩ Y = ∅).

Construct D′ = (A′, C ′) in the following manner, as depicted in Figure 8:

• A′ = X ∪ Y ∪ {y′} ∪ {d}

• C ′x = ϕ′x = x for x ∈ X

• C ′y = ϕ′y = y for y ∈ Y

• C ′y′ = ϕ′y′ = ψ

• C ′d = ϕ′d =
∧
x∈X ¬x

Further let F = X ∪ {y′} ∪ {d} and B = X . We claim that (F,B) is a weak standard
pd–evaluation for d in D iff φ is satisfiable.

Assume that φ is satisfiable. Then there is a set E ⊆ X s.t. for any S ⊆ Y , we have E∪S |= ψ.
Let v be an interpretation s.t. vt = E and vf = (X \ E). Further, let u be an interpretation such
that ut = ∅ and uf = X . Finally let w be an interpretation such that wt = X and wf = ∅. We can
observe that for any x ∈ X , w is a decisively in interpretation for x. The argument d is decisively
in w.r.t. u. The argument y′ is decisively in w.r.t. v; we can observe that ϕy′ = ψ and v assigns
E to true and X \ E to false and ψ is a tautology under this partial assignment by assumption.
Furthermore, for each q ∈ {v, u, w} it holds that q> ⊆ F . Moreover, qf ⊆ B = X . Since uf = X
it follows that (F,B) is a weak standard pd–evaluation for d in D.

Assume now that (F,B) is a standard pd–evaluation for d in D. Therefore, there is a weak
pd–function pd = {(a, va) | a ∈ F} w.r.t. which (F,B) is weak standard pd–evaluations. Thus,
there is an interpretation v s.t. y′ is decisively in w.r.t. v. Note that (vt ∪ vf) ∩ Y = ∅, since
(F ∪ B) ∩ Y = ∅ by assumption. Let vt ∩X = E and vf ∩X = E ′. Since v is decisively in for
y′, then for each set S ⊆ Y we have E ∪ S |= ϕy′ = ψ. This directly implies that φ is satisfiable.

The above shows that our problem is ΣP
2 –hard. As it is also in ΣP

2 , it holds that V erwst−pd is
ΣP

2 –complete.

Proposition 58. V erwacy-pd is in ΣP
2 .

Proof. Let D = (A,C) be an ADF and (F,B) a pair with F = (a0, ..., an) a sequence of distinct
elements of A and B ⊆ A. We guess an interpretation assignment V = {vx | x ∈ F} s.t. for
every vx, vtx ⊆ F . Verifying that every vx is decisively in for its x is in coNP by Proposition
54. Checking if requirements of the acyclic pd–evaluation hold is achievable in polynomial time.
Therefore, the problem is in ΣP

2 .

Proposition 59. V erwpar-pd is in ΣP
2 .

38

x1 x2 . . . xn

x1 x2 xn

y′

d

ψ

¬x1 ∧ ¬x2 ∧ . . . ∧ ¬xn

y2y1 . . . yn

y1 y2 yn

Figure 8: ADF for QBF formula ∃X∀Y ψ

Proof. Let D = (A,C) be an ADF and (F,G,B) a tuple with G = (a0, ..., an) a sequence of
distinct elements of A and F,B ⊆ A. Guess an interpretation assignment V = {vx | x ∈ F ∪G}
s.t. for every vx, vtx ⊆ F ∪ G. . Verifying that every vx is decisively in for its x is in coNP by
Proposition 54. Checking if requirements of the partially acyclic evaluation hold is achievable in
polynomial time.

Proposition 60. Existswst-pd is in NP .

Proof. Let D = (A,C). We can guess a set of arguments F ⊆ A s.t. a ∈ F and an interpretation
assignment V = {vx | x ∈ F} s.t. every vx is a full two–valued interpretation. Since the
interpretations are full, verifying that they are decisively in for their arguments can be done in
polynomial time – it simply boils down to verifying whether vtx is a model of the propositional
acceptance condition of x. Checking if conditions of standard evaluations hold is also achievable
in polynomial time.

Proposition 61. Existswacy-pd is in NP .

Proof. Let D = (A,C). Guess a set of arguments F ⊆ A s.t. a ∈ F and an interpretation
assignment V = {vx | x ∈ F} s.t. every vx is a full two–valued interpretation. Since the
interpretations are full, verifying that they are decisively in for their arguments can be done in
polynomial time. Checking if conditions of weak pd–functions and acyclic evaluations hold is also
achievable in polynomial time. In particular, ordering the set into a sequence can be done by first

39

identifying those decisively in interpretation that have empty t parts and putting their respective
arguments into the sequence. We then find those interpretations s.t. their t parts are contained in
the arguments we have already ordered, add them to the sequence and repeat the procedure until
we are done.

Proposition 63. nsb-Existswst-pd is in NP.

Proof. We can guess a set of arguments F ⊆ A s.t. a ∈ F and an interpretation assignment s.t.
every x ∈ F has an interpretation vx s.t. vtx = F and vfx = A \ F . We receive full interpretations,
and therefore verifying that every interpretation is decisively in for its associated argument can be
done in polynomial time. Checking that we can form a weak standard evaluation with this weak
pd–function is also achievable in polynomial time.

Proposition 64. nsb-Existswacy-pd is in ΣP
2 .

Proof. We can guess a set of arguments F ⊆ A s.t. a ∈ F and an interpretation assignment s.t.
every x ∈ F has an interpretation vx s.t. vtx ⊆ F and vfx∩F = ∅. Verifying that every interpretation
is decisively in for its associated argument is in coNP by Proposition 54. Checking that we can form
non self–blocking acyclic evaluation from the assignment can be done in polynomial time.

Proposition 66. V erdisst is in ∆P
2 .

Proof. We verify whether X is the standard discarded set by computing the actual set E+ and
comparing it with X . Based on Definition 13 and Proposition 53, we need a polynomially many
calls to a coNP oracle in order to compute E+. Since the range computation proceeds in “waves”,
not all of the calls are independent and the construction of the discarded set is in ∆P

2 . We can then
compare E+ with X and return yes if they agree.

Proposition 67. sub-V erdisst is in ∆P
2 .

Proof. One way of showing that X is contained in the discarded set is verifying that all arguments
in X have all standard pd–evaluations blocked through the blocking set by E (see Lemma 14). It
is easy to see we can focus on weak evaluations instead of only normal ones.

We consider the co–problem, i.e. whether there exists an argument in X that possesses a weak
standard evaluation (F,B) s.t. B ∩ E = ∅. We can guess a set of arguments Z containing at least
one argument from X and an interpretation assignment V = {vz | z ∈ Z} s.t. for every vz, vtz ⊆ Z
and vfz ∩ E = ∅. Verifying that all of the interpretations are decisively in for their arguments is in
coNP by Proposition 54. They can be easily formed into a standard evaluation in polynomial time.
Therefore, our problem is in ΠP

2 with this approach.
Another way of showing that X is contained in the standard discarded set is simply computing

the actual set and verifying that X is contained in it. This puts our problem in ∆P
2 by Proposition

66, which is a better result.

Proposition 68. V erdispar is in ΣP
2 .

40

Proof. Let v be an interpretation s.t. vt = E and vf = X . By Lemma 20, v is the partially acyclic
range interpretation of E iff all arguments inX are decisively out w.r.t. v and every x ∈ A\(E∪X)
has a partially acyclic evaluation (F x, Gx, Bx) s.t. Bx ∩ E = ∅ and F x ⊆ E . We will use this to
prove the membership of our problem.

Verifying that all arguments in X are decisively out w.r.t. v is in coNP by Proposition 55.
Checking that no other argument qualifies for the discarded set can be done in the following man-
ner. We can observe that if every argument in A \ (E ∪X) possesses a partially acyclic evaluation
meeting our requirements, then there exists an unblocked partially acyclic evaluation containing
all of these arguments that meets our requirements as well. Moreover, if such an evaluation exists,
then from it we can easily extract unblocked partially acyclic evaluations that satisfy our condi-
tions. Without the loss of generality, we can focus on the weak evaluations. Therefore, no argument
from A \ (E ∪ X) qualifies for the partially acyclic discarded set iff we can construct a partially
acyclic evaluation (F,G,B) s.t. F = E , G a sequence of elements on A\(E ∪X) andB ⊆ A\E .
Hence, we guess an interpretation assignment for arguments in F ∪ A \X s.t. the f part of every
interpretation is in A \E). Verifying that all interpretations are decisively in for their arguments is
in coNP by Proposition 54. Ordering the elements from A \ (E ∪X) into a suitable pd–sequence
with F = E as the pd–set can be done in polynomial time. Based on the guessed interpretations,
it is easy to see that the blocking set requirements are also met. This, along with the previous
decisiveness verification, puts our problem in ΣP

2 .

Proposition 69. sub-V erdispar is in ΠP
2 .

Proof. X is a subset of the partially acyclic range iff no argument in X has a partially acyclic
evaluation that would be unblocked and with a pd–set in E (see Definition 17). It is easy to see we
can take into account also weak evaluations instead of only normal ones. Consider the co–problem:
there is an argument in X that possesses a partially acyclic evaluation (F,G,B) s.t. F ⊆ E and
B ∩ E = ∅. We can guess a set of arguments Z containing at least one argument from X and an
interpretation assignment s.t. for every interpretation vz for z ∈ Z, vfz ⊆ A \ E . Verifying that all
of the interpretations are decisively in for their arguments is in coNP by Proposition 54. Checking
that the interpretations can form a partially acyclic evaluation with a pd–set in E can be done in
polynomial time. Moreover, the evaluation is unblocked by construction. Therefore, our problem
is in ΠP

2 .

Proposition 70. V erdisacy is in DP
2 .

Proof. In order to show that X = E a+, it suffices to prove that X ⊆ E a+ and that there is no
argument in x ∈ A \ (E ∪X) that would qualify for the discarded set, i.e. for every such x there
is an acyclic pd–evaluation not blocked by E (see Lemma 16).

Verifying thatX ⊆ E a+ is in ΠP
2 by Lemma 71. Now we need to check that for every argument

x ∈ A \ (E ∪ X) there is a (weak) acyclic pd–evaluation with a blocking set disjoint from E . It
is equivalent to checking if there is an acyclic pd–evaluation containing all the arguments from
A \ (E ∪X) that has a blocking set disjoint from X . We can guess a set F s.t. A \ (E ∪X) ⊆ F
and an interpretation assignment V = {vf | f ∈ F} s.t. for every vf , vff ⊆ A\E . Verifying that all
of the interpretation are decisively in for their arguments is in coNP by Proposition 54. Checking

41

that we can form a (weak) acyclic pd–evaluation with our assignments can be done in polynomial
time. The evaluation is unblocked by construction. This part of the problem can be done in ΣP

2 .
Therefore, verifying whether a given set is the acyclic discarded set is in DP

2 .

Proposition 71. sub-V erdisacy is in ΠP
2 .

Proof. We can observe that X ⊆ E a+ iff all arguments in X have all acyclic pd–evaluations
blocked through the blocking set by E (see Lemma 16). It is easy to see we can consider weak
evaluations instead of only normal ones. We can consider the co–problem: there is an argument
in X that possesses a (weak) acyclic pd–evaluation (F,B) s.t. B ∩ E = ∅. We can guess a set
of arguments Z containing at least one argument from X and an interpretation assignment for the
elements in Z s.t. for every interpretation vz for z ∈ Z, vfz ⊆ A \ E . Verifying that all of the
interpretations are decisively in for their arguments is in coNP by Proposition 54. Checking that
we can form (weak) acyclic pd–evaluation can be done in polynomial time. The evaluation is
unblocked by construction. Therefore, our problem is in ΠP

2 .

Proposition 72. acy-V erdisacy is in ΣP
2 .

Proof. Let v be an interpretation s.t. vt = E and vf = X . By Lemma 22, v is the acyclic range
interpretation of E iff all arguments in X are decisively out w.r.t. v and every x ∈ A \ (E ∪ X)
has an acyclic pd–evaluation (F x, Bx) s.t. Bx ∩ E = ∅.

Verifying that all arguments in X are decisively out w.r.t. v in coNP (see Proposition 55).
Independently of this, we can verify that no other argument qualifies for the discarded set. We
can repeat the analysis of Proposition 70 in order to show that this problem is in ΣP

2 . Thus, the
verification is in total in ΣP

2 .

5.3 Complexity Analysis of Conflict–free and Grounded Semantics
Proposition 73. V ercf is in P.

Proof. Create an interpretation v which maps arguments in E to t and arguments in A \ E to f .
Verifying that the interpretation evaluates the conditions of arguments in E to in can be done in
polynomial time.

Proposition 75. V eracy-cf is in DP.

Proof. In order to verify that E is a pd–acyclic conflict–free extension, we will use Theorem 74 and
the approach from [BES+13]. Constructing the reduct DE can be done in polynomial time. Since
the grounded extension and the grounded labeling correspond by Theorem 45 and in this case the
f mappings are irrelevant, checking that E is the grounded extension is in DP by [Wal14, Theorem
4.1.4].

Proposition 76. Credcf is in NP.

42

Proof. A conflict–free extension can be viewed as a standard evaluation that is not self–blocking.
Consequently, asking whether there exists a conflict–free extension containing a given argument
is the same as asking whether there is a non self–blocking standard pd–evaluation containing this
argument, which is in NP by Proposition 63.

Proposition 77. Credacy-cf is in ΣP
2 .

Proof. A pd–acyclic conflict–free extension can be viewed as an acyclic evaluation that is not
self–blocking. Consequently, asking whether there exists a pd–acyclic conflict–free extension
containing a given argument is the same as asking whether there is a non self–blocking acyclic
pd–evaluation containing this argument. Thus, based on Proposition 64, our problem is in ΣP

2 .

Proposition 78. V ergrd is in DP.

Proof. LetD = (A,C) be an ADF and E ⊆ A the set we want to verify. Based on Theorem 45, we
can observe that the grounded extension and the grounded labeling of D correspond. Therefore,
in order to verify that E is the grounded extension of D, we exploit the problem of credulous
acceptance Credgrd−lab in the grounded labelings, which is in coNP. For every argument a ∈ E ,
we want Credgrd−lab(D, a) = yes and for every b ∈ A\E , we want Credgrd−lab(D, a) = no. Due
to the fact that both coNP and NP classes are closed under conjunction, it means that the first issue
lies in coNP while the other in NP. Consequently, our problem is in DP.

Proposition 79. V eracy-grd is in ∆P
3 .

Proof. We can compute the actual grounded extension and compare it with the set we want to
verify. In order to get the real set, we will follow the algorithm from Definition 29. We start with
an empty interpretation v and map to t those arguments that are decisively in w.r.t. v and to f those
that have all of their acyclic evaluations blocked by v. We then perform the search again w.r.t. the
extended v and repeat the procedure until no further arguments can be added. Thus, we perform
polynomially many steps in which every argument not covered by the range is checked for being
decisively in (this is in coNP by Proposition 52) or for belonging to the acyclic discarded set (this
is in ΠP

2 by Lemma 71). Therefore, the algorithm from Definition 29 is in ∆P
3 .

Proposition 80. Credgrd is coNP–complete.

Proof. By Theorem 45, an argument is credulously accepted in a grounded extension iff it is cred-
ulously accepted in a grounded labeling. Thus, the complexity follows from [Wal14, Proposition
4.1.3]. Since grounded semantics always produces only one extension, the credulous and skeptical
problems are the same and are coNP–complete.

Proposition 81. Credacy-grd is in ΠP
2 .

Proof. By Theorem 38, the acyclic grounded extension is the least aa–complete extension. There-
fore, in order to verify whether an argument a ∈ A is skeptically accepted w.r.t. the acyclic
grounded semantics, we can check if it is accepted in every aa–complete extension. We can con-
sider the co–problem, i.e. whether there exists an aa–complete extension E ⊆ A s.t. a /∈ E . We
can adapt the proof of Proposition 94 in a way that not only the discarded set, but also the accepted
set E is guessed. Therefore, verifying that there is an appropriate aa–complete extension is in ΣP

2 ,
which puts our original problem in ΠP

2 .

43

5.4 Complexity Analysis of Admissible Semantics
Proposition 82. V ercc-adm is in ∆P

2 .

Proof. First, we need to verify that E is even conflict–free. This problem is in P by Proposition
73. Computing the standard range requires polynomially many calls to a coNP oracle and is in ∆P

2

by the proof of Proposition 66. By Proposition 54, verifying that all arguments in E are decisively
in w.r.t. the standard range simply adds one more call to the coNP oracle. This puts our problem
in ∆P

2 .

Proposition 83. V erac-adm is in ΣP
2 .

Proof. We guess an interpretation assignment for every argument in E s.t. the t mappings are in E
and the f mappings are outside E . Verifying every interpretation is decisively in for the argument
it is assigned to is in coNP by Proposition 54. Due to the decisiveness and the construction of
these interpretations, it is easy to see that E is conflict–free. Computing the standard discarded
set requires polynomially many calls to a coNP oracle (see the proof of Proposition 66). Finally,
checking whether we can form an acyclic pd–evaluation with these interpretations and verifying
that the f part of every interpretation (i.e. the blocking set) is contained in the discarded set we
have just computed can be done in polynomial time. Therefore, our problem is in ΣP

2 .

Proposition 84. V eraa-adm is in ΣP
2 .

Proof. Let us guess an interpretation assignment s.t. every argument x ∈ E is associated with a
partial interpretation vx s.t. vtx ⊆ E and vfx ∩ E = ∅. Verifying that all of the interpretations are
decisively in for their arguments is in coNP by Proposition 54. Checking that the interpretations
form a (weak) acyclic pd–evaluation can be done in polynomial time. By construction, this evalu-
ation is not self–blocking, which means that our set is pd–acyclic conflict–free. We can now create
a two–valued interpretation v s.t. vt = E and vf =

⋃
vfx. By Lemma 21, it suffices to show that

every argument in vf is decisively out w.r.t. v, which can be done in coNP by Proposition 53. This
puts our problem in ΣP

2 .

Proposition 85. V erca1-adm is in ∆P
3 .

Proof. We first need to verify that E is even conflict–free. This problem is in P by Proposition 73.
We then need | A \ E | many calls to a ΠP

2 oracle in order to determine which arguments from
A \ E are in the acyclic discarded set (we simply use Proposition 71 for all single–argument sets
from A\E). We then need one call to a coNP oracle in order to verify that all arguments that are in
E , are decisively in w.r.t. the acyclic range (see Proposition 52. This puts our problem in ∆P

3 .

Proposition 86. V erca2-adm is in ΣP
2 .

Proof. We will exploit the relation between ca2–admissible extensions and admissible labelings
from Theorem 42. In other words, E is ca2–admissible iff there exists a corresponding admissible
labeling. Therefore, we can guess a set X ⊆ A \ E and create a three valued interpretation v s.t.
vt = E and vf = X . Verifying that this interpretation is an admissible labeling can be done in
coNP by [Wal14, Proposition 4.1.9]. Therefore, our problem is in ΣP

2 .

44

Proposition 87. Credcc-adm, Credac-adm, Credaa-adm and Credca2-adm are in ΣP
2 .

Proof. Let a be the desired argument. In the case of aa–admissible semantics, we adapt proof of
Proposition 84 in order to show that the credulous reasoning is in ΣP

2 . The guess for interpretation
assignment is simply extended in order to include a set of arguments E ⊆ A s.t. a ∈ E . Therefore,
the problem remains in ΣP

2 . The same follows for the ac–admissible semantics.
In the case of cc–semantics, we can guess a set of arguments E s.t. a ∈ E . Verifying that it is

conflict–free is in P . Computing the standard discarded set E+ requires polynomially many calls
to a coNP oracle (see the proof of Proposition 66). We now have the standard range at hand as
well. Checking that this range is a decisively in interpretation for all arguments in E is in coNP by
Proposition 54. Thus, the credulous reasoning for the cc–admissible semantics is in ΣP

2 .
Due to the relation between the ca2–admissible semantics and admissible labelings stated in

Theorem 42, the problem of credulous reasoning for both of the semantics is the same and is in ΣP
2

by [Wal14, Proposition 4.1.11].

Proposition 88. Credca1-adm is in ΣP
3 .

Proof. In order to show that the credulous reasoning for ca1–admissible semantics is in ΣP
3 , we

do the following: we can guess a set of arguments X containing the desired argument and an
interpretation assignment for this set s.t. for every x ∈ X , vtx ⊆ X and vfx ∩X = ∅. This ensures
conflict–freeness. Verifying that all of the interpretations are decisively in for their arguments is
in coNP by Proposition 54. Checking that we can form a standard evaluation with our assignment
can be done in polynomial time. Verifying that its blocking set is a subset of the acyclic discarded
set is in ΠP

2 by Lemma 71. Consequently, our problem is in ΣP
3 .

Lemma 89. Let X, Y be two disjoint sets of propositional variables, and ψ a Boolean formula
over X ∪ Y . Define the ADF Dψ = (S,C) as follows.

• S = X ∪X ∪ Y ∪ {f};

• ϕx = ¬x for x ∈ X;

• ϕx = ¬x for x ∈ X; and

• ϕy = ¬y for y ∈ Y ; and

• ϕf = ψ.

The ADF Dψ is an AADF+.

Proof. Every argument xi ∈ X has exactly one minimal decisively in interpretation {xi : f}.
Similarly, for every xi ∈ X we have {xi : f} and for every yi ∈ Y , {f : f , yi : f}. Consequently,
all of these arguments satisfy the starting argument requirement for acyclic pd–evaluations and
any standard evaluations involving only them can be made acyclic by putting the pd–set arguments
into a sequence in any order. The f argument can have an arbitrary number of decisively in
interpretations - it can even not possess one at all. However, any decisively in interpretation,

45

provided it exists, maps to t only xi, xi, yi arguments. In other words, f does not possess a minimal
decisively in interpretation that would map f itself to t. Since we know that all of the xi, xi, yi
arguments satisfy the starting argument requirement, any standard evaluation in Dψ containing f
in its pd–set can be reordered into an acyclic one by setting an = f and putting all remaining
arguments in arbitrary order. In conclusion, every standard evaluation in Dψ can be made acyclic
and Dψ is an AADF+.

Proposition 90. Let x, y ∈ {a, c}. Credxy-adm is ΣP
2 –hard.

Proof. Now, we will re–adapt the hardness proof of [Wal14, Proposition 4.1.11]) for our purposes.
We provide a reduction from the QBF∃,w − V ALIDITY . Let φ ∈ QBF∃,2 be a closed QBF of
the form φ = ∃X∀Y ψ. Construct an ADF Dψ = (X ∪X ∪ Y,C) for ψ described by Lemma 89
and depicted in Figure 6. The ADF Dψ can be constructed in polynomial time w.r.t. the size of φ.
We exploit the fact that Dψ is an AADF+ and thus all aa/ac/cc/ca1 and ca2–admissible extensions
coincide according to Theorem 48. We now prove that Credxy−adm(f,D) = yes iff φ is valid.

Assume that Credxy−adm(f,D) = yes. Then there exists an xy–admissible extension E ⊆
X ∪X s.t. f ∈ E . Since D is an AADF+, we can focus on cc–admissibility only. We can observe
that none of the yi can be in the discarded set of E – every one of them has a simple standard
evaluation ({yi}, {yi}), and as yi /∈ E , the evaluation remains unblocked (see Lemma 14). Since
f is decisively in w.r.t. the standard range of E , it means that any completion of the range satisfies
the condition of f . As only elements of X and Y can be parents of f , this means that the condition
ψ of f is satisfied by any set (E ∩ X) ∪ Y ′, where Y ′ ⊆ Y . Thus, (E ∩ X) ∪ Y ′ |= ψ and as it
holds for arbitrary Y ′ ⊆ Y , φ is valid.

Now assume that φ is valid. This means there exists a set X ′ ⊆ X s.t. for any Y ′ ⊆ Y we
have X ′ ∪ Y ′ |= ψ. We now show that E = X ′ ∪ {xi | xi /∈ X ′} ∪ {f} is xy–admissible in
Dψ. Since Dψ is an AADF+, it suffices to focus on the cc–admissible case. First, let us focus on
E ′ = E \{f}. Since we only accept xi in E if xi is not present, we can conclude that all arguments
in E ′ have their acceptance conditions satisfied and that the set is conflict–free. We can observe
that for any xi ∈ E ′, xi ∈ E ′+ and for any xi ∈ E ′, xi ∈ E ′+. Thus, the decisiveness of arguments
in E ′ w.r.t. the standard range follows easily and we can conclude that the set is cc–admissible. Let
us now focus on f . Due to the validity of φ and the fact that only elements of X are parents of f ,
condition ψ is satisfied by E ′. As only remaining parents of f are in Y and as f is in w.r.t. E ′ ∪ Y ′
for any Y ′ ⊆ Y due to the validity of φ, then ψ is in w.r.t. any completion of the range of E ′ and
we can conclude that f is decisively in w.r.t. the range of E ′. Thus, by Fundamental Lemma 35,
E = E ′ ∪ {f} is cc–admissible.

We can finally conclude that the credulous reasoning under xy–admissible semantics is ΣP
2 –

hard.

Proposition 91. Credcc-adm, Credac-adm, Credaa-adm and Credca2-adm are ΣP
2 –complete.

Proof. ΣP
2 –completeness for the credulous reasoning under cc, ac, aa and ca2–admissible seman-

tics follows from Proposition 87 and Proposition 90.

46

5.5 Complexity Analysis of Complete Semantics
Proposition 92. V ercc-cmp is in ∆P

2 .

Proof. We first need to show that E is cc–admissible. As seen in the proof of Proposition 82, we
start by verifying that E is conflict–free (which is in P by Proposition 73) and then need polyno-
mially many calls to a coNP oracle in order to compute the standard range (Proposition 66) and to
check that all arguments in E are decisively in w.r.t. to it (Proposition 54). The proof needs to be
extended with checking that there is no other argument that is decisively in w.r.t. the range, which
requires a call to an NP oracle by Proposition 56. This puts our problem in ∆P

2 .

Proposition 93. V erac-cmp is in ΣP
2 .

Proof. We first need to verify that E is ac–admissible. We start by guessing an interpretation
assignment V = {vx | x ∈ E} s.t. for every vx, vtx ⊆ E and vfx ⊆ A \ E . Verifying that these
interpretations are decisively in for their argument is in coNP by Proposition 54. This also ensures
conflict–freeness. We then need polynomially many calls to a coNP oracle in order to compute
the standard discarded set and verify the decisiveness of the accepted arguments w.r.t. this range.
Checking if our interpretations form an acyclic pd–evaluation that meets our requirements is done
in polynomial time. In order to prove completeness, we need one call to an NP oracle in order to
check that there is no other argument that is decisively in w.r.t. the range (see Proposition 56). Our
problem is thus still in ΣP

2 .

Proposition 94. V eraa-cmp is in ΣP
2 .

Proof. Let E be the set of arguments we want to verify. We guess a set of arguments T ⊆ A\E and
an interpretation assignment V = {vx | x ∈ A} s.t. for every x ∈ E , vtx ⊆ E and vfx = T , and for
every x /∈ E ∪T , vtx ⊆ A\T and vfx ⊆ A\E . Verifying that all of the interpretations are decisively
in for their arguments is in coNP by Proposition 54. Checking that we can form an acyclic pd–
evaluation with the assignments for arguments in E can be done in polynomial time. The same
holds for the assignments for arguments in A \ T . Based on the construction, we can observe that
the evaluation created for arguments in E cannot be self–blocking. Thus, E is pd–acyclic conflict–
free. We now construct an interpretation v s.t. vt = E and vf = T . By Lemma 21, in order to
show that our set is aa–admissible, it suffices to check that every argument in vf is decisively out
w.r.t. v. This is in coNP by Proposition 53. In order to prove aa–completeness, we need to check
that no argument outside of vt ∪ vf should be included in it. Verifying that no argument outside
the range should be mapped to t requires one call to an NP oracle (see Proposition 56). The fact
that no argument outside the range should be mapped to f is already proved by the existence of an
acyclic pd–evaluation for arguments in A \ T . Thus, our problem is in ΣP

2 .

Proposition 95. V erca1-cmp is in ∆P
3 .

Proof. We first verify that E is ca1–admissible. As seen in the proof of Proposition 85, we start
by making sure that E is conflict–free, which is in P. We then need | A \ E | many calls to a ΠP

2

oracle in order to determine which arguments from A \ E are in the discarded set (we simply use

47

Proposition 71 for all single–argument sets from A \ E). We then need one call to a coNP oracle
in order to verify that all arguments in E are decisively in w.r.t. the acyclic range (see Proposition
52. We then need a call to an NP oracle in order to check that no other argument is decisively in
w.r.t. the range (see Proposition 56). Therefore, the verification problem still remains in ∆P

3 .

Proposition 96. V erca2-cmp is in ΣP
2 .

Proof. Let E be the set of arguments we want to verify. We guess a set of arguments T ⊆ A\E and
an interpretation assignment V = {vx | x ∈ A} s.t. for every x ∈ E , vtx = E and vfx = T , and for
every x /∈ E ∪T , vtx ⊆ A\T and vfx ⊆ A\E . Verifying that all of the interpretations are decisively
in for their arguments is in coNP by Proposition 54. This also shows that E is conflict–free and
that every x ∈ E is decisively in w.r.t. an interpretation v s.t. vt = E and vf = T . By Lemma
19, in order to show that our set is ca2–admissible, it suffices to check that every argument in vf

is decisively out w.r.t. v. This is in coNP by Proposition 53. In order to prove ca2–completeness,
we need to check that no argument outside of the range should be included in it. Checking that
no argument outside the range is decisively in w.r.t. this range requires one call to an NP oracle
(see Proposition 56). The fact that no argument outside the range should be mapped to f is proved
by showing that with the guessed interpretations, we can order arguments in A \ (E ∪ T) into a
sequence G s.t. (E , G,

⋃
x∈A\T v

f
x) is a partially acyclic pd–evaluation. Since this can be done in

polynomial time, our verification problem is in ΣP
2 .

Proposition 97. Credcc-cmp, Credac-cmp are Credaa-cmp are ΣP
2 –complete.

Proof. Follows from Theorems 37, 38 and 91.

Proposition 98. Credca2-cmp is ΣP
2 –complete. Credca1-cmp is in ΣP

3 and is ΣP
2 –hard.

Proof. Follows from Theorems 38 and 39, Propositions 88, 90 and 91, and the fact that we are
dealing with finite frameworks.

Proposition 99. Skeptcc-cmp and Skeptac-cmp are coNP–complete.

Proof. Since the grounded extension is the least ac and cc–complete one by Theorem 38, the
skeptical reasoning for these semantics is the same as for the grounded one and is coNP–complete
by Proposition 80.

Proposition 100. Skeptaa-cmp is in ΠP
2 .

Proof. Since the acyclic grounded extension is the least aa–complete one by Theorem 38, the
skeptical reasoning for this semantics is the same as for the acyclic grounded one and is in ΠP

2 by
Proposition 81.

Proposition 101. Skeptca1-cmp is in ΠP
3 .

48

Proof. Let a ∈ A be the argument we want to check for skeptical acceptance. In other words, we
want to verify if all ca1–complete extensions contain a. Let us now focus on the co–problem, i.e.
existence of a ca1–complete extension that does not include a.

We first guess a set of arguments E ⊆ A \ {a} and verify that it is conflict–free, which is in P.
We then need | A\E |many calls to a ΠP

2 oracle in order to determine which arguments fromA\E
are in the discarded set (we simply use Proposition 71 for all single–argument sets from A \ E).
We then need one call to a coNP oracle in order to verify that all arguments in E are decisively in
w.r.t. the acyclic range (see Proposition 52) and call to an NP oracle in order to check that no other
argument is decisively in w.r.t. the range (see Proposition 56).

Our co–problem is in ΣP
3 ; hence, the main one is in ΠP

3 .

Proposition 102. Skeptca2-cmp is in ΠP
2 .

Proof. Let a ∈ A be the argument we want to consider. We will focus on the co–problem, i.e.
existence of a ca2–complete extension that does not contain a. This can be done by modifying the
guess in the proof of Proposition 96. In this case, we not only guess a set T , but also a set E s.t.
a /∈ E . Therefore, our co–problem is in ΣP

2 , which puts the main issue in ΠP
2 .

5.6 Complexity Analysis of Preferred Semantics
Proposition 103. V ercc-prf is in ΠP

2 .

Proof. Verifying that E is cc–admissible is in ∆P
2 by Proposition 82. Now, it is cc–preferred

iff there is no other cc–admissible extension that would contain it. Let us now consider the co–
problem, i.e. there exists a cc–admissible extension E ′ s.t. E ⊂ E ′. We can guess a set of
arguments E ′ along with the interpretation assignment and proceed as in the proof of Proposition
87 to verify that E ′ is cc–admissible, which puts this part of the problem in ΠP

2 . Since ∆P
2 ⊆ ΠP

2 ,
the verification problem for the cc–preferred semantics is in ΠP

2 .

Proposition 104. V erac-prf , V eraa-prf and V erca2-prf are in DP
2 .

Proof. Let x ∈ {ac, aa, ca2}. Verifying that E is x–admissible can be done in ΣP
2 by Propositions

83, 84 and 86. It is x–preferred iff there is no other x–admissible extension that would contain it.
Let us now consider the co–problem, i.e. there exists an x–admissible extension E ′ s.t. E ⊂ E ′.
We can guess a set of arguments E ′ along with the interpretation assignment and proceed as in the
proof of Proposition 87 to verify that E ′ is ac/aa/ca2–admissible. Thus, this part of the problem is
in ΠP

2 and the general verification problem is in DP
2 .

Proposition 105. V erca1-prf is in ΠP
3 .

Proof. Verifying that E is ca1–admissible is in ∆P
3 by Proposition 85. It is ca1–preferred iff there

is no other ca1–admissible extension that would contain it. Let us now consider the co–problem,
i.e. there exists a ca1–admissible extension E ′ s.t. E ⊂ E ′. We can guess a set of arguments E ′

along with the interpretation assignment and proceed as in the proof of Proposition 88 to verify
that E ′ is ca1–admissible, which puts this part of the problem in ΠP

3 . Thus, the verification problem
is in ΠP

3 .

49

Proposition 106. Skeptcc-prf is in ΠP
3 .

Proof. In order to answer yes we need to check if every cc–preferred extension contains a given
argument. Let us consider the co–problem, i.e. there exists a cc–preferred extension E ′ which
does not contain the desired argument. Let a be the argument in question. We can guess a set of
arguments E ′ ⊆ A \ {a} that does not contain a; verifying it is indeed cc–preferred is in ΠP

2 by
Proposition 103. This puts our problem in ΠP

3 .

Proposition 107. Skeptac-prf , Skeptaa-prf and Skeptca2-prf are in ΠP
3 .

Proof. Let us start with the ac–preferred semantics. We consider the co–problem, i.e. deciding
whether there exists an ac–preferred extension E that does not contain the desired argument, say
a ∈ A. We guess a set E ⊆ A\{a} and an interpretation assignment V = {vx | x ∈ E} s.t. vtx ⊆ E
and vfx ⊆ A \ E . We then require polynomially many calls to a coNP oracle in order to verify that
E is an ac–admissible extension (see the proof of Proposition 83). In order to verify that it is
ac–preferred, we consider the co–problem, i.e. we check if there exists an ac–admissible extension
E ′ s.t. E ⊂ E ′. Again, this can be done by guessing a set and an interpretation assignment and
proceeding as in the previous step. Hence, the problem of skeptical reasoning for ac–preferred
semantics is in ΠP

3 .
The same analysis can be carried out for the aa–preferred semantics, thus putting this skeptical

reasoning problem in ΠP
3 as well. We are left with the ca2–approach. We consider the co-problem

again. First, we guess a partial two–valued interpretation v s.t. v(a) 6= t. We exploit the relation
between the ca2–admissible extensions and admissible labelings (see Theorem 42) in order to show
that vt is ca2–admissible, which requires a call to coNP oracle by [Wal14, Proposition 4.1.9]. In
order to show that vt is ca2–preferred, we guess another interpretation z s.t. vt ⊂ zt and proceed
as before. Thus, verifying that there exists a ca2–preferred extension not containing the argument
a is in ΣP

3 , which puts the skeptical reasoning problem for this semantics in ΠP
3 .

Proposition 108. Skeptca1-prf is in ΠP
4 .

Proof. In order to analyze the complexity of verifying that every ca1–preferred extension contains
the desired argument, let us consider the co–problem, i.e. deciding whether there exists a ca1–
preferred extension E ′ which does not contain the desired argument. Let a be the argument in
question. We can guess a set of arguments E ′ ⊆ A \ {a} and an interpretation assignment for
E ′. Verifying that this guess qualifies for a ca1–admissible extension is in ΠP

2 (see the proof of
Proposition 88). Checking that it is in indeed ca1–preferred (i.e. that there is no ca1–admissible
extension greater than E ′) is in ΠP

3 (see the proof of Proposition 105). Thus, the skeptical reasoning
for ca1–preferred semantics is in ΠP

4 .

Lemma 109. Let φ ∈ QBF∀,3 be a closed QBF of the form φ = ∀X∃Y ∀Zψ. We define the ADF
Dpref(ψ) with S = X ∪X ∪ Y ∪ Y ∪D ∪D ∪Z ∪ {f} and the acceptance conditions as follows:

• ϕxi = ¬xi for xi ∈ X

• ϕxi = ¬xi for xi ∈ X

50

• ϕdi = ¬f for di ∈ D

• ϕdi = ¬f for di ∈ D

• ϕyi = ¬di ∧ ¬yi for yi ∈ Y

• ϕyi = ¬di ∧ ¬yi for yi ∈ Y

• ϕzi = ¬zi for zi ∈ Z

• ϕf = ¬f ∨ ψ

Then Dpref(ψ) is an AADF+.

Proof. Straightforward: see the proof of Lemma 89 for details. All arguments inX,X, Y, Y ,D,D
and Z have a single minimal decisively in interpretation that maps parents of a given argument to
f . Consequently, they have trivial acyclic evaluations. Argument f possesses at least one minimal
decisively in interpretation mapping f to f . Consequently, it also has a trivial acyclic evaluation.
Analysis of the other interpretations follows the same line of reasoning as in Lemma 89.

Proposition 110. Skeptxy−pref is ΠP
3 –hard for ADFs for x, y ∈ {a, c}.

Proof. We re–adapt the hardness proof of [Wal14, Theorem 4.1.17] for our purposes. Consider
a reduction from a closed QBF φ = ∀X∃Y ∀Zψ, the construct Dpref(φ) as in Lemma 109 s.t.
D = {di | yi ∈ Y } and D = {di | yi ∈ Y }. We know prove that Skeptxy−pref (f,Dpref(φ)) = yes
iff φ is valid.

Assume that φ is valid. Consider an arbitrary X ′ ⊆ X . Since φ is valid, we know that there is a
Y ′ ⊆ Y s.t. for any Z ′ ⊆ Z we have X ′ ∪ Y ′ ∪Z ′ |= ψ. Let E = X ′ ∪ {xi | xi /∈ X ′} ∪ Y ′ ∪ {yi |
yi /∈ Y ′} ∪ {f} be a set of arguments. We will show that E is xy–preferred. Since Dpref(φ) is
an AADF+ by Lemma 109, all xy–preferred extensions coincide and it suffices to focus on the
cc case. We first show it is conflict–free. Since X ′ ∪ Y ′ ∪ Z ′ |= ψ for arbitrary Z ′ ⊆ Z, then
X ′ ∪ Y ′ |= ψ and thus the acceptance condition of f is easily satisfied w.r.t. E . As no parents of
xi, xi, yi, yi ∈ E are present in E , their conditions are also satisfied. Thus, E is conflict–free. Let
us now focus on admissibility. Due to the presence of f in E , all di, di are in the discarded set.
Similarly, for any xi in E , xi is in the discarded set, for any xi ∈ E , xi is in the discarded set, for
any yi ∈ E , yi is in the discarded set, and for any yi ∈ E , yi is in the discarded set. Therefore,
the decisiveness of these arguments follows easily. We can observe that only zi arguments are not
in the discarded set of E (their conditions are satisfied w.r.t. E). However, as X ′ ∪ Y ′ ∪ Z ′ |= ψ
for arbitrary Z ′ ⊆ Z, then it follows that any completion of the standard range will not change the
outcome of the acceptance condition of f . Therefore, f is also decisively in w.r.t. the range and
E is cc–admissible. By this analysis we can also observe that it is cc–preferred; all arguments in
Dpref(φ) that are not in E and Z are in the discarded set. Thus, their conditions will evaluate to
out w.r.t. any set containing E by Proposition 33 and Lemma 34. Moreover, no set containing zi
can be conflict–free. Consequently, no set E ′ s.t. E ⊂ E ′ can possibly be conflict–free, let alone
cc–preferred.

51

Now we need to show that all sets of arguments E ′ s.t. E ′ ∩ X = X ′ either contain f or are
not cc–preferred. Thus, supposed that E ′ does not contain f and is cc–preferred. We can observe
that as long as f is not presented in a given set of arguments, its condition is in w.r.t. this set.
Consequently, it cannot be the case that f is in the discarded set of E ′. From this follows that no
di and di can possibly be decisively in w.r.t. the range of E ′ – therefore, if they are present in the
set, it cannot be even cc–admissible. They also cannot be decisively out w.r.t. the range of E ′ –
as long as f is not present in the set, their conditions are in. Consequently, it is not possible for
E ′ to contain any of the yi, yi, as the completions of range evaluate their conditions to different
values depending on what is assigned to di’s and di’s. Additionally, none of the zi can possibly be
in the standard range – a set that does not contain these arguments evaluates to true, thus decisive
outing is not possible, and a set that does contain them cannot be conflict–free. Therefore, it is
only possible that E ′ contains some of the arguments from X . We can observe that E ′ = X ′ itself
is easily cc–admissible; every xi for xi ∈ E ′ is trivially in the discarded set. If xi ∈ E ′ when
xi ∈ E ′, we breach conflict–freeness of E ′. If xi /∈ E ′ and xi /∈ E ′, then xi is in the discarded
set of E ′′ = E ′ ∪ {xi}, which makes E ′′ cc–admissible. Since E ′ ⊂ E ′′, it cannot be the case that
E ′ is cc–preferred. This brings us to the conclusion that E ′ is of the form X ′ ∪ {xi | xi /∈ X ′}.
However, E ′ is clearly a subset of the cc–preferred extension E described before. Consequently,
it cannot be the case that E ′ does not contain f and is cc–preferred. We can conclude that if φ is
valid, then Skeptxy−pref (f,Dpref(φ)) = yes.

Now assume that Skeptxy−pref (f,Dpref(φ)) = yes. Let us now consider how the preferred
extensions look like in our framework. An arbitrary set X ′ ⊆ X is cc–admissible; it is conflict–
free, and every xi has the power to decisively out its xi. We can give the same analysis forX ′ ⊆ X .
Consequently, it is easy to see that a setX ′∪{xi | xi /∈ X ′} will also be cc-admissible. By this and
Theorems 37 and 39 it follows that there exists a cc–preferred extension E s.t. E ∩ X = X ′ for
arbitrary X ′. As any cc–preferred extension E also contains f , it means that arguments in D ∪D
will be in the discarded set of E . Now assume that for a given i, neither yi nor yi are in E . We
can observe that E ′ = E ∪ {yi} is cc–admissible; it is easily conflict–free, and by Lemma 34 the
arguments in E are decisively in w.r.t. the range of E ′. Moreover, by this lemma arguments in
D ∪ D are also in the discarded set and due to the presence of yi, so is yi. Consequently, yi has
to be decisively in w.r.t. the range of E ′. Consequently, if E does not contain yi, then E ∪ {yi}
is cc–admissible, making it impossible for E to be cc–preferred in the first place. Similar analysis
can be done for yi, assuming its addition does not affect f . The point is, however, that for any
cc–preferred extension the standard range is defined for arguments in Y and Y . Let again X ′ ⊆ X
be an arbitrary set of arguments . There exists a cc–preferred extension E s.t. E ∩ X = X ′. Let
Y ′ = E ∩ Y . Since the range of E cannot be defined for any zi and f is still decisively in w.r.t.
the range, we can conclude that X ′ ∪ Y ′ ∪ Z ′ ∪ {f} |= Cf for arbitrary Z ′ ⊆ Z. Consequently,
X ′ ∪ Y ′ ∪ Z ′ |= ψ, and as it holds for arbitrary X ′, φ is valid.

Proposition 111. Skeptcc-prf , Skeptac-prf , Skeptaa-prf and Skeptca2-prf are ΠP
3 –complete.

Skeptca1-prf is ΠP
3 –hard and in ΠP

4 .

Proof. Follows from Propositions 106 and 107 and Proposition 110.

Proposition 112. Credcc-prf , Credac-prf and Credaa-prf are ΣP
2 –complete.

52

Proof. Follows from Theorem 37 and Proposition 91.

Proposition 113. Credca2-prf is ΣP
2 –complete. Credca1-prf is in ΣP

3 and is ΣP
2 –hard.

Proof. Follows from Theorems 38 and 39, Propositions 88, 90 and 91, and the fact that we are
dealing with finite frameworks.

53

	Introduction
	Abstract Dialectical Frameworks
	Preliminaries
	Interpretations and decisiveness
	Evaluations and acyclicity

	Labeling–Based Semantics
	Extension–Based Semantics
	Conflict–free Semantics
	Ranges and Discarded Sets
	Model and Stable Semantics
	Grounded Semantics
	Admissible, Preferred and Complete Semantics
	Properties of Extension–Based Semantics

	Comparison of Extension–Based and Labeling–Based Semantics

	Computational Complexity
	Complexity Analysis of ADF Semantics
	Basic Components
	Decisiveness and Evaluations
	Discarded Sets

	Conflict–free Semantics
	Grounded Semantics
	Admissible Semantics
	Complete Semantics
	Preferred Semantics
	Summary

	Proof Appendix
	Abstract Dialectical Frameworks
	Complexity Analysis of Basic Components
	Complexity Analysis of Conflict–free and Grounded Semantics
	Complexity Analysis of Admissible Semantics
	Complexity Analysis of Complete Semantics
	Complexity Analysis of Preferred Semantics

