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Abstract. In this paper, we present novel algorithms for propositional answer set program-
ming (ASP). In particular, we employ dynamic programming on tree decompositions which
leads to algorithms that directly exploit the structure of the given ASP program. It is well-
known that for tree-like ASP programs (that is, those programs whose treewidth is bounded),
the complexity of solving drops from the second level of the polynomial hierarchy to polyno-
mial time. Based on the idea of a dynamic programming algorithm previously introduced by
Jakl, Pichler, and Woltran at IJCAI 2009, we propose several graph representations for ASP
programs amenable for tree decomposition-based algorithms, and we present multiple ASP
solving algorithms for these that can handle the full, state-of-the-art lparse ASP syntax that
is used by most of the currently available ASP solvers. Finally, we present two prototype
systems with these algorithms, using advanced implementation techniques. We show that
these implementations exhibit favorable runtime behaviour especially for the problem of
answer set counting.
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1 Introduction
Answer set programming (ASP) [21, 45, 48, 72] is a well-established logic programming paradigm
based on the stable model semantics of logic programs. Its main advantage is an intuitive, declarative
language, and the fact that generally, each answer set of a given logic program describes a valid
answer to the original question. Moreover, ASP solvers—see e.g. [5, 6, 38, 47]—have made huge
strides in efficiency and are now readily available for anyone to use. Because of these factors, ASP
has found great success in the field of artificial intelligence and has become widely used both in
research and industry.

Solving a ground (i.e. propositional), disjunctive answer set program (also called ASP program)
is Σ2

P-hard in general [37]. However, ASP programs often exhibit an underlying structure that
may make solving them easier. One such parameter is called treewidth. Roughly, it measures how
close a given graph structure is to a tree. Following from a seminal result by Bruno Courcelle
[25], the authors of [51] show the following: it turns out that, for suitable graph representations,
ASP programs can actually be solved in linear time given that the treewidth is low (i.e. bounded).
A corresponding linear-time algorithm using this result was presented in [61] and a prototype
implementation in [74]. However, with both being preliminary works, they only treat a minimal
subset of the common propositional ASP language that modern solvers use (called the lparse syntax,
[96]).

The general method these algorithms use is dynamic programming on tree decompositions. A
tree decomposition arranges a graph into a labelled tree in such a way that each tree node contains a
subset of the vertices of the original graph. The treewidth of a given graph G provides an optimal
upper bound on the size of the tree nodes in such a decomposition of G. For ASP programs, a rough
overview of the mode of operation of such an algorithm could be stated as follows: given a suitable
graph representation of the ASP program, the contents of each tree node identify a sub-program
of the full ASP program. A tree decomposition of an ASP program can then be evaluated in a
bottom-up manner, solving the partial program at each tree node. In a dynamic programming
fashion, partial solutions to partial problems can be discarded as soon as it becomes clear that
such a partial solution cannot be extended to a full solution. Once all nodes have been evaluated,
the relevant partial solutions can then be combined to form complete solutions for the entire ASP
program.

Based on these ideas, in this paper we propose and evaluate novel dynamic programming-based
ASP solving algorithms that exploit, using the notion of tree decompositions, the underlying graph
structure of the given (ground) input ASP program. In contrast to the algorithms and systems
presented in [61, 74], we present several different graph representations that can be used for tree
decomposition-based dynamic programming algorithms (namely, the primal, semi-incidence, and
incidence graph representations). We then present corresponding, novel algorithms and variations
that are specifically tailored to these graph representations and, furthermore, we handle the full,
state-of-the-art propositional ASP syntax [96] including weight constraints and choice rules. This
requires the design of more sophisticated algorithms and data structures. Further, we make use
of advanced techniques for dynamic programming on tree decompositions originally proposed in
previous work [13]. In additional, our solver also supports optimization statements that allow us not
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only to find or count arbitrary models but also do the same for optimal models.

Why ASP? When using SAT solvers to evaluate a problem, the problem usually has to be encoded
into a SAT formula. Such SAT encodings thus require specialized encoding algorithms for each
particular problem. On the other hand, ASP, as a rule-based formalism, allows the declarative
specification of problem statements. The actual problem instance can then simply be given as
ground facts. With efficient ASP model counters, the intuitive, rule-based ASP language can be
used in all application areas mentioned above.

Example 1.1. Consider the non-ground program consisting of the following rules:

color(V, red) ∨ color(V, blue)←vertex (V ).

←edge(V 1, V 2), color(V 1, C), color(V 2, C), V 1 6= V 2.

The graph G = (V,E) will be given as as a set of rules:

edge(v, w). ( for every vw ∈ E)

vertex (v). ( for every v ∈ V )

It is easy to see that the program encodes the problem GRAPH 2-COLORING (see Section 2.3 for
definition). For every v ∈ V the atoms color(v, red) and color(v, blue) of an answer set of the
program represent a 2-coloring of the input graph and vice versa. Correspondingly, the number of
answer sets equals the number of 2-colorings.

Evaluating (non-ground) programs is usually a two-step process. First, a grounder instantiates
the program, replacing all variables by domain constants, and then a solver evaluates the ground
program and computes answer sets. The algorithms we present in this paper deal with the latter
step. While for SAT the model existence problem is NP-complete, checking whether an answer
set of a given ground (disjunctive) ASP program exists is ΣP

2 -complete [37]. Thus, ASP allows for
compact encodings of problems of higher complexity than SAT. Such problems typically arise in
artificial intelligence domains like circumscription or diagnosis.

Related Work. Gutin [55] has recently stressed on the importance of implementing and evaluating
algorithms that take certain structural features of an instance into account. Multiple papers have
investigated theoretical runtime bounds for different reasoning problems when parameterized by
treewidth; see e.g. [92] for SAT or [84] for constraint satisfaction problems. Several works have
proposed algorithms for #SAT (that is, the model counting problem for SAT), guaranteeing favorable
theoretical runtime bounds [42] and providing prototypical implementations [67, 82]. Samer and
Szeider [83] have presented decomposition-based algorithms for #SAT, which work on various
notions of graph representations. Two of those (the primal and incidence graph) are related to the
graph representations we use. Backdoors to bounded treewidth SAT instances were investigated in
[43].

Pichler et al. [79] have established an algorithm for deciding answer set existence of disjunction-
free programs with weight constraints that runs in linear time and exploits a small incidence



TECHNICAL REPORT DBAI-TR-2016-101, Revised Version 6

treewidth together together with bounded weights. As already mentioned above, the authors of
[61, 74] propose algorithms for evaluating ASP programs also based on the idea of using tree
decompositions. However, their algorithms cannot treat choice and weight rules and support only
one graph representation (the incidence graph). Fichte and Szeider [41] have shown that tree
decompositions of the dependency graph cannot be exploited to decide answer set existence more
efficiently.

1.1 Contributions
The main contributions of this paper are:

1. We propose several tree decomposition-based dynamic programming algorithms to solve
the answer set counting problem for the full ground ASP language [96]. The central differ-
ence between these algorithms is the underlying graph representation of the input program.
Furthermore, we improve these algorithms with

2. We show that the algorithms run in polynomial time in the input program size when the
weight lower bounds and the treewidth of the respective graph representation is bounded.

3. We provide two prototypical solvers implementing our proposed algorithms. We give an
experimental performance analysis and evaluation, which shows that our algorithms are highly
competitive on instances of low treewidth compared to state-of-the-art counting solutions.

(a) Our first implementation DynASP 2 works in a single pass on the tree decomposi-
tions, i.e., the decomposition is traversed from bottom to top exactly once.

(b) Our second implementation DynASP 2.5 operates in several passes based on ideas from
other domains [13], which allows for removing non-solution tuples at an early stage
during the bottom-up traversal of the tree decomposition. In particular, a several pass
algorithm employs much more sophisticated data structures.

Prior Work and Paper Organization. This paper is an extended and updated version of a paper
that appeared in the informal proceedings of the Workshop on Trends and Applications of Answer
Set Programming (TAASP 2016) [40]. The present paper provides a higher level of detail and
presents a novel algorithm and implementation (DynASP 2.5), which operates in several passes on
the tree decomposition.

The remainder of the paper is structured as follows. In Section 2, we give some preliminaries on
ASP. Section 3 deals with decomposition-based ASP solving, which first of all provides an overview
of the general principles of dynamic programming algorithms on tree decompositions and then
proceeds to give the proposed answer set counting algorithms and discusses its different variations.
In Section 4 we note implementation issues concerning our prototype DynASP. Finally, DynASP is
evaluated via experiments in Section 5. We close with some concluding remarks in Section 6.
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2 Background
In this section, we provide definitions, abbreviations, and explain the underlying concepts of the
DynASP system. Section 2.1 is devoted to Answer Set Programming. Section 2.2 recalls basics on
computational complexity. Section 2.3 provides basic graph theoretical terminology including the
problem definitions we use.

2.1 Answer Set Programming
Answer Set Programming (ASP) is a declarative problem modelling and solving framework, which
allows for the description of a problem by means of a logic program consisting of rules over
propositional atoms. Answer sets are the solutions to such a logic program and represent the
solutions of the encoded problem. For a full introduction to ASP we refer to other sources [21,
47, 68]. Our algorithms treat the full smodels input format [96]. Note that state-of-the-art ASP
grounders output the smodels internal format and support the full ASP-Core-2 language [23].

In the following, we provide definitions for the most important rule types. Let `, m, n be
non-negative integers such that ` ≤ m ≤ n, a1, . . . , an propositional atoms, and w,w1, . . . , wn
non-negative integers. A choice rule is an expression of the form

{a1; . . . ; a`} ← a`+1, . . . , am,¬am+1, . . . ,¬an.

with the intuitive meaning that some subset of {a1, . . . , a`} is true if all atoms a`+1, . . . , am are true
and there is no evidence that any atoms of am+1, . . . , an are true.
A disjunctive rule is an expression of the form:

a1 ∨ · · · ∨ a` ← a`+1, . . . , am,¬am+1, . . . ,¬an.

with the intuitive meaning that at least one atom of a1, . . . , a` must be true if all atoms a`+1, . . . , am
are true and there is no evidence that any atoms of am+1, . . . , an are true.
A weight rule is an expression of the form

a1, · · · , a` ←w 6 {a`+1 = w`+1, . . . , am = wm, ¬am+1 = wm+1, . . . ,¬an = wn}.

where ` ≤ 1 with the intuitive meaning that a1 must be true (or the rule is unsatisfied if ` = 0) if the
sum of all weights assigned to literals that are satisfied is at least w.
Finally, an optimization rule (weak constraint) is an expression of the form

 l1[w1].

with the intuitive meaning that setting atom a of literal l1 = a (l1 = ¬a) to true (false) counts as
penalty of weight w1 if optimization rules are subject to minimization.

A rule is either a disjunctive, or a choice, a weight, or an optimization rule. For a rule r, we write
at(r) := H(r) ∪ B+(r) ∪ B−(r) (atoms of r) and B(r) := B+(r) ∪ [

⋃
b∈B−(r)(¬b)] (body of r)

whereH(r) (head of r),B+(r) (positive body of r) andB−(r) (negative body of r) will be defined in
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the following. For a choice or disjunctive rule r, we write {a1, . . . , a`} = H(r), {a`+1, . . . , am} =
B+(r), and {am+1, . . . , an} = B−(r). For a weight rule r, we write {a1, . . . , a`} = H(r),
{a`+1, . . . , am} = B+(r), {am+1, . . . , an} = B−(r), wght(r, a) maps an atom a in B+(r)∪B−(r)
to its corresponding weight and 0 otherwise, wght(r, A) =

∑
a∈A wght(r, a) for a set A ⊆

B+(r) ∪ B−(r), and bnd(r) = w. For an optimization rule r, we write wght(r) = w1 and if
l1 = a (l1 = ¬a), {a} = B+(r) and ∅ = B−(r) ({a} = B−(r) and ∅ = B+(r)). A rule r is
called negation-free if B−(r) = ∅ and a disjunctive rule r is normal if |H(r)| ≤ 1. A ground
answer set program (or, simply, program) is a set Π of rules. Terminology about rules naturally
extends to programs. Further, for a program Π we let CH(Π) ⊆ Π consist of all choice rules of Π,
DISJ(Π) ⊆ Π consist of all disjunctive rules of Π, OPT(Π) ⊆ Π consist of all optimization rules,
and WGT(Π) ⊆ Π consist of all weight rules of Π. We denote the set of atoms occurring in Π by
at(Π).

We follow standard definitions of answer sets [45]. Let M be a set M ⊆ at(Π). We say M
satisfies r if (i) (H(r)∪B−(r))∩M 6= ∅ orB+(r) 6⊆M for disjunctive rule r ∈ Π, (ii)H(r)∩M 6=
∅ or Σai∈M∩B+(r) wi + Σai∈B−(r)\M wi < w for every weight rule r ∈ Π, and (iii) if r is a choice
or an optimization rule it is always satisfied.

We say M is a model of Π, M � Π for short, if M satisfies every rule r ∈ Π. For convenience,
we use Mod(C,Π) := {C :C ∈ C, C � Π } (set of models) for a set of sets C ⊆ at(Π) and
SatRules(Π,M) := { r : r ∈ Π,M � {r} } (satisfied rules) for a set M ⊆ at(Π).

The reduct rM of (i) a choice rule r is a set { a ← B+(r) : a ∈ H(r) ∩M } of normal rules,
(ii) a disjunctive rule r is the disjunctive rule H(r) ← B+(r), and (iii) a weight rule r is the
rule H(r) ← w′ 6 [a = W (a) : a ∈ B+(r)], where w′ = w − Σai∈B−(r)\M wi. The GL reduct
(Gelfond-Lifschitz reduct) ΠM is the program that consists of (i) reducts rM where B−(r)∩M = ∅
for all choice and disjunctive rules r ∈ Π and (ii) reducts rM for all weight rules r ∈ Π.

A set M ⊆ at(Π) is an answer set of a program Π if M is a subset minimal model of the
reduct ΠM .

We call o(Π,M,A) :=
∑

r∈OPT(Π): (B+(r)∩M)∪ ([A∩B−(r)] \M) 6= ∅wght(r) the objective of Π

and M with respect to set of atoms A ⊆ at(Π). A set M ⊆ at(Π) is an optimal answer set if M is
an answer set of Π and the objective o(Π,M, at(Π)) is minimal over all answer sets of Π.

Example 2.1. Consider the following program Π:

a← 2 6 2{b = 2, c = 1}.
b ∨ d← .

This program has two answer sets: {a, b} and {d}.

ASP Problems

We consider the following fundamental ASP problems.

Problem: CHECK

Input: A program Π and a set M ⊆ at(Π).
Task: Decide whether M is an (optimal) answer set of Π.
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Problem: CONSISTENCY

Input: A program Π.
Task: Decide whether Π has an (optimal) answer set.

Problem: BRAVE REASONING

Input: A program Π and an atom a ∈ at(Π).
Task: Decide whether a belongs to some (optimal) answer set of Π.

Problem: COMPUTEAS

Input: A program Π.
Task: Output an (optimal) answer set of Π if one exists, otherwise output No.

Problem: #ASP

Input: A program Π.
Task: Output the number of (optimal) answer sets of Π.

Problem: ENUMASP

Input: A program Π.
Task: List all (optimal) answer sets of Π.

2.2 Computational Complexity
We assume that the reader is familiar with the main concepts of computational complexity theory,
especially, algorithms, decision, counting, and search problems, and complexity classes. An
overview over this topic can be found in standard works [8, 58, 78].

We use the asymptotic notation O(·) in the standard way. Let Σ and Σ′ be some finite alphabets.
We call I ∈ Σ∗ an instance and ‖I‖ denotes the size of I . Let L ⊆ Σ∗ and L′ ⊆ Σ′∗ be decision
problems. We sometimes call an instance I ∈ L a yes-instance and an instance I /∈ L a no-instance.
Usually, we identify L with the set of all yes-instances I . A (non-deterministic) polynomial-time
Turing reduction from L to L′ is an (non-deterministic) algorithm that decides in time O(‖I‖c) for
some constant c whether I ∈ L using L′ as an oracle. A polynomial-time (many-to-one) reduction
from L to L′ is a function r : Σ∗ → Σ′∗ such that for all I ∈ Σ∗ we have I ∈ L if and only if
r(I) ∈ L′ and r is computable in time O(‖I‖c) for some constant c. In other words, a polynomial-
time reduction transforms instances of decision problem L into instances of decision problem L′ in
polynomial time.

A decision problem L is (non-deterministically) polynomial-time solvable if there exists a con-
stant c such that we can decide by an (non-deterministic) algorithm whether I ∈ L in time O(‖I‖c).
P is the class of all polynomial-time solvable decision problems. NP is the class of all non-
deterministically polynomial-time solvable decision problems. Let C be a decision complexity
class, e.g., NP. Then co-C denotes the class of all decision problems whose complement (the
same problem with yes and no answers swapped) is in C. We are also interested in the Polynomial
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Hierarchy [78, 90, 91, 97] up to the second level. The Polynomial Hierarchy consists of complexity
classes Σp

i for i ≥ 0 based on the following definitions: Σp
0 := P and Σp

i+1 = NPΣp
i for all i ≥ 0

where NPC denotes the class of all decision problems such that there is a polynomial-time Turing
reduction to any decision problem L ∈ C, i.e., a decision problem L′ ∈ NPC is non-deterministically
polynomial-time solvable using any problem L ∈ C as an oracle. A decision problem L′ ∈ PC[log] is
deterministically polynomial-time solvable doing O(log n) calls to any problem L ∈ C as an oracle.
Moreover, Πp

k := co-Σp
k. Note that NP = Σp

1, co-NP = Πp
1, Σp

2 = NPNP, and Πp
2 = co-NPNP.

A witness function is a functionW : Σ∗ → 2Σ′∗ that maps an instance I ∈ Σ∗ to a finite subset
of Σ′∗. We call the setW(I) the witnesses. Let L : Σ∗ → N0 be a counting problem, more precisely,
a function that maps a given instance I ∈ Σ∗ to the cardinality of its witnesses |W(I)|. Let C be a
decision complexity class. Then, #·C denotes the class of all counting problems whose witness
function W satisfies (i) there is a function f : N0 → N0 such that for every instance I ∈ Σ∗

and every W ∈ W(I) we have |W | ≤ f(‖I‖) and f is computable in time O(‖I‖c) for some
constant c and (ii) for every instance I ∈ Σ∗ the decision problemW(I) belongs to the complexity
class C. Then, #·P is the complexity class consisting of all counting problems associated with
decision problems in NP. Let L and L′ be counting problems with witness functionsW andW ′.
A parsimonious reduction from L to L′ is a polynomial-time reduction r : Σ∗ → Σ′∗ such that for
all I ∈ Σ∗, we have |W(I)| = |W ′(r(I))|. It is easy to see that the counting complexity classes #·C
defined above are closed under parsimonious reductions. It is clear for counting problems L and L′

that if L ∈ #·C and there is a parsimonious reduction from L′ to L, then L′ ∈ #·C.
We say that a problem L is C-hard if there is a polynomial-time reduction or parsimonious

reduction, respectively, for every problem L′ ∈ C to L. If in addition L ∈ C, then L is C-complete.
For instance, a decision problem is NP-complete if it belongs to NP and all decision problems in
NP have polynomial-time reductions to it.

Complexity of the main ASP problems The computational complexity of various decision
problems arising in answer set programming has been the subject of extensive studies. The decision
problem CONSISTENCY is Σp

2-complete [39], and remains Σp
2-complete when the input is restricted

to disjunctive programs [37] or weight programs where negative weights are allowed [39]. However,
the complexity of the problem CONSISTENCY drops to NP-complete when the input is restricted to
normal programs [12, 71], or choice [89], or weight programs with non-negative weights [89]. The
problem BRAVE REASONING is PΣp

2[logn]-complete [22, 36], BRAVE REASONING is Σp
2-complete

when the input is restricted to disjunctive programs without optimization rules [37], or weight
programs where negative weights but no optimization rules are allowed [39]. BRAVE REASONING

is P NP[logn]-complete when the input is restricted to normal or choice programs with optimization
rules [36], CHECK of ASP is ΠP

2 -complete in general, is co-NP-complete when the input is restricted
to disjunctive programs [37], or weight programs where negative weights are allowed [39], or normal
programs with optimization rules [36]. The complexity of the problem CHECK drops to P when
the input is restricted to normal programs [71], choice [89], or weight programs with non-negative
weights [89]. #ASP of normal ASP is easily seen to be #P -hard. Several fragments of programs
where ASP problems are non-deterministically polynomial-time solvable or even polynomial-time
solvable have been identified.
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a b c

d e f

Figure 1 A graph and a 3-coloring of the graph.

2.3 Graphs
We recall some graph theoretical notations. An undirected graph or simply a graph is a pair G =
(V,E) where V 6= ∅ is a set of vertices and E ⊆ {{u, v} ⊆ V :u 6= v } is a set of edges. We
denote an edge {u, v} by uv or vu. For a vertex v ∈ V , we call any u ∈ V such that there is an
edge uv ∈ E a neighbor of v. A graph G′ = (V ′, E ′) is a subgraph of G if V ′ ⊆ V and E ′ ⊆ E
and an induced subgraph if additionally for any u, v ∈ V ′ and uv ∈ E also uv ∈ E ′. A path of
length k is a graph with k + 1 pairwise distinct vertices v1, . . . , vk+1, and k distinct edges vivi+1

where 1 ≤ i ≤ k (possibly k = 0). A cycle of length k is a graph that consists of k distinct
vertices v1, v2, . . . , vk and k distinct edges v1v2, . . . , vk−1vk, vkv1. A chord of cycle c of length l
in G is an edge vivj ∈ E where vi and vj are not connected by an edge in c (non-consecutive
vertices). G is chordal (triangulated) if every cycle in G of length at least 4 has a chord. Let
G = (V,E) be a graph. G is bipartite if the set V of vertices can be divided into two disjoint
sets U and W such that there is no edge uv ∈ E with u, v ∈ U or u, v ∈ W . G is a (k × `)-grid
if V = { v1,1, . . . , v1,`, v2,`, . . . , vk,` } and E = { vi,jvi′,j′ : |i− i′| + |j − j′| = 1 }. G is complete
if for any two vertices u, v ∈ V there is an edge uv ∈ E. G contains a clique on V ′ ⊆ V if the
induced subgraph (V ′, E ′) ofG is a complete graph. A connected component C ofG is an inclusion-
maximal subgraph C = (VC , EC) of G such that for any two vertices u, v ∈ VC there is a path in C
from u to v. We say G is a tree if it is a connected component C = G and G contains no cycles. We
usually call the vertices of a tree nodes. A directed graph or simply a digraph is a pair G = (V,E)
where V 6= ∅ is a set of vertices and E ⊆ { (u, v) ∈ V × V :u 6= v } is a set of directed edges. A
digraph G′ = (V ′, E ′) is a subdigraph of G if V ′ ⊆ V and E ′ ⊆ E and an induced subdigraph
if additionally for any u, v ∈ V ′ and (u, v) ∈ E also (u, v) ∈ E ′. For a vertex v ∈ V we call a
vertex v ∈ {w : (w, u) ∈ E } a predecessor of u and a vertex u ∈ {w : (v, w) ∈ E } a successor of
v. A rooted tree T = (V,E, r) consists of (i) a digraph (V,E) whose underlying graph is a tree and
(ii) a designated vertex r which has no predecessor. We call a vertex v ∈ V node of T , a successor
of a node child, the vertex r the root of T , and a vertex v that has no child a leaf of T .

Let G = (V,E) be a graph and k a positive integer. We call a function c : V → {1, . . . , k}
k-coloring of G if c(v) 6= c(w) for all vw ∈ E. Then, the counting problem k·COL asks to give the
number of minimal k-colorings of a given graph. Figure 1 visualizes a graph and a 3-coloring of
the graph. Dominating Set A dominating set of a graph G = (V,E) is a set S ⊆ V such that every
vertex v /∈ S there is some w ∈ S such that vw ∈ E. Then, the counting problem CDS asks to give
the number of minimal dominating set of a given graph. A vertex cover of a graph G = (V,E)
is a set S ⊆ V such that for every edge uv ∈ E we have {u, v} ∩ S 6= ∅. Then, the counting
problem CVC asks to give a minimum (cardinality-minimal) vertex cover of a given graph. Then,



TECHNICAL REPORT DBAI-TR-2016-101, Revised Version 12

the counting problem SVC asks to give a minimal (subset-minimal) vertex cover of a given graph.
Let V be a set of nodes. A Steiner Tree is a tree on the nodes V . Then, the counting problem ST

asks to give a Steiner Tree T = (V,N) of a given set V of nodes of minimum number of nodes.

Background and Related Work

For further basic terminology on graphs and digraphs, we refer to standard texts [20, 31].
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3 Decomposition-based #ASP Solving
In this section, we develop definitions and algorithms for dynamic programming on tree decomposi-
tions of various graph representations of a program. In Section 3.1, we recall basic notions on tree
decompositions of graphs, how to find tree decompositions of graphs, and how in general dynamic
programming algorithms exploit tree decommissions of low width. In Section 3.2, we discuss
principles of the architecture of our dynamic programming approaches (DynASP2/DynASP2.5)
and give an overview on how the internal components interconnect. Subsequently, we present the
underlying dynamic programming algorithms and variants thereof based on two different graph
representations to solve the problems CONSISTENCY, BRAVE REASONING, and COMPUTEAS

from a theoretical perspective. Section 3.4 provides considerations on the correctness and the
runtime of the algorithms. Then, we adapt the algorithms to compute answer sets of programs
with optimization rules, solve the counting problem #ASP, and provide complexity result for the
problem #ASP in Section 3.5. Finally, we conclude with a comparison in Section 3.6.

3.1 Tree Decompositions
Many computationally hard problems on graphs are easy if the input graph is a tree. Hence, it seems
desirable to exploit a structural property of a graph that is “almost” a tree to solve a computational
problem more efficiently. A structural property (parameter) that allows for measuring in a certain
sense the “tree-likeness” of a graph is the treewidth. The underlying concept of tree decompositions
and dynamic programming of tree decompositions provide us often with a powerful tool to exploit a
small treewidth of a graph and solve problems more efficiently. Tree decompositions and treewidth
have received a great deal of attention in the theoretical computer science community starting from
the initial work by Robertson and Seymour [81]. For a comprehensive background and examples
on treewidth we refer to a survey [9, 14, 17]. Since then, it has been widely acknowledged that
treewidth represents a very useful parameter, which has been applied to a broad range of problems in
knowledge representation, reasoning, and artificial intelligence [34, 51, 80]. In particular, instances
from practical settings often exhibit small treewidth (see, e.g., [4, 54, 60, 66, 73, 94]).

Definition 3.1 ([81]). Let G = (V,E) be graph, T = (N,ET , r) a rooted tree, and χ : N → 2V a
function that maps to each node t ∈ T a set of vertices. We call the sets χ(·) bags and N the set
of nodes. Then, the pair T = (T, χ) is a tree decomposition of G if the following conditions are
satisfied:

1. for every vertex v ∈ V , there exists a node n ∈ N such that v ∈ χ(n) (“vertices covered”),

2. for every edge e ∈ E, there exists a node n ∈ N such that e ⊆ χ(n) (“edges covered”),
and

3. for any three nodes t1, t2, t3 ∈ N , if t2 lies on the unique path
from t1 to t3, then χ(t1) ∩ χ(t3) ⊆ χ(t2) (“connectedness”).

We call max{ |χ(t)| − 1 : t ∈ N } the width of the decomposition. The treewidth of the graph G is
the minimum width over all possible tree decompositions of G.
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a
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d e

{a, b, c} {d, e}

{b, c, d}

Figure 2 A graph G (left) and a tree decomposition of G width 2 (right).

A tree decomposition of a graph is a rooted labeled tree obtained from a given graph. The idea
of a tree decomposition is that each bag for each node of the tree subsumes multiple vertices of
the given graph, thereby isolating the parts responsible for a graph of not being a tree. When we
thus want to turn a graph into a tree, we can think of contracting vertices until we end up with a
tree whose nodes represent subgraphs of the original graph. Our sought-for measure of a graph’s
“tree-likeness” can thereby be determined as “how extensive” such contractions must be.

Note that each graph has a trivial decomposition (T, χ) consisting of the tree ({n}, ∅, n) and the
mapping χ(n) = V . It is well known that a tree has treewidth 1 and a cycle has treewidth 2. Further,
if a graph G contains a clique on the set {v1, . . . , vk}, then any tree decompositions of G contains
node n where {v1, . . . , vk} ⊆ χ(n). Therefore, the treewidth of a graph containing a k-clique is
at least k − 1. Besides, if the treewidth of a (k × k)-grid graph is k. Hence, if a graph has a large
clique or grid as a subgraph it implies large treewidth.

Example 3.2. Figure 2 shows a graph G together with a tree decomposition of G that is of width 2.
The decomposition is optimal because the graph contains a clique on the vertices {a, b, c}.

Definition 3.3 ([63]). A tree decomposition (T, χ) where T = (N,ET , r) is called normalized, if
the following conditions hold:

1. every node t ∈ N has at most two children,

2. for every node t ∈ N , if t has two children t′ and t′′, then χ(t) = χ(t′) = χ(t′′), and

3. for every node t ∈ N , if t has exactly one child t′, then |χ(t)4 χ(t′)| = 1, in other words,
the bags χ(t) and χ(t′) differ in exactly one element.

Let t be a node t ∈ N of a normalized tree decomposition (T, χ) where T = (N,ET , r). We
call t a leaf node if t has no children, an introduce node if t has exactly one child t′ ∈ N and
|χ(t)| = |χ(t′)| + 1 , a removal node if t has exactly one child t′ and |χ(t)| = |χ(t′)| − 1, a join
node if t has two children.

Proposition 3.4 ([63]). For every tree decomposition, there is a normalized tree decomposition,
which can be obtained in linear time without increasing the width of the tree decomposition.

In the subsequent of the paper, we assume according to Proposition 3.4 that tree decompositions
are normalized and have a root. Further, for better readability of our algorithms unless otherwise
stated we let bags of leaf nodes and the root be empty, which obviously does not increase the width
and introduces at most linear many new nodes in the tree.



TECHNICAL REPORT DBAI-TR-2016-101, Revised Version 15

Exploiting Low Treewidth: Algorithms on Tree Decompositions

Many decision problems, which are NP-hard on arbitrary input graphs, are solvable in polynomial
time when the treewidth of the input graph is bounded by a fixed (preferably low) constant. A
generic result by Courcelle [25] states that every problem that is definable in a certain logic (monadic
second-order logic1) can be solved in time f(k) · nc for some linear-time function f , which depends
only on the treewidth of the input graph, and some fixed constant c. Such problems are also
known as fixed-parameter tractable problems when parameterized by treewidth [77]. A formula
(in monadic second-order logic) for a given problem and input graph, can then be translated into
a finite tree automaton. However, the algorithms resulting from such a translation are mostly
impractical due to large constants [77]. Hence, special-tailored algorithms that work directly on tree
decompositions are mostly employed in practice instead. These algorithms usually apply dynamic
programming on tree decompositions and have been widely applied in graph theory [16], logic, and
artificial intelligence [52, 53, 80]. For a comprehensive introduction and examples we refer to other
sources [26].

Dynamic algorithms on tree decompositions all share a common structure. The tree decomposi-
tion is traversed from the leaf nodes to the root node. At each node a sub-problem is solved, which
consists of the part of the problem instance that is induced by the content of the bag of the node.
This results in a set of partial solutions (called tuples), which is propagated from the child nodes to
the parent node. From these, the parent node then calculates the partial solutions of its induced sub-
problem. Finally, at the root node there is a correspondence between the partial solutions of the root
node and the solutions of the whole problem instance. An appropriate data structure to represent the
partial solutions must be devised: this data structure must contain sufficient information to compute
the representation of the partial solutions at each node from the corresponding representation at the
child node(s). In addition, to ensure efficiency, the size of the data structure should only depend on
the size of the bag (and not on the size of the entire problem instance).

In practice, it is usually not necessary work on an optimal tree decomposition in order to take
advantage of low treewidth of an instance. In particular, having a non-optimal tree decomposition
will typically imply higher runtime and memory consumption than necessary, but does not effect
the computed solutions even when we are searching for optimal solutions.

Example 3.5. Consider the graph G from Figure 3a and the problem 3·COL (see Section 2.3 for
the problem definition). Figure 3b illustrates a tree decomposition T of G of width 2. Figure 3c
illustrates the tables, which are computed when running dynamic programming on the tree de-
composition T . Each of the tree decomposition node in Figure 3b has a corresponding table in
Figure 3c and there is a column for each bag element. Additionally, we have a column i that is used
to store an identifier for each row such that an entry in the column j of a potential parent table can
refer to the respective row. Eventually, each row will describe a proper coloring of the sub-problem
represented by the bag (to the sub-problem).

The tables in Figure 3c are computed in a bottom-up way. First, all 3-colorings for the leaf

1Monadic second order logic enables us to express graph properties. It extends classical first-order logic by allowing
quantification over sets of vertices and edges. In contrast to general second-order logic, we may only quantify over
unary relational variables in monadic second order logic.
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(a) A graph G.

{a, b, c} {d, e}

{b, c, d}

(b) A tree decomposition T of G
of width 2.

i a b c
0 r g b
1 r b g
2 g r b
3 g b r
4 b r g
5 b g r

i d e
0 r g
1 r b
2 g r
3 g b
4 b r
5 b g

i b c d j
0 r g b {(4, 4), (4, 5)}
1 r b g {(2, 2), (2, 3)}
2 g r b {(5, 4), (5, 5)}
3 g b r {(0, 0), (0, 1)}
4 b r g {(3, 2), (3, 3)}
5 b g r {(1, 0), (1, 1)}

(c) The computed dynamic programming
tables.

Figure 3 Dynamic programming for the problem 3·COL on the tree decomposition T . We repre-
sent the colors by “r”, “g”, and “b”.

nodes are constructed and stored in the respective table. Therefore, we simply guess a color such
that no vertex and its neighbor have the same color. For each non-leaf node with already computed
child tables, we then look at all combinations of child rows and combine those rows that coincide
on the colors of common bag elements, in other words, we join the rows. Since the leaves have no
common bag elements, each pair of child rows is joined. However, we must eliminate all results in
the table of the join node that violate a constraint, i.e., where a vertex and its neighbor have the
same color associated. For instance, the combination of row 0 from the left child with row 2 from
the right child cannot yield a 3-coloring because both b and its neighbor d are colored with “g”;
the left row 0 combined with the right row 0 yields a 3-coloring and gives rise to the row 3 in the
root table. We store the identifiers of these child rows as a pair in the j column. Note that the entry
of j in row 3 not only contains (0, 0) but also (0, 1), because joining these rows produces the same
row as we project onto the current bag elements b, c and d. Note that in general to solve 3·COL we
must not only decide which child rows to join but also extend partial solutions, which is however
not necessary in our example. Storing all predecessors of a row like this allows us to enumerate all
3-colorings with a final top-down traversal.

It is easy to see that the presented algorithm runs in linear space and time when the treewidth is
fixed by some constant.

Finding Tree Decompositions

In general, determining the treewidth of a given graph and constructing an optimal tree decomposi-
tion are unfortunately intractable. More precisely, given a graph G = (V,E) and a non-negative
integer k, deciding whether G has treewidth at most k is NP-complete [7]. However, for arbitrary
but fixed k we can decide the problem in time 2O(k3) · |V | [15] and thus solvable in linear time.
In fact, the algorithm can also be used to construct a tree decomposition by means of standard
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constructions (self-transformation) [32, 33, 87]. Further, several exact algorithms and algorithms to
compute upper bounds have been proposed [10, 18, 49, 85, 88].

Since the running times of these algorithms are far from practical on large graphs, we often
use efficient heuristics [30, 50] that produce a tree decomposition of reasonably low, but not
necessarily optimal, width2. Various heuristics have been proposed: greedy heuristic algorithms
include Maximum Cardinality Search (MCS) [93], Min-Fill heuristic [29], and Minimum Degree
heuristic [11]. Metaheuristic techniques have been provided in terms of genetic algorithms [65, 76],
ant colony optimization [56], and local search based techniques [24, 62, 75]. For a detailed
description, we refer to recent surveys [18, 57].

In this paper, we use the graph decomposition library htd [1] to heuristically construct tree de-
compositions of a given graph. The library relies on the so-called bucket elimination algorithm [28],
which works as follows: Let the pair (T, χ) consist of an empty tree and an empty labeling, i.e.,
T = (N,ET , ε) with N = ET = ∅. For a given graph G = (V,E) (i) select a vertex v ∈ V
according some heuristic, (ii) construct a clique on all neighbors of v in G, remove v from G and
the ordering o, (iii) add a fresh node n to N and let χ(n) := {u :u is a neighbor of v }, (iv) add an
edge e to each node in T in whose bag v appears as well, (v) proceed with Step (i) unless V = ∅.
To select a vertex the library htd supports two heuristics. The heuristic Min-fill selects the vertex
whose “elimination” adds the smallest number of edges to E. The heuristic Maximum Cardinality
Search selects the first vertex randomly. Then, the vertex with the highest number of neighbors,
which occur in bags of T , in the input graph is selected. Ties are broken uniformly at random in
both heuristics.

3.2 Dynamic Programming Based Answer Set Solving
In this subsection, we explain the underlying approach to solve an ASP problem by means of
dynamic programming on tree decompositions from a conceptual perspective. First, we quickly
recall the general architectural principles. A classical dynamic programming approach, which we
call the DynASP 2 approach, typically encompasses the steps as illustrated in Figure 4. Note that in
the context of dynamic programming on tree decompositions the term table is commonly used for
sets of atoms or a set of tuples, where a tuple 〈·〉 consists of sets of atoms (“local witnesses”) together
with sets of sets of atoms (“local counterwitnesses”). For a node t ∈ N of a tree decomposition T
and a mapping σ that maps nodes of T to tables, we write corresponding table for the table σ(t)
that is assigned to the node t.

1. We first of all construct a graph representation (given in the next subsection) of the given
input program.

2. Compute a tree decomposition of the problem instance by means of heuristics, thereby
decomposing the instance into several smaller parts and fixing an ordering in which the
program will be evaluated. For every node in the tree decomposition construct an empty table.

2By optimal width we mean that for a given graph G the width of the tree decomposition of G equals the treewidth
of the graph G.
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Figure 4 Control flow in DynASP 2

3. For every node n in the tree decomposition (in a bottom-up traversal) compute assignmentsM
forming local witnesses corresponding to n, compute proper subsets C of M , forming lo-
cal counterwitnesses contradicting the optimality of M , and store the tuple 〈M, C〉 in the
corresponding table. For more details of this intuitive, informal description we refer to our
algorithms discussed in Section 3.3.

4. Every tuple 〈M, ∅〉 in the corresponding table of the root can be extended to an answer set
(by means of a top down traversal). Depending on the original problem print the solution.3

Among these tasks, the one that is entirely problem-specific and graph representation specific
is the solving of the sub-problems in Step 3. When faced with a particular problem, algorithm
designers typically focus on this step.

An advanced dynamic programming approach, which we call the DynASP 2.5 approach, follows
ideas by Bliem et al. [13] and typically encompasses the steps as illustrated in Figure 5. The
approach works similar as the DynASP 2 approach, however, Step 3 is split into three passes as
follows:

I. For every node in the tree decomposition (in bottom-up traversal) compute assignments M
forming local witnesses corresponding to the node and store M in the corresponding table
(“Pass I”). Then, for every node in the tree decomposition (in a top-down traversal) remove
local witnesses, which do not extend to a local witness in the table for the parent node, from
the corresponding table (“Purge non-witnesses”).

II. For every node in the tree decomposition construct a second table, which will contain “local
counterwitnesses” for a local witness not being subset-minimal. For every node in the tree
decomposition (in a bottom-up traversal) compute subsets C of the local witnesses obtained
in Pass I from the corresponding table (“Pass II”) and store C in the second table. Then, for

3Note that, depending on the problem, printing all solutions may not be required. Often we just want, e.g., to decide
whether a solution exists, to count the number of solutions, or to find the optimum. Then the tables additionally contain
dedicated counters. Our algorithms especially target these cases.
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Figure 5 Adapted control flow in DynASP 2.5

every node in the tree decomposition (in a top-down traversal) remove subsets, which do not
extend to a subset in the table for the parent node, from the corresponding second table (“Purge
non-counterwitnesses”).

III. For every node in the tree decomposition (in a bottom-up traversal) construct a mapping of
elements in the first table to a set of elements of the second table, i.e., local witnesses to local
counterwitnesses. Then, the resulting mapping can be used to construct the solutions in Step 4.

All passes are carried out in accordance to an adapted version of the theory defined in earlier
work by Bliem et al. [13]. In fact, results of the advanced approach are equivalent. However,
practical advantages are (i) we can reuse certain local counterwitnesses for various local witnesses
and every local counterwitness is only computed once among all local witnesses and (ii) using three
passes allows for purging local witnesses and counterwitnesses early.
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3.3 Solving CONSISTENCY, BRAVE REASONING, COMPUTEAS

In the following subsection, we present three dynamic programming algorithms to solve the
problems CONSISTENCY, BRAVE REASONING, and COMPUTEAS. We have already described the
general approach to solve such problems by means of dynamic programming on tree decompositions
in the previous section. Here we focus only on Step 3 of the DynASP 2 approach.

The first two algorithms, PRIM and INVPRIM, work on a tree decomposition of the primal
graph (see forthcoming Definition 3.6), Algorithm SINC uses the incidence graph, but in addition
atoms appearing in weight or choice rules form a clique (see forthcoming Definition 3.8), whereas
INC uses only the incidence graph (see forthcoming Definition 3.14). Presenting the algorithms
in this order allows us to incrementally explain the added difficulties and the technical necessities
implied by solving ASP with dynamic programming on tree decompositions on these three graph
types. Note that in this section, we restrict ourselves to the description of the algorithms for the
problem CONSISTENCY since the nature of our algorithms for the problem CONSISTENCY actually
can be used to solve problem COMPUTEAS (ENUMASP) via an according postprocessing step,
which targets reconstructing the answer set(s) for the input program via combining certain local
assignments of the decomposition nodes’ tables accordingly. Moreover, note that the problem
BRAVE REASONING with respect to a program Π and an atom a can be solved via the consistency
(co-)problem (IN-)CONSISTENCY and the modified program Π ∪ {← a}.

Given a node t, we denote its children by t′ and t′′ (if it exists). A full specification of the
dynamic programming algorithm can thus be given by describing how the table τt is derived from
the tuples of the tables τt′ and τt′′ .

3.3.1 Algorithms PRIM and INVPRIM

The first algorithm (PRIM) to solve CONSISTENCY is based on the primal graph. In order to
describe this algorithm, we require a suitable definition of the primal graph and fixed notation
first. The following definition extends concepts of Samer and Szeider [83] from the propositional
setting to answer set programming and parts that have already been introduced by Jakl, Pichler, and
Woltran [61].

Definition 3.6. Let Π be a program. The primal graph P (Π) of Π is the graph G = (V,E) where
the set V consists of a vertex va for every atom a ∈ at(Π) and the set E contains an edge vavb if
there exists an a rule r ∈ Π and a, b ∈ at(r). For an atom a and a vertex va, we call the vertex va a
corresponding vertex of atom a, and vice versa.

For a tree decomposition T = (T, χ) of the primal graph P (Π) for program Π where T =
(N, ·, n), and a node t ∈ N , we let At contain all atoms at(Π) that have a corresponding vertex
in χ(t) and Rt contain all rules r ∈ Π such that at(r) ⊆ At

4. Furthermore, the local (primal)
program Πt in t consists of all rules r ∈ Π such that r ∈ Rt′ for some t′ ∈ N ′ of the induced

4Since the primal graph contains a clique on all corresponding vertices to atoms that participate in a rule r, it follows
from the properties of a tree decomposition that there will be at least one node whose bag contains all the corresponding
vertices to atoms of rule r.
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subtree T ′ = (N ′, ·) of T rooted at t. We omit t if it is clear from the context to which t we refer.
Note that it is easy to see that Πn = Π for the empty root n.

In the algorithm, we will construct the table τt separately for each node depending on the type
of the node, which are defined in the following. Let T be a normalized tree decomposition of
the primal graph P (Π) of Π. We extend the notion from Definition 3.3 by atom and rule specific
notations. More precisely, an atom introduce or atom removal node is an introduce or removal node,
respectively, where the bag of node and its child differ in a corresponding atom a ∈ at(Π). We
denote the set of all atom introduce nodes of T by AI(T ), the set of all atom removal nodes of T by
AR(T ), the set of all join nodes of T by JOIN(T ), and the set of all leaf nodes of T by LEAF(T ).

Tuples for the PRIM algorithm are of the form 〈M, C〉, where M ⊆ At represents a model
of Rt in t and C ⊂ 2M forming models C ( M of the reduct (Rt)

M and therefore representing
counterwitnesses to M being an answer set of Rt. The existence of such a tuple 〈M, ∅〉 in table τt
witnesses the existence of an answer set M ′ ⊇M for the local program in t, i.e., M is a model of
Rt and can be extended to a model M ′ of the local program Πt. Therefore M is sometimes referred
to as local (primal) witness witnessing the existence of M ′ ⊇M with M ′ being an answer set of Πt.
On the other hand, since each C ∈ C fulfills C (M and can be extended to a model C ′ (M ′ of
the program ΠM ′

t , it is referred to as local (primal) counterwitness to M . Then, a model of the input
program Π exists if the (empty) root contains a tuple v, and v is an answer set of Π, if v = 〈∅, ∅〉.

Algorithm 1: PRIM algorithm.
Data: Program Π, Node t and its children t′ and t′′, if exist(s), of the fixed tree decomposition T of P (Π).
Result: Modified table τt for node t.

1 if t ∈ LEAF(T ) then
2 τt :=

{〈
∅, ∅
〉}

3 if t ∈ AI(T ) and let a ∈ At \At′ then
4 τt :=

{〈
M,Mod(C, RMt )

〉 ∣∣∣ 〈M, C〉 ∈ τt′ ,M � Rt
} ⋃

5
{〈
M ∪ {a},Mod(C ∪ [C t {a}] ∪ {M}, R(M∪{a})

t )
〉 ∣∣∣ 〈M, C〉 ∈ τt′ ,M ∪ {a} � Rt

}
6 if t ∈ AR(T ) and let a ∈ At′ \At then
7 τt :=

{〈
M \ {a}, {C \ {a} | C ∈ C}

〉 ∣∣∣ 〈M, C〉 ∈ τt′
}

8 if t ∈ JOIN(T ) then
9 τt :=

{〈
M, (C′ ∩ C′′) ∪ ({M} ∩ C′′) ∪ (C′ ∩ {M})

〉 ∣∣∣ 〈M, C′〉 ∈ τt′ , 〈M, C′′〉 ∈ τt′′
}

Algorithm 1 provides the description of how the tables τt are computed by our PRIM algorithm5.
Therefore, let T be a tree decomposition of the primal graph of the input program. Below we
provide only descriptions for types of nodes where the result is non-trivial. For an atom introduce
node t ∈ AI(T ) each local witness M of the child node t′ and the “introduced” atom a ∈ At \ At′
is extended either by taking M or M ∪ {a}. We verify whether M or M ∪ {a} is a model of the

5We use for program Π, set of sets S and element e the abbreviation S t {e} := {S ∪ {e} :S ∈ S }.
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a
b

c

d e

(a) A graph G

ina ∨ inb. ina ∨ inc. inb ∨ inc. inb ∨ ind.
ind ∨ ine.

(b) Program Π which encodes the problem VC for G

ina

inb

inc

ind
ine

(c) Primal graph P (Π)

{ina, inb, inc}t4

{inb}t5

{inb, ind}t6

{ind, ine} t1

{ind} t2

{inb, ind} t3

{inb, ind}t7

∅t8

(d) A tree decomposition T of P (Π)

Figure 6 Example graph and tree decomposition for the problem VC.

program Rt. Recall that by Definition 2 a tree decomposition must contain each edge of the original
graph in some node bag and by Definition 3.6 for a tree decomposition of a primal graph there is a
bag that contains all corresponding vertices of atoms in a rule. Thus, our algorithm can immediately
decide for a node t of the tree decomposition whether a rule is satisfied by taking the rules in the
set Rt into account. Intuitively, Rt consists of each rule where vertices in a bag correspond entirely
to atoms that occur in the rule. Since we can verify (without additional information) whether M or
M ∪{a} is a model of Rt, we can immediately discard all tuples where M or M ∪{a}, respectively,
is not a model of Rr. All possible subsets of M or M ∪ {a}, respectively, are considered as local
counterwitnesses. A local counterwitness of a local witness can be obtained directly from extending
a local counterwitness C in the table of the child node by taking C or C ∪ {a}, respectively. For a
join node t ∈ JOIN(T ), we enforce that left and right child tuples agree on local witnesses and
counterwitnesses.

Example 3.7. Consider the problem VC and the graph G = (V,E) from Figure 6a. The pro-
gram { inx ∨ iny :xy ∈ E } encodes the problem VC in ASP and is given in Figure 6b. Further,
Figure 6c illustrates the primal graph P (Π) and Figure 6d visualizes a decomposition of the primal
graph P (Π). In Figure 7 we present the result of the PRIM algorithm on the decomposition of
Figure 6d using DynASP 2. Whenever in a row a certain atom ini is set to true, we put “T” in the
respective column labelled by i and satisfied rules are marked by “sat”. Figure 8 represents running
the same instance with the improved algorithm of PRIM using DynASP 2.5. Comparing these
two figures leads to the observation that algorithm DynASP 2.5 compactly represents the resulting
computation tree and does not recompute local counterwitnesses for different local witnesses.
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i
Mi j

Ci,j

a b c a b c
1 T
2 T

3 T T 1 T
2 T

4 T

5 T T 1 T
2 T

6 T T 1 T
2 T

7 T T T

1 T
2 T
3 T T
4 T
5 T T
6 T T

τt4

i
Mi j

Ci,j

b b
1
2 1
3 T

4 T 1
2 T

τt5

i
Mi j

Ci,j

b d b d
1 T
2 T 1 T
3 T
4 T 1 T

5 T T 1 T
2 T

6 T T
1 T
2 T
3 T T

τt6

i
Mi j

Ci,j

d e d e
1 T
2 T

3 T T 1 T
2 T

τt1

i
Mi j

Ci,j

d d
1
2 T

3 T 1
2 T

τt2

i
Mi j

Ci,j

b d b d
1 T
2 T 1 T
3 T

4 T T 1 T
2 T

5 T T
1 T
2 T
3 T T

τt3

i
Mi j

Ci,j

b d b d
1 T
2 T 1 T
3 T
4 T 1 T

5 T T 1 T
2 T

6 T T
1 T
2 T
3 T T

τt7

i Mi j Ci,j

1
2 1

τt8

Figure 7 Dynamic programming tables for the nodes of decomposition T of Figure 6d using PRIM
with the DynASP 2 approach.
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i
Mi Ci

a b c
1 T ∅
2 T ∅
3 T T {1, 2}
4 T ∅
5 T T {1, 4}
6 T T {2, 4}
7 T T T {1, 2, 3, 4, 5, 6}

τt4

i
Mi Ci

b
1 ∅
2 {1}
3 T {1, 3}

τt5

i
Mi Ci

b d
1 T ∅
2 T {1}
3 T ∅
4 T {3}
5 T T {1, 3}
6 T T {1, 3, 5}

τt6

i
Mi Ci

d e
1 T ∅
2 T ∅
3 T T {1, 2}

τt1

i
Mi Ci

d
1 ∅
2 T ∅
3 T {1, 2}

τt2

i
Mi Ci

b d
1 T ∅
2 T {1}
3 T ∅
4 T T {1, 3}
5 T T {1, 3, 4}

τt3

i
Mi Ci

b d
1 T ∅
2 T {1}
3 T ∅
4 T {3}
5 T T {1, 3}
6 T T {1, 3, 5}

τt7

i Mi Ci

1 ∅
2 {1}

τt8

Figure 8 Dynamic programming tables for the nodes of decomposition T of Figure 6d using PRIM
with the DynASP 2.5 approach.

A slightly modified implementation of the algorithm PRIM is the INVPRIM algorithm, where
we store in each tuple the set C of “inverse” local counterwitnesses, instead of the set C of local
counterwitnesses, in order to see whether this leads to a speed-up. More precisely, for a set M , a
program Π, and a tree decomposition T of P (Π), the set C consists of sets C (M such that C is a
model of (Rt)

M . However, the set C consists of sets C (M such that C is not a model of (Rt)
M .

Hence, we have C = 2M \ C. Since the adaption of the conditions and results in Algorithm 1 to the
set C of inverse local counterwitnesses is straight forward, we omit full definitions here.
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3.3.2 Algorithm SINC

Our SINC algorithm is based on the semi-incidence graph of a given program, defined as follows
and its decision version (restricted to disjunctive programs) restates an algorithm by Jakl, Pichler,
and Woltran [61].

Definition 3.8. Let Π be a program. The semi-incidence graph S(Π) is the graph where the set V
consists of a vertex va for every atom a ∈ at(Π) and a vertex vr for every rule r ∈ Π and the
set E contains an edge vrva if an atom a appears in rule r of Π, an edge vavb if atoms a, b appear
together in a choice head or weighted body of a rule in Π. For an atom a and a vertex va, we call
the vertex va a corresponding vertex of atom a, and vice versa, and for a rule and a vertex vr we
call the vertex va a corresponding vertex of rule r, and vice versa.

Since the width of the semi-incidence graph is smaller than the width of the primal graph, we
expect the SINC algorithm to be faster than the PRIM algorithm. However, the SINC algorithm
requires a considerable overhead in storage and computations as we will see below. Hence, if the
used tree decompositions for PRIM and SINC are of similar width, we expect PRIM to be faster in
practice.

Observation 3.9. Let Π be a program. The treewidth of the semi-incidence graph is at most the
treewidth of its primal graph plus 1.

In order to describe algorithms based on the semi-incidence graph, we fix the following notation.
Again, for a tree decomposition T = (T, χ) where T = (N, ·, n) of the semi-incidence graph
of a program Π and a node t ∈ N , we let At contain all atoms at(Π) that have a corresponding
vertex in χ(t) and Rt contain all rules r ∈ Π that have a corresponding vertex in χ(t). The local
program Πt in t consists of all rules r ∈ Π \Rt such that r ∈ Rt′ for some t′ ∈ N ′ of the induced
subtree T ′ = (N ′, ·) of T rooted at t. We might also omit t if it is clear from the context. It is also
easy to see that Πn = Π for the empty root n.

Let T be a normalized tree decomposition of the semi-incidence graph S(Π) of Π. We further
extend the notion from Definition 3.3 by atom and rule specific notations. More precisely, an atom
introduce or atom removal node is an introduce or removal node, respectively, where the bag of
node and its child differ in a corresponding atom a ∈ at(Π). A rule introduce or rule removal
node is an introduce or removal node, respectively, where the bag of a node and its child differ in a
corresponding rule r ∈ Π. We denote the set of all atom introduce nodes of T by AI(T ), the set of
all atom removal nodes of T by AR(T ), the set of all join nodes of T by JOIN(T ), the set of all
leaf nodes of T by LEAF(T ), the set of all rule introduce nodes of T by RI(T ), and the set of all
rule removal nodes of T by RR(T ).

The intuition for tables and tuples is similar to the PRIM algorithm. However, for a node t of
the tree decomposition we do not necessarily know which corresponding rules to vertices in the bag
are already satisfied (in contrast to the primal graph there is no property that ensures that all atoms
that occur together in a rule have a bag that contains all corresponding vertices, we can ensure this
only for choice heads and weighted bodies). Hence, we additionally need to keep track of already
satisfied rules by local witnesses and counterwitnesses, respectively. Therefore, we need a “local
view” on the program depending on the node t and we define the following notation.
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Definition 3.10. Let Π be a program, T be a tree decomposition of the semi-incidence graph of Π,
t a node of T , and P ⊆ Rt be a subprogram of Rt. The (semi-incidence) bag program P t in node t
is obtained from P ∪ {← B(r) : H(r) 6⊆ At, r ∈ CH(P)} by

1. removing from the heads and bodies of every remaining choice and disjunctive rules all
literals a,¬a with a ∈ at(Π) \ At; and

2. removing from the heads and bodies of every remaining weight rule r all literals a,¬a with
a ∈ at(Π) \ At and set the bound w −min{w,wght(r, (B−(r) ∪B+(r)) ∩ (at(Π) \ At)) }.

We denote the (semi-incidence) local bag program P t = Rt
t where P = Rt by R̂t.

Let Π be a program, r ∈ Π, t a node, and M ⊆ At. Then, a tuple in table τt for node t of the tree
decomposition is a triple 〈M,S, C〉 where M again witnesses the existence of a model M ′ ⊇ M
of the local program Πt (and is therefore referred to as local [semi-incidence] witness) and the
additional set S consists of all rules that correspond to vertices in χ(t) and are satisfied by some
superset of M (i.e., in the end there exists M ′′ ⊇ M with M ′′ � (Πt ∪ S)). The set C consists of
pairs (C,R) of sets of atoms and rules, where C represents a counterwitness to M being an answer
set (i.e., C witnesses the existence of C ′ ⊇ C satisfying C ′ � ΠM ′′

t with C ′ ( M ′′ and is called
local [semi-incidence] counterwitness) and R consists of all rules that correspond to vertices in χ(t)
and are satisfied in the GL reduct under M by a superset of C. Thus, in the end C witnesses the
existence of C ′′ ⊇ C satisfying C ′′ � (Πt ∪R)M

′′ with C ′′ (M ′′. The algorithm guarantees that a
surviving tuple 〈M,S, ∅〉 witnesses that the set M can be extended to a model M ′′ satisfying the
program (Πt ∪ S) in t. Again, checking whether there exists an answer set is equivalent to checking
whether, after a bottom-up traversal of the tree decomposition, the root contains the tuple 〈∅, ∅, ∅〉.

The SINC algorithm6 is given in Algorithm 2. Let T be a tree decomposition of the semi-
incidence graph of the input program. Below we provide only descriptions for types of nodes
where the result is non-trivial. Recall that we force atoms occurring in choice or weight rules, to
have a corresponding vertices that appear together in at least one bag. For an atom introduction
node t ∈ AI(T ), tuples of child nodes are computed very similar as before. Every local witness M
of the child node t′ and the “introduced” atom a ∈ At \ At′ is extended either by taking M or
M ∪{a}. Further, the set S of the child node t′ is extended by all rules of the bag program Π(t,S) that
are satisfied by M or M ∪ {a}, respectively. Again, all subsets of M or M ∪ {a}, respectively, are
considered as local counterwitnesses. Further, the setR of the child node t′ for a local counterwitness
is extended by each rule r of the GL reduct of the bag program Π(t,S) underM such that r is satisfied
by M or M ∪ {a}, respectively. For a rule removal node t ∈ RR(T ) and the “removed” rule r, we
can discard all tuples where some r is not yet satisfied (r /∈ S or r /∈ R, respectively), since r will
never appear again in an ancestor node, which is ensured by definition of a tree decomposition due
to the connectedness condition (Condition 3). By a similar argument, we can simply remove the
rule r from the tuples. For a join node t ∈ JOIN(T ), we ensure that tuples of the left and right
children are merged that agree on the sets M .

6For set S and element e we write S+
e := S ∪ {e} and S−e := S \ {e}.
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Algorithm 2: SINC Algorithm.
Data: Program Π, Node t and its children t′ and t′′, if exist(s), of the fixed tree decomposition T of S(Π).
Result: Modified table τt for node t.

1 if t ∈ LEAF(T ) then
2 τt :=

{〈
∅, ∅, ∅

〉}
3 if t ∈ AI(T ) and let a ∈ At \At′ then
4 τt :=

{〈
M, S ∪ SatRules(R̂t,M),

5 {〈C,R ∪ SatRules(R̂Mt , C)〉 | 〈C,R〉 ∈ C}
〉 ∣∣∣ 〈M,S, C〉 ∈ τt′

} ⋃
6

{〈
M+
a , S ∪ SatRules(R̂t,M

+
a )},

7 {〈C,R ∪ SatRules(R̂M
+
a

t , C)〉 | 〈C,R〉 ∈ C} ∪
8 {〈C+

a , R ∪ SatRules(R̂M
+
a

t , C+
a )〉 | 〈C,R〉 ∈ C} ∪

9 {〈M,S ∪ SatRules(R̂M
+
a

t ,M)〉}
〉 ∣∣∣ 〈M,S, C〉 ∈ τt′

}
10 if t ∈ RI(T ) and let r ∈ Rt \Rt′ then
11 τt :=

{〈
M, S ∪ SatRules({r}t,M),

12 {〈C,R ∪ SatRules([{r}t]M , C)〉 | 〈C,R〉 ∈ C}
〉 ∣∣∣ 〈M,S, C〉 ∈ τt′

}
13 if t ∈ AR(T ) and let a ∈ At′ \At then
14 τt :=

{〈
M−a , S, {〈C−a , R〉 | 〈C,R〉 ∈ C}

〉 ∣∣∣ 〈M,S, C〉 ∈ τt′
}

15 if t ∈ RR(T ) and let r ∈ Rt′ \Rt then
16 τt :=

{〈
M, S−r , {〈C,R−r 〉 | 〈C,R〉 ∈ C, r ∈ R}

〉 ∣∣∣ 〈M,S, C〉 ∈ τt′ , r ∈ S
}

17 if t ∈ JOIN(T ) then
18 τt :=

{〈
M, S′ ∪ S′′, {〈C,R′ ∪R′′〉 | 〈C,R′〉 ∈ C′, 〈C,R′′〉 ∈ C′′} ∪

19 {〈M,R ∪ S′′〉 | 〈M,R〉 ∈ C′} ∪
20 {〈M,R ∪ S′〉 | 〈M,R〉 ∈ C′′}

〉 ∣∣∣ 〈M,S′, C′〉 ∈ τt′ , 〈M,S′′, C′′〉 ∈ τt′′
}

Remark 3.11. We would like to mention that choice rules are conceptually tricky to handle. In
some sense these rules conditionally (depending on the evaluation of the body) break the subset
minimality. Due to the nature of dynamic programming on tree decompositions, the information
concerning choice rules is not evident in every tree decomposition node, in fact, it might turn out
quite late for some rules during the bottom-up evaluation.

Example 3.12. To be more concrete, look at Figure 9 containing a simple choice rule r, its semi-
incidence graph S(Π), a corresponding tree decomposition and the computation obtained after
bottom-up traversing the tree decomposition, which we will now focus on.

Let us start with table t1. Note that although a is part of a choice rule, line 2 of the table
τt1 for node t1 containing M2 = {a} still requires a local counterwitness C2,1 = ∅ (i.e., a
is set to false) since ∅ ( {a}. According to Definition 3.10, the bag program under M2 is
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R̂M2
t1 = {{a} ←} ∪ {a} ∪ {←} which is unsatisfiable and therefore r 6∈ R2,1. However, keep in

mind that storing local counterwitness C2,1 is mandatory since we do not know anything about the
truth value of c.

When we progress to the table τt2 for node t2, we observe that r is satisfied in all the local
witnesses, which is because of the corresponding bag program(s). To be more concrete, the first
condition of Definition 3.10 does not include additional rules for choice rule r since H(r) ⊆ At2
(remember that a node containing all the head atoms has to exist by construction of S(Π)) and
moreover, a choice rule is vacuously satisfied. Note that none of the local counterwitnesses satisfy
the corresponding bag reduct of r since the local counterwitnesses form a strict inclusion with
respect to the corresponding local witness. For example, take M4 = {a, b} and C4,2 = {a}. We
observe that C4,2 (M4 and C4,2 6� R̂M4

t2 where R̂M4
t2 = {{a; b} ←} ∪ {a←} ∪ {b←}. Mind that

for different tree decompositions there might occur situations involving choice rules r′ and some
node t′ where Ci,j ∩H(r) = Mi ∩H(r) in table τt′ and therefore r′ ∈ Ri,j since Ci,j � R̂Mi

t′ .
We let the reader think about node t3 and immediately jump to the more interesting node t4.

Observe that local counterwitnesses of table τt3 do not include c, i.e., c 6∈ Ci,j and therefore
vacuously satisfy the bag corresponding reducts {{} ← c} ∪ {← c}}. So, in the end it turned out
that for these local counterwitnesses, the corresponding local counterwitnesses of table τt1 were
mandatory, since none of them includes c leaving r satisfied in these cases. Mind again that for
different input programs there might occur tree decomposition nodes during the bottom-up traversal
which introduce some rule(s) enforcing that c is in every answer set.

We end up with the empty answer set consisting of local witnesses M1 for nodes t5 to t1.

Example 3.13. Consider again the problem VC and the graph G = (V,E) from Figure 10a.
Remember that the program { inx ∨ iny :xy ∈ E } encodes the problem VC in ASP given in
Figure 10b. Further, Figure 10c illustrates the semi-incidence graph S(Π) and Figure 10d visualizes
a decomposition of the semi-incidence graph S(Π).

In Figure 11, we present the result of the SINC algorithm on the decomposition of Figure 10d
using DynASP 2. Figure 12 shows running the same instance with the improved algorithm of SINC
using DynASP 2.5. Comparing these two computations by visual aspects again leads to favouring
DynASP 2.5.



TECHNICAL REPORT DBAI-TR-2016-101, Revised Version 29

{a; b} ← c.

a

r

b

c

(a) Program Π = {r} with semi-
incidence graph S(Π)

{a, r}t1

{a, b, r}t2

{r}t3

{c, r}t4

∅t5

(b) A tree decomposition T of S(Π)

i
Mi Si j

Ci,j Ri,j

a r a r
1
2 T 1

τt1

i
Mi Si j

Ci,j Ri,j

a b r a b r
1 sat
2 T sat 1
3 T sat 1

4 T T sat
1
2 T
3 T

τt2

i
Mi Si j

Ci,j Ri,j

r r
1 sat
2 sat 1

τt3

i
Mi Si j

Ci,j Ri,j

c r c r
1 sat
2 sat 1 sat
3 T sat 1 sat

τt4

i Mi Si j Ci,j Ri,j

1
2 1

τt5

(c) Dynamic programming tables for T

Figure 9 Dynamic programming tables for choice rule r using SINC (DynASP 2 approach).

a
b

c

d e

(a) A graph G

ina ∨ inb. ina ∨ inc. inb ∨ inc. inb ∨ ind.
ind ∨ ine.

(b) Program Π which encodes the problem VC for G

ina

ra,b

inb

rb,c

ra,c

inc

rb,d

ind

rd,e

ine

(c) Semi-incidence graph S(Π)

{ina, inb, inc, ra,c, rb,c}t4

{ina, inb}t5

{ina, inb, ind, ra,b, rb,d}t6

{inb, ind}t7

{ind, ine, rd,e} t1

{ind} t2

{inb, ind} t3

{inb, ind}t8

∅t9

(d) A tree decomposition T of P (Π)

Figure 10 Example graph and tree decomposition for the problem VC.
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i
Mi Si j

Ci,j Ri,j

a b c ra,c rb,c a b c ra,c rb,c
1
2 T sat sat 1
3 T sat 1

4 T T sat sat
1
2 T sat sat
3 T sat

5 T sat 1

6 T T sat sat
1
2 T sat sat
3 T sat

7 T T sat sat
1
2 T sat
3 T sat

8 T T T sat sat

1
2 T sat sat
3 T sat
4 T T sat sat
5 T sat
6 T T sat sat
7 T T sat sat

τt4

i
Mi Si j

Ci,j Ri,j

a b a b
1
2 T 1
3 T 1
4 T T

5 T T
1
2 T
3 T

τt5

i
Mi Si j

Ci,j Ri,j

a b d ra,b rb,d a b d ra,b rb,d
1
2 T sat 1
3 T sat sat 1

4 T T sat sat
1
2 T sat
3 T sat sat

5 T sat 1

6 T T sat sat
1
2 T sat
3 T sat

7 T T sat sat

8 T T sat sat
1
2 T sat sat
3 T sat

9 T T T sat sat 1 T T sat sat

10 T T T sat sat

1
2 T sat
3 T sat sat
4 T T sat sat
5 T sat
6 T T sat sat
7 T T sat sat

τt6

i
Mi Si j

Ci,j Ri,j

d e rd,e d e rd,e
1
2 T sat 1
3 T sat 1

4 T T sat
1
2 T sat
3 T sat

τt1

i
Mi Si j

Ci,j Ri,j

d d
1
2 T

3 T 1
2 T

τt2

i
Mi Si j

Ci,j Ri,j

b d b d
1
2 T
3 T 1
4 T T 1 T

5 T T

1
2 T
3 T
4 T T

τt3

i
Mi Si j

Ci,j Ri,j

b d b d
1 T
2 T T
3 T
4 T 1 T

5 T T
1 T
2 T
3 T T

τt8

i Mi Si j Ci,j Ri,j

1
2 1

τt9

i
Mi Si j

Ci,j Ri,j

b d b d
1 T
2 T T 1 T
3 T
4 T 1 T

5 T T
1 T
2 T
3 T T

τt7

Figure 11 Dynamic programming tables for the nodes of decomposition T of Figure 10 us-
ing SINC with the DynASP 2 approach.
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i
Mi Si Ci

a b c ra,c rb,c
1
2 T sat sat {1}
3 T sat
4 T T sat sat {1, 2, 3}
5 T sat
6 T T sat sat {1, 2, 5}
7 T T sat sat {1, 3, 5}
8 T T T sat sat {1, 2, 3, 4, 5, 6, 7}

τt4

i
Mi Si Ci

a b
1
2 T {1}
3 T {1}
4 T T ∅
5 T T {1, 2, 3}

τt5

i
Mi Si Ci

a b d ra,b rb,d
1
2 T sat
3 T sat sat {1}
4 T T sat sat {1, 2, 3}
5 T sat
6 T T sat sat {1, 2, 5}
7 T T sat sat ∅
8 T T sat sat {1, 3, 5}
9 T T T sat sat {7}

10 T T T sat sat {1, 2, 3, 4, 5, 6, 7}

τt6

i
Mi Si Ci

b d
1 T ∅
2 T T {1}
3 T ∅
4 T {1}
5 T T {1, 2, 3}

τt7

i
Mi Si Ci

d e rd,e
1
2 T sat {1}
3 T sat {1}
4 T T sat {1, 2, 3}

τt1

i
Mi Si Ci

d
1 ∅
2 T ∅
3 T {1, 2}

τt2

i
Mi Si Ci

b d
1
2 T ∅
3 T {1}
4 T T {2}
5 T T {1, 2, 3, 4}

τt3

i
Mi Si Ci

b d
1 T ∅
2 T T ∅
3 T ∅
4 T {1}
5 T T {1, 2, 3}

τt7

i Mi Si Ci

1
2 {1}

τt8

Figure 12 Dynamic programming tables for the nodes of decomposition T of Figure 10 us-
ing SINC with the DynASP 2.5 approach.
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3.3.3 Algorithm INC

The INC algorithm is based on the incidence graph of a given program. However, before we start
with its description, we require the forthcoming definition of the incidence graph. The incidence
graph is similar to the semi-incidence graph, but corresponding vertices of atoms appearing in
choice or weight rules do not form a clique.

Definition 3.14. Let Π be a program. The incidence graph I(Π) of Π is the bipartite graph G =
(V,E) where the set V consists of a vertex va for every atom a ∈ at(Π) and a vertex vr for every
rule r ∈ Π and the set E contains an edge vavr if a ∈ at(r) for some rule r ∈ Π. For an atom a
and a vertex va, we call the vertex va a corresponding vertex of atom a, and vice versa, and for a
rule and a vertex vr we call the vertex va a corresponding vertex of rule r, and vice versa.

In the following, before describing algorithms based on the incidence graph, we fix notation.
Analogously to Section 3.3.2, for a tree decomposition T = (T, χ) (where T = (N, ·, ·)) of the
incidence graph of a program Π and a node t ∈ N , we denote by At the set of atoms in t, Rt denotes
the set of rules in t and Πt refers to the local program in t. Similarly, the local atoms att(Π) in t
consist of all atoms a ∈ at(Π) such that a ∈ At′ for some t′ ∈ N ′ of the induced subtree T ′ = (N ′, ·)
of T rooted at t. Note that as already introduced in Section 3.3.2, for a tree decomposition T , we
refer to the sets AI(T ), AR(T ), JOIN(T ), LEAF(T ), RI(T ) and RR(T ).

The intuition is similar to the one of SINC. However, since the atoms that occur in choice
heads or weighted bodies might not have corresponding vertices that occur together in one bag, we
require in addition to SINC to remember satisfaction states for rules, which are not yet known to be
satisfied.

A tuple for the INC algorithm in the table τt for a node t of the tree decomposition is a
triple 〈M,σ, C〉, where again M witnesses the existence of a model M ′ ⊇M of the local program
Πt (and is therefore referred to as local [incidence] witness). The satisfaction state σ for M maps
from rules Rt to N0 ∪ {+∞} and represents both rules r that are satisfied in the bag program
(σ(r) = +∞) and rules r′, which are not yet satisfied (σ(r′) 6= +∞). Rules r with a vertex of
the current bag χ(t) and σ(r) = +∞ are satisfied by some superset of M , i.e., in the end there
exists M ′′ ⊇ M with M ′′ � (Πt ∪ {r : r ∈ Rt, σ(r) = +∞}). Intuitively, a satisfaction state
σ(r′) 6= +∞ for a local witness M and rule r′ represents for a weight rule the sum of weights of
literals in the weight rule that have been removed (in some descendant rule removal node) and
been taken or not taken, respectively, into the (local) witness in the table of some descendant
node. We can think of this “satisfaction state” as an aiding tool that incorporates information from
descendant nodes for weight rules. The set C consists of tuples (C, ρ) where C again represents
a counterwitness to M being an answer set (i.e., C witnesses the existence of C ′ ⊇ C satisfying
C ′ � ΠM ′′

t with C ′ ( M ′′ and is called local [incidence] counterwitness). Again, ρ is referred
to as satisfaction state for C under M and maps from rules Rt to N0 ∪ {+∞} and represents
both rules r that are satisfied in the bag reduct under M (ρ(r) = +∞) and rules r′, which are
not yet satisfied in said reduct (ρ(r′) 6= +∞). Rules r with σ(r) = +∞ are satisfied in the GL
reduct under M by a superset of C. Thus, in the end again C witnesses the existence of C ′′ ⊇ C
satisfying C ′′ � (Πt ∪ {r : r ∈ Rt, ρ(r) = +∞})M ′′ with C ′′ ( M ′′. Intuitively, a satisfaction
state ρ(r′) 6= +∞ for local counterwitness C under M and rule r′ represents for a choice rule
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the number of atoms in the choice head that have been removed (in some descendant rule remove
nodes) and taken into the (local) witness, but not into the corresponding (local) counterwitness in
the table of some descendant node and for a weight rule the sum of weights of literals in the weight
rule that have been removed (in some descendant rule removal nodes) and been taken or not taken,
respectively, into the (local) counterwitness in the table of some descendant node. The algorithm
guarantees that a tuple 〈M,σ, C〉 in τt for node t witnesses that the set M can be extended to a
model M ′′ satisfying the program (Πt ∪ {r : r ∈ Rt, σ(r) = +∞}). Again, there exists an answer
set of the input program Π if the (empty) root contains tuple 〈∅, σ∅, ∅〉7.

Definition 3.15. Let Π be a program, T be a tree decomposition of the incidence graph of Π, t and t′

nodes of T , P ⊆ Rt be a subprogram ofRt, and σt′ : Rt′ → N0∪{+∞} a mapping. The (incidence)
bag program P(t,σt′ ) is obtained from P ∪ {← B(r) : |H(r)| > |att(Π) ∩H(r)| − σt′(r), r ∈
CH(P)} by

1. removing from the heads and bodies of every choice and disjunctive rule all literals a,¬a
with a ∈ at(Π) \ At; and

2. removing from the heads and bodies of every weight rule r all literals a,¬a with a ∈ at(Π)\At
and set the bound w−min{w, σt′(r)+wght(r, (B−(r)∪B+(r))∩ [At∪ (at(Π)\att(Π))]) }.

If P = Rt, then we denote the (incidence) local bag program P(t,σ) = R
(t,σ)
t by Rσ

t and the

(incidence) local bag reduct [P(t,σ)]
M

= [R
(t,σ)
t ]

M
by R(σ,M)

t .

We define the following notation for our algorithm. For mappings σ and σ′, we intuitively require an
operator (σ ] σ′) designed to add the function values if the argument belongs to both domains, and
to otherwise take the function value where the argument belongs to either one domain8. Moreover,
for R ⊆ σ−1, we define σ−R as for every x ∈ σ−1 \ R we have σ−R(x) := σ(x). This operation
potentially shrinks the domain of σ.

Let Π be a program, t be a node of some tree decomposition T of I(Π) and M,C ⊆ At. Then,
for r ∈ Rt, we define SatStates(Π,M) := σ where σ(r) := +∞ if r ∈ SatRules(Π,M), and
σ(r) := 0 otherwise. Further, we let StateValues(Rt,M,C) := σ where

σ(r) :=


wght(r, {a} ∩ [(B−(r) \M) ∪ (B+(r) ∩ C)]), if r ∈WGT(Rt)

|{a} ∩H(r) ∩ (M \ C)|, if r ∈ CH(Rt)

0, if r ∈ DISJ(Rt)

for every r ∈ Rt.

The INC algorithm is given in Algorithm 3.
7We denote by σ∅ : ∅ → N0 ∪ {+∞} an empty satisfaction state.
8More formally, using mappings σ and σ′, we define (σ ] σ′)(x) for every x ∈ (σ−1 ∪ σ′−1) where

(σ ] σ′)(x) :=


σ(x) + σ′(x), if x ∈ σ−1 and x ∈ σ′−1

σ(x), if x ∈ σ−1 and x 6∈ σ′−1

σ′(x), if x 6∈ σ−1 and x ∈ σ′−1
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Algorithm 3: INC Algorithm.
Data: Program Π, Node t and its children t′ and t′′, if exist(s), of the fixed tree decomposition T of I(Π).
Result: Modified table τt for node t.

1 if t ∈ LEAF(T ) then
2 τt :=

{〈
∅, σ∅, ∅

〉}
3 if t ∈ AI(T ) and let a ∈ At \At′ then
4 τt :=

{〈
M,σ ] SatStates(Rσt ,M),

5 {〈C, ρ ] SatStates(R
(ρ,M)
t , C)〉 | 〈C, ρ〉 ∈ C}

〉 ∣∣∣ 〈M,σ, C〉 ∈ τt′
} ⋃

6
{〈
M+
a , σ ] SatStates(Rσt ,M

+
a )},

7 {〈C, ρ ] SatStates(R
(ρ,M+

a )
t , C)〉 | 〈C, ρ〉 ∈ C} ∪

8 {〈C+
a , ρ ] SatStates(R

(ρ,M+
a )

t , C+
a )〉 | 〈C, ρ〉 ∈ C} ∪

9 {〈M,σ ] SatStates(R
(σ,M+

a )
t ,M)〉}

〉 ∣∣∣ 〈M,σ, C〉 ∈ τt′
}

10 if t ∈ RI(T ) and let r ∈ Rt \Rt′ then
11 τt :=

{〈
M,σ ] SatStates({r}(t,σ),M),

12 {〈C, ρ ] SatStates([{r}(t,ρ)]
M
, C)〉 | 〈C, ρ〉 ∈ C}

〉 ∣∣∣ 〈M,σ, C〉 ∈ τt′
}

13 if t ∈ AR(T ) and let a ∈ At′ \At then
14 τt :=

{〈
M−a , σ ] StateValues(Rt,M,M),

15 {〈C−a , ρ ] StateValues(Rt,M,C)〉 | 〈C, ρ〉 ∈ C}
〉 ∣∣∣ 〈M,σ, C〉 ∈ τt′

}
16 if t ∈ RR(T ) and let r ∈ Rt′ \Rt then
17 τt :=

{〈
M,σ−{r},

{
〈C, ρ−{r}〉 | 〈C, ρ〉 ∈ C, ρ(r) = +∞

}〉∣∣∣ 〈M,σ, C〉 ∈ τt′ , σ(r) = +∞
}

18 if t ∈ JOIN(T ) then
19 τt :=

{〈
M, σ′ ] σ′′, {〈C, ρ′ ] ρ′′〉 | 〈C, ρ′〉 ∈ C′, 〈C, ρ′′〉 ∈ C′′} ∪

20 {〈M,ρ ] σ′′〉 | 〈M,ρ〉 ∈ C′} ∪
21 {〈M,σ′ ] ρ〉 | 〈M,ρ〉 ∈ C′′}

〉 ∣∣∣ 〈M,σ′, C′〉 ∈ τt′ , 〈M,σ′′, C′′〉 ∈ τt′′
}
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r1 : {a; b}.
r2 : c← 1 ≤ {b = 1,¬a = 1}.

a

r2

br1

c

(a) Program Π = {r1, r2} with inci-
dence graph I(Π)

{a, c, r1, r2}t1

{r1, r2}t2

{b, r1, r2}t3

{b}t4

(b) A tree decomposition T of I(Π)

i
Mi σi j

Ci,j ρi,j
a c r1 r2 a c r1 r2

1 0 0
2 T 0 +∞ 1 0 0
3 T 0 0 1 0 0

4 T T 0 +∞
1 0 0
2 T 0 +∞
3 T 0 0

τt1

i
Mi σi j

Ci,j ρi,j
r1 r2 r1 r2

1 0 1
2 0 +∞ 1 0 1
3 0 0 1 1 1

4 0 +∞
1 1 1
2 1 +∞
3 0 0

τt2

i
Mi σi j

Ci,j ρi,j
b r1 r2 b r1 r2

1 +∞ 1
2 T +∞ 1 1 0 1
3 +∞ +∞ 1 +∞ 1

4 T +∞ +∞
1 0 1
2 T +∞ 1
3 0 +∞

5 +∞ +∞ 1 1 1

6 T +∞ 0
1 1 1
2 T 1 1
3 0 +∞

7 +∞ +∞
1 1 1
2 1 +∞
3 +∞ +∞

8 T +∞ +∞

1 1 1
2 T 1 1
3 1 +∞
4 T 1 +∞
5 1 +∞
6 T +∞ 0

τt3

i
Mi σi j

Ci,j ρi,j
b b

1
2 T
3 1

τt4

(c) Dynamic programming tables for T

Figure 13 Dynamic programming tables for program Π using INC (DynASP 2 approach).

Example 3.16. Look at Figure 13 containing two simple rules Π = {r1, r2}, its incidence
graph I(Π), a corresponding tree decomposition and the computation obtained after bottom-
up traversing the tree decomposition. Note that the the tables for T encode the answer sets
{c}, {a}, {b, c}, {a, b, c} forming exactly the answer sets of Π.
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3.4 Correctness and Runtime
In the following, we provide insights on the correctness of our Algorithm 3 and reason later on that
it is fixed-parameter tractable and provide a sufficient parameter.

3.4.1 Soundness and Completeness

The correctness proof of these algorithms is rather tedious, as each node type needs to be investigated
separately. However, it has to be shown that a tuple at a node t guarantees that there exists a model
for the local program in t, proving soundness. Conversely, it can be shown that each candidate
answer set is indeed evaluated while traversing the tree decomposition, which proves completeness.
In the following, we sketch this idea even further using both the notion of partial solutions consisting
of partial models and the notion of local partial solutions. Note that this section is dedicated to the
most demanding INC algorithm provided in Algorithm 3, since the other algorithms discussed in
this paper can be shown by basic simplifications.

Definition 3.17. Let Π be a program and T = (T, χ) where T = (N, ·, ·) be a tree decomposition
of the incidence graph I(Π). Furthermore, let t ∈ N be a node. A partial model for t under M is a
tuple (C, σ) where M,C ⊆ att(Π) and σ : (Πt ∪Rt)→ N0 ∪ {+∞} such that

1. C � ΠM
t ,

2. σ(r) = 0 or σ(r) = +∞ for any r ∈ (Πt ∪Rt),

3. C ∩ H(r) 6= ∅ or (M ∩ B−(r)) 6= ∅ or (B+(r) ∩ att(Π)) 6⊆ C if σ(r) = +∞ for any
r ∈ DISJ(Πt ∪Rt),

4. bnd(r) > wght(r, [(at(Π) \ att(Π))∩ (B+(r)∪B−(r))]∪ (B+(r)∩C)∪ (B−(r) \M)) or
C ∩H(r) 6= ∅ if σ(r) = +∞ for any r ∈WGT(Πt ∪Rt), and

5. M ∩B−(r) 6= ∅ or (B+(r)∩ att(Π)) 6⊆ C or both H(r) ⊆ att(Π) and (M \C)∩H(r) = ∅
if σ(r) = +∞ for any r ∈ CH(Πt ∪Rt).

Definition 3.18. Let Π be a program and T = (T, χ) where T = (N, ·, n) be a tree decomposition
of the incidence graph I(Π). Furthermore, let t ∈ N be a node. A partial solution for t is a tuple
(M,σ, C) where (M,σ) is a partial model (under M ) and C is a set of partial models (C, ρ) under
M with C (M .

Note that without loss of generality we may assume that the root of our tree decompositions
always has an empty bag, which can be achieved by introducing intermediate nodes. With the
following proposition, one can see the correspondence between answer sets and partial solutions.

Proposition 3.19. Let Π be a program and T = (T, χ) where T = (·, ·, n) be a tree decomposition
of the incidence graph I(Π) and let χ(n) = ∅. Then there exists an answer set M for Π if and only
if there exists a partial solution v = (M,σ, ∅) with σ−1(+∞) = Π for node n.
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Proof. Given an answer set M of Π it is easy to construct v = (M,σ, ∅) with σ(r) := +∞ for
r ∈ Π and to check that v is indeed a partial solution for n (according to Definition 3.18). For the
other direction, one can check (see again Definition 3.18) that indeed the existence of v suffices to
guarantee that M is an answer set.

In order to proof the correctness of our algorithm, we require the following notion of local
partial solutions which correspond to the tuples obtained in Algorithm 3. The equivalence is obvious
for leaf nodes t ∈ LEAF(·) for the tree decomposition and will be shown in Theorem 3.23 proving
soundness.

Definition 3.20. Let Π be a program and T = (T, χ) where T = (N, ·, n) be a tree decomposition
of the incidence graph I(Π). Furthermore, let t ∈ N be a node, M,C ⊆ at(Π) and σ : Π →
N0 ∪{+∞} be a mapping. We define the local (satisfaction) state σt,M,C := (σ ] σ′)−Πt

for C under
M of node t where σ′ : Rt → N0 ∪ {+∞} by

1. σ′(r) = wght(r, (att(Π) \ At) ∩ [(B−(r) \M) ∪ (B+(r) ∩ C)]) for any r ∈WGT(Rt),

2. σ′(r) = |(att(Π) \ At) ∩H(r) ∩ (M \ C)| for any r ∈ CH(Rt), and

3. σ′(r) = 0 for any r ∈ DISJ(Rt).

Definition 3.21. Let Π be a program and T = (T, χ) where T = (N, ·, n) be a tree decomposition
of the incidence graph I(Π). Furthermore, let t ∈ N be a node. A local (partial) solution for t is a
tuple 〈M,σ, C〉 if there exists a partial solution (M̂, σ̂, Ĉ) such that

1. M = M̂ ∩ At,

2. σ = σ̂t,M̂,M̂ , and

3. C = { 〈Ĉ ∩ At, ρ̂t,M̂,Ĉ〉 : (Ĉ, ρ̂) ∈ Ĉ }.

We denote the construction of the local partial solution v = 〈M,σ, C〉 out of partial solution
v̂ = (M̂, σ̂, Ĉ) by v = v̂t.

The following proposition now provides justification that indeed it suffices to store local partial
solutions, i.e., we do not need to completely store partial solutions per node.

Proposition 3.22. Let Π be a program and T = (T, χ) where T = (·, ·, n) be a tree decomposition
of the incidence graph I(Π) and let χ(n) = ∅. Then there exists an answer set M for Π if and only
if there exists a local (partial) solution of the form v = 〈M,σ∅, ∅〉 for node n.

Proof. Since χ(n) = ∅, every partial solution for n is an extension of v according to Definition 3.21
and therefore the claim follows from Proposition 3.19.

Next, we show our two main theorems of this section concluding the correctness result.
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Theorem 3.23 (Soundness). Let Π be a program and T = (T, χ) where T = (N, ·, ·) be a tree
decomposition of the incidence graph I(Π). Furthermore, let t ∈ N be a node and t′ ∈ N be its
successor (or t′, t′′ ∈ N be its successors, respectively). Given a local partial solution v′ of table τt′
(or local partial solutions v′ of table τt′ and v′′ of table τt′′ , respectively), each tuple v of table τt for
node t constructed using INC algorithm specified in Algorithm 3 is also a local partial solution.

Proof. Let v′ be a local partial solution for t′ ∈ N and let v be a tuple for node t ∈ N such that v
was derived from v′ using INC algorithm. Hence, t′ is the only child of t and either t ∈ AI(T ), t ∈
AR(T ), t ∈ RI(T ) or t ∈ RR(T ). Assume that t is a rule removal node t ∈ RR(T ) and r ∈ Rt′\Rt

for some rule r. Note that v = 〈M,σ, C〉 and v′ = 〈M ′, σ′, C ′〉 only differ in the satisfaction states
(σ, σ′) and the satisfaction states occurring within the set of local counterwitnesses (C, C ′), since
only r is removed during transition from t′ to t. According to Algorithm 3 and since v has to
be derived from v′, we require that either r is a choice rule (trivially satisfied) or σ′(r) = +∞.
Similarly, we require for any 〈C ′, ρ′〉 ∈ C ′ that ρ′(r) = +∞ resulting in the fact that C ′ satisfies r
under M ′. Since v′ is a local partial solution, there has to exist a partial solution v̂′ of t′, satisfying
the conditions of Definition 3.21. We now claim that v̂′ is also a partial solution for node t, which
can be easily verified checking conditions of Definition 3.18. Finally, note that v = v̂′

t
since the

projection of v̂′ to the bag χ(t) is v itself, which results in the conclusion that v is indeed a local
partial solution. Analogously, the theorem can be checked for the three remaining node types above.

Now assume for the remaining case that t is a join node and therefore let v′ and v′′ be local
partial solutions for t′, t′′ ∈ N and v be a tuple for node t ∈ N such that v can be derived using
both v′ and v′′ in accordance with INC algorithm. Since v′ and v′′ are local partial solutions, there
exist partial solutions v̂′ = (M̂ ′, σ̂′, Ĉ ′) for node t′ and v̂′′ = (M̂ ′′, σ̂′′, Ĉ ′′) for node t′′. Using these
two partial solutions, we can construct v̂ = (M̂ ′ ∪ M̂ ′′, σ̂′ ] σ̂′′, Ĉ ′ ./ Ĉ ′′) where ./ (·, ·) is defined
in accordance with Algorithm 3 as follows:

Ĉ ′ ./ Ĉ ′′ := {(Ĉ ′ ∪ Ĉ ′′, ρ̂′ ] ρ̂′′) : (Ĉ ′, ρ̂′) ∈ Ĉ ′, (Ĉ ′′, ρ̂′′) ∈ Ĉ ′′, Ĉ ′ ∩ At = Ĉ ′′ ∩ At}∪
{(Ĉ ′ ∪ M̂ ′′, ρ̂′ ] σ̂′′) : (Ĉ ′, ρ̂′) ∈ Ĉ ′, Ĉ ′ ∩ At = M̂ ′′ ∩ At}∪
{(M̂ ′ ∪ Ĉ ′′, σ̂′ ] ρ̂′′) : (Ĉ ′′, ρ̂′′) ∈ Ĉ ′′, M̂ ′ ∩ At = Ĉ ′′ ∩ At}

Then, we check all conditions of Definition 3.18 in order to verify that v̂ is a partial solution for t.
Moreover, the projection v̂t of v̂ to the bag χ(t) is exactly v by construction and hence, v = v̂t is a
local partial solutions.

Theorem 3.24 (Completeness). Let Π be a program and T = (T, χ) where T = (N, ·, ·) be a tree
decomposition of the incidence graph I(Π). Furthermore, let t ∈ N be a node and t′ ∈ N be its
successor (or t′, t′′ ∈ N be its successors, respectively). Given a local partial solution v of table
τt, either t ∈ LEAF(T ) or there exists a local partial solution v′ of table τt′ (or two local partial
solutions, namely v′ of table τt′ and v′′ of table τt′′) such that v can be constructed by v′ (or v′ and
v′′, respectively) using INC algorithm specified in Algorithm 3.

Proof. Again one can distinguish the node types of node t. Let t ∈ N be a rule removal node t ∈
RR(T ) and r ∈ Rt′ \ Rt with successor node t′ ∈ N . We have to show that there exists a bag
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model v′ of table τt′ for node t′ such that v can be constructed using v′ with the help of the INC
algorithm specified in Algorithm 3. Since v is a local partial solution, there exists a partial solution
v̂ = (M̂, σ̂, Ĉ) for node n, satisfying the conditions of Definition 3.21. Since r is the removed rule,
σ̂(r) = +∞ or r ∈ CH(Π) is a choice rule by Definition 3.18. Hence, M̂ satisfies r either way by
similar arguments for any tuple (Ĉ, ρ̂) ∈ Ĉ, and we define v′ = v̂t, which is, the projection of v̂
onto the bag of t′. The resulting v′ is a local partial solution for node t′ according to Definition 3.21.
But then it is easy to check, that v can be derived using INC algorithm and v′. Finally, the theorem
can be checked for the remaining (five) node types.

3.4.2 Running time

In the following we show a theoretical runtime bound for the more demanding INC algorithm.
Results based on the primal and semi-incidence graph can be obtained analogously via according
simplifications.

Theorem 3.25. Given a program Π, a tree decomposition T = (T, χ) with T = (N, ·, ·) of the
incidence program I(Π) and node t ∈ N where k is the width of T and ` = max{bnd(r) : r ∈
WGT(Π)} is the maximal bound among the weight rules WGT(Π). Then the size of table τt, i.e., the
number of tuples for node t, using INC algorithm (see Algorithm 3) is at most 2(2k+k) · (`+3)k·(2

k+1).

Proof. (Sketch) The size bound is due to the fact that we can have 2k local witness and for
each local witness a subset of the set of local witnesses (2(2k) many) forming the set of local
counterwitnesses. Moreover, we observe that Algorithm 3 can be easily modified such that a state
σ : Rt → N0 ∪ {+∞} for a node t ∈ N assigns each weight rule r ∈ WGT(Π) a non-negative
integer σ(r) ≤ bnd(r) + 1, each choice rule r ∈ CH(Π) a non-negative integer σ(r) ≤ 2 and each
disjunctive rule r ∈ DISJ(Π) a non-negative integer σ(r) ≤ 1. This is the case since we need
to model σ(r) = 0 and σ(r) = +∞ for each rule r. Moreover, for choice rules r, it suffices to
additionally model whether 1 ≤ σ(r) < +∞, and for weight rules r, we require to remember any
weight 1 ≤ σ(r) ≤ bnd(r). Hence, we finally observe that for each of the 2k · 2(2k) many lines we
have to store in the worst case (`+3)k different states for each certificate, which yields (`+3)k·(2

k+1)

many combinations. Consequently, the number of tuples per node is at most 2k ·2(2k) · (`+ 3)k
(2k+1).

Hence, the claim sustains.

Theorem 3.26. Given a program Π, the approaches DynASP 2 and DynASP 2.5 (see Section 3.2)
using algorithm INC run in time O(2(2k+k) · (`+ 3)[k·(2k+1)] · ‖I(Π)‖c) for some constant c where k
is the treewidth of the incidence graph I(Π) and ` = max{bnd(r) : r ∈WGT(Π)} is the maximal
bound among the weight rules WGT(Π).

Proof. (Sketch) Let w and c be constants. Then we can compute a tree decomposition of size at
most w or decide that no such decomposition exists in time g(w)·‖I(Π)‖c [15] for some computable
function g where ‖I(Π)‖ is the size of the incidence graph of Π. Hence, we can compute a tree
decomposition T = (T, χ) where T = (N, ·, ·) of width k in time k · g(k) · ‖I(Π)‖c. The result
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follows from the fact that tree decompositions are linear in size of the underlying graph and the
number of tuples in each node is bounded by 2k · 2(2k) · (`+ 3)k

(2k+1) shown in Theorem 3.25.

Corollary 3.27. Given a program Π, the approaches DynASP 2 and DynASP 2.5 (see Section 3.2)
using algorithm INC are fixed-parameter tractable (see ,e.g., [33]) with respect to the treewidth k of
I(Π) and the maximal bound ` among WGT(Π), i.e., the runtimes correspond to f(k+ `) · ‖I(Π)‖c
for some computable function f and constant c.

Proof. The corollary immediately follows from Theorem 3.26, since f(k+ `) = k · g(k) · 2k · 2(2k) ·
(`+ 3)k

(2k+1).

Note that in practice we assume bounded lower bounds for weight rules and bounded choice
rules such that both the maximal bound among weight rules and the biggest cardinality of the heads
among choice rules falls below the range of an integer number in real computer systems. In other
words (` + 3) of Theorem 3.26 can be considered a system-dependant constant s, leading to the
worst-case runtime O(2(2k+k) · s[k·(2k+1)] · ‖I(Π)‖c) for some constant c in practice.

3.5 Extensions
For simplicity, we note the following assumptions of this section. Without further notice, we let
A ∈ {PRIM, INVPRIM SINC, INC, }, Π be the given program, and T = (T, χ) with T = (N, ·, ·)
be a tree decomposition of the respective graph representation of Π (the primal, or semi-incidence,
or incidence graph depending on A). We also assume for t ∈ N that t′ ∈ N and t′′ ∈ N are the
successors of t if t is a join node and t′ ∈ N is the only successor of t if t is not a join node and not
a leaf node. For convenience, we denote by v ∈ At(v′) (v ∈ At(v′, v′′)) for given tuple(s) v′ (v′ and
v′′) that tuple v is in the resulting table τt for node t ∈ (N \ LEAF(T )) using algorithm A and the
table(s) {v′} ({v′}, {v′′}) for node t′ (nodes t′, t′′).

3.5.1 Extensions to Optimization

The algorithms presented in Section 3.3 cannot handle optimization rules. In the following, we
introduce the extension of our three proposed ASP dynamic programming algorithms such that we
can handle optimization rules.

Recall definition of the objective o(Π,M,A) for program Π and setsA andM of atoms of Π (see
Section 2). In order to compute the objective of the local witnesses in the table τt for node t ∈ N ,
we need to extend every tuple v ∈ τt by a value describing the current value of the objective. Recall
that tuples are of the form v = 〈M, ·〉 or v = 〈M, ·, ·〉 depending on the algorithm A. Hence, we
obtain tuples of the form v = 〈M, ·, c〉 or v = 〈M, ·, ·, c〉, respectively, for some integer c. We
call the value c the cost of v up to t and write cv for the cost c of tuple v. Before we specify
the algorithm, we let vmint′(v) := {v′ : v′ ∈ τt′ , v ∈ At(v′)〉, cv′ = cmint′(v)} be the tuples
of minimum cost where cmint′(v) := min{cv′ : v′ ∈ τt′ , v ∈ At(v′)}. Similarly, we define
vmin(t′,t′′)(v) := {(v′, v′′) : v′ ∈ τt′ , v

′′ ∈ τt′′ , v ∈ At(v′, v′′), ct′ + ct′′ = cmin(t′,t′′)(v)} for
t ∈ JOIN(T ) where cmin(t′,t′′)(v) := min{ct′ + ct′′ : v′ ∈ τt′ , v′′ ∈ τt′′ , v ∈ At(v′, v′′)}.
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The algorithm extension for minimal models is presented in Algorithm 4.
Algorithm 4: OPT-A algorithm extension.
Data: Algorithm A, Program Π, Node t and its children t′ and t′′, if exist(s), of fixed tree decomposition T .
Result: Modified table τt for node t. For tuple 〈M, · · · , c〉, we only state cost c as the remaining part is

unaffected and the local witness M to indicate, which local witness is affected. Therefore, we abuse
the symbol “· · · ”. The actual arity of the tuple depends on the algorithm A.

1 if t ∈ LEAF(T ) then
2 τt :=

{〈
∅, · · · , 0

〉}
3 if t ∈ AI(T ) and let a ∈ At \At′ then
4 τt :=

{〈
M, · · · , o(Π, ∅, {a}) + cmint′(v)

〉 ∣∣∣ 〈M, . . . 〉 ∈ τt′
} ⋃

5
{〈
M+
a , · · · , o(Π, {a}, {a}) + cmint′(v)

〉∣∣∣ 〈M, . . . 〉 ∈ τt′
}

6 if t ∈ [RI(T ) ∪ RR(T )] then
7 τt :=

{〈
M, · · · , cmint′(v)

〉 ∣∣∣ 〈M, . . . 〉 ∈ τt′
}

8 if t ∈ AR(T ) and let a ∈ At′ \At then
9 τt :=

{〈
M−a , · · · , cmint′(v)

〉 ∣∣∣ 〈M, . . . 〉 ∈ τt′
}

10 if t ∈ JOIN(T ) then
11 τt :=

{〈
M, · · · , cmin(t′,t′′)(v)− o(Π,M,At)

〉∣∣∣ 〈M, . . . 〉 ∈ τt′ , 〈M, . . . 〉 ∈ τt′′
}

Algorithm 5: CNTOPT-A algorithm extension.
Data: Algorithm A, Program Π, Node t and its children t′ and t′′, if exist(s), of fixed tree decomposition T .
Result: Modified table τt for node t. For tuple 〈M, · · · , n〉, we only state counter n as the remaining part is

unaffected and the local witness M to indicate, which local witness is affected. Therefore, we abuse
the symbol “· · · ”. The actual arity of the tuple depends on the algorithm A.

1 if t ∈ LEAF(T ) then
2 τt :=

{〈
∅, · · · , 1

〉}
3 if t ∈ AI(T ) and let a ∈ At \At′ then
4 τt :=

{〈
M, · · · ,Σv′∈vmint′ (v) nv′

〉 ∣∣∣ 〈M, . . . 〉 ∈ τt′
} ⋃

5
{〈
M+
a , · · · ,Σv′∈vmint′ (v) nv′

〉 ∣∣∣ 〈M, . . . 〉 ∈ τt′
}

6 if t ∈ [RI(T ) ∪ RR(T )] then
7 τt :=

{〈
M, · · · ,Σv′∈vmint′ (v) nv′

〉 ∣∣∣ 〈M, . . . 〉 ∈ τt′
}

8 if t ∈ AR(T ) and let a ∈ At′ \At then
9 τt :=

{〈
M−a , · · · ,Σv′∈vmint′ (v) nv′

〉 ∣∣∣ 〈M, . . . 〉 ∈ τt′
}

10 if t ∈ JOIN(T ) then
11 τt :=

{〈
M, · · · ,Σ(v′,v′)∈vmin(t′,t′′)(v) (nv′ · nv′′)

〉 ∣∣∣ 〈M, . . . 〉 ∈ τt′ , 〈M, . . . 〉 ∈ τt′′
}
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3.5.2 Extensions to Counting

Next, we extend our algorithms by counters on the seen solutions to solve the #ASP problem.
Therefore, we extend every tuple v ∈ τt in the table τt for node t ∈ N by an integer describing
the number of potential answer sets, which the tuple gives rise to. Recall that tuples are of the
form v = 〈M, ·, c〉 or v = 〈M, ·, ·, c〉 depending on the algorithm A. Hence, we obtain tuple of the
form v = 〈M, ·, c, n〉 or v = 〈M, ·, ·, c, n〉, respectively, for some integer n. We call the value n the
counter of v up to t and write nv for the counter n of tuple v.

The algorithm extension for counting minimal models is presented in Algorithm 5.

3.5.3 Runtime results

Note that one is able to derive similar results as in Theorem 3.26 for algorithms using the extensions
presented above, but for the extension to optimization, we additionally require to fix parameter
m := max{wght(r) : r ∈ OPT(Π)} (maximum weight among the optimization rules) leading to
at most 2(2k+k) · (`+m+ 3)k·(2

k+1) tuples per table τt for each node t using algorithm INC (compare
to Theorem 3.25).

3.6 Comparison of the Algorithms
The algorithms presented are all based on tree decompositions of different graph representations of
the ASP program.

Observation 3.28. Let Π be a program. The treewidth of the incidence graph is at most the
treewidth of its semi-incidence program, which treewidth is at most the treewidth of its primal graph
plus 1.

However, incidence treewidth is a more general parameter than primal treewidth. In particular,
the treewidth of the primal graph of an ASP program is clearly lower-bounded by the size of the
largest rule in the program (since all atoms in a rule form a clique in the primal graph), while for the
incidence graph this is not the case. Therefore, programs containing large rules may perform badly
when evaluated with the PRIM algorithm, since the theoretical runtime is double-exponential in the
rule size. On the other hand, the INC algorithm runtime bound is not influenced by this, but data
structures of the algorithm are much more complex than those of PRIM (since satisfaction states
have to be remembered for each weight and choice rule). When rule size is small (and, therefore,
incidence and primal treewidth are similar), we expect PRIM to perform better in practice since
there is less overhead. However, for large rules, we expect INC to outperform PRIM substantially.
INVPRIM is similar to PRIM, and SINC is only sensitive to large weight rules or large choice
heads, instead of large rules in general (since cliques only exist between atoms appearing in
these constructs). Thus, our different algorithms represents a classical trade-off between using a
more general parameter which decreases the theoretical runtime bound, and algorithms of lower
complexity which decreases the practical overhead when implementing the algorithm.
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A final interesting observation is that, by dropping all the logic concerning the certificates from
the above algorithms, one obtains a pure satisfiability checking algorithm, similar to those proposed
by Samer and Szeider [83].

Counting Complexity

In the following, we show that (under standard complexity-theoretic assumptions) the counting
problem we consider here is strictly harder than #SAT. In fact the following result is a corollary of
existing results that deal with the complexity of evaluating logic programs and the complexity of
counting subset-minimal models of CNF formulas:

Theorem 3.29. The problem #ASP for programs without optimization rules is #· CONP-complete.

Proof. Observe that programs containing choice and weight rules can be compiled to disjunctive
ones (normalization) without these rule types (see [19]) using a polynomial number (in the original
program size) of disjunctive rules. Membership follows from the fact that, given such a normalized
program Π and an interpretation I , checking whether I is an answer of Π is CONP-complete, see
e.g., [64]. Hardness is a direct consequence of #· CONP-hardness for the problem of counting
subset minimal models of a CNF formula [35], since answer sets of negation-free programs and
subset-minimal models of CNF formulas are essentially the same objects.

We note that the counting complexity of ASP programs including optimization rules (i.e., where
only optimal answer sets are counted with respect to a cost function) is slightly higher; exact results
can be established employing hardness results from other sources [59].



TECHNICAL REPORT DBAI-TR-2016-101, Revised Version 44

4 Towards Implementation: DynASP 2 and DynASP 2.5
We implemented the system DynASP 2 based on the architecture of the DynASP 2 approach
introduced in Section 3 and the algorithms (and variants thereof) presented in Section 3.3. The result
is a fully automatic software tool targeted for evaluating ASP programs using dynamic programming
on tree decompositions. The input of DynASP 2 is assumed to be SModels intermediate format [96].
However, this is not a limitation since the complete ASP-Core-2 standard can be reduced to rules
of only six types specified using this format. Therefore, DynASP 2 requires a grounder such as
Gringo [44, 46] in order to reduce programs of ASP-Core-2 standard to rules of appropriate type.

This section now provides deeper insight on parts of the system requiring careful engineering
and concerning implementation. At first, we provide a brief overview on working with DynASP 2
in Section 4.1. There we provide a short hands-on guide concerning the application of DynASP 2 in
practice. In Section 4.2, we reveal performance-critical part, followed by a system based on the
DynASP 2.5 approach in Section 4.3 dedicated to efficient counter candidate derivation.

4.1 A quick hands-on quide to DynASP 2
After downloading, compiling and installing htd (library for computing tree decompositions via
heuristics), sharp (framework for supporting algorithms based on dynamic programming on tree de-
compositions) and DynASP 2 at https://github.com/daajoe/dynasp, the software prints its command
line option flags by typing dynasp −h (see Listing 1).

Usage: dynasp [OPTION]... [FILE]

Arguments to options are always mandatory. Valid options:
-v output version information and exit
-h display this help message and exit
-d perform decomposition and print treewidth
-t ALG use ALG for decomposition, where ALG is one of:

mcs: maximum cardinality search bucket elimination
mf: minimum fill edge count bucket elimination (default)

-b display timing information (use twice for CSV format)
-s NUM set NUM as seed for the random number generator (used in htd)
-c NUM set algorithm configuration to NUM:

1: primal graph, full certificates
2: primal graph, optimized certificates
3: primal graph, inverse certificates
4: incidence graph, full certificates (default)
5: incidence graph/primal constraints, full certificates
6: incidence graph/primal constraints, optimized certificates

Listing 1 Usage description of DynASP 2

The most important option of DynASP 2 probably is −c, which allows for selecting the algorithm
(see Section 3.3). The first two variants cover PRIM variants and the third algorithm works as
INVPRIM. The default selection is the fourth algorithm and corresponds to INC, whereas the
last two configurations are variants of SINC. Flag −t allows to change the heuristics for finding

https://github.com/daajoe/dynasp
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elimination orders as explained in 3.1 and −s allows to pass the initial seed. With the option −d,
one can enable DynASP 2 to perform the decomposition only, i.e., DynASP 2 can in fact also be
used as a decomposer.

Note that the input can stem from stdinput or a file (FILE) and is expected to be in SModels
syntax as defined in the manual [96]. Since the grounder Gringo [44, 46] for instance is capable of
transforming non-ground ASP programs into this format, one can call gringo together with dynasp
in the following UNIX-style pipe chain.

gringo [FILE] | dynasp [OPTION] ...

If one wants to compute the number of possibilities to color the graph of Figure 1 with 3 colors
such that the two end points of an edge do not have the same color, one can store the corresponding
encoding of Listing 7 in Section A.1 together with the facts of Figure 3a in a file “3col ex.lp” and
run DynASP 2 with gringo 3col ex.lp | dynasp −bb. The result (there are 36 possibilities) might
be the similar to the following output (see Listing 2).

Parsing...
Initializing solver...
Decomposing...
TREEWIDTH: 6
Solving...
PASS 1 finished
done.
OPTIMAL WEIGHT: 0
SOLUTION COUNT: 36

usr,sys,cpu,wall,description
0.00,0.00,0.00,0.00,program start
0.00,0.00,0.00,0.00,parsing time
0.00,0.00,0.00,0.00,tree decomposition time
0.03,0.00,0.03,0.04,PASS 1
0.00,0.00,0.00,0.00,solving time
0.00,0.00,0.00,0.00,solution extraction time

Listing 2 Result of running DynASP 2 with example of Figure 3

4.2 Implementation Tricks
For performance reasons, the actual implementation of DynASP 2 differs in its behavior from the
algorithm descriptions given in Section 3. The following parts provide room for optimizations,
which will be quickly discussed in the remainder of this subsection: (i) Derivation of Counter
Candidates, (ii) Counting, (iii) Counting Models of minimum weight, (iv) Data structure for sets of
atoms, and (v) Cleaning up tuples of child nodes.

Derivation of Counter Candidates. Concerning derivation of counter candidates, there are
several improvements possible. In Section 4.3 for instance, we provided details concerning an
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improved version based on the DynASP 2.5 approach, which tries to automatically derive the sets of
counter candidates via reusing already computed tuples. Note that there might be counter candidates,
which are not among the computed tuples due to the semantics of ASP, i.e. reusing derived tuples
does not suffice in general. Similarly there might be models of some program reduct, which are not
among the models of the program.

One could even try to use KR techniques in order to represent and maintain the set of counter
candidates in a compact way. However, DynASP 2 does not apply this method of keeping counter
candidates concise at the moment.

Data structure for sets of atoms. In Section 4.3, we present a modification of the system
improving counter candidate derivation, which uses bit vectors as data structure for sets of atoms,
hence allowing efficient set comparisons, subset checks, computation of set unions, intersections,
inverses and many more.

Cleaning up tuples of child nodes. Note that in the end, we do not require to keep intermediate
results, which allows for cleaning computed tuples for child nodes during the bottom-up traversal
immediately after deriving the corresponding tuples of the current node.

4.3 Extended Implementation: DynASP 2.5
The implementation of the solver DynASP 2.5 is an improvement influenced by the success of
D-FLATˆ2 [13]9, an extension of the dynamic programming framework D-FLAT [2]10 targeting
problems located on the second level of the polynomial hierarchy. DynASP 2.5 operates in several
passes while deriving partial solutions and the corresponding counter candidates (i.e. tuples as
defined and used in Section 3.2) based on the DynASP 2.5 approach – thereby allowing removal of
non-solution tuples at an early stage during the bottom-up traversal of the tree decomposition.

The architecture of DynASP 2.5 is adapted such that the system works in three passes as seen in
the flowchart of Figure 5.

4.3.1 A quick hands-on quide to DynASP 2.5

The syntax of DynASP 2.5 is the same as in DynASP 2 (see Section 3), but extended accordingly.
In particular, the extended system allows the following flags (see Listing 3).

9D-FLATˆ2 is open source and available at https://www.github.com/hmarkus/dflat-2.
10D-FLAT allows rapid prototyping of algorithms exploiting dynamic programming on tree decompositions and can

be downloaded at https://www.github.com/bbliem/dflat.

https://www.github.com/hmarkus/dflat-2
https://www.github.com/bbliem/dflat
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Usage: dynasp2.5 [OPTION]... [FILE]

Arguments to options are always mandatory. Valid options:
-v output version information and exit
-h display this help message and exit
-d perform decomposition and print treewidth
-n do not use weak normalization
-r do not use reduct speedup optimization
-l NCH enforce join nodes with at most NCH children (default: 3)
-t ALG use ALG for decomposition, where ALG is one of:

mcs: maximum cardinality search bucket elimination
mf: minimum fill edge count bucket elimination (default)

-b display timing information (use twice for CSV format)
-s NUM set NUM as seed for the random number generator (used in htd)
-c NUM set algorithm configuration to NUM:

2: primal graph, optimized certificates (default)
6: incidence graph/primal constraints, optimized certificates

Listing 3 Usage description of DynASP 2.5

First of all, the extended implementation DynASP 2.5 was only provided for two algorithms (−c),
namely 2 and 6. Concerning the particular implementation we added flag −r, which disables a
certain optimization based on counter candidate handling leading to performance increases in some
cases.

Moreover, the internal details and in particular the way how the idea based on three passes
works, forced use to enable a flag (−l), which limits the number of children per join node. In
addition, per default we enabled an efficient implementation of our two algorithms based on a weak
form of normalized tree decompositions.

Besides the default setting, the following configurations might be worth to try for each of the
two algorithms (more details in Section 5): (i) −n −l 2, (ii) −n −l 2 −r, and (iii) −l 3 −r.

Following our running example from Figure 3, we could use the extended implementation
to compute the number of 3colorings for the graph of Figure 1. Again we store the correspond-
ing ASP program (as described in Section 3) in a file “3col ex.lp” and run DynASP 2.5 with
gringo 3col ex.lp | dynasp2.5 −bb. The result might be the similar to the following output (see
Listing 4).
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Parsing...
Initializing solver...
Decomposing...
TREEWIDTH: 6
Solving...
PASS 1 finished

PASS 2 finished

PASS 3 finished
SIZE: 7
done.
OPTIMAL WEIGHT: 0
SOLUTION COUNT: 36

usr,sys,cpu,wall,description
0.00,0.00,0.00,0.00,program start
0.00,0.00,0.00,0.00,parsing time
0.00,0.00,0.00,0.00,tree decomposition time
0.01,0.00,0.01,0.00,PASS 1
0.00,0.00,0.00,0.01,PASS 2
0.01,0.00,0.01,0.01,PASS 3
0.00,0.00,0.00,0.00,solving time
0.00,0.00,0.00,0.00,solution extraction time
LEAF: 36
EXCHANGE: 27
JOIN: 35

FIRSTS: 783
REUSES: 696
SPLITUPS: 767

Listing 4 Result of running DynASP 2.5 with example of Figure 3
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5 Experimental Evaluation
We performed experiments to evaluate the efficiency of our approach and its various algorithm
configurations (PRIM, INVPRIM, INC) on programs where we can heuristically find a decomposition
of small width reasonably fast. In fact, programs of small width exist in practice as real-world
graphs often admit tree decompositions of small width. Further, we compared our approach with a
modern ASP solver, recent #SAT solvers, and a QBF solver. The solvers tested include our own
prototype implementation, which we refer to as DynASP 2 and DynASP 2.5, and the existing
solvers Cachet 1.21 [86], DepQBF011, Clasp 3.1.4 [47], and SharpSAT 12.08 [95].

5.1 Setup / Experimental Environment
The experiments were ran on an Ubuntu 12.04 Linux cluster of 3 nodes with two AMD Opteron
6176 SE CPUs of 12 physical cores each at 2.3Ghz clock speed and 128GB RAM. Input instances
were given to the solvers via a shared memory file system. During a run we limited the available
memory to 4GB RAM.

In order to draw conclusions about the efficiency of our approach, we mainly inspected the (total
cpu) running time12 and number of timeouts on the random and structured benchmark sets.

We conducted three different benchmark modes as explained in the following.

COMPUTEAS. Concerning finding one answer set if it exists, we compared Clasp to our approach
using structured instance sets and we did not limit the treewidth of the input instances. This mode
shall present the runtime results without taking care of the disadvantages (concerning high treewidth)
of DynASP 2 due to its underlying technique. We used parameters “–stats=2 –opt-strategy=usc -q”
for Clasp, and will refer to the following two different variants of our prototype implementation
as DynASP 2(PRIM) and DynASP 2(INC). Since this mode contains also instances of treewidth
larger than 20, our runs were limited to 600 seconds of CPU time.

#ASP. Since this mode covers the main results of this section, we conducted random and struc-
tured benchmarks using the full set of solvers already mentioned. We used default options for
cachet and SharpSAT, option “–qdc” for DepQBF0, option “–stats=2 –opt-mode=optN -n 0 –opt-
strategy=bb/usc -q” for Clasp, and will refer to the different variants of our prototype implementa-
tion as DynASP 2(PRIM), DynASP 2(INVPRIM) and DynASP 2(INC). Since we cannot expect to
solve instances of high treewidth efficiently, we restricted the instances such that we were able to
heuristically find a decomposition of width smaller than 20 within 60 seconds. Note that during a
run we limited the CPU time to 300 seconds.

11Since DepQBF [70] does not support counting by default, we implemented a naive counting approach into DepQBF
using methods described in [69], which we call DepQBF0.

12The runtime for DynASP 2(·) includes decomposition times. Note that we randomly generated three fixed seeds
for the decomposition computation to allow a certain variance in decomposition features [3]. When evaluating the
results, we constructed the average on the seeds per instance.
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Counting – DynASP 2 vs. DynASP 2.5. We compared our two variants of DynASP using
structured sets without limiting the treewidth of the instances. Again, we will refer to our two basic
variants of the prototype implementation DynASP 2 resp. DynASP 2.5 as DynASP 2(PRIM) and
DynASP 2(INC) resp. DynASP 2.5(PRIM) and DynASP 2.5(INC). Since also this mode contains
instances of treewidth ≥ 20, our runs were limited to 600 seconds of CPU time.

5.2 Instances
We used both random and structured instances for benchmark sets, of which we give a description
below. The random instances (SAT-TGRID, 2QBF-TGRID, ASP-TGRID, 2ASP-TGRID) were
designed to have a high number of variables and solutions, but with certain probability a treewidth
larger than some fixed k. Therefore, let k and ` be some positive integers and p a rational number
such that 0 < p ≤ 1. An instance F of the set SAT-TGRID(k, l, p) consists of the set V =
{ (1, 1), . . . , (1, `), (2, `), . . . , (k, `) } of variables and with probability p for each variable (i, j)
such that 1 < i ≤ k and 1 < j ≤ ` a clause s1(i, j), s2(i − 1, j), s3(i, j − 1), a clause s4(i, j),
s5(i−1, j), s6(i−1, j−1), and a clause s7(i, j), s8(i−1, j−1), s9(i, j−1) where si ∈ {−,+} is
selected with probability one half. In that way, such an instance has an underlying dependency graph
that consists of various triangles forming for probability p = 1 a graph that has a grid as subgraph.
Let q be a rational number such that 0 < q ≤ 1. An instance of the set 2QBF-TGRID(k, l, p, q) is of
the form ∃V1.∀V2.F where a variable belongs to V1 with probability q and to V2 otherwise. Instances
of the sets ASP-TGRID or 2ASP-TGRID have been constructed in a similar way, however, as an
ASP program instead of a formula. Note that the number of answer sets and the number of satisfiable
assignments correspond. We fixed the parameters to p = 0.85, k = 3, and l ∈ {40, 80, . . . , 400}
to obtain instances that have with high probability a small fixed width, a high number of variables
and solutions. Further, we took fixed random seeds and generated 10 instances to ensure a certain
randomness. The structured instances model various graph problems (see Section A.1: C2COL,
W2COL, C3COL, CDS, SDS, ST, CVC, SVC) on real world mass transit graphs of 82 cities,
metropolitan areas, or countries (e.g., Beijing, Berlin, Shanghai, and Singapore). The graphs have
been extracted from publicly available mass transit data feeds [27] and splited by transportation
type, e.g., train, metro, tram, combinations. We heuristically computed tree decompositions [30] and
obtained relatively fast decompositions of small width unless detailed bus networks were present.
The encoding for C2COL counts all minimal sets S of vertices such that there are two sets F and S
where no two neighboring vertices v and w belong to F for a given input graph. We also added a
modified variant called W2COL involving weights of the vertices. The encoding for C3COL models
to count all 3-colorings where we minimize the number of assignments to color “red”. The encoding
for CDS resp. SDS models to count all minimum resp. minimal dominating sets. The encoding for
ST models to count all Steiner trees. The encoding for CVC asks to count all minimal vertex covers.
The encoding for SVC models to count all subset-minimal vertex covers.
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Figure 14 COMPUTEAS: Result visualization of structured instance sets.
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5.3 Results
5.3.1 COMPUTEAS

In Figure 14 we show cactus plots of selected structured instances concerning the consistency prob-
lem. Since the technique of DynASP 2 is based on dynamic programming on tree decompositions
and not optimized for determining only one answer set, it is not a secret that the solver does not
perform best under theses circumstances. However, it is quite surprising on the other hand that
DynASP 2 seems to work better solving the weighted 2-colorability variant (W2COL, see Listing 6)
compared to Clasp. Note that at the moment we are still trying to determine the reason for this
unexpected result and in particular are conducting a series of benchmark runs where we explore
different solver configurations of Clasp. For more details we refer the reader to Table 1 reporting
on the average running times and number of timeouts of the solvers on the considered structured
instance sets.

C2COL C3COL CDS ST CVC W2COL SDS SVC

Clasp 0.12 (0) 0.11 (0) 0.11 (3) 69.00 (57) 0.13 (0) 76.39 (64) 53.48 (20) 0.10 (0)
INC 21.29 (18) 85.54(73) 22.74 (19) 115.11 (91) 20.88 (18) 37.02 (29) 571.62 (498) 26.70 (21)
PRIM 21.27 (18) 85.20(72) 22.63 (19) 368.31 (320) 20.91 (18) 37.37 (29) 574.14 (505) 26.66 (21)

Table 1 COMPUTEAS: Runtime results (given in sec.) on real-world graph instance sets and
number of timeouts in brackets.
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Figure 15 #ASP: Result visualization of randomly generated instance sets.
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C2COL C3COL CDS ST CVC SVC

Clasp 31.72 (21) 0.10 (0) 8.99 (3) 0.21 (0) 29.88 (21) 98.34 (71)
INC 1.43 (0) 0.58 (0) 0.54 (0) 115.02 (498) 0.68 (0) 0.78 (0)
INVP 1.50 (0) 0.47 (0) 0.79 (0) 91.92 (248) 0.99 (0) 1.15 (0)
PRIM 1.54 (0) 0.53 (0) 0.68 (0) 79.36 (221) 0.99 (0) 1.30 (0)

Table 2 #ASP: Runtime results (given in sec.) on real-world graph instance sets and number of
timeouts in brackets.

5.3.2 #ASP

Table 2 reports on the average running times and number of timeouts of the solvers on the considered
structured instance sets. Figure 15 illustrates the running times of the solvers on the various random
instance sets whereas Figure 16 shows selected structured instance set as a cactus plot.

The results can be summarized as follows:
SAT-TGRID and ASP-TGRID: Cachet solved 125 instances. Clasp always timed out for both

configurations (branch and bound; and unsatisfiable core). A reason could be the high number of
solutions as Clasp counts the models by enumerating them. DynASP 2(·) solved each instance
within at most 270 seconds (on average 67 seconds). The best configuration with respect to runtime
was PRIM. However, the running times of the different configurations were close. We observed as
expected a sub-polynomial growth in the runtime with an increasing number of solutions. SharpSAT
timed out on 3 instances and ran into a memory out on 7 instances, but solved most of the instances
quite fast. Half of the instances were solved within 1 seconds and more than 80% of the instances
within 10 seconds, and about 9% of the instances took more than 100 seconds. The number of
solutions does not have an impact on the runtime of SharpSAT. SharpSAT was the fastest solver in
total, however, DynASP 2(·) solved all instances. The results are illustrated in the two graphs of
Figure 15.

2QBF-TGRID and 2ASP-TGRID: Clasp solved more than half of the instances in less than 1
second, however, timed out on 59 instances. DepQBF0 shows a similar behavior as Clasp, which
is not surprising as both solvers count the number of solutions by enumerating them and hence
the number of solutions has a significant impact on the runtime of the solver. However, Clasp is
throughout faster than DepQBF0. DynASP 2(INC) solved half of the instances within less than 1
second, about 92% of the instances within less than 10 seconds, and provided solutions also for a
large number of answer sets. The other configurations quickly produced timeouts.

Structured instances: Clasp solved most of the structured instances reasonably fast. However, the
number of solutions has again, similar to the random setting, a significant impact on its performance.
If the instance has a small number of solutions, then Clasp yields the number almost instantly. If the
number of solutions was very high, then Clasp timed out. DynASP 2(·) solved for each set but the
set ST more than 80% of the instances in less than 1 second and the remaining instances in less than
100 seconds. For ST the situation was different. Half of the instances were solved in less than 10
seconds and a little less than the other half timed out. Similar to the random setting, DynASP 2(·)
ran still fast on instances with a large number of solutions. Whenever the instance had relatively
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C2COL C3COL CDS ST CVC W2COL SDS SVC

INC 21.29 (18) 85.54(73) 22.74 (19) 115.11 (91) 20.88 (18) 37.02 (29) 571.62 (498) 26.70 (21)
PRIM 21.27 (18) 85.20(72) 22.63 (19) 368.31 (320) 20.91 (18) 37.37 (29) 574.14 (505) 26.66 (21)

INC 2.5
21.69 (18) 102.39(82) 24.30 (21) 74.76 (62) 21.65 (18) 53.01 (41) 569.70 (498) 24.96 (21)

-r -n -l 2 -r -n -l 2 -r -n -l 2 -r -l 2 -r -n -l 2 -r -n -l 2 -r -l 2 -r -l 2

PRIM 2.5
21.95 (18) 108.49(86) 23.49 (20) 317.11 (275) 22.67 (19) 59.69 (46) 568.56 (498) 20.93 (18)

-r -l 5 -r -n -l 2 -r -n -l 2 -n -l 2 -r -n -l 2 -r -n -l 2 -n -l 2 -l 2

Table 3 DynASP 2 vs. DynASP 2.5: Runtime results (given in sec.) on real-world graph instance
sets and number of timeouts in brackets. Best configurations given for INC 2.5 and
PRIM 2.5 (see Section 4.3.1)

few solutions Clasp was faster, otherwise DynASP 2(·) (e.g., SVC) was faster.
The empirical results of the benchmarks confirm that our DynASP 2 prototype works reasonably

fast under the assumption that the input instance has small treewidth. The comparison to state-of-the-
art ASP and QBF solvers shows that our solver has an advantage if we have to count many solutions,
whereas Clasp and DepQBF0 perform well if the number of instances is relatively small. However,
DynASP 2(·) is still reasonably fast on structured instances with few solutions as it yields the
number of solutions mostly within less than 10 seconds. We observed that DynASP 2(INC) seems
to be the overall best solving algorithm in our setting, which indicates that the smaller treewidth
obtained by decomposing the incidence graph generally outweighs the benefits of simpler solving
algorithms for the primal graph. A comparison to recent #SAT solvers suggests that dedicated #SAT
algorithms are somewhat faster on random SAT formulas of small treewidth than our decomposition
based approach, which is, however, not particularly surprising since our implementation is equipped
to handle the full ASP semantics. The results indicate that our approach seem to be suitable for
practical use, at least for certain classes of instances with low treewidth, and hence could fit into a
portfolio-based solver.

5.3.3 Counting ASP models – DynASP 2 vs. DynASP 2.5

Results of our findings comparing DynASP 2 with DynASP 2.5 are visualized in Figure 17 and
summarized in Table 3. Note that the differences concerning runtime are not significant for some
problems and DynASP 2.5 does not look convincing in all categories, either. However, to this end
we want to point the reader’s attention to the Steiner tree problem. Algorithm INC 2.5 shows
quite good results using the configuration specified in Table 3. In particular, if we compare the
runtime of INC 2.5 to the one of Clasp in Table 1 (where we used the same instance sets as argued
at the beginning of this Section), we notice that in about the time Clasp requires for proving the
existence of a Steiner tree, DynASP 2.5 is capable of not only solving the corresponding consistency
problem, but also counting the number of Steiner trees. Hence, the improved algorithms using
DynASP 2.5 provide room for improvements, especially since DynASP 2.5 is still a prototype
implementation and contains several unlocked potentials.
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Figure 16 #ASP: Result visualization of structured instance sets.
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Figure 17 DynASP 2 vs. DynASP 2.5: Result visualization of structured instance sets.
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6 Conclusion
In this paper, we have presented several dynamic programming algorithms for evaluating answer
sets of logic programs based on tree decompositions, and compared two prototype implementations
to existing solvers. Generally, our algorithms are not built for all-purpose ASP solving, since their
runtime depends heavily on the treewidth of the given ASP instance. However, our intention is to
show that they can perform well on instances of low treewidth. For the COMPUTEAS problem,
our algorithms also have a significant disadvantage since dynamic programming is not well-suited
to finding only one solution. However, interestingly, in the case of optimization (i.e. the problem
of finding the best answer set) we found that there are instances—especially instances with non-
uniform weights—where our algorithms are able to outperform existing solvers on instances of low
treewidth.

On the other hand, for aggregation problems that require computing all solutions, our algorithms
perform very well when compared to state-of-the-art solvers. In particular, we found that the #ASP

problem is an area where our algorithms perform very well. On instances of low treewidth, we were
able to consistently outperform state-of-the-art SAT model counters, ASP solvers, and QBF solvers.

Compared to each other, our optimized DynASP 2.5 implementation payed off especially where
optimization problems with non-uniform weights were considered.

Future Work. Since model counting seems to be an area well-suited for evaluation by our
algorithms, we plan to extend them to weighted model counting algorithms that can then be used to
solve the Bayesian Inference problem (that is, what is the probability that a given atom is true in an
answer set). This problem is important in mathematical statistics and particularly in the evaluation
and analysis of sequences of data. It finds use in expert systems, pattern recognition, statistical
classification (e.g. for email spam filters), or even phylogenetics.
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A Appendix

A.1 Used Encodings
For completion, we add the encodings for our graph problems (C2COL, W2COL, C3COL, CDS,
SDS, ST, CVC and SVC) used in Section 5 denoted in the language of gringo. For details concerning
syntax and semantics, we refer the reader to the literature [23, 45, 46, 47]. Listings 5 and 6
covers our 2-colorability variants, followed by Listing 7 (Listing 8) for our 3-colorability (variant
thereof). Then we show an encoding for the dominating set variants in Listings 9 and 10 and one
for the steiner tree problem in Listing 11. Finally, we present the two variants of vertex cover (see
Listings 13 and 12).

color(r;g).

1 { map(X,C) : color(C) } 1 ← vertex(X).
← edge(X,Y), map(X,g), map(Y,g).

#minimize { 1,X : map(X,r) }.

Listing 5 Encoding for C2COL

color(r;g).

1 { map(X,C) : color(C) } 1 ← vertex(X).
← edge(X,Y), map(X,g), map(Y,g).

#minimize { W,X : map(X,r), weight(X,W) }.

Listing 6 Encoding for W2COL

color(r;g;b).

1 { map(X,C) : color(C) } 1 ← vertex(X).
← edge(X,Y), map(X,C), map(Y,C).

Listing 7 Encoding for 3COL

color(r;g;b).

1 { map(X,C) : color(C) } 1 ← vertex(X).
← edge(X,Y), map(X,C), map(Y,C).

#minimize { 1,X : map(X,r) }.

Listing 8 Encoding for C3COL
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{ in(X) } ← vertex(X).

dominated(Y) ← in(X), edge(X,Y).
← vertex(X), not in(X), not dominated(X).

#minimize { 1,X : in(X) }.

Listing 9 Encoding for CDS

{ in(X) } ← vertex(X).
dominated(X) ← in(Y), edge(Y,X).

%not dominated
← vertex(X), not in(X), not dominated(X).

%guess potential counter candidate
cin(X) ; ncin(X) ← vertex(X).
spoil ← cin(X), not in(X).

cin(X) ← spoil, vertex(X).
ncin(X) ← spoil, vertex(X).

← not spoil.

%SUB
%some X is not dominated, nor in
spoil ← ncin(X), C1 #count{Y: ncin(Y), edge(Y,X)}, C1 = #count{Y: edge(Y,X)}.

Listing 10 Encoding for SDS

0 { p(X,Y) } 1 ← edge(X,Y).

% For all partitions into two sets there must be a crossing edge.
s1(X) ∨ s2(X) ← vertex(X).
s1(X) ← saturate, vertex(X).
s2(X) ← saturate, vertex(X).
← not saturate.

% Found crossing edge?
saturate ← p(X,Y), s1(X), s2(Y).
saturate ← p(Y,X), s1(X), s2(Y).

% Not a partition due to a set being terminal empty?
% This is the case if the other set contains all terminal elements.
numVertices(N) ← N = #count{ X : terminalVertex(X) }.
saturate ← N #count{ X : s1(X), terminalVertex(X) }, numVertices(N).
saturate ← N #count{ X : s2(X), terminalVertex(X) }, numVertices(N).

#minimize { 1,X,Y : p(X,Y) }.

Listing 11 Encoding for ST
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{ in(X) } ← vertex(X).
← edge(X,Y), not in(X), not in(Y).

#minimize{ 1,X : in(X) }.

Listing 12 Encoding for CVC

in(X) ∨ in(Y) ← edge(X,Y).

Listing 13 Encoding for SVC
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