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Abstract. Belief merging is a central operation within the field of belief change
and addresses the problem of combining multiple, possibly mutually inconsistent
knowledge bases into a single, consistent one. A current research trend in belief
change is concerned with tailored representation theorems for fragments of logic,
in particular Horn logic. Hereby, the goal is to guarantee that the result of the
change operations stays within the fragment under consideration. While several
such results have been obtained for Horn revision and Horn contraction, merging
of Horn theories has been neglected so far. In this paper, we provide a novel
representation theorem for Horn merging by strengthening the standard merging
postulates. Moreover, we present a concrete Horn merging operator satisfying all
postulates.

1TU Wien. E-mail: {haret, ruemmele, woltran}@dbai.tuwien.ac.at

Acknowledgements: This work has been supported by the Austrian Science Fund (FWF)
under grants P25518 and P25521.

Copyright c© 2015 by the authors



Contents

1 Introduction 3

2 Preliminaries 4

3 Restricting assignments: Horn compliance 8

4 Strengthening the postulates 9
4.1 Non-transitive cycles and Acyc . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 s4 – s6 and IC4 – IC6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 A concrete Horn merging operator 22
5.1 General conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 The summation assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6 Conclusion and future work 31

2



1 Introduction

Belief merging uses a logical approach to study how information coming from multiple,
possibly mutually inconsistent knowledge bases should be combined to form a single,
consistent knowledge base. Merging shares a common methodology with other belief
change operators such as revision [1, 7], contraction [1] and update [6]. This methodology
consists, first of all, in formulating logical postulates which any rational operator should
satisfy. For merging, the IC-merging postulates [8, 9] are commonly used. In a further
step, a representation result is usually derived: this shows that all (merging) operators
satisfying the postulates can be characterized using rankings on the possible worlds
described by the underlying language, which is typically taken to be full propositional
logic.

Recently, the restriction of belief change formalisms to different fragments of proposi-
tional logic has become a vivid research branch. There are pragmatic reasons for focusing
on fragments, especially Horn logic. Firstly, Horn clauses are a natural way of formulating
basic facts and rules, and thus are useful to encode expert knowledge. Secondly, Horn
logic affords very efficient algorithms. Thus the computational cost of reasoning in this
fragment is comparatively low.

While revision [4, 11, 13] and contraction [2, 5, 12] have received a lot of attention in
this direction, belief merging has yet remained unexplored, with the notable exception
of [3]. We aim to fill this gap and investigate the problem of merging in the Horn fragment
of propositional logic. We find that restricting the underlying language poses a series of
non-trivial challenges, as representation results which work for full propositional logic
break down in the Horn case.

Firstly, we find that we cannot rely on the same types of rankings as the ones used
for merging in the case of full propositional logic. The reason is that such rankings lead
to outputs that cannot be expressed as Horn formulas. We fix this problem by adding
the restriction of Horn compliance: this narrows down the notion of ranking in a way that
is coherent with the semantics of Horn formulas. Since standard merging operators are
found not to be Horn compliant (hence useless for our needs), we also give a concrete
operator that exhibits this property. This is remarkable, as previous research [3] resulted
only in Horn merging operators that do not satisfy all postulates. Secondly, Horn merging
operators that satisfy the standard postulates turn out to represent more rankings than
was expected, some of which are undesirable. We interpret this as an inadequacy of the
standard postulates to capture the intended intuitive behaviour of a merging operator.
Hence, we propose an alternative formulation of some key postulates, which allows us to
derive an appealing representation result for the case of Horn merging. Our approach
here is inspired by existing work on Horn revision [4], though we go significantly beyond
it to tackle the problems posed by merging.

The rest of the paper is organized as follows. In Section 2 we introduce the background
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to merging. In Section 3 we argue that standard model-based merging operators are
inappropriate for Horn merging and introduce the property of Horn compliance. In
Section 4 we argue that a subset of the IC-merging postulates should be replaced by
a strengthened version, and introduce a representation result using the strengthened
postulates. Finally, in Section 5 we describe a concrete Horn merging operator satisfying
all postulates.

2 Preliminaries

Propositional logic. We work with the language L of propositional logic over a fixed
alphabet P = {p1, . . . , pn} of propositional atoms. We use standard connectives ∨, ∧, ¬
and the logical constants > and ⊥. A literal is an atom or a negated atom. A clause is
a disjunction of literals. A clause is called Horn if at most one of its literals is positive.
The Horn fragment LH ⊂ L is the set of all formulas in L that are conjunctions of Horn
clauses. An interpretation is a set w ⊆ P of atoms. The set of all interpretations is denoted
by W . We will typically represent an interpretation by its corresponding bit-vector of
length |P|. As an example, if |P| = 3, then 101 is the interpretation {p1, p3}. A pre-order
≤ on W is a reflexive, transitive binary relation on W . If w1, w2 ∈ W , then w1 < w2
denotes the strict part of ≤, i.e., w1 ≤ w2 but w2 � w1. We write w1 ≈ w2 to abbreviate
w1 ≤ w2 and w2 ≤ w1. IfM is a set of interpretations, then the set of minimal elements
of M with respect to ≤ is defined as min≤M = {w1 ∈ M |6 ∃w2 ∈ M s.t. w2 < w1}. If
interpretation w satisfies formula ϕ, we call w a model of ϕ. We denote the set of models
of ϕ by [ϕ]. Given a setM of interpretations, we define Cl∩(M), the closure ofM under
intersection, as the smallest superset ofM that is closed under ∩. By closure under ∩
we mean that if w1, w2 ∈ Cl∩(M) then also w1 ∩ w2 ∈ Cl∩(M). We recall here a classic
result concerning Horn formulas and their models (see, for example, [10]).

Proposition 1. A set of interpretationsM is the set of models of a Horn formula ϕ if and only if
M = Cl∩(M).

Proposition 1 highlights the expressive limitations of the Horn fragment. It shows,
for instance, that the set of interpretations {01, 10}, which is easily representable in full
propositional logic by the formula (p1 ∧ ¬p2) ∨ (¬p1 ∧ p2), cannot be represented by a
Horn formula. However, we can represent the closure Cl∩({01, 10}) = {00, 01, 10} by the
Horn formula ¬p1 ∨ ¬p2.

This expressive limitations of the Horn fragment motivate the following notions. A
formula is called complete if it has exactly one model. If wi is an interpretation, we
write σwi or σi to denote a complete formula that has wi as a model. In other words,
σi is a propositional formula such that [σi] = {wi}. As an observation, it is easy to see
that for any singleton {wi} we can find a complete propositional Horn formula σi such
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that [σi] = {wi}. For instance, the singleton {01} is representable by the Horn formula
¬p1 ∧ p2.

If σi and σj are complete formulas, then σi,j is a formula such that [σi,j] = {wi, wj}.
If we are working in the Horn fragment, we take σi,j to be a Horn formula such that
[σi,j] = Cl∩({wi, wj}).

Belief Merging. A knowledge base is a finite set of propositional formulas. A profile
is a non-empty finite multi-set E = {K1, . . . , Kn} of consistent knowledge bases. Horn
knowledge bases and Horn profiles contain only Horn formulas and Horn knowledge bases,
respectively. The sets of all knowledge bases, Horn knowledge bases, profiles and Horn
profiles are denoted by K, KH, E and EH, respectively. If E1 and E2 are profiles, then
E1 t E2 is the multi-set union of E1 and E2. Interpretation w is a model of knowledge base
K if it is a model of every formula in K. Interpretation w is a model of profile E if it is a
model of every K ∈ E. We denote by [K] and [E] the set of models of K and E, respectively.
We write

∧
E for

∧
K∈E

∧
ϕ∈K ϕ. This reduces a profile to a single propositional formula.

Clearly, [
∧

E] = [E].
Profiles E1 and E2 are equivalent, written E1 ≡ E2, if there exists a bijection f : E1 → E2

such that for any K ∈ E1 we have [K] = [ f (K)].
A merging operator is a function ∆ : E × L → K. It maps a profile E and a formula µ,

typically referred to as the constraint, onto a knowledge base. We write ∆µ(E) instead of
∆(E, µ). As is common in the belief change literature, logical postulates are employed to
set out properties which any merging operator ∆ should satisfy. An operator satisfying
the following postulates is called IC-merging operator [8, 9]:

(IC0) ∆µ(E) |= µ.

(IC1) If µ is consistent, then ∆µ(E) is consistent.

(IC2) If
∧

E is consistent with µ, then ∆µ(E) ≡ ∧
E ∧ µ.

(IC3) If E1 ≡ E2 and µ1 ≡ µ2, then ∆µ1(E1) ≡ ∆µ2(E2).

(IC4) If K1 |= µ and K2 |= µ, then ∆µ({K1, K2}) ∧ K1 is consistent iff ∆µ({K1, K2}) ∧ K2 is
consistent.

(IC5) ∆µ(E1) ∧ ∆µ(E2) |= ∆µ(E1 t E2).

(IC6) If ∆µ(E1) ∧ ∆µ(E2) is consistent, then ∆µ(E1 t E2) |= ∆µ(E1) ∧ ∆µ(E2).

(IC7) ∆µ1(E) ∧ µ2 |= ∆µ1∧µ2(E).

(IC8) If ∆µ1(E) ∧ µ2 is consistent, then ∆µ1∧µ2(E) |= ∆µ1(E) ∧ µ2.
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Though these postulates tell what properties ∆µ(E) should have, they do not spell out
how to actually construct ∆µ(E), given E and µ. Towards this latter task, it is useful to
consider what happens at the interpretation level when merging occurs. The notion of a
syncretic assignment proves crucial here.

Definition 1. A syncretic assignment is a function mapping each E ∈ E to a pre-order
≤E on W such that, for any E, E1, E2 ∈ E , K1, K2 ∈ K and w1, w2 ∈ W the following
conditions hold:

(s1) If w1 ∈ [E] and w2 ∈ [E], then w1 ≈E w2.

(s2) If w1 ∈ [E] and w2 /∈ [E], then w1 <E w2.

(s3) If E1 ≡ E2, then ≤E1=≤E2 .

(s4) If w1 ∈ [K1], then there is w2 ∈ [K2] such that w2 ≤{K1,K2} w1.

(s5) If w1 ≤E1 w2 and w1 ≤E2 w2, then w1 ≤E1tE2 w2.

(s6) If w1 ≤E1 w2 and w1 <E2 w2, then w1 <E1tE2 w2.

We define syncretic assignments in a way that allows the pre-orders ≤E to be partial, as
we will make use of partial pre-orders in our own results on Horn operators (Theorems 3
and 4). In the context of full propositional logic, however, the classical result below
characterizes all IC-merging operators in terms of syncretic assignments with total pre-
orders.

Theorem 1 ([8, 9]). A merging operator ∆ is an IC-merging operator if and only if there exists a
syncretic assignment mapping each E ∈ E to a total pre-order ≤E such that [∆µ(E)] = min≤E [µ],
for any µ ∈ L.

When this equation holds we will say that the assignment represents the operator.

It is useful to think of a profile E = {K1, . . . , Kn} as a multi-set of agents, represented
by their sets of beliefs Ki. Each agent is equipped with a pre-order ≤Ki on W which
can be thought of as the way in which the agent ranks possible worlds in terms of their
plausibility. Merging is then the task of finding a common ranking that approximates, as
best as possible, the individual rankings. Proposition 1 tells us that if this process is done
using syncretic assignments, we are in agreement with postulates IC0 – IC8.

Two parts need to be filled out to get a concrete merging operator: how to compute
the individual rankings and how to aggregate them. For computing the individual
rankings, the common approach in the literature is to use some notion of distance
between interpretations, such as Hamming distance dH or the drastic distance dD. The
minimal distance between interpretations and models of Ki is used to construct ≤Ki .
For aggregating the rankings, common functions used are the sum Σ or GMAX, giving
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w d(w, K1) d(w, K2) d(w, K3) Σ GMAX
000 3 1 1 5 (3,1,1)
001 2 0 0 2 (2,0,0)
010 2 0 1 3 (2,0,1)
011 1 1 0 2 (1,1,0)
100 2 2 1 5 (2,2,1)
101 1 1 0 2 (1,1,0)
110 1 1 2 4 (2,1,1)
111 0 2 1 3 (2,1,0)

Table 1: Example of how ∆dH ,Σ
µ (E1) is computed.

us operators ∆dH ,Σ, ∆dH ,GMAX, ∆dD,Σ, ∆dH ,GMAX. See Example 1 to see how ∆dH ,Σ and
∆dH ,GMAX are computed in a concrete case, and [8, 9] for more details.

Example 1. Take K1 = {p1, p2, p3}, K2 = {¬p1, p2 ↔ ¬p3}, K3 = {p3, p1 → ¬p2},
E1 = {K1, K2, K3} and µ = p3 ∧ (p1 → p2). To compute ∆dH ,Σ

µ (E) and ∆dH ,GMAX
µ (E) we

first use (in this case) Hamming distance dH to derive a ranking for each of the knowledge
bases Ki. The rankings are based on the distance between interpretations w and the
knowledge bases Ki, denoted by d(w, Ki) and shown in Table 1. The distance d(w, Ki)
between w and Ki is computed by taking the minimal distance (in this case, Hamming
distance dH) between w and all w′ ∈ [Ki]. For instance:

d(010, K3) = min{dH(010, w′) | w′ ∈ [K3]}
= min{dH(010, 001), dH(010, 011), dH(010, 101)}
= min{2, 1, 3}
= 1.

Thus 1 is the level of 010 in the ranking for K3, and is the entry in Table 1 for the d(010, K3)
field. Once all the numbers are in, we use an aggregation function (in this case Σ and
GMAX) to obtain the final ranking ≤E. The aggregation function Σ simply adds the
numbers interpretation-wise, and the final ranking ≤Σ

E is determined by the order of the
final levels for each interpretation. The aggregation function GMAX takes the ordered
vector of levels for each interpretation, and then determines ≤GMAX

E by ordering the
vectors lexicographically. Thus, GMAX gives us that 001 ≤GMAX

E 111, since (2, 0, 0) is
lexicographically smaller than (2, 1, 0).

Finally, we look at the models of the constraint µ (highlighted in grey in Table 1) and
pick out the ones that have the minimal levels in the final ranking. In our case, we get:

[∆dH ,Σ
µ (E)] = min≤Σ

E
[µ] = {001, 011},

[∆dH ,GMAX
µ (E)] = min≤GMAX

E
[µ] = {011}.
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w d(w, K) Σ GMAX
00 2 2 (2)
01 1 1 (1)
10 1 1 (1)
11 0 0 (0)

Table 2: ∆dH ,Σ
µ (E1) and ∆dH ,GMAX

µ (E1) do not stay in the Horn fragment.

Thus, the merging operators ∆dH ,Σ and ∆dH ,GMAX produce a set of models: the result, we
see, is different depending on the aggregation function used. We can then take that set
of models and represent it by a propositional knowledge base: {¬p1, p3} in the case of
∆dH ,Σ

µ (E), and {¬p1, p2, p3} in the case of ∆dH ,GMAX
µ (E).

3 Restricting assignments: Horn compliance

A Horn merging operator is a function ∆ : EH ×LH → KH. Our aim is to characterize the
class of such operators in the manner of Proposition 1 and to exhibit a concrete operator.
However, we encounter a first problem when we try to apply standard merging operators
to Horn profiles and formulas: it turns out the output of standard merging operators
cannot always be represented by a Horn formula.

Examples 2 and 3 show how standard merging operators fail in the Horn fragment.
In both cases we choose Horn profiles over the 2-letter alphabet and construct rankings
using the Hamming distance and the drastic distance. We then aggregate the rankings
with Σ and GMAX. The rankings and the result of their aggregation are shown in Tables
2 and 3. Each row displays one possible interpretation over {p1, p2} (denoted in the first
column). The second column displays the minimal distance of the interpretation to any
model of K. The third and fourth column show the aggregation of the distances (in our
case only one distance) according to the Σ as well as the GMAX function. The output
of the merging operator is the set of those interpretations that are models of µ (marked
grey) and have the smallest aggregated value.

Example 2. Take K = {p1, p2}, E1 = {K} and µ = ¬p1 ∨ ¬p2 (all of them Horn).
We compute ∆dH ,Σ

µ (E1) and ∆dH ,GMAX
µ (E1), keeping in mind that [K] = {11} and [µ] =

{00, 10, 01}. Table 2 displays how the output of these two mergings is computed.
We get [∆dH ,Σ

µ (E1)] = min[µ] = {10, 01}, and the same result is obtained for
∆dH ,GMAX

µ (E1). It holds, then, that ∆dH ,Σ
µ (E1) and ∆dH ,GMAX

µ (E1) cannot be expressed
as Horn formulas.

Example 3. Take K1 = {p1, ¬p2}, K2 = {¬p1, p2}, E2 = {K1, K2} and µ = ¬p1 ∨ ¬p2:
We get (see Table 3) [∆dD,Σ

µ (E2)] = min[µ] = {10, 01}, and the same result is obtained
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w d(w, K1) d(w, K2) Σ GMAX
00 1 1 2 (1,1)
01 1 0 1 (1,0)
10 0 1 1 (1,0)
11 1 1 2 (1,1)

Table 3: ∆dD,Σ
µ (E2) and ∆dD,GMAX

µ (E2) do not stay in the Horn fragment.

for ∆dD,GMAX
µ (E2). Again, ∆dD,Σ

µ (E2) and ∆dD,GMAX
µ (E2) cannot be represented by Horn

formulas.

As we see in Examples 2 and 3, standard distance and aggregation functions are not
adequate for the Horn fragment. To circumvent this problem we adopt a solution used
for Horn revision [4], which is to impose an extra condition on the pre-orders.

Definition 2. A pre-order ≤ is Horn compliant if for any µ ∈ LH, min≤[µ] can be repre-
sented by a Horn formula.

Example 4. The computed pre-orders for E1 and E2 in Examples 2 and 3 are not Horn
compliant, as when µ = ¬p1 ∨ ¬p2 we get that min[µ] = {01, 10} in both cases, and
{01, 10} is not closed under intersection.

Adding Horn compliance makes it possible to define a merging operator for the Horn
fragment, and this gives us one direction of a representation theorem.

Theorem 2. If there exists a syncretic assignment mapping every E ∈ EH to a Horn compliant
total pre-order ≤E, then we can define an operator ∆ : EH × LH → KH by taking [∆µ(E)] =
min≤E [µ], for any µ ∈ LH, and ∆ satisfies postulates IC0 – IC8.

Proof. If ≤E is Horn compliant then min≤E [µ] can be represented by a Horn formula, for any
Horn formula µ. Then ∆µ(E) is well defined as a Horn operator and we can use the proof for full
propositional logic to show that ∆ satisfies IC0 – IC8 (see [8]), as Horn compliant pre-orders are
just a special type of pre-orders onW .

4 Strengthening the postulates

Conversely, we want to show that for any Horn merging operator ∆ there exists a syncretic
assignment which represents it. This is true when the language is not restricted (see
Proposition 1), but interesting problems arise as soon as we restrict ourselves to the Horn
case. In the following, we assume we are given a Horn merging operator ∆ satisfying the
merging postulates.
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4.1 Non-transitive cycles and Acyc

We know from existing work on Horn revision [4] that we can find non-syncretic assign-
ments to represent a Horn operator ∆. Such assignments are non-syncretic in the sense
that they contain non-transitive cycles between interpretations. Yet, we can still define an
operator on top of these rankings, which satisfies postulates IC0 – IC8. Furthermore, it
can be shown that there are no non-cyclic pre-orders that represent the same operator
∆. The solution proposed in [4] is to add an extra postulate, called Acyc, specifically to
eliminate cycles:

(Acyc) If for every n ≥ 1 and i ∈ {0, . . . , n− 1}, µi ∧ ∆µi+1(E) and µn ∧ ∆µ0(E) are all
consistent, then µ0 ∧ ∆µn(E) is also consistent.

Acyc provably follows from postulates IC0 – IC8 in full propositional logic (see [4]), so
it only makes a difference when we restrict the language to the Horn fragment. Here we
employ the same strategy of adding an extra postulate to deal with non-transitive cycles,
but we propose a postulate formulated in terms of complete formulas:

(Acyc′) For any complete formulas σ0, . . . , σn, n ≥ 1 and i ∈ {0, . . . , n− 1}, it holds that if
σi ∧∆σi,i+1(E) and σn ∧∆σn,0(E) are all consistent, then σ0 ∧∆σ0,n(E) is also consistent.

There is clearly a strong similarity between Acyc and Acyc′, though we prefer the latter
here for its intuitive appeal. Moreover, it can be shown that Acyc and Acyc′ are equivalent
modulo the merging postulates.

Proposition 2. Given postulates IC0 – IC8 and full propositional logic, Acyc and Acyc′ are
equivalent.

Proof. We prove each direction in turn.
“⇒” We show first that Acyc implies Acyc′. Take complete formulas σ0, . . . , σn such that for

i ∈ {0, . . . , n− 1}, σi ∧ ∆σi,i+1(E) and σn ∧ ∆σn,0(E) are all consistent. Now take µ0 = σ0,1, µ1 = σ1,2,
. . . , µn = σn,0.

If [σi] = {wi}, then for i ∈ {1, . . . , n − 1} we get that wi−1 ∈ [σi−2, i−1 ∧ ∆σi−1, i(E)] and
wn ∈ [σn−1, n ∧ ∆σn,0(E)]. This shows that for i ∈ {0, . . . , n− 1}, we have that all of µi ∧ ∆µi+1(E)
and µn ∧ ∆µ0(E) are consistent. Applying Acyc, we get that µ0 ∧ ∆µn(E) is also consistent, which
is the same as saying that σ0,1 ∧ ∆σn,0(E) is consistent. This implies that w0 ∈ [σ0,1 ∧ ∆σn,0(E)], so
σ0 ∧ ∆σn,0(E) is consistent. Hence Acyc′ holds.

“⇐” Next we show that Acyc′ implies Acyc. Take formulas µ0, . . . , µn such that for i ∈
{0, . . . , n− 1}, it holds that µi ∧ ∆µi+1(E) and µn ∧ ∆µ0(E) are all consistent. Take, now, complete
formulas σ0, . . . , σn such that [σi] = {wi} for i ∈ {0, . . . , n}. Since w0 ∈ ∆µ0(E), we get that
σ0 ∧ ∆µ0(E) is consistent. We also have that w1 ∈ [µ0], hence σ0,1 |= µ0. It follows that σ0,1 ∧ µ0 ≡
σ0,1, which by IC3 implies that ∆σ0,1∧µ0(E) ≡ ∆σ0,1(E).

Next, note that w0 ∈ [σ0 ∧ ∆µ0(E)] implies that w0 ∈ [σ0,1 ∧ ∆µ0(E)], hence the latter formula is
consistent. Applying IC7, IC8 and what we have already deduced, we get that:

σ0,1 ∧ ∆µ0(E) ≡ ∆σ0,1∧µ0(E) ≡ ∆σ0,1(E).
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Since w0 ∈ [σ0,1 ∧ ∆µ0(E)], it follows that w0 ∈ [∆σ0,1(E)]. This implies that σ0 ∧ ∆σ0,1(E) is
consistent. By the same argument, we can show that for i ∈ {0, . . . , n − 1}, it holds that σi ∧
∆σi, i+1(E) and σn ∧ ∆σn,0(E) are all consistent. Applying Acyc′, it follows that σ0 ∧ ∆σ0,n(E) is
consistent, which means that w0 ∈ [∆σ0,n(E)]. From this we can conclude that σ0,n ∧ ∆µn(E) is
consistent. Thus σ0,n |= µn and (by IC7, IC8 and IC3), we get that:

σ0,n ∧ ∆µn(E) ≡ ∆σ0,n∧µn(E) ≡ ∆σ0,n(E).

Putting these last things together, it follows that w0 ∈ [∆µn(E)] and hence µ0 ∧∆µn(E) is consistent.

The formal justification of Acyc′ is that we need it for our representation result:
without Acyc′ (or an equivalent of it) we cannot ensure that every Horn merging operator
is represented by a syncretic assignment. Acyc′ is featured in the proof of Theorem 4.

Intuitively, Acyc′ prevents non-transitive cycles between chains of interpretations of
arbitrary length. Suppose n = 2 and the antecedent of Acyc′ is true: then from the
fact that σ0 ∧ ∆σ0,1(E) is consistent we conclude that w0 ∈ [∆σ0,1(E)], where [σi] = {wi}.
This means that w0 is among the models of σ0,1 that are ‘preferred’, or considered more
plausible, by ∆. Thus, in the pre-order ≤E that represents ∆, it should hold that w0 ≤E w1.
By the same token, we get that w1 ≤E w2 ≤E w0 should hold. Since we want ≤E to be
transitive, it should also hold that w0 ≤E w2, or w0 ∈ [∆σ0,2(E)]— and this is exactly
what Acyc′ requires at this point. Thus, we need the extra postulate Acyc′ (or something
equivalent) to ensure that the pre-orders representing a given Horn merging operator ∆
preserve intuitive properties such as (in this case) transitivity.

4.2 s4 – s6 and IC4 – IC6

Introducing Acyc′ is not enough, as even after we add it to the set of postulates we can still
find non-syncretic assignments to represent a Horn merging operator ∆. Non-syncreticity,
in this case, occurs because properties s4 – s6 are not enforced by IC4 – IC6. The following
examples make this clearer.

Example 5. Consider Horn knowledge bases [K1] = {01}, [K2] = {10} and an assignment
that works as in Figure 1 when restricted to K1 and K2. Figure 1 shows the rankings
associated with K1 and K2 and the result of merging them into the new ranking ≤{K1,K2}.

1

Notice that s4 is not true: s4 requires that 01 ≈{K1,K2} 10, whereas we have 01 <{K1,K2} 10.
However, we can define a (Horn) merging operator ∆ on top of this assignment in

the usual way, by taking [∆µ(E)] = min≤E [µ], for any Horn formula µ. The operator ∆
will satisfy postulates IC0 – IC8 + Acyc′: the argument for this is not difficult, though
it is tedious to spell out in detail. It is straightforward to check, by direct inspection,

1It is worth noting that ≤K1 , ≤K2 and ≤{K1,K2} are not generated using any familiar notion of distance—
the rankings were hand-picked.
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[K1]

≤K1

01

00

11

10

+

[K2]

≤K2

10

00, 11

01

−→

≤{K1,K2}

00

01, 11

10

Figure 1: s4 does not hold.

that the merging postulates hold for this example, so let us focus here only on IC4. The
problematic interpretations are the models 01 and 10 of K1 and K2, respectively. Notice
that there is no Horn formula that represents exactly the set {01, 10}: the best we can
do is take a Horn formula µ such that [µ] = [σ01,10] = {00, 01, 10}. Obviously, K1 |= µ

and K2 |= µ, so the antecedent of IC4 holds. We notice that the consequent also holds:
[∆µ({K1, K2})] = {00}, and [∆µ({K1, K2}) ∧ K1] = [∆µ({K1, K2}) ∧ K2] = ∅, so IC4 is
satisfied for this particular µ.

Example 5 is significant because it shows that an assignment which does not satisfy s4
may still represent an operator ∆ obeying IC4. And given the standard formulation of IC4,
this type of situation turns out to be unavoidable, as Proposition 3 shows.

Proposition 3. There is no syncretic assignment representing ∆ from Example 5 that assigns to
{K1, K2} a pre-order ≤?

{K1,K2} where 01 ≈?
{K1,K2} 10.

Proof. Suppose 01 ≈?
{K1,K2} 10. From Figure 1 we know that [∆σ10,11({K1, K2})] = {11}, hence

min≤?{10, 11} = {11} and thus 11 <?
{K1,K2} 10. Similarly, we obtain 01 ≈?

{K1,K2} 11. By transitivity
of ≤?

{K1,K2} it follows that 01 <?
{K1,K2} 10. This creates a contradiction.

The following example shows how s5 fails to be enforced by IC5 in the case of Horn
logic.

Example 6. Assume there exists an assignment which for two profiles E1 and E2 behaves
as in Figure 2, and is otherwise Horn compliant and syncretic. Property s5 does not hold:
010 ≈E1 100 and 010 ≈E2 100, but 010 <E1tE2 100. However, as in Example 5, we can
define a (Horn) merging operator ∆ on top of this assignment and ∆ will satisfy postulates
IC0 – IC8 + Acyc′. Let us check here that IC5 holds. The problematic interpretations are 010
and 100 (for which s5 does not hold). In this case we have that ∆σ010,100(E1) ∧ ∆σ010,100(E2)
is consistent, and [∆σ010,100(E1) ∧ ∆σ010,100(E2)] = [∆σ010,100(E1 t E2)] = {000}. This shows
that for the case we are interested in, which is µ = σ010,100, IC5 is true.
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≤E1

101

001

011

000

010, 111, 100

110

+

≤E2

111

110

000

010, 011, 001, 101, 100

−→

≤E1tE2

101, 111

001

011

000

010

110

100

Figure 2: s5 does not hold for 010 and 100.

Similarly as for IC4, we can show that such a counter-example to s5 is unavoidable.

Proposition 4. There is no syncretic assignment representing ∆ from Example 6 that assigns to
E1 t E2 a pre-order ≤?

E1tE2
where 100 ≈?

E1tE2
010.

Proof. Assume 100 ≈?
E1tE2

010. Looking at ≤E1tE2 , we get that:

[∆σ100,110(E1 t E2)] = {110},
[∆σ110,010(E1 t E2)] = {010}.

This leads us to conclude that 010 <?
E1tE2

110 <?
E1tE2

100, and by transitivity 010 <?
E1tE2

100,
which creates a contradiction.

It is perhaps surprising to see that IC5 can be satisfied in an assignment where s5 does
not hold, but closer thought shows this is to be expected: since in the Horn fragment
we cannot represent the set {100, 010} with a formula, it becomes harder to control the
order in which 100 and 010 appear. Without any additional constraints on ∆, one cannot
prevent it from varying the order of 100 and 010 in ways that directly contradict s5. A
similar counter-example can be constructed for s6.

Examples 5 and 6 show that a syncretic assignment with total pre-orders is not
the most natural way to represent a Horn merging operator. Hence, we introduce the
following notion.

Definition 3. A pre-order ≤ onW is Horn connected if:
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00
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11

Figure 5: ≤3 X

00
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Figure 6: ≤4 ×

(h1) ≤ is Horn compliant,

(h2) any wi, wj ∈ W that are in the subset relation are in ≤, and

(h3) for any wi, wj ∈ W such that wi * wj and wj * wi, it holds that if wi ≤ wj then:

(h3.1) wi ∈ min≤Cl∩({wi, wj}), or

(h3.2) for some n > 2, there exist interpretations w1, . . . , wn, pair-wise distinct, such
that w1 = wi, wn = wj and w1 ≤ · · · ≤ wn.

A Horn connected pre-order ≤E is not necessarily total. Example 7 illustrates this.

Example 7. Consider the following pre-orders on the 2-letter alphabet (see also Figures 3-
6): (a) 11 <1 01 <1 10 <1 00, (b) 00 <2 01 <2 11 <2 10, (c) 00 <3 01 <3 11, 00 <3
10 <3 11, 01 �3 10, 10 �3 01, (d) 00 <4 01 ≈4 10 <4 11. It is immediately visible that all
pre-orders are Horn compliant (h1) and that they satisfy h2. To check h3, let us focus on
interpretations 01 and 10.

In ≤1 we have 01 ∈ min≤1Cl∩({01, 10}). Thus h3.1 is satisfied, and ≤1 is Horn
connected. In ≤2 we do not have 01 ∈ min≤2Cl∩({01, 10}), but there is interpretation 11
such that 01 <2 11 <2 10. Thus h3.2 is satisfied and ≤2 is Horn connected. Pre-order ≤3 is
partial, as 01 and 10 are not in ≤3, and thus h3 is vacuously true. In ≤4 we have 01 ≈4 10
though none of h3.1 and h3.2 holds, thus ≤4 is not Horn connected.

Next, for every Horn operator ∆ and Horn profile E, we define a (partial) pre-order
on complete formulas of LH.2

Definition 4. Given a Horn operator ∆, then for any Horn profile E and complete Horn
formulas σi, σj, we say that σi �E σj if there exist complete Horn formulas σ1, . . . , σn such
that σ1 = σi, σn = σj, and for i ∈ {1, . . . , n− 1}, σi ∧ ∆σi,i+1(E) are all consistent.

2The pre-order on Horn complete formulas �E is not to be confused with the pre-order ≤E on
interpretations, though it is meant to mirror it.
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It is straightforward to check that �E is reflexive and transitive, and thus a pre-order
on complete Horn formulas. We write ≺E for the strict part of �E. It is also worth
noting that �E is total when the underlying language is full propositional logic, since
[σi,j] = {wi, wj} and we can take the sequence σ1, . . . , σn to be just σi, σj or σj, σi. This does
not necessarily hold in the case of the Horn fragment, where �E can be partial.

We now reformulate IC4, IC5 and IC6 for K1, K2 ∈ KH, E1, E2 ∈ EH and complete Horn
formulas σi, σj as follows:

(IC′4) For any σi |= K1, there exists σj |= K2 such that σj �{K1,K2} σi.

(IC′5) If σi �E1 σj and σi �E2 σj, then σi �E1tE2 σj.

(IC′6) If σi �E1 σj and σi ≺E2 σj, then σi ≺E1tE2 σj.

These postulates make a difference only in the Horn fragment, while in full proposi-
tional logic they are redundant.

Proposition 5. In the case of full propositional logic, IC′4, IC′5 and IC′6 follow from the standard
IC0 – IC8 postulates.

Proof. We start with IC′4 and show that it follows from IC0 – IC8. Take a complete formula σi |= K1

and µ = K1 ∨ K2. We show first that ∆µ({K1, K2}) ∧ K2 is consistent. Suppose, on the contrary,
that it is inconsistent. Since ∆µ({K1, K2}) is consistent (by IC1), it follows that ∆µ({K1, K2}) 2 K2.
From IC0 we have that ∆µ({K1, K2}) |= µ and this, together with the previous result implies that
∆µ({K1, K2}) |= K1. From here we conclude that ∆µ({K1, K2}) ∧ K1 is consistent, and (by IC4) this
implies that ∆µ({K1, K2}) ∧ K2 is consistent, which contradicts our assumption.

Thus, we have that ∆µ({K1, K2}) ∧ K2 is consistent. Take, then, a complete formula σj such
that σj |= ∆µ({K1, K2}) ∧ K2. It follows that σj |= ∆µ({K1, K2}), and as a result ∆µ({K1, K2}) ∧ σi,j
is consistent. By IC7 and IC8, this implies that ∆µ({K1, K2}) ∧ σi,j ≡ ∆µ∧σi,j({K1, K2}). Since
σi |= K1 and σj |= K2, we get that σi,j |= K1 ∨ K2. Thus µ ∧ σi,j ≡ σi,j and by IC3 this
implies that ∆µ∧σi,j({K1, K2}) ≡ ∆σi,j({K1, K2}). Plugging this into our previous result we
get that ∆µ({K1, K2}) ∧ σi,j ≡ ∆σi,j({K1, K2}). As a consequence σj |= ∆σi,j({K1, K2}), hence
σj ∧ ∆σi,j({K1, K2}) is consistent and σj �{K1,K2} σi.

The next step is to show that IC′5 follows from IC0 – IC8. We first prove the following two
lemmas.

Lemma 1. Let ∆ be a merging operator satisfying postulates IC0 – IC8 and let E be a profile. In the case of
full propositional logic, if σ1, σ2, σ3 are complete formulas such that σ1 ∧ ∆σ1,2(E) and σ2 ∧ ∆σ2,3(E) are
both consistent, then σ1 ∧ ∆σ1,3(E) is also consistent.

Proof. Suppose [σ1] = {w1}, [σ2] = {w2} and [σ3] = {w3}. Let σ1,2,3 be a formula such that [σ1,2,3] =
{w1, w2, w3}. We first show that σ1 ∧ ∆σ1,2,3(E) is consistent: by IC0 and IC1 we have that [∆σ1,2,3(E)] is a non-
empty subset of [σ1,2,3] = {w1, w2, w3}. This implies that at least one of σ1,2 ∧ ∆σ1,2,3(E) and σ2,3 ∧ ∆σ1,2,3(E)
is consistent. Let us do a case analysis and show that both cases imply our intermediary conclusion.
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Case 1. If σ1,2 ∧ ∆σ1,2,3(E) is consistent, then by IC8 we get that ∆σ1,2,3∧σ1,2(E) |= σ1,2 ∧ ∆σ1,2,3(E). Since
σ1,2 |= σ1,2,3, it follows that σ1,2,3 ∧ σ1,2 ≡ σ1,2 and, by IC3 we get that ∆σ1,2,3∧σ1,2(E) ≡ ∆σ1,2(E). From the
hypothesis we have w1 ∈ [∆σ1,2(E)], and using the previous results we get that w1 ∈ [σ1,2 ∧ ∆σ1,2,3(E)] and,
by consequence, w1 ∈ [∆σ1,2,3(E)]. Clearly, then, w1 ∈ [σ1 ∧ ∆σ1,2,3(E)] so σ1 ∧ ∆σ1,2,3(E) is consistent.

Case 2. If σ2,3 ∧ ∆σ1,2,3(E) is consistent, then by IC8 we get that ∆σ1,2,3∧σ2,3(E) |= σ2,3 ∧ ∆σ1,2,3(E). Similarly
to before, we get that σ1,2,3 ∧ σ2,3 ≡ σ2,3 and, by IC3 we have ∆σ1,2,3∧σ2,3(E) ≡ ∆σ2,3(E). From the hypothesis
we get that w2 ∈ [∆σ2,3(E)]. Our previous results imply that w2 ∈ [σ2,3 ∧ ∆σ1,2,3(E)] and, by consequence,
w2 ∈ [∆σ1,2,3(E)]. It follows that w2 ∈ [σ1,2 ∧ ∆σ1,2,3(E)] and we apply the reasoning from Case 1 to get the
conclusion that σ1 ∧ ∆σ1,2,3(E) is consistent. This concludes our case analysis

We have shown, then, that σ1 ∧ ∆σ1,2,3(E) is consistent. Thus w1 ∈ [σ1 ∧ ∆σ1,2,3(E)], which implies that
w1 ∈ [σ1,3 ∧ ∆σ1,2,3(E)]. Now, by IC7, we get that σ1,3 ∧ ∆σ1,2,3(E) |= ∆σ1,3∧σ1,2,3(E). Since σ1,3 ∧ σ1,2,3 ≡ σ1,3
and applying IC3, we have that ∆σ1,3∧σ1,2,3(E) ≡ ∆σ1,3(E). Using all these results we infer that w1 ∈ [∆σ1,3(E)].
Hence w1 ∈ [σ1 ∧ ∆σ1,3(E)] and σ1 ∧ ∆σ1,3(E) is consistent.

Lemma 2. In the case of full propositional logic, if σi and σj are complete formulas such that σi �E σj, then
σi ∧ ∆σi,j(E) is consistent.

Proof. By definition, there exist complete formulas σ1, . . . , σn such that σi = σ1, σj = σn and for i ∈
{1, . . . , n − 1}, all of σi ∧ ∆σi,i+1(E) are consistent. By induction on n and using Lemma 1, it follows
immediately that σ1 ∧ ∆σ1,n(E) is consistent. Since σi = σ1 and σj = σn, we get the conclusion.

Now we can show that IC′5 follows from the standard postulates. Take complete formulas σi
and σj such that σi �E1 σj and σi �E2 σj. Suppose [σi] = {wi} and [σj] = {wj}. From Lemma 2 it
follows that σi ∧ ∆σi,j(E1) and σi ∧ ∆σi,j(E2) are both consistent, which implies that wi ∈ [∆σi,j(E1)]

and wi ∈ [∆σi,j(E2)], so wi ∈ [∆σi,j(E1) ∧ ∆σi,j(E2)]. By IC5, it follows that wi ∈ [∆σi,j(E1 t E2)], so
σi ∧ ∆σi,j(E1 t E2) is consistent. This immediately implies that σi �E1tE2 σj, since we can just take
σ1 = σi and σ2 = σj.

For IC′6, take complete formulas σi, σj such that σi �E1 σj, σi ≺E2 σj. Using the result for IC′5,
it follows immediately that σi �E1tE2 σj. We want to show that σi ≺E1tE2 σj. Suppose, on the
contrary, that σj �E1tE2 σi. By Lemma 2, our assumptions give us that σi ∧ ∆σi,j(E1), σi ∧ ∆σi,j(E2)

and σj ∧ ∆σi,j(E1 t E2) are all consistent. Thus, ∆σi,j(E1) ∧ ∆σi,j(E2) is consistent, and by IC6 we
get that ∆σi,j(E1 t E2) |= ∆σi,j(E1) ∧ ∆σi,j(E2). This means that σj ∧ ∆σi,j(E2) is consistent, and thus
σj �E2 σi, which creates a contradiction.

With postulates IC′4, IC′5 and IC′6 we can derive a representation result for syncretic
assignments with Horn connected pre-orders. The result is split across two theorems:
Theorem 3 shows that Horn connected pre-orders can be used to construct a Horn
merging operator satisfying our amended set of postulates. Its converse, Theorem 4,
shows that any Horn merging operator satisfying the amended postulates is represented
by a syncretic assignment with Horn connected pre-orders.

Theorem 3. If there exists a syncretic assignment mapping every E ∈ EH to a Horn connected
total pre-order ≤E, then we can define an operator ∆ : EH × LH → KH by taking [∆µ(E)] =
min≤E [µ], for any µ ∈ LH, and ∆ satisfies postulates IC0 – IC3 + IC′4 + IC′5 + IC′6 + IC7 – IC8 +
Acyc′.
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Proof. We start from a syncretic assignment with Horn connected pre-orders and show that a
Horn merging operator defined on top of it satisfies the postulates. We first prove the following
lemma.

Lemma 3. If ≤ is a Horn connected pre-order, then for any Horn formula µ and wi, wj ∈ [µ], it is the case
that if wi ∈ min≤[µ], then wi ≤ wj.

Proof. Take wi, wj ∈ [µ] such that wi ∈ min≤[µ] and let us show, by a quick case analysis, that wi ≤ wj.
Case 1. If wi ⊆ wj or wj ⊆ wi, then because ≤ is Horn connected, it holds that wi ≤ wj or wj ≤ wi.

Since wi ∈ min≤[µ] we clearly cannot have wj < wi, so wi ≤ wj.
Case 2. If wi * wj and wj * wi, take wi,j to be the interpretation such that wi,j = wi ∩ wj. Since µ is a

Horn formula, we have that wi,j ∈ [µ]. Also, wi,j ⊆ wi and wi,j ⊆ wj, so the pairs of interpretations wi, wi,j
and wj, wi,j must be connected by ≤. Clearly, since wi ∈ min≤[µ], it holds that wi ≤ wi,j. This fixes the first
pair. What about the second? Let us do a quick case analysis here as well.

Case 2.1. If wi,j ≤ wj, then from this and wi ≤ wi,j, we get (by transitivity) that wi ≤ wj.
Case 2.2. If wj < wi,j, then it cannot be the case that wi,j ∈ min≤[µ], so wi < wi,j as well. We claim

now that wi and wj must be in ≤, and the argument goes as follows. Supposing wi and wj were not in ≤,
then consider a Horn formula σwi ,wj such that [σwi ,wj ] = {wi,j, wi, wj}. We get that min≤[σwi ,wj ] = {wi, wj},
which contradicts the fact that ≤ is Horn compliant. It follows, therefore, that wi and wj must be in ≤, and
since wi ∈ min≤[µ] and wj ∈ [µ], it can only be the case that wi ≤ wj.3

Now, Horn compliance guarantees that for any Horn formula µ, we have that min≤E [µ] is a set
of models representable as a Horn formula. Thus ∆µ(E) is well-defined. Using this and Lemma 3,
it follows immediately that ∆ satisfies IC0 – IC8: the proof is essentially the same as in the case
of full propositional logic (see Theorem 2). To show that ∆ satisfies Acyc, the proof in [4] works
here with no modifications. Since Acyc and Acyc′ are equivalent modulo IC0 – IC8, it follows that
∆ also satisfies Acyc′. And, since postulates IC4, IC5 IC6 imply IC′4, IC′5 and IC′6 in the case of full
propositional logic, ∆ also satisfies IC′4, IC′5 and IC′6.

The next step is to show that every Horn merging operator satisfying our strengthened
postulates is represented by an assignment using Horn connected pre-orders.

Theorem 4. If a Horn operator ∆ : EH × LH → KH satisfies postulates IC0 – IC3 + IC′4 +
IC′5 + IC′6 + IC7 – IC8 + Acyc′, then there exists a syncretic assignment mapping every Horn
profile E to a Horn connected pre-order ≤E, such that, for any Horn formula µ, it holds that
[∆µ(E)] = min≤E [µ].

Proof. Assume we are given a Horn merging operator ∆ satisfying the postulates. For any Horn
profile E, we define a Horn connected pre-order ≤E onW in two steps, as follows.

Step 1. First we define a relation ≤′E onW . For any two interpretations wi and wj, say that:4

wi ≤′E wj iff wi ∈ [∆σi,j(E)].

3In fact in this particular sub-case we can draw the even stronger conclusion that wi < wj—since if
wi ≈ wj we get again that min≤[σwi ,wj ] = {wi, wj}, which contradicts the fact that ≤ is Horn compliant.

4As a reminder, if wi and wj are two interpretations, then in the context of the Horn fragment σi,j is a
Horn formula such that [σi,j] = {wi, wj, wi ∩ wj}.
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Relation ≤′ as defined above is reflexive: for any interpretation w, [∆σw(E)] is (by IC0 and IC1) a
non-empty subset of [σw] = {w}, thus w ≤′E w. Relation ≤′E is not, however, necessarily total.

Step 2. Define ≤E as the transitive closure of ≤′E. In other words:

wi ≤E wj iff there exist w1, . . . , wn such that wi = w1, wj = wn and w1 ≤′E · · · ≤′E wn.

The relation ≤E thus defined extends ≤′E and is therefore reflexive. By construction, ≤E is
transitive, so it is a pre-order onW .5 We show now that pre-orders defined in this way give rise
to an assignment that satisfies our requirements. There are several parts to this.

First, we show that ≤E is a Horn compliant pre-order such that [∆µ(E)] = min≤E [µ] and s1 –
s3 hold. The following lemmas prove useful.6

Lemma 4. For any Horn formula µ and interpretations w1, w2 such that w1 ∈ [µ], w2 ∈ [∆µ(E)] and
w1 ≤′E w2, it holds that w1 ∈ [∆µ(E)].

Proof. Using our assumption we have that w2 ∈ [∆µ(E) ∧ σ1,2], so ∆µ(E) ∧ σ1,2 is consistent. From
IC7 – IC8 we have ∆µ(E) ∧ σ1,2 ≡ ∆µ∧σ1,2(E). We also have that σ1,2 |= µ, so µ ∧ σ1,2 ≡ σ1,2 and by
IC3 it holds that ∆µ∧σ1,2(E) ≡ ∆σ1,2(E). By definition of ≤′E we have that w1 ∈ [∆σ1,2(E)], which
together with the previous results imply that w1 ∈ [∆µ(E)].

Lemma 5. For any Horn formula µ, min≤′E [µ] = [∆µ(E)].

Proof. We prove the lemma by double inclusion.
“⊆” Take w1 ∈ min≤′E [µ]. This implies, by IC0, that w1 ∈ [µ] and thus [µ] is consistent. By

IC1, [∆µ(E)] is non-empty. Take, then, w2 ∈ [∆µ(E)] and consider a Horn formula σ1,2 such that
[σ1,2] = Cl∩({w1, w2}). We have that w2 ∈ [σ1,2 ∧ ∆µ(E)] is consistent, and thus by IC7 – IC8 it
holds that σ1,2 ∧ ∆µ(E) ≡ ∆µ∧σ1,2(E). Since w1, w2 ∈ [µ] and µ is a Horn formula, it follows that
Cl∩({w1, w2}) ⊆ [µ] and thus σ1,2 |= µ and, further, σ1,2 ∧ µ ≡ σ1,2. By IC3 this implies that
∆µ∧σ1,2(E) ≡ ∆σ1,2(E). Putting all these results together, it follows that w2 ∈ [∆σ1,2(E)] and thus by
the definition of ≤′E we have w2 ≤′E w1. Since w1 and w2 are both models of µ and w1 ∈ min≤′E [µ],
it follows that w1 ≤′E w2. From this and the fact that w2 ∈ [∆µ(E)] it follows by Lemma 4 that
w1 ∈ [∆µ(E)].

“⊇” Take w1 ∈ [∆µ(E)] and an arbitrary interpretation w2 ∈ [µ]. Consider a Horn formula σ1,2

such that [σ1,2] = Cl∩({w1, w2}). We have that w1 ∈ [σ1,2 ∧ ∆µ(E)] is consistent, and thus by IC7 –
IC8 it holds that σ1,2 ∧ ∆µ(E) ≡ ∆µ∧σ1,2(E). Since w1, w2 ∈ [µ] and µ is a Horn formula, it follows
that Cl∩({w1, w2}) ⊆ [µ] and thus σ1,2 |= µ and, further, σ1,2 ∧ µ ≡ σ1,2. By IC3 this implies that
∆µ∧σ1,2(E) ≡ ∆σ1,2(E). Putting all these results together, it follows that w1 ∈ [∆σ1,2(E)] and thus by
the definition of ≤′E we have w1 ≤′E w2. Hence w1 ∈ min≤′E [µ].

Lemma 6. If w1 ≤′E w2 ≤′E · · · ≤′E wn ≤′E w1, then w1 ≤′E wn.

5This is essentially the same construction as in [4], except that here we stop at Step 2, and do not perform
the extra step of defining a total order on top of the transitive closure of ≤′E.

6Lemmas 4 – 7 are essentially similar to Lemmas 1 – 4 in [4].
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Proof. This Lemma follows as a straightforward applications of Acyc′. Take complete Horn
formulas σ1, . . . , σn such that [σi] = {wi}, for i ∈ {1, . . . , n}. As per usual, σi,j is a Horn formula
such that [σi,j] = Cl∩({wi, wj}). From w1 ≤′E w2 and the definition of≤′E we get that w1 ∈ [∆σ1,2(E)]
and thus σ1 ∧ ∆σ1,2(E) is consistent. By the same token, we get that for i ∈ {1, . . . , n − 1},
σi ∧ ∆σi,i+1(E) and σn ∧ ∆σn,1(E) are all consistent. By Acyc′ we get that σ1 ∧ ∆σn,1(E) is also
consistent, from which it follows that w1 ∈ [∆σn,1(E)] and thus w1 ≤′E wn.

Lemma 7. For any two interpretations w1, w2, if w1 <′E w2, then w1 <E w2.

Proof. Consider two interpretations w1, w2 such that w1 <′E w2. From this it already follows that
w1 ≤E w2. What we still have to show is that w2 �E w1. Suppose, on the contrary, that w2 ≤E w1.
Then there exist interpretations u0, . . . , un such that w2 = u0 ≤′E u1 ≤′E · · · ≤′E un−1 ≤′E un = w1

Because w1 ≤′E w2 (since, by assumption, w1 <′E w2), we have that w2 ≤′E u1 ≤′E · · · ≤′E un ≤′E
w1 ≤′E w2 Using this and Lemma 6 we get that w2 ≤′E w1, which together with the assumption
that w1 <′E w2 leads to a contradiction.

Lemma 8. For any Horn formula µ, min≤E [µ] = min≤′E [µ].

Proof. “⊆” Take wi ∈ min≤E [µ] and suppose there is some interpretation wj ∈ [µ] such that
wj <

′
E wi. But then we get that wj <E wi by Lemma 7, which is a contradiction.

“⊇” Take wi ∈ min≤′E [µ] and an arbitrary interpretation wj ∈ [µ]. Also, consider a Horn
formula σi,j such that [σi,j] = Cl∩({wi, wj}). By IC0 and IC1, [∆σi,j(E)] is a non-empty subset of
[σi,j]. We want to show that wi ≤E wj. Let us do a case analysis.

Case 1. If wi ⊆ wj or wj ⊆ wi, then Cl∩({wi, wj}) = {wi, wj}. It cannot be the case that
[∆σi,j(E)] = {wj} since that would imply that wj <

′
E wi, which contradicts the hypothesis that

wi ∈ min≤′E [µ]. It follows that wi ∈ [∆σi,j(E)] and so wi ≤′E wj, which implies that wi ≤E wj.
Case 2. If wi * wj and wj * wi, take wi,j = wi ∩ wj. Since µ is a Horn formula, wi,j ∈ [µ].

Clearly, the sets {wi, wi,j} and {wj, wi,j} are representable by Horn formulas, and thus both pairs
of interpretations must be in ≤′E. What is more: it must be the case that wi ≤′E wi,j, otherwise we
would get a contradiction with wi ∈ min≤′E [µ]. Let us see, next, what happens depending on how
wj and wi,j stand in relation to each other in ≤′E.

Case 2.1. If wi,j ≤′E wj we get that wi ≤′E wi,j ≤′E wj. When we take the transitive closure of ≤′E
we get that wi ≤E wj.

Case 2.2. If wj <
′
E wi,j, then wi,j /∈ [∆σi,j(E)]. But remember that [∆σi,j(E)] is a non-empty subset

of Cl∩({wi, wj}) = {wi,j, wi, wj}, and we cannot have that [∆σi,j(E)] = {wi, wj} or [∆σi,j(E)] = {wj},
because the first case this contradicts the fact that ∆σi,j(E) is a Horn formula and the second
case implies that wj <

′
E wi, which contradicts the fact that wi ∈ min≤′E [µ]. It only remains that

[∆σi,j(E)] = {wi}, which implies that wi ≤′E wj and hence wi ≤E wj.

Next we show that ≤E is Horn connected:

Lemma 9. The pre-order ≤E is Horn connected.

Proof. Since, by assumption, ∆µ(E) is a Horn formula, [∆µ(E)] is always closed under intersection.
In other words, min≤E [µ] can always be represented by a Horn formula. This shows that ≤E is
Horn compliant, thereby satisfying h1. For h2 and h3, there are two cases to consider.

19



Case 1. If wi ⊆ wj or wj ⊆ wi, then {wi, wj} is representable by a Horn formula σi,j, which
implies that wi ≤′E wj or wj ≤′E wi. It follows that wi ≤E wj or wj ≤E wi.

Case 2. If wi * wj, wj * wi, then take wi,j = wi ∩ wj and let us assume wi ≤E wj. By the
definition of ≤E, we know that there must be w1 ≤′E · · · ≤′E wn such that w1 = wi, wn = wj, for
some n ≥ 2.

Case 2.1. If n = 2, then wi ≤′E wj, which means that wi ∈ [∆σi,j(E)]. By Lemmas 5 and 8 we
have that [∆σi,j(E)] = min≤′E [σi,j] = min≤E [σi,j] = min≤E Cl∩({wi, wj}), so property h3.1 is satisfied.

Case 2.2. If n > 2, we have that w1 ≤′E w2 ≤′E · · · ≤′E wn. When we take the transitive closure
of ≤′E, we get that w1 ≤E w2 ≤E · · · ≤E wn. Thus, property h3.2 is satisfied.

Lemma 10. If w1, w2 ∈ [E], then w1 ≈E w2.

Proof. Consider a Horn formula σi,j such that [σi,j] = Cl∩({wi, wj}). We have that σ1,2 ∧
∧

E is
consistent and therefore by IC2 it holds that ∆σ1,2(E) ≡ ∧

E ∧ σ1,2. Since w1, w2 ∈ [
∧

E ∧ σ1,2], it
follows that w1, w2 ∈ [∆σ1,2(E)] and therefore w1 ≈′E w2 which implies that w1 ≈E w2.

Lemma 11. If w1 ∈ [E] and w2 /∈ [E], then w1 <E w2.

Proof. Consider a Horn formula σi,j such that [σi,j] = Cl∩({wi, wj}). We have that σ1,2 ∧
∧

E is
consistent and therefore by IC2 it holds that ∆σ1,2(E) ≡ ∧

E ∧ σ1,2. Since w1 ∈ [
∧

E ∧ σ1,2] and
w2 /∈ [

∧
E ∧ σ1,2], it follows that w1 ∈ [∆σ1,2(E)] and w2 /∈ [∆σ1,2(E)]. Therefore w1 <′E w2 and by

Lemma 7 it holds that w1 <E w2.

In order to show that the assignment satisfies s4 – s6, the following lemma will prove very
useful.

Lemma 12. If wi, wj are two interpretations, σi and σj are two complete Horn formulas such that
[σi] = {wi}, [σj] = {wj} and ≤E is a Horn connected pre-order constructed as above, then wi ≤E wj if
and only if σi �E σj.

Proof. Consider a Horn formula σi,j such that [σi,j] = Cl∩({wi, wj}). We will show each direction
in turn.

“⇒” Since wi ≤E wj and ≤E is the transitive closure of relation ≤′E constructed using ∆,
there must exist interpretations w1, . . . , wn, for some n ≥ 2, such that wi = w1, wj = wn and
w1 ≤′E · · · ≤′E wn. Thus, by the definition of ≤′E and for k ∈ {1, . . . , n − 1}, it holds that
wk ∈ [∆σk,k+1(E)]. This implies that σi �E σj.

“⇐” From σi �E σj it follows that for n ≥ 1 there exist σ1, . . . , σn such that σ1 = σi, σn = σj
and σk ∧ ∆σk,k+1(E) is consistent, for k ∈ {1, . . . , n − 1}. This means that wk ∈ [∆σk,k+1(E)], for
k ∈ {1, . . . , n− 1} and thus w1 ≤′E · · · ≤′E wn. Since ≤E is the transitive closure of ≤′E, we get that
wi ≤E wj.

Lemma 12 establishes a neat correspondence between the partial pre-order �E on complete
Horn formulas and the partial pre-order ≤E on interpretations constructed according to the steps
outlined above. It is easy to see, further, that the strict parts of �E and ≤E coincide as well. We
make this observation explicit as a corollary which we will make use of shortly.
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Corollary 1. If wi, wj are two interpretations, σi and σj are two complete Horn formulas such
that [σi] = {wi}, [σj] = {wj} and ≤E is a Horn connected pre-order constructed as above, then
wi <E wj if and only if σi ≺E σj.

Proof. If wi <E wj, then by Lemma 12 it follows that σi �E σj. If we also had σj �E σi, this would
imply by Lemma 12 that wj ≤E wi, which would be a contradiction. The converse is entirely
similar.

Given Lemma 12 and Corollary 1, s4 – s6 follow immediately.

Lemma 13. The assignment constructed according to steps 1 and 2 outlined above satisfies s4 – s6.

Proof. In the following we will assume that if wi is an interpretation, then σi is a complete Horn
formula such that [σi] = {wi}.

For s4, take wi ∈ [K1]. Then σi |= K1 and by IC′4 there exists a complete Horn formula σj such
that σj |= K2 and σj �{K1,K2} σi. By Lemma 12, this implies that wj ≤{K1,K2} wi.

For s5, take two interpretations wi, wj such that wi ≤E1 wj and wi ≤E2 wj. By Lemma 12, we
get that σi �E1 σj and σi �E2 σj. By IC′5 this implies that σi �E1tE2 σj. It follows, by Lemma 12
again, that wi ≤E1tE2 wj.

For s6, take two interpretations wi, wj such that wi ≤E1 wj and wi <E2 wj. By Lemma 12 and
Corollary 1, we get that σi �E1 σj and σi ≺E2 σj. By IC′6 this implies that σi ≺E1tE2 σj. It follows, by
Corollary 1, that wi <E1tE2 wj.

We can now gather all the results and state our conclusion. The relation ≤E is reflexive and
transitive, thus a pre-order. Lemma 9 gives us that ≤E is Horn connected. From Lemmas 5 and
8 it follows that [∆µ(E)] = min≤E [µ]. Lemmas 10 and 11 imply that s1 and s2 hold. Since ≤E

is constructed only with regard to the models of E, s3 also holds. Finally, Lemma 13 gives us
properties s4 – s6.

In Theorem 4, the strengthened postulates IC′4, IC′5 and IC′6 rule out Horn merging
operators ∆ represented by non-syncretic assignments such as the ones in Examples 5
and 6, and thus justify their presence. Our focus on Horn connected pre-orders, on the
other hand, should not be seen as a restriction: we can translate any Horn compliant pre-
order ≤E into a Horn connected one ≤?

E such that the overall assignment (1) represents
the same (Horn) merging operator and (2) remains syncretic. This can be done simply
by ‘uncoupling’ pairs wi and wj which are not in the subset relation and do not satisfy
either of the properties h3.1 and h3.2. Since wi and wj do not appear together in any set
of the type min≤E [µ], for µ ∈ LH, the Horn merging operators represented by ≤E and
≤?

E are the same. As an example consider Figure 7, where s5 does not hold because of
interpretations 100 and 001. Notice that in this case IC5 is satisfied—not only that, but IC′5
is also satisfied, since 100 and 001 are ‘alone’ on the same level in ≤E1 and ≤E2 , and thus
σ001 and σ100 are in neither of �E1 and �E2 . This case would be particularly problematic
if we insisted that ≤E1 and ≤E2 be total, since there seems to be no way to express that
100 and 001 are equally preferred in ≤E1 and ≤E2 using just the means of Horn logic
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Figure 7: s5 does not hold
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Figure 8: s5 holds

and ∆. But our problem disappears when we uncouple 100 and 001 in ≤E1 and ≤E2 (see
Figure 8), as now the antecedent of s5 is not triggered any more by 100 and 001, and thus
s5 is trivially satisfied. This solution is also natural, in the sense that allowing 100 and 001
to be incomparable reflects the fact that the Horn operator ∆ does not have any opinion
on their relative ranking.

Conversely, going from Horn connected pre-orders to total Horn compliant pre-
orders is not as straightforward: for any Horn connected pre-order there exist more
than one Horn compliant pre-orders representing the same Horn merging operator: any
interpretations wi and wj that are not in ≤?

E can be related in several ways if we care
about making ≤?

E total (we could have wi <
?
E wj, or wj <

?
E wi, etc.), and some of the

configurations give rise to non-syncretic assignments. Our point is that wi and wj do not
need to be related as long as the represented merging operator ∆ stays the same. Indeed,
the main motivation for formulating the representation result with partial pre-orders is
that if wi and wj do not satisfy h3.1 and h3.2 then a Horn merging operator ∆ does not
give us any information on what the order between them should be. It makes sense, in
this case, to not include wi and wj in the pre-order representing ∆.

5 A concrete Horn merging operator

By Theorem 2, we can find a Horn merging operator simply by exhibiting a Horn
compliant, syncretic assignment. As in Examples 2 and 3, we can think of a pre-order ≤K
as being generated by the distances d(w, K), for any interpretation w: these distances are
just positive integers, and their order determines the ranking of interpretations in ≤K. In
the rest of this section pre-orders will always be specified in terms of integers. We write
lK(w) to denote the number assigned to w with respect to the knowledge base K. If K has
exactly one model w′, we simply write lw′(w). This is a slight abuse of notation, but it
makes sense, as the pre-order ≤K depends only on the models of K and not its syntactic
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structure.
One difficulty in finding a Horn merging operator this way is that there is no obvious

candidate for an off-the-shelf assignment which satisfies all the required properties:
the requirement of Horn compliance rules out standard approaches that are built with
familiar distances between interpretations (e.g. Hamming or drastic distance). Therefore,
we start by describing some general conditions sufficient to guarantee that the resulting
assignment satisfies s1 – s6 and is Horn compliant.

5.1 General conditions

We take lK(w) ≥ 0, for any knowledge base K and any w ∈ W , with lK(w) = 0 if and
only if w ∈ [K]. This guarantees the assignment satisfies s1 – s3. We use the sum Σ to
aggregate individual pre-orders, and this guarantees s5 – s6. The next conditions spell out
what is needed for an assignment to satisfy s4.

Definition 5. The distance between knowledge bases K1 and K2 is defined as d(K1, K2) =
min{lK1(w) | w ∈ [K2]}.

We are interested in knowledge bases that satisfy the following property.

Definition 6. Knowledge bases K1 and K2 are symmetric if d(K1, K2) = d(K2, K1).

Symmetry is important because it guarantees s4.

Proposition 6 ([8]). If an assignment satisfies s1 – s3, then it satisfies s4 iff any two knowledge
bases are symmetric.

We can further simplify the symmetry condition by noticing that we can focus on a
particular subset of pre-orders ≤K.

Definition 7. An initial assignment is an assignment for knowledge bases that have exactly
one model.

In an n letter alphabet, the initial assignment can be visualized as a 2n × 2n matrix,
with the entries representing the numbers assigned to each interpretation in a pre-order.
We shall call this the initial matrix. Properties s1 – s3 mean that the matrix has positive
entries and 0 on the main diagonal. The symmetry condition means that the matrix must
be symmetric (see Example 8).

Definition 8. A basic assignment is an assignment that satisfies s1 – s3 for consistent
knowledge bases.

Interestingly, as Lemma 14 shows, it turns out that if we fix the pre-orders for every
knowledge base K with exactly one model, then pre-orders for knowledge bases K
with more than one model are completely determined by this initial assignment (see
Example 8).
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00 01 10 11 {10, 11}
00 0 1 2 3 2
01 1 0 3 5 3
10 2 3 0 8 0
11 3 5 8 0 0

Table 4: An initial assignment determines the remaining rankings by symmetry.

Lemma 14. In a symmetric assignment, the basic assignment is completely determined by the
initial assignment.

Proof. If E = {K}, we may identify ≤E with ≤K. Now, if K is a knowledge base having exactly one
model, the pre-order ≤K is assumed to be given. Let us suppose, now, that [K] = {w1, . . . , wn}, for
n > 1. Take an interpretation wi ∈ W . We denote by Ki a knowledge base such that [Ki] = {wi}.
By symmetry, we have that lK(Ki) = lKi(K). Unpacking this, we get:

min{lK(w) | w ∈ Ki} = min{lKi(w) | w ∈ [K]}.

Since [Ki] = {wi}, we get that the left-hand term is equal to min{lK(wi)}, which is just lK(wi).
Our problem boils down to showing that this number is determined by the assignment for
knowledge bases having exactly one model. This is immediate when we look at the right-hand
term: remember that Ki has exactly one model and therefore lKi(w) is assumed to be given for
any interpretation w in the initial assignment. Therefore min{lKi(w) | w ∈ [K]} is completely
determined by the initial assignment.

Example 8. Table 4 shows the initial matrix for the 2 letter alphabet, plus an additional
ranking obtained through symmetry. Each column represents a ranking: for instance
the first column represents the ranking for a knowledge base that has 00 as its sole
model. The number assigned to 00 in this ranking is 0, the number assigned to 01 is
1, etc. The ranking for a knowledge base K that has {10, 11} as its set of models is
computed from the initial assignment matrix with symmetry. For example, consider
interpretation 00. By symmetry, we have that lK(00) = l00(K). Thus, we obtain l00(K) =
min{l00(10), l00(11)} = min{2, 3} = 2.

The nice thing is that if a basic assignment is defined from a symmetric initial
assignment by symmetry, then the entire basic assignment is symmetric.

Proposition 7. If a basic assignment is defined from a symmetric initial assignment by symmetry,
then the basic assignment is symmetric.

Proof. We have to show that for any consistent knowledge bases K1, K2, it is the case that
lK1(K2) = lK2(K1). Let us do a case analysis and see that in a couple of cases the conclusion falls
out easily.

Case 1. If either of K1 or K2 has exactly one model, then lK1(K2) = lK2(K1) by definition.
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w1 . . . wm w′1 . . . w′n
w1 0 • . . . •
. . . • . . . •
wm 0 • . . . •
w′1 • . . . • 0
. . . • . . . •
w′n • . . . • 0

Table 5: Symmetry

Case 2. If [K1] ∩ [K2] 6= ∅, then lK1(K2) = lK2(K1) = 0.
Case 3. The only case left to analyse is when K1 and K2 are consistent knowledge bases that

each have more than one model and they share no models between them. Suppose, then, that
[K1] = {w1, . . . , wm} and [K2] = {w′1, . . . , w′n}, with m, n > 1 and [K1] ∩ [K2] = ∅. Then:

lK1(K2) = min{lK1(w
′
1), . . . , lK1(w

′
n)}

= min{min{lw′1
(w1), . . . , lw′1

(wm)}, . . . , min{lw′n(w1), . . . , lw′n(wm)}}.

The last step there was taken by applying symmetry. To visualize what this statement says, consult
Table 5 and focus on the square of dots in the upper right corner: min{lw′1

(w1), . . . , lw′1
(wm)} takes

the minimum of the dotted elements in the w′1-column, while min{lw′n(w1), . . . , lw′n(wm)} takes the
minimum of the dotted elements in the w′n-column. We then have to take the minimum of all
these minima, which essentially means that lK1(K2) takes the minimum element from the upper
right dotted square.

Completely analogously, we get that lK2(K1) takes the minimum element in the lower left dotted
square of Table 5. Crucially, remember that the initial assignment matrix is symmetric—hence, the
sub-matrix we have selected in Table 5 is also symmetric. It follows that the dotted squares contain
the same elements, and so they have the same minima. This proves that lK2(K1) = lK1(K2).

All that is left is Horn compliance. The first thing we show is that Horn compliance in
a pre-order reduces to the fact that any triple {w0, w1, w2} where w1 * w2, w2 * w1 and
w0 = w1 ∩ w2 has to be Horn compliant.

Lemma 15. A total pre-order ≤ on interpretations is Horn compliant if and only if for every
triple of interpretations {w0, w1, w2}, where w1 * w2, w2 * w1 and w0 = w1 ∩w2, it is the case
that min≤{w0, w1, w2} is representable by a Horn formula.

Proof. As a clarification, for a triple {w0, w1, w2} that satisfies the conditions above,
min≤{w0, w1, w2} is not representable by a Horn formula exactly when w1 ≈ w2 < w0. So
what we need to show is that Horn compliance means that this arrangement never occurs in ≤.

“⊆” If ≤ is Horn compliant then (by definition) the minimal elements of any subset of
interpretations closed under intersection are representable by a Horn formula, and this includes
triples {w0, w1, w2}.
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“⊇” Assume that any triple {w0, w1, w2} is Horn compliant, but that ≤ is not. This means
that there exists a Horn formula µ such that min≤[µ] is not representable by a Horn formula.
Clearly, min≤[µ] must contain at least 2 elements (otherwise it would be representable in the Horn
fragment). Since min≤[µ] is not representable by a Horn formula, this means that min≤[µ] is not
closed under intersection. In other words, there are two interpretations w1, w2 ∈ min≤[µ] such
that w1 ∩ w2 = w0 /∈ min≤[µ]. Because µ is a Horn formula and w1, w2 ∈ [µ], then w0 ∈ [µ]. It
follows, therefore, that w1 ≈ w2 < w0. But this implies that {w0, w1, w2} is not Horn compliant,
which contradicts our starting assumption.

Next we propose the following notion.

Definition 9. A pre-order ≤ is well-behaved if and only if for any interpretations w0, w1,
w2 such that w1 * w2, w2 * w1 and w0 = w1 ∩ w2, both of the following properties
hold:

(wb1) w0 ≤ w1 or w0 ≤ w2 and

(wb2) |min{l(w1), l(w2)} − l(w0)| ≤ |max{l(w1), l(w2)} − l(w0)|.

Notice that a well-behaved pre-order ≤ is also Horn compliant, as all the problematic
triples of interpretations are Horn compliant and this implies, by Lemma 15, that ≤ is
also Horn compliant. What makes well-behavedness suitable for our needs, however, is
that it is transmitted through Σ-aggregation. We prove this in Proposition 8.

Proposition 8. If ≤1 and ≤2 are well-behaved, then the pre-order obtained by Σ-aggregating ≤1
and ≤2 is well-behaved.

Proof. We denote by ≤1+2 the pre-order obtained by Σ-aggregating pre-orders ≤1 and ≤2 and by
li(w) the level of w in pre-order ≤i. Our goal is to show that ≤1+2 is well-behaved. Take, then, a
triple of interpretations {w0, w1, w2} such that w1 * w2, w2 * w1 and w0 = w1 ∩ w2.

First of all notice that, due to property wb1, the possible ways in which w0, w1 and w2 can be
arranged in ≤1 are w0 ≤1 w1 ≤1 w2, or w0 ≤1 w2 ≤1 w1, or w1 ≤1 w0 ≤1 w2, or w2 ≤1 w0 ≤1 w1.
Using property wb2, it is easy to see that in all these cases it holds that 2l1(w0) ≤ l1(w1)+ l1(w2). In
the cases w0 ≤1 w1 ≤1 w2 and w0 ≤1 w2 ≤1 w1 we have that l1(w0) ≤ l1(w1) and l1(w0) ≤ l1(w2),
thus the conclusion is immediate. In the case w1 ≤1 w0 ≤1 w2, property wb2 gives us that
l1(w0)− l1(w1) ≤ l2(w2)− l2(w0). Adding l1(w1) and l1(w0) to both sides gives us the conclusion.
The case w2 ≤1 w0 ≤1 w1 is analogous.

Similarly, we get that in ≤2 it holds that 2l2(w0) ≤ l2(w1) + l2(w2). Thus, when we add up the
two equalities, it follows that 2(l1(w0) + l2(w0)) ≤ l1(w1) + l1(w2) + l2(w1) + l2(w2).

Suppose, now, that in ≤1+2, property wb1 does not hold. This means that we have w1 <1+2 w0

and w2 <1+2 w0. Adding up these two inequalities, it follows that l1+2(w1)+ l1+2(w2) < 2l1+2(w0).
But ≤1+2 is obtained by Σ-aggregating ≤1 and ≤2, thus l1+2(wi) = l1(wi) + l2(wi) for i ∈ {0, 1, 2}.
Plugging this into the inequality just derived leads to a contradiction.

Similarly, suppose that ≤1+2 does not satisfy property wb2. Since we have just shown that ≤1+2

satisfies property wb1, the possible arrangement of w0, w1, w2 in ≤1+2 is one of w0 ≤1+2 w1 ≤1+2
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w2, or w0 ≤1+2 w2 ≤1+2 w1, or w1 ≤1+2 w0 ≤1+2 w2, or w2 ≤1+2 w0 ≤1+2 w1. Since the levels
are always positive numbers, property wb2 holds in the first two cases. Thus the only remaining
possibilities are the last two: let us assume, without loss of generality, that we are in the third case
(the remaining case is completely analogous). The fact that property wb2 does not hold means
that l1+2(w0)− l1+2(w1) > l1+2(w2)− l1+2(w0). This implies that 2l1+2(w0) > l1+2(w1) + l1+2(w2).
Using again the fact that l1+2(wi) = l1(wi) + l2(wi) for i ∈ {0, 1, 2}, we get a contradiction.

5.2 The summation assignment

Using all this knowledge, we can now define a specific Horn compliant syncretic assign-
ment, which we will call the summation assignment. We define this assignment for the
general case of an alphabet of size n. As suggested by the previous discussion, we give
the initial matrix and use symmetry to determine pre-orders ≤K, when |[K]| > 1. Since
the matrix for the initial assignment has to itself be symmetric and have 0 on the main
diagonal, we will only define the entries in the matrix below the main diagonal, with the
understanding that the entries above the main diagonal are fixed by symmetry. Also, the
order in which interpretations appear in the rows and columns is fixed by the number of
1’s in the corresponding bit-vector. For instance, the matrix for the 3-letter alphabet has
its rows and columns ordered as follows: 000, 001, 010, 100, 011, 101, 110, 111. We refer to
these interpretations as w0, w1, . . . , w7, respectively.

The definition of the bottom half of the initial assignment matrix is recursive. First,
put:

lw0(wi) = i, for i ∈ {0, . . . , 2n − 1}.

Hence, the levels on the first column are 0, 1, 2, . . . , 2n − 1 (see Table 6).
Second, for i ∈ {1, . . . ,≤ 2n − 1}, put:

lwi(wi+1) = lwi−1(wi) + lwi−1(wi+1).

Roughly, this means that the number in a particular cell under the main diagonal is the
sum of its two neighbours to the left. In Table 6: if lwi−1(wi) = a, lwi−1(wi+1) = b, then
lwi(wi+1) = a + b. This is simpler than it sounds, and Table 4 shows the matrix that we
get for the 2-letter alphabet.

To be in accordance with the existing literature on merging, we can see the summation
assignment as generated by a custom-defined distance function, call it dS. Thus, for any
interpretation w and Horn knowledge base K, dS(w, K) is just lK(w), the level of w with
respect to K, as defined above.

As motivation for why the levels are assigned the way they are, consider the example
of the 2-letter alphabet and what we get when we want to Σ-aggregate the rankings
corresponding to models 01 and 10 (see Table 7). We assume l00(01) = a and l00(10) = b.
By symmetry, l01(10) = l10(01) = c. When we compute the aggregated pre-order ≤01+10
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w0 . . . wi−1 wi wi+1 . . .
w0 0 . . . i− 1 i i + 1 . . .
. . . . . . . . . . . . . . . . . . . . .

wi−1 i− 1 . . . 0 . . .
wi i . . . a 0 . . .

wi+1 i + 1 . . . b a + b 0 . . .
. . . . . . . . . . . . . . . . . . . . .

Table 6: The recursive relation for levels.

01 10 ≤01+10
00 a b a + b
01 0 c c
10 c 0 c
11 . . . . . . . . .

Table 7: Horn compliance forces us to assign increasing levels.

we get that l01+10(00) = a + b and l01+10(01) = l01+10(10) = c. Since 01 and 10 are on the
same level in ≤01+10, Horn compliance requires that 00 is assigned a lower numbers, or
in other words c ≥ a + b. Roughly, the idea behind the summation assignment is simply
to take, in this situation, c = a + b.

We now show that the summation assignment is Horn compliant and stays Horn
compliant through repeated Σ-aggregations.

Proposition 9. The summation assignment is well-behaved.

Proof. We begin by noting a couple of key aspects of our assignment.

Observation 1. Notice that, because of the way we order the vector of interpretations that make up
the column and row heads of the matrix, an interpretation w1 ∩ w2 always comes ‘before’ w1 and
w2: that is to say, the column for w1 ∩w2 is always to the left of both w1 and w2, and the row for it
is always above the row for w1 and w2.

Observation 2. Notice that as we traverse the initial assignment matrix from left to right and from
top to bottom, the levels keep increasing. More precisely, say we select two interpretations wx

and wy which appear in this order in the matrix, and we extract their columns from the initial
assignment matrix (see Figure 8). We get a sub-matrix of the original one as in Figure 8. Suppose,
now, that we select some subset of interpretations {wim , . . . , win}, which also appear in this order.
Take:

min{lwa(wi) | wi ∈ {wim , . . . , win} and lwx(wi) 6= 0} = a,

that is to say: a is the smallest level on the column for wx, except 0. We represent this by writing
a+ in the places for all levels except 0, to show that they are all at least as great as a. Similarly, let
us say that the smallest element on the column for wy, is b. We represent this by writing b+.
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wx wy
. . . . . . . . .
wim a+ b+
. . . a+ b+
win a+ b+
. . . . . . . . .

Table 8: Extracting a sub-matrix from the initial assignment matrix

w0 w1 w2 wi1 , . . . , wik
w0 0 a
w1 0 b
w2 0 c
wi1 a+ b+ c+ 0
. . . 0
wik a+ b+ c+ 0

Table 9: The level of w0 in ≤K has to be smaller than the levels of w1 and w2.

The crucial thing to see here is that a ≤ b. This follows from the way we defined the initial
assignment, and the fact that levels keep increasing as we go from left to write (or top to bottom).

Using these observations, we show now that the summation assignment is well-behaved. Take
a triple of interpretations {w0, w1, w2} such that w1 * w2, w2 * w1 and w0 = w1 ∩ w2. We want to
show that properties wb1 and wb2 hold in every pre-order ≤K of the basic assignment. First, notice
that the assignment for knowledge bases with exactly one model is well-behaved. This is because,
from the way the assignment is defined, w0 always has a lower level than both w1 and w2. Next
let us look at knowledge bases K that have more than one model. We will do a case distinction.

Case 1. First, suppose neither of w0, w1, w2 is in [K]. We claim that w0 ≤K w1 and w0 ≤K w2.
Suppose [K] = {wi1 , . . . , wik}. By symmetry, we have that lK(w0) = lw0(K), which means that
lK(w0) = min{lw0(wi1), . . . , lw0(wik)}. Similarly, we get that lK(w1) = min{lw1(wi1), . . . , lw1(wik)}.
To see that lK(w0) ≤ lK(w1), let us extract the sub-matrix with pre-orders for w0, w1 and
[K] = {wi1 , . . . , wik} (see Table 9, where we have also included w2). Suppose lK(w0) = a
and lK(w1) = b. Then, by symmetry, we must have that min{lw0(wi1), . . . , lw0(wik)} = a and
min{lw1(wi1), . . . , lw1(wik)} = b. Using Observations 1 and 2, it follows that a ≤ b. Similarly, it
follows that a ≤ c, which implies the conclusion.

Case 2. Second, suppose w1 ∈ [K], and that [K] = {w1, wi1 , . . . , wik}. Since lK(w1) = 0, the
condition for well-behavedness amounts to showing that lK(w0) ≤ lK(w2). An argument similar
to the one before shows why this holds. By consulting Table 10, which was also completed using
symmetry, and by Observations 1 and 2, we conclude that a ≤ b and hence that the level of w0 in
≤K is smaller than the level of w2. The case when w2 ∈ [K] is completely analogous.

Together, these considerations show that the pre-order is well-behaved, for any knowledge
base that has more than one model.
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w0 w1 w2 w1, wi1 , . . . , wik
w0 0 a
w1 a+ 0 b+ 0
w2 0 b
wi1 a+ b+ 0
. . . 0
wik a+ b+ 0

Table 10: The level of w0 in ≤K has to be smaller than the level of w2.

000 001 010 100 011 101 110 111 d(w, K1) d(w, K2) Σ
000 0 1 2 3 4 5 6 7 3 1 4
001 1 0 3 5 7 9 11 13 5 0 5
010 2 3 0 8 12 16 20 24 8 3 11
100 3 5 8 0 20 28 36 44 0 5 5
011 4 7 12 20 0 48 64 80 20 7 27
101 5 9 16 28 48 0 112 144 0 0 0
110 6 11 20 36 64 112 0 256 36 11 47
111 7 13 24 44 80 144 256 0 0 0 0

Table 11: Summation assignment example

This is the last piece of information needed. We can now assert the following theorem.

Theorem 5. The summation assignment represents a Horn merging operator. We call this
operator ∆dS,Σ.

Proof. The initial matrix has positive entries and 0 on the main diagonal, thus s1 – s3 are satisfied.
It is also symmetric, which guarantees s4. Proposition 9 guarantees that the pre-orders in the basic
assignment are well-behaved and that they stay well-behaved through Σ-aggregation, which is
sufficient for Horn compliance. Thus the summation assignment is Horn compliant and syncretic,
and by Theorem 2 it represents a Horn merging operator.

We illustrate the summation assignment on an example.

Example 9. Take K1 = {p1, ¬p2 ∨ p3}, K2 = {p3, ¬p2 ∨ p1}, E = {K1, K2} and µ = ¬p1 ∨
¬p3. Notice that K1 and K2 are Horn theories and µ is a Horn formula. Merging E under
constraint µ with ∆dH ,Σ

µ or ∆dD,Σ
µ would give us [∆dH ,Σ

µ (E)] = [∆dD,Σ
µ (E)] = {001, 100},

thus not representable by a Horn formula. Clearly, in this case, the problem is that the
pre-order ≤E is not Horn compliant. However, with the custom distance function encoded
with our summation assignment, we generate Horn compliant pre-orders for K1 and K2
that, when aggregated with Σ, produce a Horn compliant pre-order ≤E. Table 11 shows
the initial matrix of the summation assignment for the 3 letter alphabet, together with
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the pre-orders for K1 and K2 and the Σ-aggregated pre-order ≤E.The pre-orders for K1
and K2 are computed using the symmetry property and data from the initial matrix. For
instance:

lK1(110) = min{l110(w) | w ∈ [K1]}
= min{l110(100), l110(101), l110(111)}
= min{36, 112, 256}
= 36.

Thus, the entry in Table 11 for d(110, K1) is 36. In the end, we obtain [∆dS,Σ
µ (E) = {000}].

Thus ∆dS,Σ
µ (E) can be represented by a Horn formula, in this case ¬p1 ∧ ¬p2 ∧ ¬p3.

6 Conclusion and future work

In this paper, we provided a novel representation theorem for Horn merging by strength-
ening the standard merging postulates. Belief change operators for the Horn fragment
have attracted increasing attention over the last years, in particular revision and con-
traction, while merging in the Horn fragment remained rather unexplored so far. An
exception is [3], where the authors propose to adapt known merging operators by means
of a certain post-processing and study the limits of this approach in terms of satisfaction
of the merging postulates. One of the main results of that paper is that in their framework
it is not possible to keep all postulates satisfied. In our work, we have presented a novel
concrete Horn merging operator satisfying all postulates.

The moral of the present work is that, while going from syncretic assignments to
Horn merging operators is relatively easy (Horn compliance is sufficient, by Theorem 2),
going from Horn merging operators to syncretic assignments requires considerably more
machinery (in particular, stronger postulates). Thus, all the work in Section 4 is needed
to obtain a full representation result. Even so, Section 5 highlights that the easiness of
the first direction is only relative, as finding concrete syncretic assignments that are also
Horn compliant requires some conceptual work, and there is no obvious trivial operator
that does the job. The main difficulty here lies in making sure that if two pre-orders ≤1
and ≤2 are Horn compliant, then the pre-order resulted from Σ-aggregating them is also
Horn compliant. Our well-behavedness property guarantees this.

Future work on merging in the Horn fragment would have to consider extending the
family of Horn merging operators. This requires seeing how Horn compliance interacts,
on the model side, with other aggregation functions (such as GMAX) and exploring the
range of conditions guaranteeing Horn compliance of an assignment. We may add to
this the study of other merging postulates (e.g., majority and arbitration), considered in
the merging literature [8, 9] but not touched upon here. Finally, we would like to extend
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our approach to other fragments of propositional logic (e.g., Krom or dual Horn), where
similar problems arise and for which tailored notions of compliance and strengthened
postulates are likely needed.
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