
TECHNICAL

R E P O R T

Institut für Informationssysteme

Abteilung Datenbanken und

Artificial Intelligence

Technische Universität Wien

Favoritenstr. 9

A-1040 Vienna, Austria

Tel: +43-1-58801-18403

Fax: +43-1-58801-18493

sekret@dbai.tuwien.ac.at

www.dbai.tuwien.ac.at

INSTITUT FÜR INFORMATIONSSYSTEME

ABTEILUNG DATENBANKEN UND ARTIFICIAL INTELLIGENCE

On the relation between SPARQL1.1 and
Answer Set Programming

DBAI-TR-2013-84

Axel Polleres Johannes P. Wallner

DBAI TECHNICAL REPORT

2013

DBAI TECHNICAL REPORT

DBAI TECHNICAL REPORT DBAI-TR-2013-84, 2013

On the relation between SPARQL1.1 and Answer Set
Programming

Axel Polleres 1 Johannes P. Wallner 2

Abstract. In the context of the emerging Semantic Web and the quest for a common log-
ical framework underpinning its architecture, the relation of rule-based languages such as
Answer Set Programming (ASP) and ontology languages such as OWL has attracted a lot
of attention in the literature over the past years. With its roots in Deductive Databases and
Datalog though, ASP shares much more commonality with another Semantic Web stan-
dard, namely the query language SPARQL. In this paper, we take the recent approval of
the SPARQL1.1 standard by the World Wide Web consortium (W3C) as an opportunity to
introduce this standard to the Logic Programming community by providing a translation of
SPARQL1.1 into ASP. In this translation, we explain and highlight peculiarities of the new
W3C standard. Along the way, we survey existing literature on foundations of SPARQL
and SPARQL1.1, and also combinations of SPARQL with ontology and rules languages.
Thereby, apart from providing means to implement and support SPARQL natively within
Logic Programming engines and particularly ASP engines, we hope to pave the way for
further research on a common logical framework for Semantic Web languages, including
query languages, from an ASP point of view.

1Vienna University of Economics and Business (WU Wien), Welthandelsplatz 1, 1020 Vienna, Austria
E-mail: axel.polleres@wu.ac.at

2Institute for Information Systems 184/2, Technische Universität Wien, Favoritenstrasse 9-11, 1040 Vi-
enna, Austria. E-mail: wallner@dbai.tuwien.ac.at

A journal version of this article has been published in JANCL. Please cite as:
A. Polleres and J.P. Wallner. On the relation between SPARQL1.1 and Answer Set Programming.
Journal of Applied Non-Classical Logics (JANCL), 23(1-2):159-212, 2013. Special issue on Equi-
librium Logic and Answer Set Programming.

Copyright c© 2014 by the authors

TECHNICAL REPORT DBAI-TR-2013-84 2

Contents
1 Introduction 3

2 RDF and SPARQL 5
2.1 Datasets . 7
2.2 Graph Patterns . 7
2.3 Solution Modifiers . 12
2.4 Query Preprocessing . 14
2.5 Formal Semantics of SPARQL . 16

3 Datalog, Answer Sets, and External Predicates 22
3.1 Restricted classes of ASP programs . 24

4 From SPARQL to ASP 25
4.1 Core Translation τ . 25
4.2 Translation of Solution Modifiers . 36
4.3 Translation of SPARQL1.1 Features . 38
4.4 Translation of BIND . 44
4.5 Query Forms . 46

4.5.1 SELECT . 46
4.5.2 ASK . 46
4.5.3 CONSTRUCT . 46

5 Discussion 48
5.1 Relating fragments of SPARQL to fragments of ASP 48

5.1.1 Non-well-designed patterns . 49
5.2 SPARQL as a Rules Language . 51
5.3 Entailment Regimes and the Interplay with RDFS, OWL and RIF 52
5.4 Implementing SPARQL on top of ASP Engines and Relational Database Systems . 53

6 Conclusions 53

TECHNICAL REPORT DBAI-TR-2013-84 3

1 Introduction
The Semantic Web is, in principle, a family of standards to enable a Web of Data, with the final
goal of enabling nothing less than the vision of the Web as “one huge database” (Berners-Lee,
1999). Whereas the Semantic Web architecture is often depicted as a stack1, we dispense with this
metaphor herein and just summarize the basic components needed for such a “Web database” and
its related W3C standards:

Data model The data model of the Semantic Web is a simple, schema-less model made up by
the Resources Description Framework (RDF) (Manola & Miller, 2004), where all data is
expressed in the form of subject-predicate-object triples that consist of resources identifiable
by URIs. RDF was released as a standard first in 1999, with a formal model-theoretic se-
mantics (Hayes, 2004) being added in 2004; the next upcoming version of RDF is currently
being worked on in the RDF1.1 working group.2

Schema languages In order to add schema-information to RDF, the W3C additionally defined
schema languages such as RDF Schema (RDFS) (Brickley & Guha, 2004), and the Web On-
tology Language (OWL) (Smith, Welty, & McGuinness, 2004), both first released in 2004.
OWL was recently subsumed by the OWL2 (W3C OWL 2 Working Group, 2012) specifica-
tion. RDF Schema is a fairly simple language, mainly allowing to express class membership
of resources, simple class hierarchies, and role hierarchies for resources used as predicates
in RDF triples. On the contrary, OWL is a more sophisticated ontology language, that al-
lows to express more complex relations between classes and roles, with its semantic roots in
Description Logics (Baader, Calvanese, McGuinness, Nardi, & Patel-Schneider, 2003).

Rule languages Despite the fact that OWL and RDF Schema can express various implicit in-
formation in RDF Data, the lack of (built-in) functions, default negation (aka negation as
failure, i.e., adding non-monotonicity) and other features common in rule-based languages
significantly limited the ability to express implicit information in RDF. Acknowledging the
existence of various rule-based formalisms with different semantics to fill this gap, each
useful in its own right, instead of standardizing a single rule-based formalism, the W3C
standardized a so-called Rule-Interchange Format (RIF) (Kifer & Boley, 2012; Boley, Kifer,
Pătrânjan, & Polleres, 2007) that comprises a number of extensible dialects to encode and
exchange rule-based knowledge.

Query language Finally, in order to access data described in RDF and described in terms of
rules and ontologies, a standard query language was needed, a gap finally filled in 2008
with the standardization of SPARQL (Prud′hommeaux & Seaborne, 2008), the ”Simple
Protocol and RDF Query Language”. The new version of the SPARQL query language,
SPARQL1.1 (Harris & Seaborne, 2013), which adds a lot of new features, just has reached
W3C recommendation status.

1various incarnations of this “stack” – which has significantly changed during the evolution of Semantic Web
standards – are for instance collected in (Polleres, 2013).

2Within this paper, we will restrict ourselves to the current 2004 version of the standard.

TECHNICAL REPORT DBAI-TR-2013-84 4

Lately, also the Linked Data principles (Berners-Lee, 2006; Heath & Bizer, 2011) – a set of
best practices to publish RDF data online in a coherent manner using URIs as cross-references to
indeed enable a Web of data – are often counted into the basic components of the Semantic Web.
However, as far the present paper is concerned we want to restrict the discussion herein to the
above four components, and particularly to the query language.

Concerning the interplay of these components within the common Semantic Web architecture,
a majority of the recent discussions have revolved around the combinations of rules languages and
schema languages: the RIF standard comprises a standard interfacing mechanism between RIF and
OWL (de Bruijn, 2010), where reasoning tasks such as entailment become undecidable in general.
In this context, a lot of discussion and academic works have been devoted over the last years to
the theoretical combinations of Description Logics based schema languages such as OWL and
rule-based languages (expressible in RIF), cf. (Levy & Rousset, 1998; Grosof, Horrocks, Volz,
& Decker, 2003; Motik, Sattler, & Studer, 2005; Krötzsch, Rudolph, & Hitzler, 2007a; Rosati,
2005a, 2005b, 2006b; Motik & Rosati, 2007; Lukasiewicz, 2010; Eiter, Lukasiewicz, Schindlauer,
& Tompits, 2004; Motik & Rosati, 2007; de Bruijn, Eiter, Polleres, & Tompits, 2007; de Bruijn,
Pearce, Polleres, & Valverde, 2010).3 While some of these approaches focus on decidable combi-
nations due to narrowing down the interface between these languages, others are concerned with
embedding them into a common logical formalism. Particularly, (de Bruijn et al., 2010) suggests
a quantified version of Equilibrium Logic, which is also the underlying logic of Answer Set Pro-
gramming for this common logical formalism.

Meanwhile also that interplay of SPARQL with the other components of the Semantic Web
architecture are gaining more attention: the new SPARQL1.1 specification defines a standard
mechanism to respect entailments coming from RDF Schema, OWL, or RIF in SPARQL query
results (Glimm et al., 2013; Kollia, Glimm, & Horrocks, 2011). As for academia, several founda-
tional works have contributed to clarifying relations between SPARQL and its neighboring stan-
dards. The original formal semantics of SPARQL is very much inspired by academic results,
such as by the seminal papers of Pérez et al. (Pérez, Arenas, & Gutierrez, 2006, 2009). Based on
this work first results on the relation of SPARQL and Datalog (with default negation) were pub-
lished in (Polleres, 2007) and later extended in (Angles & Gutierrez, 2008): Angles and Gutierrez
showed that SPARQL has exactly the expressive power of non-recursive safe Datalog with default
negation, and thus is also embeddable in ASP. However, all these results are so far based on the
“academic” semantics of SPARQL, which is only to some extent compatible with the official se-
mantics as defined by the W3C: that is, the work of (Pérez et al., 2009) deals with a set semantics,
while the official one is based on a bag semantics, where duplicates are allowed. Likewise, the re-
sults with respect to expressivity in (Angles & Gutierrez, 2008) and translations from SPARQL to
Datalog (Polleres, 2007) are based on (Pérez et al., 2006). The differences between set semantics
and bag semantics were partially discussed in (Polleres & Schindlauer, 2007; Arenas, Gutierrez,
& Pérez, 2009).

Subsequently several extensions, which are incorporated partially in SPARQL1.1, were inves-
tigated in the academic literature, such as top-level filters in optional patterns by (Angles & Gutier-

3For recent surveys, we refer the interested reader additionally to (Eiter, Ianni, Polleres, Schindlauer, & Tompits,
2006; Eiter, Ianni, Krennwallner, & Polleres, 2008; Rosati, 2006a; Krisnadhi, Maier, & Hitzler, 2011).

TECHNICAL REPORT DBAI-TR-2013-84 5

rez, 2008), subqueries (Angles & Gutierrez, 2011), assignments (Polleres, Scharffe, & Schindlauer,
2007), and property paths (Alkhateeb, Baget, & Euzenat, 2009; Pérez, Arenas, & Gutierrez, 2008;
Arenas, Conca, & Pérez, 2012; Losemann & Martens, 2012). Note that the semantics of these fea-
tures in the official SPARQL1.1 specification again slightly differs from the discussions in these
papers. Also, an embedding of the new features of SPARQL1.1 into Datalog and ASP is not yet
covered in these works.

Here is where the present paper steps in: this work may be viewed as an extended version
of (Polleres, 2007), where we aim to reconcile and extend the results in a twofold manner:

• Firstly, we give a full formal account of the SPARQL semantics compatible with the
SPARQL W3C specification based on the existing academic literature, where (a) we high-
light non-obvious peculiarities in the specification such as subtleties in MINUS patterns, and
(b) we consider the new features of SPARQL1.1, namely solution modifiers, property paths,
subqueries, and value creation through (BIND).

• We provide a systematic translation from most of SPARQL1.1 to Answer Set Programming,
where it is our goal to stick to the best of our knowledge to the official semantics of the
specification.4

We believe this work is valuable in providing both (i) means to implement and support
SPARQL1.1 natively within Logic Programming engines and particularly ASP engines and (ii)
a basis for further research on a common logical framework for Semantic Web languages, includ-
ing query languages, grounded in ASP.

This paper is structured as follows: In Section 2 we first provide an overview of RDF and
SPARQL1.1, discussing graph patterns in Section 2.2, datasets in Section 2.1, solution modifiers
in Section 2.3, followed by some issues in the language (Section 2.4). We then define SPARQL’s
formal semantics in Section 2.5. After introducing various fragments of ASP in Section 3, we
proceed with the translations of SPARQL to ASP in Section 4, starting with the core translation for
SPARQL features in Section 4.1, followed by the new SPARQL1.1 translation in Section 4.3 and
finally the translation of the BIND patterns – which we keep separate since, as we will see, these
require built-ins that cannot be modeled in “pure” ASP – in Section 4.4. Finally we present some
variants of the translation for other query forms of SPARQL in Section 4.5, discuss interesting
directions and related work in Section 5, and conclude in Section 6.

2 RDF and SPARQL
We assume basic familiarity with the Resource Description Framework (RDF) (Manola & Miller,
2004; Hayes, 2004) and the Turtle (Beckett & Berners-Lee, 2008) syntax for RDF and will keep
formal definitions to the necessary minimum for the moment. RDF is essentially a data format
that consists simply of subject-predicate-object triples (also called statements). Turtle is a concise

4Minor differences, including coverage of FILTER functions or taking particular choices in cases where the speci-
fication leaves different routes for implementations will be pointed at in the text.

TECHNICAL REPORT DBAI-TR-2013-84 6

notation for such RDF triples where triples are simply separated by ‘.’, predicate-object groups for
the same subject can be grouped using ’;’, and blank nodes (i.e. existential variables scoped over a
graph), are written as :x.

In examples we will subsequently refer to the two RDF graphs in Figure 1 which give some
information about Bob and Alice. Such information about persons is common in so-called
FOAF (Brickley & Miller, 2007) profiles which allow to describe personal data and social net-
works on the Web. Similarities with existing examples in (Harris & Seaborne, 2013) are on pur-
pose. The two RDF graphs are given in Turtle notation and we assume they are accessible via the
IRIs (RFC-3987, 2005) ex.org/bob and alice.org.5

Figure 1: Two RDF graphs in Turtle notation and a simple SPARQL query.

We assume the pairwise disjoint, infinite sets I ,B, L and V ar, which denote IRIs, Blank nodes,
RDF literals, and variables respectively. In this paper an RDF Graph is then a finite set of triples
from (I ∪ B ∪ L)× (I)× (I ∪ B ∪ L),6 dereferenceable by an IRI. A SPARQL query is a tuple
Q = (DS,P, SM), where DS is a dataset, P is a graph pattern, and SM is a solution modifier.
In the following sections we will formally introduce the language of SPARQL interleaved with
intuitive examples for many of the prominent features and then proceed to the formal definition
of the semantics of SPARQL queries. We will formally define datasets in Section 2.1 and graph
patterns in Section 2.2, where we first describe graph patterns composed of patterns available in
SPARQL1.0 and then extend these with the enriched features of the new SPARQL1.1 version.
Solution modifiers are then formally introduced in Section 2.3. For further syntactical details
on SPARQL queries we refer the interested reader to (Harris & Seaborne, 2013). Subsequently

5For reasons of legibility and conciseness, we normally omit the leading ’http://’ or other schema identifiers in IRIs
in this paper, IRIs and literals can be disambiguated by enclosing quotes for the latter.

6Following SPARQL, we are slightly more general than the original RDF specification in that we allow literals in
subject positions. Note further that in this paper we only consider plain literals, i.e., literals without language tags or
datatypes.

TECHNICAL REPORT DBAI-TR-2013-84 7

we remark necessary preprocessing steps for the formalism used in this work in Section 2.4 and
afterwards we define and extend the formal semantics from (Arenas et al., 2009) in Section 2.5.

2.1 Datasets
A dataset in a SPARQL query is used to define which graphs should be used for matching. The
dataset of a SPARQL query is defined by a default graph G plus a set of named graphs, i.e. pairs
of IRIs (denoting “names”) and their corresponding graphs.

Definition 2.1 (Dataset, default graph, named graph) Let G,G1, . . . , Gk be RDF graphs and
g1, . . . , gk be IRIs, then DS = (G, {(g1, G1), . . . (gk, Gk)}) is a dataset. We call G the default
graph and (g1, G1), . . . , (gk, Gk) named graphs.

A basic operation on a set of graphs is the graph merge, denoted by ’]’, as defined in (Hayes,
2004, Section 0.3), which is the union of the graphs, i.e. the union of the triples, if the sets of blank
nodes from each graph is disjoint. If the sets are not disjoint, then the graphs are first replaced by
equivalent graphs with disjoint sets of blank nodes.

Without loss of generality (there are other ways to define the dataset such as in a SPARQL
protocol query), we assume that the default graphG in a dataset is given as the merge of the graphs
denoted by the IRIs given in a set of FROM clauses and the named graphs given by a set of FROM
NAMED clauses.

For instance, the query from Figure 1 refers to the dataset which consists of the default graph
obtained from merging alice.org] ex.org/bob plus an empty set of named graphs.

The relation between names and graphs in SPARQL datasets is defined solely in terms of
that the IRI defines a resource which is represented by the respective graph. In this paper, we
assume that the IRIs represent indeed network-accessible resources where the respective RDF
graphs can be retrieved from (using, e.g., the HTTP protocol). Particularly, this treatment is not
to be confused with so-called named graphs in the sense of (Carroll, Bizer, Hayes, & Stickler,
2005). We thus identify each IRI with the RDF graph available at this IRI and each set G of IRIs
with the graph merge over the graphs accessible at the respective IRIs in this set G. This allows
us to identify the dataset by a pair of sets of IRIs DS = (G,Gnamed) with G = {d1, . . . , dn}
and Gnamed = {g1, . . . , gk} denoting the (merged) default graph and the set of named graphs,
respectively. Hence, the dataset referred to in the query of Figure 1 may be written as DS1 =
({ex.org/bob, alice.org}, ∅) whereas the following set of clauses

FROM <ex.org/bob>
FROM NAMED <alice.org>

defines the dataset DS2 = ({ex.org/bob}, {alice.org}).

2.2 Graph Patterns
Graph patterns are the fundamental building blocks from which SPARQL queries are composed
of. These patterns are based on the idea of graph pattern matching. Basic graph patterns directly

TECHNICAL REPORT DBAI-TR-2013-84 8

match triples in the given RDF Graph. More complex patterns support other operations on the
solution set, such as relational join, union and optional values. We follow the recursive definition
of graph patterns P from (Arenas et al., 2009) and will first introduce graph patterns available in
SPARQL1.0 and later extend these to SPARQL1.1.

Definition 2.2 (SPARQL1.0 graph pattern) A SPARQL1.0 graph pattern P is recursively de-
fined as follows:

• a tuple (s, p, o) is a graph pattern (also called triple pattern) where s, o ∈ I ∪ L ∪ V ar and
p ∈ I ∪ V ar.7

• if P and P ′ are graph patterns then (P AND P ′), (P UNION P ′) and (P OPT P ′) are
graph patterns.8

• if P is a graph pattern and i ∈ I ∪ V ar then (GRAPH i P) is a graph pattern.

• if P is a graph pattern and R is a filter expression then (P FILTER R) is a graph pattern.

For any pattern P , we denote by vars(P) the set of all variables occurring in triple patterns
within P , that is variables only occurring in filter expressions do not count among vars(P). Anal-
ogously, for any filter expression R, we denote by vars(R) the set of all variables occurring in
R.

The GRAPH pattern is used to match patterns against named graphs. FILTER expressions re-
strict the solutions to those satisfying the condition. As atomic filter expression, SPARQL allows
the unary predicates BOUND, isBLANK, isIRI, isLITERAL, as well as binary equality (‘=’), and
a and a binary comparison operator (‘<’). The specification includes more operators. We refer
the reader to (Harris & Seaborne, 2013, Section 17.3) for more details. Without loss of general-
ity, we assume only variables and constants to appear in such comparisons; as for values within
comparisons that arise from complex built-in expressions by e.g. string functions and arithmetic
operators, these can be emulated by assignments (BIND), see the remarks on Example 2.5 below.
Complex filter expressions can be built using logical connectives and auxiliary parentheses.

Definition 2.3 (Filter expression) Let x, y ∈ I∪L∪V ar. Then a filter expressionR is recursively
defined as follows:

• BOUND(x), isBLANK(x), isIRI(x), isLITERAL(x), (x = y), (x < y) are (atomic) filter
expressions.

• if R is a filter expression, then (¬R) is a (complex) filter expression.

• if R,R′ are filter expressions, then (R ◦R′) is a (complex) filter expression for ◦ ∈ {∧,∨}.
7We do not consider blank nodes in patterns as these can be semantically equivalently replaced by variables in

graph patterns (de Bruijn, Franconi, & Tessaris, 2005).
8Note that AND is not a designated keyword in SPARQL’s syntax, but we use it here for reasons of readability

and in order to keep with the operator style definition of (Arenas et al., 2009).

TECHNICAL REPORT DBAI-TR-2013-84 9

Moreover, note that the semantics defines errors for FILTERs to avoid mistyped comparisons,
or evaluation of built-in functions over unbound values. These filters rely on a three-valued logic
(>,⊥, ε), where errors (ε) propagate over the whole FILTER expression, also over negation and
conjunction (but not over disjunction, cf. the truth tables in (Harris & Seaborne, 2013, Section
17.2)). That is, for instance the negation of an error yields an error in its turn, as shown by the
following example.

Example 2.1 Assuming the dataset does not contain triples for the foaf : nick property, the ex-
ample query

SELECT ?X
WHERE { {?X a foaf:Person .

OPT { ?X foaf:nick ?Y . } }
FILTER (¬(isLITERAL (?Y))) }

would discard any solution for ?X, since the unbound value for ?Y causes an error in the isLIT-
ERAL expression and thus the whole FILTER expression returns an error.

The translation of patterns as written in WHERE clauses in normal SPARQL queries to the
format we use here is straightforward, with the exception that FILTERs may occur anywhere within
a group of graph patterns, not only in the end. In the more algebraic notation we use here, all the
non-FILTER parts of such a group would be conjoined by AND and all FILTERs conjoined with
∧ in the end, such that without loss of generality we can assume that each group contains at most
one FILTER in the end. In Section 2.4 we discuss further preprocessing steps required to capture
special cases of the SPARQL specification.

The following example illustrates this transformation from an actual WHERE clause in
SPARQL’s surface syntax to the format used herein for patterns:

Example 2.2 Let us consider the following two queries over dataset DS = ({ex.org/bob}, ∅).

SELECT ?N WHERE { ?G foaf:name ?N . FILTER(!(?N = ?FN))
?G foaf:knows ?F . FILTER(?FN="Alice")
?F foaf:nick ?FN }

This corresponds to the query Q = (DS,P, SM) such that

P = (((?G, foaf:name, ?N) AND (?G, foaf:knows, ?F) AND (?F, foaf:nick, ?FN))

FILTER (¬(?N =?FN) ∧ (?FN = ”Alice”))).

Likewise,

SELECT ?N WHERE { { ?G foaf:name ?N . FILTER(!(?N = ?FN))
?G foaf:knows ?F . FILTER(?FN="Alice") }
?F foaf:nick ?FN }

TECHNICAL REPORT DBAI-TR-2013-84 10

corresponds to Q′ = (DS,P ′, SM) such that

P ′ = ((((?G, foaf:name, ?N) AND (?G, foaf:knows, ?F))

FILTER (¬(?N =?FN) ∧ (?FN = ”Alice”)))

AND (?F, foaf:nick, ?FN))

That is, filter expressions are always evaluated in the scope of the “{”, “}” delimited group they
occur in.

Newly available graph patterns in SPARQL1.1 are subqueries, property paths, two forms of
negation (MINUS, ! EXISTS9) and assignment (BIND). Subqueries enhance SPARQL by adding
SELECT subqueries at any position of the query where graph patterns are allowed, including
solution modifiers within such subqueries. Property paths augment the query language by regular
expressions. Negation can be used to exclude solutions; assignments are useful for introducing
new values computed by an expression.

A property path PP incorporates regular expressions on IRIs applying the widely known op-
erators for negation ’!’, inverse ’ˆ’, sequence ’/’ and alternatives ’|’. For variable length SPARQL
supports the operators for the zero-or-more ’∗’, the one-or-more ’+’ and the zero-or-one ’?’ path.

Definition 2.4 (Property path) A property path PP is recursively defined as follows:

• p ∈ I is a property path.

• if PP1 and PP2 are property paths, then PP1/PP2 and PP1|PP2 are property paths, also
called sequential and alternative property paths, respectively.

• if PP is a property path, then PP◦ for ◦ ∈ {?, ∗, +} is a property path.

• if PP is a property path, then ˆPP is a property path.

• if pi ∈ I for 1 ≤ i ≤ n + m, then !PP is a property path where PP =
(p1| · · · |pn|ˆpn+1| · · · |ˆpm)

That is, property path patterns generalize the usual triple patterns. For readability we will iden-
tify the negated property path with a negated pair of two sets of IRIS, i.e. !(PP) =!(N,N ′), where
the first, N , contains only normal IRIs and the latter, N ′, the inverted IRIs. Now SPARQL1.1
graph patterns are extended in the following definition.

Definition 2.5 (SPARQL1.1 graph pattern) A SPARQL1.1 graph pattern P is recursively de-
fined as follows:

• a SPARQL1.0 graph pattern P is a graph pattern.

9which can be written similar to SQL as “NOT EXISTS”)

TECHNICAL REPORT DBAI-TR-2013-84 11

• if SM is a solution modifier, then a subquery (P, SM) is a graph pattern.

• a tuple (s, PP, o) is a graph pattern (also called property path pattern) where s, o ∈ I ∪L∪
V ar and PP a property path.

• if P and P ′ are graph patterns, then (P MINUS P ′) is a graph pattern

• if P is a graph pattern, x ∈ V ar and expr is an assignment expression, then
(P BIND expr AS x) is a graph pattern.

• if ~V ∈ V arn is a list of variables and D a finite set of tuples (I ∪B ∪L)n with arity n, then
(VALUES ~V D) is a graph pattern.

Note that we define solution modifiers in Section 2.3. In the following we will exemplify the
new features, starting with property paths.

Example 2.3 Consider one wants to find all persons Alice knows and recursively the persons they
in turn know and finally retrieve their names. This query can easily be specified using property
paths, over dataset DS = ({ex.org/bob, ∅}).

SELECT ?N WHERE { ?F foaf:name ?N .
?A foaf:knows+ ?F .
?A foaf:name "Alice"}

Composing the property path additionally with a sequential path gives the opportunity to simplify
this further as:

SELECT ?N WHERE { ?A foaf:knows+/foaf:name ?N .
?A foaf:name "Alice"}

The negation support in SPARQL1.1 has been enhanced by adding the MINUS graph pattern
and a new atomic filter expression, namely EXISTS(P) for any graph pattern P . The latter can be
negated as normal by ’¬’ in a complex filter expression.

Example 2.4 Extracting all persons, who know Bob from the example graph can be done in sev-
eral ways. One possibility is to query for all persons, where there exists a connection to Bob as
follows, over dataset DS = ({alice.org, ∅}).

SELECT ?N WHERE { ?P foaf:name ?N .
FILTER (EXISTS (?P foaf:knows ?F .

?F foaf:name "Bob"))}

TECHNICAL REPORT DBAI-TR-2013-84 12

For assignments SPARQL1.1 features two methods, first a straightforward way of listing in-
line data for variables via the VALUES keyword and on the other hand the BIND pattern, which
assigns the value of an assignment expression to a variable x. The specification supports many
different types of expressions (Harris & Seaborne, 2013, Section 17), such as string functions,
arithmetic operators, etc. For the purpose of this paper we leave the exact nature of this assignment
expression open and will later on rely on an oracle function, which can handle (i.e., evaluate) these
expressions.

Assignments can not only occur natively in the form of a BIND graph pattern, but also in-
side projected variables in SELECT clauses. These can be equivalently rewritten to BIND graph
patterns.

Example 2.5 Consider we want to query for all persons in the graph and output their name and
nickname in one field, that is concatenating both results, over dataset DS = ({alice.org, ∅}).

SELECT (concat(?M," a.k.a. ",?N) AS ?X) WHERE { ?P foaf:nick ?N .
?P foaf:name ?M }

This query outputs e.g. ”Bob a.k.a. Bobby”, with the delimiter set in the SELECT clause. We can
rewrite this query to one using BIND, with a fresh variable.

SELECT ?X WHERE { ?P foaf:nick ?N .
?P foaf:name ?M .
BIND (concat(?M," a.k.a. ",?N) AS ?X) }

We will thus only discuss BIND in the remainder for assignments, but not assignments within
SELECT clauses. Note that a built-in expression occurring within a FILTER, e.g.

FILTER (concat(?M," a.k.a. ",?N) != " a.k.a. ")

can be similarly “emulated” by inserting a BIND (and introducing a new variable) before the
FILTER, i.e.

BIND (concat(?M," a.k.a. ",?N) AS ?New) FILTER (?New != " a.k.a. ")

2.3 Solution Modifiers
Query results in SPARQL are given by partial, i.e. possibly incomplete, substitutions of variables
in vars(P) by RDF terms occurring in the graphs of DS. In traditional relational query languages
such incompleteness is usually expressed using null values. Using such null values we will write
solutions as tuples where the order of columns is determined by lexicographically ordering the
variables in P . Given a set of variables V , let V denote the tuple obtained from lexicographically
ordering V .

The query from Figure 1 has three solution tuples. We write substitutions – which are partial
mappings from variables to RDF terms – in square brackets, so these tuples correspond to the
substitutions θ1 = [?X → ”Alice”, ?Y → alice.org#me], θ2 = [?X → ”Bob”, ?Y → : a],

TECHNICAL REPORT DBAI-TR-2013-84 13

and θ3 = [?X → ”Bob”, ?Y → : c], respectively. A more formal definition will be given in
Section 2.5. The short notation (”Bob”, :a), (”Alice”, alice.org#me), (”Bob”, :c) which we
sometimes use here is obtained from applying these substitutions to the result form V = (?X, ?Y).

In order to only project solutions to particular variables, sort solutions, or only request a cer-
tain number of results, SPARQL provides so-called solution modifiers indicated by the SELECT
clause, as well as the keywords DISTINCT, ORDER BY, LIMIT, and OFFSET. In this paper we
will mainly deal with SELECT queries. Other result forms are discussed in Section 4.5.

In its simplest form, the solution modifier SM consists only of a a set V ⊆ vars(P) of vari-
ables marking a projection (SELECT clause). The optional DISTINCT keyword indicates that
duplicates shall be eliminated during this projection. Another optional part of the solution modi-
fier is an ORDER BY clause, which puts the solution tuples to a query in an order.10

For the purposes of this paper, we assume the optional ORDER BY clause to refer to a list
of variables from V , which determines by which bindings the solutions should be ordered, before
limit or offset are applied. Ordering solutions using complex expressions can be “emulated” via a
BIND assignment, similar as shown in Example 2.5 for assignment expressions in the SELECT
clause. In order to guarantee deterministic results of queries wherever order plays a role (which
is not guaranteed in SPARQL in general), we assume a default order that orders solutions lexi-
cographically according to the bindings of the variables in vars(P). That is, for instance for the
query from Figure 1, the default order will order solutions by the bindings for ?X first, if present,
and then by bindings to ?Y , which yields θ1, θ2, θ3 in that order as above. If we added an ORDER
BY ?Y clause, the solution order would change to θ2, θ3, θ1, as blank nodes are ordered before IRIs
in SPARQL.11 Then the default order is changed to first ordering by bindings of ?Y and then ?X.

The solution modifiers LIMIT l and OFFSET o are used to exclude solutions by applying the
so-called “slice”, i.e. omitting the first o solutions and then outputting only the next l solutions
after ordering has been applied. Formally we collect all the modifiers in a quintuple SM with the
following definition.

Definition 2.6 (Solution modifier) Let ~V be a vector of variables, S ⊆ V ar a set of variables,
dst ∈ {true, false}, l and o positive integers. Then SM = (~V , S, dst, l, o) is a solution modifier.

In Section 2.5 we will formally define the semantics of solution modifiers. Just note that the
solutions will be ordered accordingly to ~V , the set S will act as the set of variables to project and
dst is used for discarding duplicates. The following exemplifies uses for solution modifiers.

Example 2.6 For instance, let us consider the following two queries over dataset DS =
({ex.org/bob, alice.org}, ∅) asking for the second name or nickname (ordering lexicographi-
cally.)

10Within the present paper we restrict ourselves to ascending order in ORDER BY clauses, but note that our
approach can be easily generalized to also allow descending order, cf. keyword DESC() in (Harris & Seaborne, 2013,
Section 15.1).

11Note that SPARQL does actually not impose an order between blank nodes :c and :a, but we can do so without
changing the semantics.

TECHNICAL REPORT DBAI-TR-2013-84 14

SELECT ?N WHERE
{ { ?P foaf:name ?M . } UNION { ?P foaf:nick ?N . } }
ORDER BY ?N OFFSET 2 LIMIT 1

which will return the single substitution [?N → ”Alice”], whereas the modified query

SELECT DISTINCT ?N
WHERE { { ?P foaf:name ?M . } UNION { ?P foaf:nick ?N . } }
ORDER BY ?N OFFSET 2 LIMIT 1

will return the substitution [?N → ”Bob”].
That is, the DISTINCT modifier is applied before computing the “slice” of solutions deter-

mined by the ORDER BY, OFFSET, and LIMIT modifiers. This corresponds to the solution
modifier SM = ((?N, ?P), {?N}, true, 1, 2).

2.4 Query Preprocessing
We already mentioned the translation of SPARQL queries into the formalism of this paper and that
complex built-in expressions in SELECT, FILTER and ORDER BY clauses need to be rewritten
into graph patterns involving BIND and an auxiliary variable for this purpose. Additionally some
more remarks are in place concerning FILTER expressions and a required rewriting. Graph pat-
terns of the form (P FILTER R) may have safe filter expressions, i.e. that all variables used in a
filter expressionR also appear in the corresponding pattern P . This corresponds roughly to the no-
tion of safety in ASP (see Section 3 below), where built-in predicates (which obviously correspond
to filter predicates) do not suffice to safe unbound variables. We note that – as shown by Angles
and Gutierrez (Angles & Gutierrez, 2008) – such unsafe variables in FILTERs do not affect the
expressivity of SPARQL, i.e., each query containing unsafe FILTER variables can be equivalently
rewritten to a query without such unsafe variables; notably however, (Angles & Gutierrez, 2008)
do not consider the three-valued semantics of FILTER evaluations as per the official SPARQL
specification, cf. (Harris & Seaborne, 2013, Section 17.2); we take a slightly different approach
herein: since unsafe FILTER variables in SPARQL are treated as unbound, in our setting we can
avoid unsafe FILTERs by just replacing unsafe variables in FILTER expressions with the constant
null in a preprocessing step and, as we will see, will treat the null constant appropriately in our
translation of filter expressions to ASP, see Section 4.1.

Example 2.7 As an example for an unsafe variable in a FILTER, the following query12

SELECT * WHERE ?X foaf:mbox ?M . FILTER (?Name = "Alice")

simply amounts to

SELECT * WHERE ?X foaf:mbox ?M . FILTER (null = "Alice")

12By the asterisk in a query “SELECT * WHERE P ” one implicitly sets the result form to vars(P).

TECHNICAL REPORT DBAI-TR-2013-84 15

Since we define – in conformance with the treatment of unbound variables in the official SPARQL
specification – comparisons with null to result in an error, the evaluation of such a FILTER expres-
sion will always fail, and thus the query returns an empty result.

FILTER expressions within OPT patterns, as well as in patterns inside EXISTS expressions,
cannot be quite treated this way, since top-level FILTERs within OPTs are allowed to refer to
bindings from outside the OPT pattern. This is also discussed in (Angles & Gutierrez, 2008). This
behavior is exemplified by the following query.

Example 2.8 The following query is a variant of Example 2.7:

SELECT * WHERE
{ ?X a foaf:Person . ?X foaf:name ?Name .

OPT { ?X foaf:mbox ?M . FILTER (?Name = "Alice") } }

What this query intuitively expresses is the following: “Output all persons and their names,
and the mbox only for persons named Alice”.

Here, intuitively (and also according to the semantics defined in the SPARQL specification)
the FILTER evaluation shall not fail by default but the idea behind this query is to out put the
mailbox only for persons named Alice and suppress the mailboxes in the results for others. That
is, on the test data from Figure 1, if we assume DS = ({alice.org′}, ∅), where alice.org′ has
two additional triples

alice:me foaf:mbox "alice@ex.org"
:c foaf:mbox "bob@ex.org"

the query would yield two solution tuples (”alice@ex.org”, ”Alice”, alice.org#me) and
(null, ”Bob”, alice.org#me :c).

Similarly, if an EXISTS clause is present in the filter, then its pattern may contain variables
bound directly outside the filter in the corresponding pattern. We will take special care of these
cases, when defining the semantics later on.

Lastly we do not consider blank nodes in query patterns as these can be semantically equiva-
lently replaced by variables in graph patterns (de Bruijn et al., 2005). However, blank nodes may
appear in the dataset, and thus in query answers. Note that different graphs in the dataset might
use the same identifiers for blank nodes. For simplicity, we assume that such ambiguities are al-
ready resolved, i.e. that different graphs in the dataset use different blank node identifiers. By this
assumption, we may treat blank node identifiers largely like normal constants and we do not need
to rename blank nodes identifiers in query results.

TECHNICAL REPORT DBAI-TR-2013-84 16

2.5 Formal Semantics of SPARQL
The definition of a formal semantics of SPARQL has been first tackled by Pérez et al. (Pérez et al.,
2006), later been refined in (Arenas et al., 2009). We will base on these formalisations and extend
them in order to capture version 1.1 of the SPARQL specification (Harris & Seaborne, 2013).
Particularly, our definitions vary from (Pérez et al., 2006) in the way we define joining unbound
variables (represented by the distinct constant null in our approach) and incorporate the treatment
of top-level filters in OPT patterns,13 solution modifiers, subqueries, property paths, negation and
assignment features. The latter has already been discussed to some extent in (Polleres et al., 2007),
while the MINUS pattern in (Harris & Seaborne, 2013, Section 18.5) differs from an earlier version
discussed in (Polleres et al., 2007).

We prefer sticking with the notation and basing on Pérez et al.’s semantics (for its declara-
tive nature) over the more algorithmically defined semantics in the official specification, wherever
possible.

We denote by T = I ∪B ∪L the set of RDF terms and by Tnull the union of T ∪ {null}, where
null is a dedicated constant denoting the unknown value not appearing in any of I, B, or L, as
commonly introduced when defining outer joins in relational algebra.

A substitution θ from V ar to Tnull is a partial function θ : V ar → Tnull. We write substitutions
in postfix notation: For a triple pattern t = (s, p, o) we denote by tθ the triple (sθ, pθ, oθ) obtained
by applying the substitution to all variables in t. The domain of θ, denoted by dom(θ), is the
subset of V ar where θ is defined. For a substitution θ and a set of variables D ⊆ V ar we define
the substitution θD with domain D as follows:

xθD =

{
xθ if x ∈ dom(θ) ∩D
null if x ∈ D \ dom(θ)

Let θ1 and θ2 be substitutions, then θ1 ∪ θ2 is the substitution obtained as follows:

x(θ1 ∪ θ2) =

xθ1 if xθ1 defined and xθdom(θ1)
2 ∈ {null, xθ1}

else: xθ2 if xθ2 defined and xθdom(θ2)
1 = null

else: undefined

Thus, in the union of two substitutions defined values in one take precedence over null values
of the other substitution. For instance, given the substitutions θ1 = [?X → ”Alice”, ?Y → :
a, ?Z → null] and θ2 = [?U → ”Bob”, ?X → ”Alice”, ?Y → null] we get: θ1 ∪ θ2 = [?U →
”Bob”, ?X → ”Alice”, ?Y → :a, ?Z → null]

Now, similar to (Pérez et al., 2006), we define the notion of compatibility between substitutions:
Two substitutions θ1 and θ2 are compatible when for all x ∈ dom(θ1) ∩ dom(θ2) either xθ1 =

null or xθ2 = null or xθ1 = xθ2 holds. i.e., when θ1 ∪ θ2 is a substitution over dom(θ1)∪ dom(θ2).
Analogously to (Arenas et al., 2009) we define join, union, difference, and outer join between

multisets of substitutions. We adhere to the multiset semantics, as defined by the W3C by using
the d operator for multiset union which does not discard duplicates and the delimiters ’{{’and ’}}’
for enumerations of multisets.

13This special treatment is discussed in (Angles & Gutierrez, 2008), but as opposed to their work, we define the
special treatment of such filters in OPT directly in the semantics.

TECHNICAL REPORT DBAI-TR-2013-84 17

Definition 2.7 (SPARQL Relational Algebra) Let Ω1 and Ω2 be multisets of substitutions over
domains D1 and D2, respectively. Then we define the following basic operators

Ω1 ./ Ω2 = {{θ1 ∪ θ2 | θ1 ∈ Ω1, θ2 ∈ Ω2, are compatible}}
Ω1 d Ω2 = {{θ | ∃θ1 ∈ Ω1 with θ = θD1∪D2

1 or ∃θ2 ∈ Ω2 with θ = θD1∪D2
2 }}

Ω1 − Ω2 = {{θ1 ∈ Ω1 | for all θ2 ∈ Ω2, θ1 and θ2 not compatible}}
Ω1A./ Ω2 = (Ω1 ./ Ω2) d (Ω1 − Ω2)

The semantics of a graph pattern P over dataset DS = (G,Gnamed), can now be defined
recursively by an evaluation function returning multisets of substitutions. Due to the variety of
graph patterns we will split the definition into several logical parts as before in Section 2. We
begin with SPARQL features (Prud′hommeaux & Seaborne, 2008).

Graph patterns and filter expressions are defined recursively based on the relational algebra.

Definition 2.8 (Evaluation of graph patterns, (Arenas et al., 2009, Definition 13.3)) Let t =
(s, p, o) be a triple pattern, P, P1, P2 graph patterns, DS = (G,Gnamed) a dataset, then the eval-
uation [[·]]DS is defined as follows:

[[t]]DS = {θ | dom(θ) = vars(t) and tθ ∈ G}
[[P1 AND P2]]DS = [[P1]]DS ./ [[P2]]DS
[[P1 UNION P2]]DS = [[P1]]DS d [[P2]]DS
[[GRAPH i P]]DS = [[P]](i,∅), for i ∈ Gnamed

[[GRAPH i P]]DS = ∅, for i ∈ I −Gnamed

[[GRAPH v P]]DS = {{θ ∪ [v → g] | g ∈ Gnamed and θ ∈ [[P [v → g]]](g,∅)}}, for v ∈ V ar
[[P FILTER R]]DS = {{θ ∈ [[P]]DS | Rθ = >}}

The semantics of FILTER expressions specifies whether a substitution θ satisfies a filter, does
not satisfy it or results in an error. For this purpose we utilize a three valued logic, where ’>’
stands for “true”, ’⊥’ stands for “false” and ’ε’ stands for errors, see (Harris & Seaborne, 2013,
Section 17.3) and Example 2.1 for details.

Definition 2.9 (Evaluation of FILTER, extends (Arenas et al., 2009, Definition 13.4)) LetR be
a FILTER expression, u, v ∈ V ar ∪ Tnull. The valuation of R on a substitution θ, written Rθ takes
one of the three values {>,⊥, ε} and is defined as follows.
Rθ = >, if:

(1) R = BOUND(v) with v ∈ dom(θ) ∧ vθ 6= null;
(2) R = isBLANK(v) with v ∈ dom(θ) ∧ vθ ∈ B;
(3) R = isIRI(v) with v ∈ dom(θ) ∧ vθ ∈ I;
(4) R = isLITERAL(v) with v ∈ dom(θ) ∧ vθ ∈ L;
(5) R = (u = v) with u, v ∈ dom(θ) ∪ T ∧ uθ = vθ ∧ uθ 6= null ∧ vθ 6= null;
(6) R = (u < v) with u, v ∈ dom(θ) ∪ T ∧ uθ < vθ ∧ uθ 6= null ∧ vθ 6= null;

TECHNICAL REPORT DBAI-TR-2013-84 18

(7) R = (¬R1) with (R1, DS)θ = ⊥;
(8) R = (R1 ∨R2) with R1θ = > ∨ R2θ = >;
(9) R = (R1 ∧R2) with R1θ = > ∧ R2θ = >;
(10) R = EXISTS(P) with [[Pθ]]DS 6= ∅.

Rθ = ε, if:

(1) R = isBLANK(v),R = isIRI(v), or R = isLITERAL(v) and
v 6∈ dom(θ) ∪ T ∨ vθ = null;

(2) R = (u = v) with u 6∈ dom(θ) ∪ T ∨ uθ = null ∨ v 6∈ dom(θ) ∪ T ∨ vθ = null;
(2) R = (u < v) with u 6∈ dom(θ) ∪ T ∨ uθ = null ∨ v 6∈ dom(θ) ∪ T ∨ vθ = null;
(3) R = (¬R1) and (R1, DS)θ = ε;
(4) R = (R1 ∨R2) and (R1θ 6= > ∧ R2θ 6= >) ∧ (R1θ = ε ∨ R2θ = ε);
(5) R = (R1 ∧R2) and R1θ = ε ∨ R2θ = ε.

Rθ = ⊥ otherwise.

The semantics of OPT, as briefly mentioned in Section 2, requires special care in case the
optional part consists of a graph pattern with a filter expression. Intuitively OPT can be con-
sidered as a form of an outer join. To consider only one case an optional pattern of the form
(P1 OPT P2), which does not directly incorporate a FILTER in P2 at the top level, will be viewed
as (P1 OPT (P2 FILTER R)) with a R being the trivial FILTER, which is always true. Then we
define the semantics as follows

Definition 2.10 (Evaluation of OPT with FILTERs (Harris & Seaborne, 2013, Section 18.5))
Let P1, P2 be graph patterns and R a FILTER expression, then a mapping θ is in
[[(P1 OPT (P2 FILTER R))]]DS if and only if:

• θ = θ1 ∪ θ2, s.t. θ1 ∈ [[P1]]G, θ2 ∈ [[P2]]DS are compatible and θ satisfies R, or

• θ ∈ [[P1]]DS and there is no compatible θ2 ∈ [[P2]]DS for θ, or

• θ ∈ [[P1]]DS and there exists a θ2 ∈ [[P2]]DS , s.t. θ and θ2 are compatible and θ ∪ θ2 does
not satisfy R.

In the base case, if R is always true, then the semantics coincides with the outer join since we
can omit the third condition, i.e. [[P1 OPT P2]]DS = [[P1]]DSA./ [[P2]]DS . Overall this special
handling is required, since P2 is allowed to exclude variables occurring in vars(R), which are not
considered unbound if they occur in P1.

We now turn our attention to the semantics of the new features of SPARQL1.1. We begin with
the semantics of solution modifiers. We note that the solution modifiers operate on ordered lists
of solutions (with duplicates) instead of multisets of solutions. That means that before solution
modifiers are applied, the solutions of the underlying patterns must be converted to lists. 14

14In the specification this conversion is done by an explicit function toList, while here we encode this directly in the
operator order.

TECHNICAL REPORT DBAI-TR-2013-84 19

We will use L as the notation for an ordered list. Let the elements contained in a list L be
accessible by L[i] with i starting from 1 up to the number of elements in L. The usual set theoretic
notation also applies here for membership in the list, i.e. {{θ ∈ L}} is the multiset containing
all elements in L. If elements are removed from this list, we assume that this data structure fills
the gaps automatically and the index i always starts with 1 up to the number of elements in L.
Additionally removing elements preserves the order on the remaining ones. Further let |L| denote
the number of elements in L. We also define an auxiliary concept of restricting a substitution θ to
a set of variables S ⊆ V ar denoted as θ|S , which is the mapping such that xθ|S = xθ for x ∈ S
and dom(θ|S) = dom(θ) ∩ S.

Definition 2.11 (Solution modifiers) Let Ω be a multiset of substitutions, L and L′ lists, ~V a list
of variables in V ar and S ⊆ V ar. Then we define the following basic operators

order(Ω, ~V) = L where L contains all elements of Ω ordered lexicographically by ~V
π(S, L) = L′ where L′[i] = L[i]|S for 1 ≤ i ≤ |L|
dst(L) = L′ where L′ is obtained by removing from L every L[i] where ∃j < i such

that L[i] = L[j]
lmt(L, l, o) = L′ where L′ is obtained by removing from L all L[i] with i ≤ o or o+ l < i

Here, order(Ω, ~V) is a function which orders the multiset by the values of bindings for ~V =
(v1, v2, . . .) lexicographically. i.e. first ordering substitutions in Ω according to bindings to v1, then
ordering according to bindings to v2 within the substitutions binding to the same value for v1, and
so on. Values are ordered following the precedence order defined in (Harris & Seaborne, 2013,
Section 15.1). Without loss of generality, and in order to always obtain deterministic orderings we
assume ~V to contain any variables that are bound in any of the substitutions in Ω.

The remaining solution modifiers act in a straightforward manner. The projection operator
π projects the variables of the set S, dst discards duplicates and finally lmt applies LIMIT and
OFFSET, by discarding all substitutions outside the range given by o and o+ l.

Note that due to the defined order in which solution modifiers are applied (order → π →
dst → lmt) according to the specification (Harris & Seaborne, 2013, Section 18.5), it plays a
role for the lmt operator which of the duplicates is preserved by the dst operator within a list
of solutions. However, the specification does not actually specify which of the duplicates are
preserved for DISTINCT queries, leaving this aspect up to implementations; herein, we decided to
retain those duplicate which are ordered first.

We are now ready to define the semantics of a subquery, which is just the evaluation of its graph
pattern and then applying the solution modifiers afterwards on the result. The sequence in which
the solution modifiers are applied is exactly specified (Harris & Seaborne, 2013, Section 15). We
first order the substitutions, then project, followed by discarding duplicates and finally apply the
slice of LIMIT and OFFSET. Note that the ordering is discarded after a subquery is evaluated.
Only the final ordering of the overall query is shown in the result.

Definition 2.12 (Evaluation of subqueries) Let Q = (P, SM) be a subquery and SM =
(~V , S, dst, l, o) a solution modifier as above, then the evaluation [[·]] is defined as follows:

TECHNICAL REPORT DBAI-TR-2013-84 20

[[Q]]DS = {{θ ∈ [[SM(P)]]DS}}

[[SM(P)]]DS =

{
lmt(dst(π(S, order([[P]]DS, ~V))), l, o)) if dst = true

lmt(π(S, order([[P]]DS, ~V)), l, o)) if dst = false

Property path patterns without variable length parts can be defined via the graph patterns AND
and UNION and a fresh variable for the join. Paths with arbitrary length are defined with the help
of the ALP function (Harris & Seaborne, 2013, Section 18.4), which just starts at the given node
and iteratively extends the solution set (reachable) with one application of the given property path.
Note that the starting term is also reachable, which is required for the zero-length paths.

Algorithm 1: ALP(a, PP, reachable,DS)

input : a ∈ I ∪B ∪ L, PP a property path, reachable ⊆ I ∪B ∪ L , DS a dataset
output: reachable containing all nodes reachable from a via PP
if a ∈ reachable then

return ∅
end
reachable := reachable ∪ {a};
Ω := [[(a, PP, ?X)]]DS;
foreach b = θ(?X), θ ∈ Ω do

reachable := reachable ∪ ALP(b, PP, reachable,DS);
end
return reachable
Based on the ALP function the property path patterns can now be defined as follows.

Definition 2.13 (Evaluation of property path patterns) Let s, o ∈ I ∪ L ∪ V ar, N,N ′ ⊆ I ,
S = vars({s, o}), x a fresh variable, DS = (G,Gnamed) a dataset and PP, PP1, PP2 property
paths, then the evaluation [[·]]DS is defined as follows:

[[(s, PP1/PP2, o)]]DS = {{θ|S | θ ∈ [[((s, PP1, x) AND (x, PP2, o))]]DS)}}
[[(s, PP1|PP2, o)]]DS = [[((s, PP1, o) UNION (s, PP2, o))]]DS
[[(s, ˆPP, o)]]DS = [[(o, PP, s)]]DS
[[(s, !(N,N ′), o)]]DS = [[((s, !(N), o) UNION (o, !(N ′), s))]]DS
[[(s, !(N), o)]]DS = {{θ|S | dom(θ) = S ∪ {x} and (s, x, o)θ ∈ G with xθ 6∈ N}}
[[(s, PP?, o)]]DS = {θ | θ ∈ [[(s, PP, o)]]DS} ∪ {θ | sθ = oθ, dom(θ) = S, and sθ ∈ G}
[[(s, PP+, o)]]DS = {θ | θ′ ∈ [[(sθ, PP, x)]]DS, dom(θ) = S, and

oθ ∈ ALP(xθ′, PP, ∅, DS)}
[[(s, PP ∗, o)]]DS = {θ | oθ ∈ ALP(sθ, PP, ∅, DS), dom(θ) = S, and sθ, oθ ∈ G} †

For zero-or-more length paths we search for substitutions, which start at sθ and go through
arbitrarily many times the application of PP to reach oθ. Additionally we have to make sure that
†We collect for the negated path in separate sets the normal and inverse IRIs: normal IRIs in N and the latter in

N ′. Note that the order is not relevant, see (Harris & Seaborne, 2013), Sections 9.1 and 18.2.2.

TECHNICAL REPORT DBAI-TR-2013-84 21

both sθ and oθ are in G, since otherwise, if both are variables we would not have a bound in them
inside the graph. For the special case that s and o are both not variables the condition that both
must be in G can be dropped from the definitions of the zero-or-more and zero-or-one paths.

The introduction of the MINUS pattern is straightforward, but we cannot reuse the relational
operator for difference, “−”, directly due to a slightly different definition (Harris & Seaborne,
2013, Section 18.5).

Definition 2.14 (MINUS graph pattern) Le P1, P2 be graph patterns and DS = (G,Gnamed) a
dataset, then the evaluation [[P1 MINUS P2]]DS is defined as follows:

[[P1 MINUS P2]]DS = {{θ1 ∈ [[P1]]DS | for all θ2 ∈ [[P2]]DS, θ1 and θ2 not compatible or
dom(θ1) ∩ dom(θ2) = ∅}}

Additionally to the compatibility check we make sure that the substitutions do not have a dis-
joint domain. This would imply compatible substitutions and e.g. a single empty substitution in
[[P2]]DS would remove all solutions from [[P1]]DS .

The other type of newly introduced negation is a new atomic expression of the form R =
EXISTS(P). Then Rθ = > for a substitution θ if [[Pθ]]DS 6= ∅ and ⊥ else. By Pθ we mean
the natural generalization of the variable replacement on triples, by just replacing every variable
of dom(θ) in the whole pattern P by the value given by θ. Note that there are some special cases,
where such a substitution does not occur, i.e. variables in VALUES patterns and the assigned
variable in BIND patterns. The dataset DS is taken from [[P FILTER R′]]DS where R occurs in
R′.

Lastly let us define the semantics of the two assignment patterns. The VALUES pattern is
straightforward and just specifies a table of new substitutions. For the BIND pattern we make use
of an eval(e) oracle function, which computes an expression e. As normal, an application of a
substitution on the expression (eθ) just replaces all variables by a term. Note that here, similarly to
FILTER expressions, errors may occur. An expression which outputs an error is left unbounded.
For this we make use of the extend function for error handling.

extend(θ, x, e) =


θ ∪ [x→ eval(eθ)] if eval(eθ) 6= ε and x 6∈ dom(θ)

θ if eval(eθ) = ε and x 6∈ dom(θ)

undefined else

Definition 2.15 (Evaluation of assignment patterns) Let P be a graph pattern, DS =
(G,Gnamed) a dataset, ~V ∈ V arn a list of variables and D a list of tuples of arity n and e an
expression, then the evaluation [[·]]DS is defined as follows:

[[P BIND e AS x]]DS = {{extend(θ, x, e) | θ ∈ [[P]]DS}}
[[VALUES ~V D]]DS = {{θ | dom(θ) = ~V and ~V θ ∈ D}}

TECHNICAL REPORT DBAI-TR-2013-84 22

3 Datalog, Answer Sets, and External Predicates
In this paper we will use a very general form of Datalog commonly referred to as Answer-Set
Programming (ASP), i.e. function-free logic programming (LP) under the answer-set semantics,
which is an extension of the stable model semantics (Gelfond & Lifschitz, 1988, 1991). ASP is
widely proposed as a useful tool for various problem solving tasks in e.g. Knowledge Representa-
tion and Deductive databases; various overviews of ASP as well as text books are available (Marek,
1999; Niemelä, 1999; Lifschitz, 1999; Baral, 2003; Brewka, Eiter, & Truszczynski, 2011; Geb-
ser, Kaminski, Kaufmann, & Schaub, 2012). ASP extends Datalog with useful features such as
default negation and disjunction in rule heads (Gelfond & Lifschitz, 1991); other extensions in-
clude external predicates (Eiter, Ianni, Schindlauer, & Tompits, 2005), aggregates (Faber, Leone,
& Pfeifer, 2004), choice rules, cardinality and weight constraints (Niemelä, Simons, & Soininen,
1999), etc. Herein, we use a simplified version of ASP (we do not consider disjunction in rule
heads, nor strong negation) with external predicates, borrowing definitions from so-called HEX-
programs (Eiter et al., 2005).15

Let Pred, Const, V ar, exPr be sets of predicate names, constants, variable symbols, and
external predicate names, respectively. Note that we assume all these sets except Pred and Const
(which may overlap), to be disjoint. In accordance with common notation in LP and the notation
for external predicates from (Eiter et al., 2006) we will in the following assume that Const and
Pred comprise the (infinite) sets of numeric constants, string constants beginning with a lower
case letter, or ’"’ quoted strings. V ar is the set of string constants beginning with an upper case
letter. Given p ∈ Pred a (regular) atom is defined as p(t1, . . . , tn), where n is called the arity of p
and t1, . . . , tn ∈ Const ∪ V ar.

An external atom is of the form

g[Y1, . . . , Yn](X1, . . . , Xm),

where Y1, . . . , Yn and X1, . . . , Xm are two lists of terms (called input list and output list, respec-
tively), and g ∈ exPr is an external predicate name. We assume that for g ∈ exPr the in- and
output lists have fixed lengths in(g) = n and out(g) = m, respectively. Intuitively, an external
atom provides a way for deciding the truth value of an output tuple depending on (the extension
of) a set of input predicates and constants.

Example 3.1 In our translation, we will use the external predicate rdf, which intuitively takes as
an input an IRI i and returns the RDF triples of the RDF graph which is accessibly at IRI i; that
is, for rdf[i](s, p, o) i ∈ Const∪ V ar is an input term, whereas s, p, o ∈ Const∪ V ar are output
terms that may be bound by the external predicate and the external atom rdf [i](s, p, o) is true if
(s, p, o) is an RDF triple in the RDF graph which is accessibly at IRI i. We will use this external
predicate in our translation to construct a dataset (cf. 2.1) comprising various RDF graphs.

15In fact, the external predicates we use herein do not require the higher-order capabilities of HEX-programs, but the
alternative form of external predicates defined in (Calimeri & Ianni, 2005) would likewise suffice for our purposes; we
still stick with the notation of HEX-programs.

TECHNICAL REPORT DBAI-TR-2013-84 23

In the translation of the BIND pattern in Section 4.4 and subsequently by CONSTRUCT
queries in Section 4.5.3 we will utilize further external predicates as needed.

Definition 3.1 (Rule) Finally, a rule is of the form

h :- b1, . . . , bm, not bm+1, . . . not bn. (1)

where h and bi (1 ≤ i ≤ n) are regular or external atoms and not is the symbol for default
negation. If n = 0, then r is called a fact.

We use H(r) to denote the head atom h and B(r) to denote the set of all body literals B+(r)∪
B−(r) of a rule r, where B+(r) = {b1, . . . , bm} and B−(r) = {bm+1, . . . , bn}.

The notion of input and output terms in external atoms described above denotes a binding
pattern. More precisely, we assume the following condition which extends the standard notion of
safety (cf. (Ullman, 1989)) in Datalog with negation.

Definition 3.2 (Safety) We call a rule safe, if any variable appearing in a rule appears in a non-
default-negated regular body atom or as an output term of a non-default-negated external atom.

Definition 3.3 (Program) An ASP program Π is defined as a set of safe rules r of the form (1).

We borrow the definition of the semantics of ASP programs from the more general HEX-
programs (Eiter et al., 2005) which generalizes the answer-set semantics (Gelfond & Lifschitz,
1991), and is defined using the FLP-reduct (Faber et al., 2004) instead of the traditional Gelfond-
Lifschitz reduct from (Gelfond & Lifschitz, 1991).

The Herbrand base of a program Π, denoted HBΠ, is the set of all possible ground versions
of atoms and external atoms occurring in Π obtained by replacing variables with constants from
Const. The grounding of a rule r, ground(r), is defined accordingly, and the grounding of program
P is ground(P) =

⋃
r∈P ground(r).

An interpretation relative to Π is any subset I ⊆ HBΠ containing only regular atoms. We
say that I is a model of an atom a ∈ HBΠ, denoted by I |= a, if a ∈ I. With every external
predicate name g ∈ exPr with arity n we associate an (n + 1)-ary Boolean function fg (called
oracle function) assigning each tuple (I, t1 . . . , tn) either 0 or 1. 16 We say that I ⊆ HBΠ is a
model of a ground external atom a = g[t1, . . . , tm](tm+1, . . . , tn), denoted I |= a, if and only if
fg(I, t1, . . . , tn) = 1.

Definition 3.4 (Model) Let r be a ground rule. We define

(i) I|=B(r) if and only if I |= a for all a ∈ B+(r) and I 6|= a for all a ∈ B−(r), and

(ii) I |= r if and only if I |= H(r) whenever I |= B(r).

16This general notion of an oracle function reflects the intuition that external predicates compute (sets of) out-
puts for a particular input, depending on the interpretation. The dependence on the interpretation is necessary for
instance for defining the semantics of external predicates querying OWL (Eiter et al., 2005) or computing aggregate
functions (Polleres et al., 2007).

TECHNICAL REPORT DBAI-TR-2013-84 24

We say that I is a model of a program Π, denoted I |= Π, if and only if I |= r for all r ∈
ground(Π).

We define answer sets accordingly.

Definition 3.5 (Answer set) The FLP-reduct (Faber et al., 2004) of Π with respect to I ⊆ HBΠ,
denoted ΠI , is the set of all r ∈ ground(Π) such that I |= B(r). I ⊆ HBΠ is an answer set of Π
if and only if I is a minimal model of ΠI . By as(P) we denote the set of all answer sets of P .

We do not consider further extensions common to many ASP dialects here, namely disjunc-
tive rule heads, strong negation (Gelfond & Lifschitz, 1991). We do, however, assume a built-in
predicate ’<’ for ordering constants, which is commonly found in ASP solvers nowadays. For our
purposes we assume that this ordering predicate adheres to the order in the SPARQL specifica-
tion (Harris & Seaborne, 2013, Section 15.1), i.e. it orders terms accordingly even if they are of a
different type from lowest to highest:

1) null

2) Blank nodes

3) IRIs

4) RDF literals

Inside these classes the ordering is defined by lexicographically ordering the strings.

3.1 Restricted classes of ASP programs
We will call a program without external atoms a pure ASP program, and denote the classes of such
pure programs and ASP programs with external atoms byASP andASPex, respectively; obviously
ASP ⊂ ASPex. Analogously, we call the class of positive programs without default negation
ASPpos (and ASPpos,ex, respectively). We define further restricted classes of ASP programs by
means of the so called-dependency graph of the program:

Definition 3.6 (Dependency graph, ground dependency graph) The dependency graph DepΠ

of a program Π is a directed labeled graph where each predicate name in Pred∪ exPr occurring
in Π is a node and (i) there is an unlabeled edge from l′ to l if there is a rule r in Π such that
l ∈ H(r) and l′ ∈ B+(r); (ii) there is a not -labeled edge from l′ to l if there is a rule r in Π such
that l ∈ H(r) and l′ ∈ B−(r).

Likewise, we can define a ground dependency graph Depground(Π) where analogous edges are
defined with respect to the rules in ground(Π) between elements of HBΠ (instead of between
predicates).

We call a program Π

TECHNICAL REPORT DBAI-TR-2013-84 25

• non-recursive if DepΠ is acyclic,

• stratified, if DepΠ does not contain cycles that involve any not -labeled edges, and

• locally stratified, ifDepground(Π) does not contain cycles that involve any not -labeled edges.

Accordingly, we denote the classes of non-recursive, stratified and locally stratified programs
byASP nr,ASP strat, andASP lstrat, respectively. Let us illustrate the following obvious inclusion
relations between the syntactic fragments of ASP:

ASP nr
pos ⊂ ASP nr ⊂ ASP strat ⊂ ASP lstrat ⊂ ASP

ASPpos ⊂ ASP strat ⊂ ASP lstrat ⊂ ASP

For a detailed discussion about the implications of adding recursion and particularly non-
stratified negation on expressive power and complexity, we refer to (Dantsin, Eiter, Gottlob, &
Voronkov, 2001) and references therein. Here, we only note that for both non-recursive programs
as well as (locally) stratified programs the answer set is always unique and finite.

As widely known, for programs without external predicates, safety as defined above guarantees
the size of minimal models, i.e. answer sets) is finite. However, by external atoms in rule bodies,
new, possibly infinitely many, ground atoms could be generated, even if all atoms themselves are
safe in case of recursive programs. In order to avoid this, a stronger notion of safety for programs
is defined in (Schindlauer, 2006): Without going into detail, informally, this notion says that a
program is strongly safe, if no external predicate recursively depends on itself, thus defining a
notion similar in spirit to (local) stratification over external predicates. Strong safety guarantees
finiteness of models as well as finite computability even in the presence of external atoms.

We will get back to which fragment of ASP is needed for which parts of our translation in more
detail in Section 5.

4 From SPARQL to ASP
Having defined the formal semantics of SPARQL queries, we are now ready to define a translation
from SPARQL to the fragments of ASP in the previous section.

We start with a core translation, encoding many important concepts and features of SPARQL.
Afterwards we will show how to encode the newly available query components of SPARQL1.1
in ASP. Particularly, for BIND patterns we will make use of external atoms, since new values may
be introduced by this pattern, which also requires several changes in other parts of the translation,
which we will discuss separately.

4.1 Core Translation τ
The core translation encodes graph patterns and FILTER expressions by recursively walking
through the parse tree of a given query. For the algebraic version of SPARQL, the parse tree
of a query is simply a tree consisting of the subpatterns of a given pattern.

TECHNICAL REPORT DBAI-TR-2013-84 26

Definition 4.1 (Subpattern) A graph pattern P ′ is a subpattern of a graph pattern P if P ′ occurs
in P as a substring. A subpattern P ′ is an immediate subpattern of P if there is no graph pattern
P ′′ such that P ′′ is a subpattern of P and P ′ is a subpattern of P ′′.

Using subpatterns we can straightforwardly define a parse tree of a pattern.

Definition 4.2 (Parse tree) A rooted tree T = (V,E) is called a parse tree of a graph pattern P if

• V = {P ′ | P ′ is a subpattern of P},

• P is the root of T and

• (P1, P2) ∈ E iff P2 is an immediate subpattern of P1.

We will associate integers with each vertex of the parse tree of a graph pattern P , starting with
1 for the pattern itself and the root vertex. Note that in all cases a vertex in the parse tree has at
most two children, due to the definition of the SPARQL graph patterns. Hence we will number
the vertices recursively by simply numbering children of a vertex with number i with the numbers
2∗ i and 2∗ i+1. To gain deterministic results we number the vertex with the subpattern occurring
left in the pattern of the i− th vertex with the lower integer. For a pattern occurring the parse tree,
we will call the associated integer its position in the parse tree. This identifier will later be used for
unique names of ASP predicates.

Likewise we can define such a parse tree for filter expressions. In our translation parse trees
will be used implicitly by recursively decomposing a given pattern in the same manner as in the
tree representation.

We will now first start with an intuitive introduction to our translation. Given a pattern, every
subpattern is translated to a set of rules. The main predicate for the translation is called ansi for
the parse tree at position i. This predicate acts as a representation of the computed substitutions
and hence has variable arity depending on the current graph pattern of the query. Again the distinct
constant null is used for unbound variables.

Example 4.1 Consider the pattern P of Example 2.6, without solution modifiers, i.e. P =
((?P, foaf:name, ?M) UNION (?P, foaf:nick, ?N)). To keep things simple let this be a DIS-
TINCT query. The parse tree of P is given as follows.

P = ((?P, foaf:name, ?M) UNION (?P, foaf:nick, ?N))

P ′ = (?P, foaf:nick, ?N)P ′′ = (?P, foaf:name, ?M)

The main part of the translation constructs now rules for each pattern in the tree.

ans1(M,null,P,default) :- ans2(M,P,default).
ans1(null,N,P,default) :- ans3(N,P,default).
ans2(M,P,default) :- triple(P,foaf:name,M,default).
ans3(N,P,default) :- triple(P,foaf:nick,N,default).

TECHNICAL REPORT DBAI-TR-2013-84 27

Here we see several parts of the translation. We have a main predicate for each pattern in the tree,
e.g. ansi for i ∈ {1, 2, 3} in our case. Intuitively, the rules for the patterns at position 2 and 3 just
extract the right triples. Of importance is that these predicates directly correspond to substitutions.
Note that the constant default is used to represent the default graph.

The complex pattern for UNION is translated by two rules, which both compute solutions
for this pattern. The predicate ans1 represents substitutions for the variables ?M , ?N and ?P .
Since, e.g. ?N does not occur in the subpattern P ′, we directly use null as the second term of
this predicate, which is our special constant for unbound variables. So intuitively a ground atom
ans1(t1, t2, t3, default) can be read as substitutions for the three variables, where the value for
?M is given by t1, ?N by t2 and ?P by t3. Obviously for a working translation the ordering for this
is crucial and can be extracted first by looking at the variables of the pattern and then ordering
them lexicographically. For the full translation, these rules need to be augmented by further ASP
modules, which import all the triple patterns, as well as adding some auxiliary rules.

Let P be a graph pattern. Without loss of generality, we assume that no variable name in P
starts with U or V. We will use these prefixes to introduce new variables for UNION patterns (U)
and in auxiliary rules added for FILTER evaluations (V). As before we define vars(P) to be the
set of all variables occurring in P excluding filters. We need to distinguish auxiliary variables
introduced in different parts of the parse tree, hence we define an indexed set of variables, which
includes the necessary variables for our translation, as follows.

Definition 4.3 (Indexed variable set) Given a positive integer i, dst ∈ {true, false} and a
graph pattern P , we define the indexed variable set varsdsti (P) as follows:

• For P = (s, p, o) we define varsdsti (P) = vars(P).

• For P = (P1 AND P2) or (P1 OPT P2), let varsdsti (P) = varsdst2∗i(P1) ∪ varsdst2∗i+1(P2).

• For P = (P1 FILTER R), let varsdsti (P) = varsdst2∗i(P1).

• For P = (GRAPH g P1), let varsdsti (P) = varsdst2∗i(P1) ∪ {g | g ∈ V ar}

• For P = (P1 UNION P2), let varstruei (P) = varstrue2∗i (P1) ∪ varstrue2∗i+1(P2).

• For P = (P1 UNION P2), let varsfalsei (P) = varsfalse2∗i (P1) ∪ varsfalse2∗i+1(P2) ∪ {Ui}.

That is, for each UNION pattern, its indexed variable set introduces a new, auxiliary variable. The
idea here is that the index assigned to this fresh variable is a unique index identifying the node of the
pattern in the parse tree of the graph pattern. This auxiliary variable is required for preserving du-
plicates, thus we omit it if dst is set to true. We note that in this definition, varstruei (P) = vars(P),
but this will change when we extend this function for SPARQL1.1 features in Section 4.3. Intu-
itively speaking, if dst is true then varstruei (P) contains all variables of the pattern P at position i,
which may be mapped by a substitution in [[P]]DS .

Recall that by V we denote the tuple obtained from lexicographically ordering a set of variables
in V . The notion V [V ′ → c] means that, after ordering V all variables from V ∩ V ′ are replaced

TECHNICAL REPORT DBAI-TR-2013-84 28

by constant c. We also occasionally write short V [v → c] in case that V ′ = {v} is a singleton set,
and write V [V ′ → c1, V

′′ → c2] for (V [V ′ → c1])[V ′′ → c2]. Also sometimes we will use V
′

to
denote the uniform renaming of all variables in V after ordering by appending a prime. If we only
rename a subset X ⊆ V , then we will use V [X → X ′].

We use a similar notion for replacing variables in FILTER expressions, i.e., if R is a FILTER
expression, then R[V → c] is the expression obtained from replacing all occurrences of variables
in V within R by constant c.

Let Q = (DS,P, SM), where DS = (G,Gnamed) as defined in Section 2. We will define
the core translation function τ(P, dst,D,NodeIndex) which takes a pattern P , a graph name
D ∈ {default} ∪ Gnamed, the boolean value dst ∈ {true, false} to denote that the DISTINCT
keyword is present and a positive integer as input, and results in a non-recursive Datalog program.
The NodeIndex parameter is being used to give a unique index to each sub-pattern and sub-
FILTER-expression, which we use to generate unique predicate names for auxiliary predicates
during our translation. The translation is defined recursively depending on the structure of P .

The semantics of SPARQL specifies that two substitutions are compatible if for each shared
variable both substitutions agree or one of them is null. Obviously this notion of compatibility
is not present in ASP per se, since only equal terms may be unified. To cope with this we will
utilize helper predicates joinn, which make sure that null joins with every value. In the core
translation only the AND and OPT encoding require joining over null values. We will outline
first the simple mechanism behind this. Assume that we are given the pattern P = (P1 AND P2)

at position i. Then the following rule simulates the AND by joining ans2∗i(varsdst2∗i(P1), D) and
ans2∗i+1(varsdst2∗i+1(P2), D), the ASP predicates which compute the solutions of the subpatterns
P1 and P2, over their shared variables if no null values are present:

ansi(varsdsti (P), D) :- ans2∗i(varsdst2∗i(P1), D), ans2∗i+1(varsdst2∗i+1(P2), D).

A special handling is required for the shared variables of the two patterns, hence we define the
concept of shared variables of two patterns as follows.

Definition 4.4 (Shared variables) Let P1 and P2 be two graph patterns. The set of their shared
variables is defined as SPi1

,Pi2
= varstrue1 (Pi1) ∩ varstrue2 (Pi2).

In the core translation this means that SPi1
,Pi2

= vars(Pi1) ∩ vars(Pi2), but in the following
we will also extend the translation with subqueries, which may project certain variables out inside
a graph pattern. This is why we here look for the variables of the two patterns, excluding auxiliary
variables and projected out variables (which is achieved by setting dst to true). The indices in this
case are not relevant.

Now to achieve the right semantics for null values we rename in both predicates the shared
variables to distinguish their value “before” we join them. This is handled by the auxiliary predicate
joinn, which we define in the following module for a given integer n.

Let Join(n) =

TECHNICAL REPORT DBAI-TR-2013-84 29

join(X,X,X) :- term(X). join(null, null, null).
join(X, null, X) :- term(X).
join(null, X,X) :- term(X).

join1(X
′
1, X

′′
1 , X1) :- join(X ′1, X

′′
1 , X1).

join2(X
′
1, X

′
2, X

′′
1 , X

′′
2 , X1, X2) :- join1(X

′
1, X

′′
1 , X1), join(X

′
2, X

′′
2 , X2).

join3(X
′
1, X

′
2, X

′
3, X

′′
1 , X

′′
2 , X

′′
3 , X1, X2, X3) :- join2(X

′
1, X

′
2, X

′′
1 , X

′′
2 , X1, X2), join(X

′
3, X

′′
3 , X3).

...
joinn(X

′
1, . . . , X

′
n, X

′′
1 , . . . , X

′′
n , X1, . . . , Xn) :-

joinn−1(X
′
1, . . . , X

′
n−1, X

′′
1 , . . . , X

′′
n−1, X1, . . . , Xn−1), join(X

′
n, X

′′
n , Xn).

Intuitively this predicate derives for two compatible substitutions the value for each variable.
Now we add the auxiliary predicate join|SP1,P2 | to the body of the rule for the join of two patterns.
This helper predicate is used to specify that any value joins with null for the number |SP1,P2 | of
shared variables. This results now in the following rule for the AND pattern.

ansi(varsdsti (P), D) :- ans2∗i(varsdst2∗i(P1)[SP1,P2 → S′P1,P2
], D),

ans2∗i+1(varsdst2∗i+1(P2)[SP1,P2 → S′′P1,P2
], D),

join|SP1,P2
|(SP1,P2

′
, SP1,P2

′′
, SP1,P2).

That means a shared variable x is renamed to x′ in the first predicate and to x′′ in the second
one. The unprimed version is bound by the join|SP1,P2

| and is equal to x′ if x′ = x′′ or x′′ is null
or on the other hand equal to x′′ if x′ is null. Note that in the following translation this mechanism
for joining is omitted if there are no shared variables to join.

We are now ready to define the core translation. We begin with the translation of the dataset.
Here we have two possibilities, namely importing the graphs by a preprocessing step or creating
the triples by the external predicate rdf, which directly accesses an IRI for retrieving the graphs.
For now we will stick to the preprocessing variant, since we want to restrict ourselves to plain
Datalog in the core translation. This means, given the dataset DS = (G,Gnamed) for a query Q,
we import the graph by

ΠDS ={triple(s, p, o, default). | (s, p, o) is entailed by the graph represented by d ∈ G}
∪ {triple(s, p, o, g). | (s, p, o) is entailed by the graph represented by g ∈ Gnamed}

Now the translation function τ(P,G,NodeIndex) is defined as follows.

(1) Let P = (s, p, o) then τ(P, dst,D, i) is defined as

ansi(varsdsti ((s, p, o)), D) :- triple(s, p, o,D).

(2) Let P = (P1 AND P2) then τ(P, dst,D, i) =
τ(P1, dst,D, 2 ∗ i) ∪ τ(P2, dst,D, 2 ∗ i+ 1) ∪

TECHNICAL REPORT DBAI-TR-2013-84 30

ansi(varsdsti (P), D) :- ans2∗i(varsdst2∗i(P1)[SP1,P2 → S′P1,P2
], D),

ans2∗i+1(varsdst2∗i+1(P2)[SP1,P2 → S′′P1,P2
], D),

join|SP1,P2
|(SP1,P2

′
, SP1,P2

′′
, SP1,P2).

(3) Let P = (P1 UNION P2) then τ(P, false,D, i) =
τ(P1, false,D, 2 ∗ i) ∪ τ(P2, false,D, 2 ∗ i+ 1) ∪

ansi(vars
false
i (P)[Ui → 1, (varsfalsei (P) \ varsfalse2∗i (P))→ null], D) :-

ans2∗i(vars
false
2∗i (P1), D).

ansi(vars
false
i (P)[Ui → 2, (varsfalsei (P) \ varsfalse2∗i+1(P))→ null], D) :-

ans2∗i+1(vars
false
2∗i+1(P2), D).

Let P = (P1 UNION P2) then τ(P, true,D, i) =
τ(P1, true,D, 2 ∗ i) ∪ τ(P2, true,D, 2 ∗ i+ 1) ∪

ansi(varstruei (P)[(varstruei (P) \ varstrue2∗i (P))→ null], D) :- ans2∗i(varstrue2∗i (P1), D).

ansi(varstruei (P)[(varstruei (P) \ varstrue2∗i+1(P))→ null], D) :- ans2∗i+1(varstrue2∗i+1(P2), D).

Note that Ui serves here just for the purpose of preserving duplicates, i.e. if a substitution is
obtained by one branch of the UNION pattern it is assigned either 1 or 2, depending on which
branch it came from. This variable is not introduced in the case that dst = true.

(4) Let P = (GRAPH g P1), g ∈ V ∪ I , then τ(P, dst,D, i) = τ(P1, dst, g, i) ∪
ansi(varsdsti (P), D) :- ansi(varsdsti (P1), g), named(g).

We define a fixed rule set ΠDS
FILTER for correct FILTER processing. Note that the facts for IRIs,

blank nodes and literals can be achieved by a preprocessing step, like the import of the RDF triples.

named(g). for all g ∈ G named
iri(i). for all i ∈ I that appear in DS
blank(b). for all b ∈ B that appear in DS
literal(l). for all l ∈ L that appear in DS
null(null).
term(X) :- iri(X).
term(X) :- blank(X).
term(X) :- literal(X).
equals(X,X,true) :- term(X).
equals(X,Y,false) :- term(X), term(Y), not equals(X,Y,true).
equals(null,Y,err) :- term(Y).
equals(X,null,err) :- term(X).
equals(null,null,err).
lowerThan(X,Y,true) :- term(X), term(Y), X < Y.
lowerThan(X,Y,false) :- term(X), term(Y), not lowerThan(X,Y,true).
lowerThan(null,Y,err) :- term(Y).
lowerThan(X,null,err) :- term(X).

TECHNICAL REPORT DBAI-TR-2013-84 31

lowerThan(null,null,err).
isIri(X,true) :- iri(X).
isIri(X,false) :- blank(X).
isIri(X,false) :- literal(X).
isIri(null,err).
isLiteral(X,false) :- iri(X).
isLiteral(X,false) :- blank(X).
isLiteral(X,true) :- literal(X).
isLiteral(null,err).
isBlank(X,false) :- iri(X).
isBlank(X,true) :- blank(X).
isBlank(X,false) :- literal(X).
isBlank(null,err).
bound(X,true) :- term(X).
bound(X,false) :- null(X).
neg(true, false). neg(false, true). neg(err, err).
and(true, true, true). or(true, true, true).
and(true, false, false). or(true, false, true).
and(false, true, false). or(false, true, true).
and(false, false, false). or(false, false, false).
and(true, err, err). or(true, err, true).
and(err, true, err). or(err, true, true).
and(false, err, false). or(false, err, err).
and(err, false, false). or(err, false, err).
and(err, err, err). or(err, err, err).

Now on basis of ΠDS
FILTER we can define the rules simulating filter evaluation. The basic idea

is that atomic filter expressions are handled by ΠDS
FILTER and for complex filter expressions we just

need to propagate the truth values in the correct manner. This propagation is handled by the last
rules in ΠDS

FILTER.

(5) Let P = (P1 FILTER R′), such that R = R′[vars(R) \ varstruei (P)→ null],
τ(P, dst,D, i) = τ(P1, dst,D, 2 ∗ i) ∪

ansi(varsdsti (P), D) :- ans2∗i(varsdst2∗i(P1), D), Cond(R, true, i, 1).

Cond(R, v, i, j), for v ∈ {true, false, err} ∪ V ar, and i, j positive integers, is defined recur-
sively as follows.17

(5.1) if R is an atomic Filter, then Cond(R, v, i, j) =

• equals(X, Y, v), if R is X = Y .

• lowerThan(X, Y, v), if R is X < Y .

• isIri(X, v), if R is isIRI(X) .

• isLiteral(X, v), if R is isLITERAL(X).

17Here, true, false, err are special constants emulating the three truth values >,⊥, ε in Definition 2.9.

TECHNICAL REPORT DBAI-TR-2013-84 32

• isBlank(X, v), if R is isBLANK(X).

• bound(X, v), if R is BOUND(X).

(5.2) if R = (¬(R1)), then Cond(R, v, i, j) = filteri,j(vars(R), v), where the following addi-
tional rule is added to τ(P,D, i):

filteri,j(vars(R), V) :- Cond(R1, V1, i, 2 ∗ j), neg(V1, V).

(5.3)R = (R1∧R2), thenCond(R, v, i, j) = filteri,j(vars(R), v), where the following additional
rule is added to τ(P,D, i):

filteri,j(vars(R), V) :- Cond(R1, V1, i, 2 ∗ j), Cond(R2, V2, i, 2 ∗ j + 1), and(V1, V2, V).

(5.4)R = (R1∨R2), thenCond(R, v, i, j) = filteri,j(vars(R), v), where the following additional
rules is added to τ(P,D, i):

filteri,j(vars(R), V) :- Cond(R1, V1, i, 2 ∗ j), Cond(R2, V2, i, 2 ∗ j + 1), or(V1, V2, V).

(6) Let P = (P1 OPT (P2 FILTER R′)). We define R = R′[vars(R) \ (varstruei (P)→ null].18

Then, τ(P, dst,D, i) = τ(P1, dst,D, 2 ∗ i) ∪ τ(P2, dst,D, 2 ∗ i+ 1) ∪

ansi(varsdsti (P), D) :- ans2∗i(varsdst2∗i(P1)[SP1,P2 → S′P1,P2
], D),

ans2∗i+1(varsdst2∗i+1(P2)[SP1,P2 → S′′P1,P2
], D),

join|SP1,P2
|(SP1,P2

′
, SP1,P2

′′
, SP1,P2), Cond(R, true, i, 1).

ansi(varsdsti (P)[(varsdsti (P) \ varsdst2∗i(P1))→ null], D) :-

ans2∗i(varsdst2∗i(P1), D), not ansi
′(varstruei (P1), D).

ansi(varsdsti (P)[(varsdsti (P) \ varsdst2∗i(P1))→ null, SP1,P2 → S′P1,P2
], D) :-

ans2∗i(varsdst2∗i(P1)[SP1,P2 → S′P1,P2
], D),

ans2∗i+1(varsdst2∗i+1(P2)[SP1,P2 → S′′P1,P2
], D),

join|SP1,P2
|(SP1,P2

′
, SP1,P2

′′
, SP1,P2), not Cond(R, true, i, 1).

ansi
′(varstruei (P1)[SP1,P2 → S′P1,P2

], D) :-

ans2∗i(varsdst2∗i(P1)[SP1,P2 → S′P1,P2
], D),

ans2∗i+1(varsdst2∗i+1(P2)[SP1,P2 → S′′P1,P2
], D),

join|SP1,P2
|(SP1,P2

′
, SP1,P2

′′
, SP1,P2).

For the translation of (P1 OPT P2) patterns without FILTER expressions we just append a filter
which is always true, i.e. rewrite to (P1 OPT (P2 FILTER R)). This encoding directly matches
the three conditions from Definition 2.10. Again we have to apply the joining over null helpers.
In the last rule for ansi′ we specify which substitutions are compatible to exclude them in the

18Here, we replace unsafe variables in the FILTER expressions by null.

TECHNICAL REPORT DBAI-TR-2013-84 33

second rule. Note that here we rename the variables in the head to not have to apply the join again
in second rule. Further we can exclude all auxiliary variables by setting dst = true, since for
checking compatibility it suffices to check once for a set of duplicate substitutions.

This completes the core translation. Let Q = (DS,P) be a query without solution modifiers
and DS = (G,Gnamed) as defined above. We translate this query to a logic program ΠQ defined
as follows.

ΠQ =ΠDS ∪ τ(P, false, default, 1) ∪ ΠDS
FILTER ∪ Join(n)

This logic program computes the query answer in ans1 for n being the maximal cardinality
of shared variables in rules in τ(P, default, 1). Note that to achieve a set-semantics instead of
the multi-set semantics of the SPARQL specification, we just need to make sure that the dst flag
is always set to true. In Section 4.2 we will explain how to extend this idea and encode solution
modifiers in ASP.

We now show that the translation gives the correct result w.r.t. the formal semantics defined
in Section 2.5. For this we first specify the relation between the answer-sets and the multi-set of
substitutions of a given query and its translation.

Definition 4.5 (Correspondence) Let P be a graph pattern, i ≥ 0 an integer and
g1, . . . , gn be ASP terms. We say that a substitution θ corresponds to a ground ASP atom
ansi(g1, . . . , gn, default) w.r.t. the pair (P ,i), in symbols θ ∼=(P,i) ansi(g1, . . . , gn, default), if

• dom(θ) ⊆ varstruei (P) and

• for each yj ∈ varstruei (P), where varsfalsei (P) = (y1, . . . , yn):

– yjθ = gj if yj ∈ dom(θ)

– gj = null if yj 6∈ dom(θ)

We say [[P]]DS , with DS = (G,Gnamed) corresponds to an answer-set I w.r.t. the integer i, in
symbols [[P]]DS ∼=i I , for n = |varsfalsei (P)| , if

• for each θ ∈ [[P]]DS there is an atom ansi(g1, . . . , gn, default) ∈ I , s.t. θ ∼=(P,i)

ansi(g1, . . . , gn, default),

• for each ansi(g1, . . . , gn, default) ∈ I there is a substitution θ ∈ [[P]]DS , s.t. θ ∼=(P,i)

ansi(g1, . . . , gn, default) and

• |[[P]]DS| = |{{ansi(g1, . . . , gn, default) ∈ I}}|.

Recall that for a pattern P , the variable set varstruei (P) contains all variables that may be
mapped by a substitution in [[P]]DS . Now a set of atoms of an answer-set corresponds to a multi-
set of substitutions of a given pattern P and the position of P given by the integer i, if we can
extract exactly the same substitutions from the ansi predicate present in the set, as we have in the

TECHNICAL REPORT DBAI-TR-2013-84 34

multi-set of substitutions. Some of the substitutions in [[P]]DS might not have a value for a variable
in varstruei (P), which is then reflected by the null constant.

Next we show an easy Lemma, which states that we can use the joinn predicate for showing
compatibility between substitutions.

Lemma 4.1 Let P1 and P2 be two graph patterns, n = |SP1,P2|, DS a dataset and θ1 ∈ [[P1]]DS
and θ2 ∈ [[P2]]DS be two substitutions. If a stratified program Π contains the following rules:

Join(n) ∪ {term(t). | x ∈ dom(θ1) ∪ dom(θ2), xθ1 = t or xθ2 = t} ∪ {null(null).}

then θ1 and θ2 are compatible iff I is an answer-set of the program Π and the following atom is in
I:

joinn(SP1,P2 [x→ xθ1 for x ∈ dom(θ1), y → null for y ∈ SP1,P2 \ dom(θ1)],
SP1,P2 [x→ xθ2 for x ∈ dom(θ2), y → null for y ∈ SP1,P2 \ dom(θ2)],
SP1,P2 [x→ x(θ1 ∪ θ2)])

Proof: We show this by induction on n = |SP1,P2|. The basic observation is that the join predicate
with arity three is derived for all combinations of three constants, including null, s.t. if the first two
terms are equal, the third term is also equal to them. Otherwise if one of the first two terms is null,
then the third is equal to the other. Next, the grounded atom joinn has an arity of 3 ∗ n. In the first
n terms we substitute all terms from the first substitution, or null if unbound. Likewise we do this
for the second substitution. Note also that Π is a stratified program.

If n = 1, then join1 computes exactly the same as join. Assume that V is the shared vari-
able of both patterns and both substitutions have V in their domain. We then have the atom
join1(V θ1, V θ2, V (θ1 ∪ θ2)) is in the answer-set of Π iff both substitutions are compatible, since
if they are, then either V θ1 = V θ2 and hence V (θ1 ∪ θ2) = V θ1. If on the other hand, one of the
substitutions do not map V to a value then this is handled by the constant null. Without loss of
generality let V 6∈ dom(θ1), then join(null, V θ2, V θ2) is derived. Similarly if both substitutions
do not map V to a value. If both substitutions are not compatible, then V θ1 6= V θ2 and both are
not null, but such a corresponding atom is never derived in the answer-set of Π.

Assume the claim holds up to n, then to show that it holds also for n + 1 simply consider that
just the n + 1 − th variable must be included into our consideration, which is done by the base
predicate join. 2

We now show that our core translation is correct w.r.t. the formal semantics.

Proposition 4.2 For a SPARQL1.0 graph pattern P and a dataset DS it holds that [[P]]DS ∼=1 I
for I the answer-set of the program ΠQ with Q = (DS,P).

Proof: (sketch) Let P be a SPARQL1.0 graph pattern and DS a dataset. We construct the query
Q = (DS,P) and ΠQ. First note that ΠQ is a stratified answer-set program, hence it has a unique
answer-set I .

We now show that for any subpattern P ′ of P at position i in the parse tree of P that [[P ′]]DS ∼=i

I holds.

TECHNICAL REPORT DBAI-TR-2013-84 35

We show the correspondence by structural induction on the different graph patterns of the
SPARQL1.0 specification used here, i.e. essentially using the parse tree of P . For simplifying
the proof we will omit the GRAPH pattern, since this pattern changes the current graph name and
complicates the structural induction. Nevertheless it can be shown straightforwardly to be correct
w.r.t. formal semantics.

The base case is a triple pattern. Let P ′ = (s, p, o). By ΠDS we imported the whole graph.
Therefore the correspondence holds trivially, since if θ ∈ [[P ′]]DS then there is a corresponding
answer-set predicate ansi for which the grounded versions of ansi(vars(P ′), default) are present
in I , due to the fact that if there is a match in the graph and hence a substitution in [[P ′]]DS , then the
atom is derived in the answer-set program, since the corresponding fact triple(s, p, o, default) is
present in the program. For the complex graph patterns we distinguish the different cases. For each
we assume that the patterns at position 2∗ i and 2∗ i+1 are already shown to be in correspondence
w.r.t. the ASP program and the formal semantics.

• If P ′ = (P1 AND P2), then for each θ ∈ [[P ′]]DS there exists two compatible substitu-
tions θ1 ∈ [[P1]]DS and θ2 ∈ [[P2]]DS , s.t. θ = (θ1 ∪ θ2). By induction hypothesis we
assume that [[P1]]DS ∼=2∗i I , likewise for the second pattern, [[P2]]DS ∼=2∗i+1 I . This
means that θ1

∼=(P1,2∗i) ans2∗i(g1, ..., gn, default) for some ground atom in I . This is
likewise the case for θ2. With Lemma 4.1 it is now straightforward to see that there is a
θ ∼=(P ′,i) ansi(g

′
1, ..., g

′
n, default) with the latter being in I , since if θ1 and θ2 are compatible,

then we derive the required join|SP1,P2
| predicate and in turn the corresponding predicate for

θ for P ′ at position i. For any incompatible pairs we do not derive a new substitution for P ′,
i.e. a new predicate corresponding to it, in our ASP program.

• If P ′ = (P1 FILTER R), then we need to show that the filter expression R is handled
correctly. Filter expressions have their own parse tree and we can again show the correspon-
dence via structural induction. This is straightforward, since for all atomic filter expressions
we derive via the auxiliary module ΠDS

FILTER all possible evaluations of such filter expressions
w.r.t. all terms in the graphs. That is, we derive a predicate for each atomic filter expression
for all terms in the graphs and their truth value. For complex filter expressions these truth
values are propagated as defined for the three-valued logic.

• If P ′ = (P1 OPT P2), then the formal semantics specifies three cases, which are reflected in
the translation.

– The first case is that θ ∈ [[P ′]]DS if θ = (θ1 ∪ θ2) with θ1 ∈ [[P1]]DS and θ2 ∈ [[P2]]DS
are compatible and (θ1 ∪ θ2) satisfies the filter, which is mapped directly by the first
rule of the translation. This basically boils down to an AND with an additional filter.
Compatibility is again checked as above in the AND case.

– The second case happens if θ1 ∈ [[P1]]DS and there is no compatible substitution in
[[P2]]DS . Then this θ1 is in [[P ′]]DS . In an auxiliary predicate (ans′i) we derive all
substitutions of [[P1]]DS , for which a compatible substitution exists in [[P2]]DS . For
this case we derive the corresponding ASP atom of θ1 for P ′ and position i, where all

TECHNICAL REPORT DBAI-TR-2013-84 36

variables which do occur in varsfalsei (P ′) but not in P1 are set to null and additionally
we exclude those substitutions with compatible substitutions in [[P2]]DS by the use of
default negation with the auxiliary predicate.

– In the third case a substitution θ1 is in [[P ′]]DS if θ1 ∈ [[P1]]DS and there exists a
compatible substitution θ2 ∈ [[P2]]DS , s.t. the filter does not hold for (θ1 ∪ θ2). This
is directly matched by the third rule in the translation, i.e. we derive the corresponding
atom for θ1 for the pattern P ′ at position i, if θ1 has a corresponding atom for P1 at
position 2∗ i and we can derive a corresponding atom for θ2 for P2 at 2∗ i+1 and these
two are compatible and additionally the filter is not satisfied.

• If P ′ = (P1 UNION P2), then the translation simply derives each substitution from [[Pj]]DS
for j ∈ {1, 2} and replaces variables not occurring in a pattern by null. And in addition we
add the integers 1 and 2 for each “branch” of the UNION, s.t. duplicates are preserved. Thus
the claim follows.

2

4.2 Translation of Solution Modifiers
In this section we will show how to encode a solution modifier SM = (~V , S, dst, l, o) on top of
the core translation. This translation is more involved due to the necessity of defining orderings
of solutions. It is also less declarative than the remaining encodings due to its imperative nature
of ordering in the exact manner as defined in the specification (Harris & Seaborne, 2013, Section
15). The translation consists of several modules for clearer readability. We make use of an ASP
technique for iterating through all elements in a set via ordering first the elements in this set and
then deriving a successor predicate. Some more details of this technique can be found e.g. in (Eiter,
Ianni, & Krennwallner, 2009). The first module is used for comparing two substitutions θ and θ′

with respect to their ordering. To this end we define the predicate lti(X,X ′), which orders the
substitutions lexicographically accordingly to ~V , i.e. X is ordered lower than X ′. For this to work,
we introduce an ordering rule for comparing the j-th element in ~V = (v1, ..., vj, ..., vn) for each
element in the vector. We define Vj,n = {vj, ..., vn}. Note that we always assume that ~V covers
exactly all v ∈ varsdsti (P) and that the auxiliary variables we use in the modules (O and Oi) are
distinct from the other variables occurring in patterns.

lowerThan(~V , P, dst,D, i, j) =

lti(varsdsti (P), varsdsti (P)[Vj,n → V ′j,n], D) :- ansi(varsdsti (P), D),

ansi(varsdsti (P)[Vj,n → V ′j,n], D), vj < v′j.

The next ASP module is used for finding duplicates. If dst = false we will set this module to
be empty, otherwise we will derive the predicate removei to mark each duplicate to be removed.
The rule for this purpose is very simple, since we want to remove all duplicates, except for the
first one occurring in the ordered list of duplicates. This can be achieved by exploiting just lti.

TECHNICAL REPORT DBAI-TR-2013-84 37

A substitution is a duplicate, which should be removed, if it is equal on the projected variables to
another one, which is ordered before.

removeDuplicates(P, S, true,D, i) =

removei(varstruei (P), D) :-

lti(varstruei (P)[(varstruei (P) \ S)→ (varstruei (P) \ S)′], varstruei (P), D). †

The order module now derives the successor and infimum predicates succi and infi respec-
tively via helper predicates. A substitution θ′′ is not a successor of θ if there is a substitution θ′

ordered in between those two. Additionally θ′ must not be marked for removal. Similarly we
derive the infimum.

order(P, dst,D, i) =

notsucci(varsdsti (P), varsdsti (P)
′′
, D) :-

lti(varsdsti (P), varsdsti (P)
′
, D),

lti(varsdsti (P)
′
, varsdsti (P)

′′
, D),

not removei(varsdsti (P)
′
, D).

succi(varsdsti (P), varsdsti (P)
′
, D) :-

lti(varsdsti (P), varsdsti (P)
′
, D),

not notsucci(varsdsti (P), varsdsti (P)
′
, D),

not removei(varsdsti (P), D), not removei(varsdsti (P)
′
, D).

notinfi(varsdsti (P), D) :- lti(varsdsti (P)
′
, varsdsti (P), D),

not removei(varsdsti (P)
′
, D).

infi(varsdsti (P), D) :- not notinfi(varsdsti (P), D), ansi(varsdsti (P), D).

not removei(varsdsti (P), D).

For computing the slice of LIMIT and OFFSET we need to assign integers to the ordering,
beginning with 1. This is straightforward with the help of the infimum and successor predicates.

assignInteger(P, dst,D, i) =

ansoi(vars
dst
i (P), D, 1) :- infi(varsdsti (P), D).

ansoi(vars
dst
i (P), D,O) :- ansoi(vars

dst
i (P)

′
, D,O′), succi(varsdsti (P)

′
, varsdsti (P), D),

O = O′ + 1.

We collect all the necessary modules for solution modifiers in the module SolutionModifiers.

†Simple duplicate removal by projection must preserve the ordering of the non-projected solutions, since the slice
must be applied w.r.t. the original ordering (specification (Harris & Seaborne, 2013, Section 15)). Hence we retain the
non-projected variables during the application of solution modifiers and only afterwards apply the projection.

TECHNICAL REPORT DBAI-TR-2013-84 38

SolutionModifiers(~V , S, P, dst,D, i) =
assignInteger(P1, dst,D, i) ∪ order(P1, dst,D, i) ∪ removeDuplicates(P1, S, dst,D, i) ∪⋃

1≤j≤|varsdsti (P)| lowerThan(~V , P1, dst,D, i, j)

Let Q = (DS,P, SM) be a query and DS = (G,Gnamed) with SM = (~V , S, false, l, o). We
translate this query to a logic program ΠQ by just collecting all necessary modules and adding the
“slice” rule, which removes solutions that do not fall under the range. If l = 0 or o = 0 we omit
the respective conditions of the slice.

ΠQ =ΠDS ∪ τ(P, false, default, 2) ∪ ΠDS
FILTER ∪ Join(n)∪

SolutionModifiers(~V , S, P, false,D, 2)∪
ans1(varstrue1 (P) ∩ S,O2, D) :- anso2(vars

false
2 (P), D,O2), o < O2, O2 ≤ o+ l.

This logic program computes the query answer in ans1 for n being the maximal cardinality of
shared variables in rules in τ(P, false, default, 2). Note that in the rule for deriving the predicate
ans1 we can exclude all auxiliary variables used in other rules and just use O2 as the identifier for
duplicates, hence we can use varstrue1 (P) here. The variant for discarding duplicates can now be
written as follows:

Π′Q =ΠDS ∪ τ(P, true, default, 2) ∪ ΠDS
FILTER ∪ Join(n)∪

SolutionModifiers(~V , S, P, true,D, 2)∪
ans1(varstrue1 (P) ∩ S,D) :- anso2(vars

true
2 (P), D,O2), o < O2, O2 ≤ o+ l.

In Section 4.3 we will use this idea for defining the translation of subquery patterns.

4.3 Translation of SPARQL1.1 Features
In this section we will show how to translate the new features of SPARQL1.1 to ASP. We will start
with the property paths, the VALUES and MINUS patterns and then proceed to subqueries and the
new FILTER expression, which are more involved in their encoding. The BIND translation, which
requires non-pure ASP encodings via external atoms, due to the possibility of introducing new
values not present as terms in the query or graph is shown in the next section.

First we need to extend the indexed variable set by introducing auxiliary variables also for the
VALUES pattern (Ii) and the sequential (Si) and alternative property paths (Ui), as well as variable
projection to ensure the correct variable scope of subqueries, including another auxiliary variable
(Oi).

Definition 4.6 (Extended indexed variable set) Given a positive integer i, dst ∈ {true, false},
a property path PP and a graph pattern P , we extend the indexed variable set varsdsti (P) as
follows:

• For P = (P1 MINUS P2) let varsdsti (P) = varsdst2∗i(P1).

• For P = (s, PP, o), let varsdsti (P) = vars({s, o}) ∪ varsdst2∗i(PP).

TECHNICAL REPORT DBAI-TR-2013-84 39

• For P = (P1 BIND expr AS x), let varsdsti (P) = varsdst2∗i(P1) ∪ {x}.

• For P = (VALUES ~V D), let varsfalsei (P) = {x | x ∈ ~V } ∪ {Ii}.

• For P = (VALUES ~V D), let varstruei (P) = {x | x ∈ ~V }.

• For P = (P1, (~V , S, false, l, o)) let varsdsti (P) = (S ∩ varstrue2∗i (P1)) ∪ {Oi}.

• For P = (P1, (~V , S, true, l, o)) let varsdsti (P) = (S ∩ varstrue2∗i (P1)).

For subqueries an auxiliary variable (Oi) is introduced to indicate the ordering. We preserve
this variable if dst = false. This variable is also used as an identifier for duplicates as in Sec-
tion 4.2, here we just add this mechanism in general for subqueries, which can occur anywhere as
a subpattern now.

For property paths auxiliary variables are required for duplicate solutions. Here, similarly as
for the UNION pattern, we introduce a new variable for the sequential path, the alternative path, as
well as for the negated path containing both normal and inverse IRIs. For the latter, the introduced
variable actually corresponds to the auxiliary variable of UNION pattern to which the paths are
rewritten. In all other cases no new variables are introduced.

Definition 4.7 (Indexed variable set for property paths) Given a positive integer i, dst ∈
{true, false}, a property path PP , we define the indexed variable set for property paths
varsdsti (PP) as follows:

• Let varstruei (PP) = ∅

• For PP = PP1/PP2 let varsfalsei (PP) = varsfalse2∗i (PP1) ∪ varsfalse2∗i+1(PP2) ∪ {Si}

• For PP = PP1|PP2 let varsfalsei (PP) = varsfalse2∗i (PP1) ∪ varsfalse2∗i+1(PP2) ∪ {Ui}

• For PP =!(N,N ′) let varsfalsei (PP) = varsfalse2∗i (PP1) ∪ varsfalse2∗i+1(PP2) ∪ {Ui}

• else let varsfalsei (PP) = ∅

We now can define a translation of property paths. We require an auxiliary predicate reach,
which we use for recursively applying a property path PP . The variables Xi and Yi are assumed
to be fresh.

(7) Let P = (s, PP1/PP2, o) then τ(P, dst,D, i) =
τ((s, PP1, Si) AND (Si, PP2, o), dst,D, i)

(8) Let P = (s, PP1|PP2, o) then τ(P, dst,D, i) =
τ((s, PP1, o) UNION (s, PP2, o), dst,D, i)

(9) Let P = (s, ˆPP, o) then τ(P, dst,D, i) =
τ((o, PP, s), dst,D, i)

(10) Let P = (s, !(N,N ′), o) then τ(P, dst,D, i) =
τ((s, !(N), o) UNION (o, !(N ′), s), dst,D, i)

(11) Let P = (s, !(N), o) and N = {p1, ..., pm} and Xi a fresh variable then τ(P, dst,D, i) =

TECHNICAL REPORT DBAI-TR-2013-84 40

ansi(varsdsti (P), D) :- triple(s,Xi, o,D), Xi 6= p1, ..., Xi 6= pm

For the following translation of variable length paths we can set dst = true for the subpatterns,
since we are not interested in duplicate solutions.

(12) Let P = (s, PP?, o) then τ(P, dst,D, i) =
τ((s, PP, o), true,D, 2 ∗ i)∪

ansi(varsdsti (P), D) :- ans2∗i(varstrue2∗i ((s, PP, o)), D)

ansi(varsdsti (P), D) :- term(s), s = o.

(13) Let P = (s, PP+, o) then τ(P, dst,D, i) =
τ((Xi, PP, Yi), true,D, 2 ∗ i)∪

ansi(varsdsti (P), D) :- reachi(s, o,D)

reachi(Xi, Yi, D) :- ans2∗i(varstrue2∗i ((Xi, PP, Yi)), D).

reachi(Zi, Yi, D) :- reachi(Zi, Xi, D), ans2∗i(varstrue2∗i ((Xi, PP, Yi)), D).

(14) Let P = (s, PP ∗, o) then τ(P, dst,D, i) =
τ((Xi, PP, Yi), true,D, 2 ∗ i)∪

ansi(varsdsti (P), D) :- reachi(s, o,D)

reachi(Xi, Yi, D) :- ans2∗i(varstrue2∗i ((Xi, PP, Yi)), D).

reachi(Zi, Yi, D) :- reachi(Zi, Xi, D), ans2∗i(varstrue2∗i ((Xi, PP, Yi)), D).

ansi(varsdsti (P), D) :- term(s), s = o.

For the special case that both s and o are not variables, we replace the last added rule of (12)
and (14) by just a fact ansi(D) if s = o.

For the MINUS pattern we can compute in an auxiliary predicate all compatible substitutions
and then use default negation to exclude them, similarly as in the difference operator in the rela-
tional algebra. According to Definition 2.14 we have one additional aspect to consider, namely
we have to check for disjoint domains of the substitutions. In the ASP encoding this means that
two ground atoms ans2∗i and ans2∗i+1 represent substitutions with disjoint domains if we can
join them as before and additionally every shared term is null in one or both of the atoms. For
computing this we utilize a similar encoding as for the joinn predicate:
Unbound(n) =

unbound(X,X,X) :- term(X), not null(X). unbound(null, null, null).
unbound(X, null, null) :- term(X).
unbound(null, X, null) :- term(X).

unbound1(X
′
1, X

′′
1 , X1) :- unbound(X ′1, X

′′
1 , X1).

unbound2(X
′
1, X

′
2, X

′′
1 , X

′′
2 , X1, X2) :- unbound1(X

′
1, X

′′
1 , X1), unbound(X

′
2, X

′′
2 , X2).

unbound3(X
′
1, X

′
2, X

′
3, X

′′
1 , X

′′
2 , X

′′
3 , X1, X2, X3) :- unbound2(X

′
1, X

′
2, X

′′
1 , X

′′
2 , X1, X2), unbound(X

′
3, X

′′
3 , X3).

...
unboundn(X

′
1, . . . , X

′
n, X

′′
1 , . . . , X

′′
n , X1, . . . , Xn) :-

unboundn−1(X
′
1, . . . , X

′
n−1, X

′′
1 , . . . , X

′′
n−1, X1, . . . , Xn−1), unbound(X

′
n, X

′′
n , Xn).

TECHNICAL REPORT DBAI-TR-2013-84 41

That is we can compute if a variable is bound in one of the substitutions. We will write nulln =
null, ..., null︸ ︷︷ ︸

n times

shorthand for n many null terms. Now we can define the translation as follows:

(15) Let P = (P1 MINUS P2) then τ(P, dst,D, i) =
τ(P1, D, dst, 2 ∗ i) ∪ τ(P2, dst,D, 2 ∗ i+ 1) ∪

ansi(varsdsti (P), D) :- ans2∗i(varsdst2∗i(P1), D), not ansi
′(varstruei (P1), D).

ansi
′(varstruei (P1)[SP1,P2 → S′P1,P2

], D) :-

ans2∗i(varsdst2∗i(P1)[SP1,P2 → S′P1,P2
], D),

ans2∗i+1(varsdst2∗i+1(P2)[SP1,P2 → S′′P1,P2
], D),

not ansi
′′(varsdst2∗i(P1)[SP1,P2 → S′P1,P2

], varsdst2∗i+1(P1)[SP1,P2 → S′′P1,P2
], null|SP1,P2

|, D),

join|SP1,P2
|(SP1,P2

′
, SP1,P2

′′
, SP1,P2).

ansi
′′(varsdst2∗i(P1)[SP1,P2 → S′P1,P2

], varsdst2∗i+1(P1)[SP1,P2 → S′′P1,P2
], SP1,P2

u
, D) :-

ans2∗i(varsdst2∗i(P1)[SP1,P2 → S′P1,P2
], D),

ans2∗i+1(varsdst2∗i+1(P2)[SP1,P2 → S′′P1,P2
], D),

join|SP1,P2
|(S
′
P1,P2

, S′′P1,P2
, SP1,P2), unbound|SP1,P2

|(SP1,P2

′
, SP1,P2

′′
, SP1,P2

u
).

That is we compute in ansi
′′ for pairs of substitutions a sequence SP1,P2

u
, which is null if one

of the substitutions is undefined via null, too.
The VALUES pattern can be easily translated by just adding facts for each substitution, but add

an identifier Ii to the variables to distinguish between duplicates given in the table Ds. We set this
identifier to be an index from 1 to the number of tuples in Ds.

(16) Let P = (VALUES ~V Ds) then τ(P, false,D, i) =

{ansi(varsfalsei (P)[x→ xθ, x ∈ ~V , Ii → j], D). | ~V θ ∈ Ds, j is the index of θ in Ds}

Let P = (VALUES ~V Ds) then τ(P, true,D, i) =

{ansi(varstruei (P)[x→ xθ, x ∈ ~V], D). | ~V θ ∈ Ds}

A subquery is now derived very similarly as in Section 4.2 by just collecting all necessary
modules for the solution modifiers and adding the “slice” rule, which removes solutions that do
not fall under the range. Note that we implicitly projected variables here via the indexed variable
set varsdsti . We preserve the order induced by Oi if dst = false and thus have an identifier for
each duplicate. If l = 0 or o = 0 we omit the respective conditions of the slice.

(17) Let P = (P1, SM) a subquery with SM = (~V , S, dst, l, o) then τ(P, dst′, D, i) =
SolutionModifiers(~V , S, P1, dst,D, 2 ∗ i) ∪ τ(P1, dst,D, 2 ∗ i)∪

ansi(varsdsti (P), D) :- anso2∗i(vars
dst
2∗i(P1), D,Oi), o < Oi, Oi ≤ o+ l.

Finally for this section, we will present the translation of the new atomic filter expression
(EXISTS P). Here a substitution θ satisfies the filter if [[Pθ]]DS is non-empty. The complex task
is to translate the substitution applied to a pattern as defined in the semantics, i.e. Pθ. The basic

TECHNICAL REPORT DBAI-TR-2013-84 42

idea is to parameterize the computation of P by θ, this means adding variables representing θ to
every predicate in a rule for the computation of P . Further we add to the body of those rules,
where a substitution of P by θ can occur, the predicate representing θ itself to bind the variables.
We also need joins for checking compatibility of θ with the current solution. Note that Pθ has
some special cases, where a substitution does not take place, e.g. variables in a BIND or VALUES
pattern are not substituted, since this would lead to a syntactically wrong pattern. That is patterns
that potentially change by the substitution are triple patterns, negated property paths, atomic filter
expressions, expressions in BIND patterns and the graph variable in a GRAPH pattern. For more
complex patterns such as AND we propagate the applied substitution of the subpatterns. Thus we
specify for which θ the current pattern is computed. This is necessary because variables in P might
otherwise be unbound, e.g. variables occurring only in an atomic filter inside P .

We define an auxiliary function for applying the substitution to rules of our translation: Let
r = H(r) :- B(r) be an ASP rule with a non-empty body, i and j be integers, P a graph pattern
and join ∈ {true, false}, then

Substitute(r, i, j, P, join) = H ′(r) :- B′(r)

Here, H ′(r) and B′(r) are defined as follows: for pm ∈ {ansm, ans′m, filterm, reachm,
notinfm, infm, ansom, ltm, ans

′′
m, notsuccm, succm} and m is an integer for which it holds that

m > i then:

• If the head is of the form H(r) = pm(t1, . . . , tk) then H ′(r) = pm,j(t1, . . . , tk,
varstruei (P)

i,j
)

• If pm(t1, . . . , tk) ∈ B(r), then rewrite it to pm,j(t1, . . . , tk, varstruei (P)
i,j

)

• B′(r) = B(r) ∪ {ansi(varstruei (P)
i,j
, D)}

• if join = true and V is the set of variables in the head, let Y ⊆ V be the vari-
ables in the head, which were renamed with a previous application of Substitute and
X = (V ∩ varstruei (P)) \ Y then we additionally add to the body the join predicate:
join|X|(X,X

i,j, X i,j,∗).

Let P = (P1 FILTER R) be a graph pattern at position i, where a filter expression R′ =
(EXISTS(P2)) occurs at index j of the parse tree of R, i.e. R′ is a sub filter expression of R, then
τ(P, dst,D, i) is changed by the following steps, where conflicts of several EXISTS are resolved
by applying them in order in which they occur in the parse tree in a top-down manner, i.e. applying
those with a lower index first.

1. We add the variables from P1 to the rules evaluating the filter expressions, which contain R′,
i.e. vars(R′′) is extended by varstrue2∗i (P1) if R′′ contains R′.

2. Cond(R′, v, i, j) = filteri,j(varstrue2∗i (P1), v).

TECHNICAL REPORT DBAI-TR-2013-84 43

3. We add the following rules to τ(P, dst,D, i) to express the value of the filter expression for
each of the substitutions of P1.

filteri,j(varstrue2∗i (P1)
′
, true) :- ans2∗i+1,j(varstrue2∗i+1(P2), D, varstrue2∗i (P1)

′
).

filteri,j(varstrue2∗i (P1), false) :- ans2∗i(varstrue2∗i (P1), D), not filteri,j(varstrue2∗i (P1), true).

Thus, the predicate ans2∗i+1,j represents the computation of P2, parameterized by substitu-
tions of P1, which will be introduced next.

4. We add a modified τ(P2, true,D, 2 ∗ i + 1), where we change every rule in r ∈
τ(P2, true,D, 2 ∗ i+ 1) as follows:

(a) If r was introduced by (1), (11), then we modify it to Substitute(r, 2 ∗ i, j, P1, true).

(b) If r was introduced by (12) and (14) and was before any modifications of EXISTS
were applied of the form ansi′(varsdsti′ (P3), D) :- term(s), s = o., then we modify
it to Substitute(r, 2 ∗ i, j, P1, true). For the special case of both s and o not being
variables, we omit the atom term(s), the join and the equation s = o of the rule.

(c) Each fact r = ansi′(V ,D) added by a VALUES pattern evaluation is changed to
ans2∗i′(V ,D). This change is done only once, even if multiple EXISTS are present in
subpatterns. Further the first modification also adds the rule

ansi′,j(V ,D, vars
true
2∗i (P1)

i,j
) :- ans2∗i′(V ,D),

ans2∗i(varstrue2∗i (P1)
i,j
, D).

Subsequent modifications by EXISTS are not allowed to change the atom
ans2∗i′(V ,D).

(d) If r was introduced by (5), then we modify it to Substitute(r, 2 ∗ i, j, P1, true), but set
the shared variables to be the graph variable g. If g is not a variable, then this step can
be omitted.

(e) The recursive definition of filters is changed by two steps. First we do not re-
place variables with null if they occur in varstrue2∗i (P1) in the translations (5) and
(6). Second we change for an atomic filter R′′ the condition Cond(R′′, v, i′, j′) to
Cond′(R′′, v, i′, j′) = Cond(R′′, v, i′, j′) ∪ {ans2∗i(varstrue2∗i (P1), D)}. In this case,
we also have to set these not renamed variables to be equal to the renamed ones in the
head and other predicates in the rule where Cond(R′′, v, i′, j′) appears. This can be
done by multiple applications of ’=’.
Subsequent modifications by other EXISTS behave slightly different, namely the vari-
ables X in an atom added in this step are renamed to X i,j for X being the variables
shared with a previously added atom for this atomic filter and another EXISTS, i.e. X
does not influence the atomic filter, since the variables already have been applied.

(f) Else we replace r by Substitute(r, 2 ∗ i, j, P1, false).

TECHNICAL REPORT DBAI-TR-2013-84 44

Example 4.2 The complex modification for EXISTS expressions is exemplified in Example 2.4
and its translation in the appendix. In particular consider the following subpattern of the EXISTS
expression,

(?P foaf:knows ?F)

which is dealt with in the translation by the rule with ans6,1 in the head. The unmodified rule
would be

ans6(F, P, default) :- triple(P, foaf:knows, F, default).

which is modified to

ans6,1(F, P,M21, P21, default) :- triple(P, foaf:knows, F, default),
ans2(M21, P21, default),
join1(P, P21, P ′′).

Note that now the predicate in the head incorporates 1 from the filter for unique naming and also
the variables from the pattern preceding the EXISTS expression.

Finally, LetQ = (DS,P, SM), with SM = (~V , S, dst, l, o) be a query andDS = (G,Gnamed)
as defined above. We translate this query to a logic program ΠQ defined as follows. Let Q′ =
(P, SM).

ΠQ =ΠDS ∪ τ(Q′, dst, default, 1) ∪ ΠDS
FILTER ∪ Join(n) ∪ Unbound(n)

This logic program computes the query answer in ans1 for n being the maximal cardinality of
shared variables in rules in τ(Q, dst, default, 1). As before, to achieve a set-semantics instead of
multi-set semantics, one can just set the dst flag to be always true. In general one may observe that
duplicate solutions can only arise from (a) UNION patterns, (b) projections or (c) duplicates in a
VALUES table.

4.4 Translation of BIND
The BIND pattern is different to all the other patterns since it may introduce values not present in
the original query and dataset. Thus pure ASP cannot cope with this behavior. For the following
translation to work, we base the evaluation of the assignment on external predicates. The main
external predicate is

eval[expr, x1, ..., xn](v)

where expr is an assignment expression enclosed in quotes and v, x1, ..., xn ASP constants. The
atom is true if v is the value of the expression exprθ evaluated under the substitution θ = [?1 →
x1, ..., ?n → xn], where ?j for an integer j are (lexically ordered by variable name) variables
occurring in the expression expr. For instance

TECHNICAL REPORT DBAI-TR-2013-84 45

eval[”?1+?2”, 2, 3](v)

is true if v = 5. In this way we can straightforwardly encode the BIND pattern itself as

(18) Let P = (P1 BIND expr AS x) then τ(P, dst,D, i) =
τ(P1, dst,D, 2 ∗ i)∪

ansi(varsdsti (P), D) :- ans2∗i(varsdst2∗i(P1), D), eval[expr′, varsdst2∗i(P1)](v).

and expr′ is the expression expr where we replace every v ∈ V ar with ?j for j the position in the
lexicographic ordering of varsdst2∗i(P1). Note that error handling applies to this external predicate,
i.e. if the expression returns an error then it is only true if v = null.

The introduction of BIND has implications over the whole translation τ , which must be ex-
tended as follows; we will refer to the extended translation as τ ′. The predicates Joinn, Unboundn,
equals, lowerThan, isIRI, IsLiteral, isBlank, bound and the binary comparison opera-
tors ’=’, ’ 6=’ and ’<’ now have to be external predicates as well, since the regular ASP predi-
cates cannot cope with new values produced by BIND. That is we replace equals(X, Y, v) by
equals[X, Y](v), which returns v ∈ {true, false, err} in the same manner as the regular ASP
predicate is defined, except that an external function decides the value also for new values created
by BIND. Similarly we proceed for the other predicates. Note that, since we already use external
predicates, we can make use of the external atom rdf for retrieving RDF triples.

Furthermore some special care is needed for FILTER expressions. if R is an atomic
filter (6.1 in Section 4), then we change the condition Cond to Cond′(R, v, i, j) =

{Cond(R, v, i, j), ans2∗i(varsdst2∗i(P
′), D)} if P ′ is the graph pattern at position 2 ∗ i of the query

parse tree and x ∈ vars(R) is an assigned variable by the application of (P ′′ BIND expr AS x),
a subpattern of P ′. That is, we add the predicate ans2∗i to the body containing the atomic filter
evaluation. This ensures that also new values are considered in the filter.

The BIND pattern is also a special case for the modifications necessary by the EXISTS fil-
ter expression from Section 4.3. Let (P2 FILTER R) be a filter pattern at position i′ and R′ =
(EXISTS P3) be a subfilter expression ofR at position j. If P = (P1 BIND expr AS x) is a subpat-
tern of P3 at position i then a rule r introduced by (18) is changed to Substitute(r, i′, j, P2, true).
Additionally we change the external atom to eval[expr′, varsdst2∗i(P1) ∪ varstruei′ (P2)[SP2∗i,Pi′

→
Si,j,∗P2∗i,Pi′

]](v). We change expr′ accordingly to incorporate the new variables. This rule ensures that
for the expression in the assignment we also may use the variables from the outer pattern of the
EXISTS filter.

Example 4.3 As an example consider a query containing the patterns P1 =
(P2 BIND (?X+?Y) AS ?Z) and P = (P1 FILTER ¬(5 =?Z)) the latter at position i,
then the following rules are relevant for exemplifying the changes needed for BIND. Assume that
varsdst4∗i(P2) = {X, Y }.

ans2∗i(varsdst2∗i(P1), D) :- ans4∗i(varsdst4∗i(P2), D), eval[”?1+?2”, varsdst4∗i(P2)](Z).

ansi(varsdsti (P), D) :- ans2∗i(varsdst2∗i(P1), D), filteri,1({Z}, true).
filteri,1({Z}, V) :- equals[5, Z](V1), ans2∗i(varsdst2∗i(P1), D), neg(V1, V).

TECHNICAL REPORT DBAI-TR-2013-84 46

Note that we added to the body of the third rule the corresponding predicate ansi2∗i.

4.5 Query Forms
SPARQL queries are not restricted to SELECT queries, but also allow other result forms, in-
dicated by the keywords ASK and CONSTRUCT.19 We will discuss these forms, which can be
translated to ASP.

4.5.1 SELECT

In our translation we have shown how to translate a query with solution modifiers to ASP. A
notable divergence is the direct translation of the SELECT statement itself, namely the projection.
As long as we have to preserve duplicates we cannot make a projection in ASP in the way that the
variables projected out are also projected in the ASP atoms, since then we would lose the duplicate
solutions. In our core translation this means that a projection is only applied if we are faced with
a DISTINCT query. Note that here also the DISTINCT keyword itself is applied from “outside”
of the parse tree of the pattern. In the extended version with solution modifiers (Section 4.2) we
can use the ordering to distinguish duplicates in one single variable, but still auxiliary variables are
required.

4.5.2 ASK

Apart from SELECT queries SPARQL offers boolean queries QASK = (PASK, DSASK, ∅) with
an solution modifier (denoted by the keyword ASK). We can cater for these in our translation by
just adding a new predicate ans0 with arity 0. Thus we add a rule and set ΠQASK

= ΠQ ∪
{ans0 :- ans1(vars1(PASK), DSASK).}, with Q = (PASK , DSASK , ((), ∅, true, 0, 0)).

4.5.3 CONSTRUCT

The CONSTRUCT result form, which allows to construct new triples can be emulated in our
approach as well. Namely, we can allow queries of the form

QC = (CONSTRUCTPC, P,DS)

where PC is a graph pattern (called CONSTRUCT template) consisting only of triple patterns.
Note that SPARQL allows blank nodes in PC with the implied semantics, that the result graph is
obtained by applying each substitution θ in the evaluation of [[P]]G to each triple in PC. For each
blank node :x in PC, :xθ is defined as a unique new blank node per substitution. This behavior
is illustrated best with an example.

19We leave out DESCRIBE, cf. (Harris & Seaborne, 2013, Section 16.4), which is only informative in the specifi-
cation and does not have a specified semantics.

TECHNICAL REPORT DBAI-TR-2013-84 47

Example 4.4 Let us consider the following CONSTRUCT query upon DS =
({alice.org}, ∅) which extracts Triples about persons and their names from the source
graph and “anonymizes” all subjects by replacing them with blank nodes.

CONSTRUCT :b a foaf:Person; foaf:name ?N
FROM <alice.org>
WHERE { ?X a foaf:Person. ?X foaf:name ?N }

The result graph for this query would be (modulo blank node identifiers, which may differ from
implementation to implementation):

:b1 a foaf:Person; foaf:name "Alice".
:b2 a foaf:Person; foaf:name "Bob".

For blank nodes occurring in CONSTRUCT templates, we can use a “trick” using Skolemiza-
tion, i.e. treating the blank node identifier as a Skolem function and constructing a Skolem term
from this function name and the solution tuples of P as arguments. However, as in a function-free
language such as ASP, this trick does not work out-of-the box. Here is where again the power of
the external predicates in ASPex is needed. Particularly, we will make use of the external pred-
icate sk[id , v1, . . . , vn](skn+1), which we introduce now. We will use this predicate to emulate
Skolemization, i.e.

• we replace each blanknode :b among s, p, o in rule 2 by a fresh variable Xb, and

• add sk[:x, varsP](Xb) to the rule body.

The external predicate sk[id , v1, . . . , vn](skn+1) computes a unique, new “Skolem”-like term
id(v1, . . . , vn) from its input parameters. We can use for this string concatenation. That is, the
value for skn+1 is then just the string ′id(v1, . . . , vn)′. In addition we need an external predicate for
verifying that a triple is indeed a valid triple as defined in (Harris & Seaborne, 2013, Section 18.1),
i.e. the subject and object must be either IRIs, literals or blank nodes and the predicate an IRI.
Since blank nodes are introduced via external predicates, this verifying predicate must be external
as well to cope with fresh values. Thus we define an external predicate validTriple[s, p, o](v),
which is true if (s, p, o) is a valid triple and v is equal to true.

We then can simply add a rule:

triple(s, p, o,C) :- ans1(vars(P), default), validTriple[s, p, o](true). (2)

to ΠQ for each triple pattern (s, p, o) in PC. Note that C is used as a special constant here, indicating
a constructed statement. The result graph is then naturally represented in the answer set of the
program extended that way in the extension of the predicate triple(·, ·, ·,C). Note that this rule
also guarantees that only valid RDF triples are constructed.

Example 4.5 For the query from Example 4.4 above we would obtain then the following transla-
tion along with ΠDS

FILTER:

TECHNICAL REPORT DBAI-TR-2013-84 48

triple(S,P,O,default) :- rdf["alice"](S,P,O).
ans1(N,X,default) :- ans2(X,default), ans3(N,X,default),.
ans2(X,default) :- triple(X,rdf:type,foaf:Person).
ans3(N,X,default) :- triple(X,foaf:Name,N).
triple(Xb,rdf:type,foaf:Person,C) :- ans1(N,X,default), sk[b,N,X](Xb),

validTriple[Xb,rdf:type,foaf:Person](true).
triple(Xb,foaf:name,N,C) :- ans1(N,X,default), sk[b,N,X](Xb),

validTriple[Xb,foaf:name,N](true).

The answer set of this program, contains

{ triple(’b("Alice",alice:me)’, rdf:type,foaf:Person,C),
triple(’b("Alice",alice:me)’,foaf:name,"Alice",C),
triple(’b("Bob", :c)’,rdf:type,foaf:Person,C),
triple(’b("Bob", :c)’,foaf:name,foaf:Person,C) }

where from the result graph above can be extracted by simple post-processing that replaces each
constructed term ’b(...)’ by a unique blank node.

The resulting programs from the translations of CONSTRUCT queries remain essentially non-
recursive, i.e. locally stratified, such that despite the use of external predicates, strong safety (and
thus termination/finiteness), as mentioned in the end of Section 3 above, is still guaranteed.

5 Discussion
In this section we will discuss aspects relating to expressiveness of various features of SPARQL
in relation to the presented translation, as well as other aspects with regards to related and future
work. We will start in Section 5.1 with a summary, relating the different features of SPARQL
to different fragments of ASP regarding our translation; this is also related to the discussion of
so-called well-designed graph patterns, defined originally in (Pérez et al., 2009). In Section 5.2
we will discuss how our approach can be used to provide a semantics to so-called “extended RDF
Graphs”, which allow to use SPARQL CONSTRUCT queries themselves as a “rules” within an
RDF graph. We will discuss related works with “neighbour” W3C standards RDFS, OWL and RIF
in Section 5.3. Finally, implementations of our approach on top of ASP engines but also on top of
traditional relational databases is discussed in Section 5.4.

5.1 Relating fragments of SPARQL to fragments of ASP
Table 1 illustrates which SPARQL features require which ASP features in our translation, accord-
ing to the classes of programs defined in Section 3:

As for columns 1–3 of Table 1, we note that for the core translation which we gave in Sec-
tion 4 we did not need recursion. In fact, all but OPT graph patterns could be encoded in positive

TECHNICAL REPORT DBAI-TR-2013-84 49

programs. As for FILTERs, which are not mentioned in the table, we note the we used default
negation in the encoding the “=” (equals) and “<” (lowerThan) FILTER functions (cf. program
ΠDS

FILTER in Section 4.1); strictly speaking, only a subset of complete set of FILTER functions in the
SPARQL1.1 specification (Harris & Seaborne, 2013, Section 17.3) can be implemented without
either external predicates, default negation, or bespoke built-ins in the ASP solver.

The DISTINCT solution modifier essentially switches “on” the set-based semantics, as it has
been used in earlier translations from SPARQL to Datalog (Polleres, 2007; Angles & Gutierrez,
2008). In fact, building up on the results of (Angles & Gutierrez, 2008), our translation shows
that the results shown for graph pattern matching in SPARQL1.0 under a set based semantics
carry over to the bag semantics used in the official W3C specification. For all these features, we
would take other semantics such as the well-founded (Gelder, Ross, & Schlipf, 1988) semantics
or perfect model semantics (Przymusinski, 1988) into account, which coincides with the answer
set semantics on non-recursive programs. Further, as documented in column 4 of Table 1, we note
that we needed to use recursion to encode ordering, which is relevant for projection (π, implicit in
the SELECT clause) under multiset-semantics and in combination with other solution modifiers
(ORDER BY, LIMIT, OFFSET); An exception here is DISTINCT, since this solution modifier
essentially enables set-bases semantics, DISTINCT queries not using the other solution modifiers
could be encoded without the additional machinery added for ordering and slicing. We note here
that the recursion used for ordering is in principle (locally) stratified, such that even here the full
power of the answer set semantics would not be needed, strictly speaking.

As for SPARQL1.1 features, VALUES and MINUS are encodable in positive programs or,
respectively, programs with (nonrecursive, thus) stratified negation again. While the encoding of
property paths is recursive, in fact, property paths need only a very restricted form of recursion,
expressible in linear Datalog (Abiteboul, Hull, & Vianu, 1995), which for instance is also available
in SQL, since SQL-99 (SQL-99, 1999). BIND patterns need external predicates to evaluate built-in
expressions that potentially generate new values not occurring in query dataset.

Subqueries (including subqueries within EXISTS in FILTERs) are not mentioned separately in
Table 1; their translation depends essentially on which features (patterns, solution modifiers, etc.)
are used in the resp. subquery.

Finally, as for CONSTRUCT result forms (cf. Section 4.5.3) we also used an external predi-
cate to emulate implicit generation of new blank nodes.

5.1.1 Non-well-designed patterns

In the context of fragments SPARQL and ASP, so called well-designed patterns also deserve a
mention, defining a fragment of SPARQL1.0 which restricts the usage of OPT patterns: Pérez et
al. (Pérez et al., 2009) define such “well-behaving” optional patterns as follows:

Definition 5.1 (Well-designed pattern) A graph pattern P is well-designed if the following two
conditions hold:

1. For every occurrence of a sub-pattern P ′ = (P1 OPT P2) of P and for every variable v
occurring in P , the following condition holds: if v occurs both in P2 and outside P ′ then it
also occurs in P1.

TECHNICAL REPORT DBAI-TR-2013-84 50

SPARQL1.0 SPARQL1.1
Patterns Solution Modifiers Patterns

AND OPT DISTINCT ORDER BY VALUES MINUS Property Paths BIND
UNION LIMIT
GRAPH OFFSET

π (SELECT)
ASPnrpos ASPnr ASPnr ASP lstrat ASPnrpos ASPnr ASPpos ASPex

Table 1: Which SPARQL1.0 and SPARQL1.1 are expressible in which ASP classes (according
to our translation)?

2. For every occurrence of a sub-pattern P ′ = (P1 UNION P2) of P and for every variable v
occurring in P ′, the following condition holds: if v occurs outside P ′ then it occurs in both
P1 and P2.

Particularly interesting with regards to our translation is the fact that well-designed patterns
intuitively do not require joins over variables, which means that for well-designed patterns, our
translation could probably be partially be simplified or optimized, which we leave to future work.
In fact, non-well-designed patterns might actually be regarded irrelevant for many cases of com-
mon queries, as argued in (Pérez et al., 2009).

However, also in relation to SPARQL1.1, it is noteworthy that non-well designed patterns can
actually be used to introduce non-monotonic features such as the set difference operator in the
language, without using SPARQL1.1’s new MINUS or EXISTS features: a well-known way to
“emulate” set difference (i.e., “NOT EXISTS” queries in SQL) in SPARQL, which is also pointed
out in the official specification, is by using a combination of OPT patterns with a negated BOUND
in a FILTER expression.

We illustrate this by the following query which looks for all foaf:Persons without a nick-
name in a an RDF graph.

Example 5.1 As stated in (Prud′hommeaux & Seaborne, 2008, Section 11.4.1), this query over
dataset DS = ({alice.org}, ∅) can be formulated as follows.

SELECT ?X FROM <alice.org>
WHERE { ?X a foaf:Person. OPT { ?X foaf:nick ?N }

FILTER (! BOUND (?N)) }

Obviously, this query is not well-designed in the above sense. Note that the same non-
monotonic effect can be achieved even without FILTERs but by using another non-well-designed
pattern.

Example 5.2 Let us assume the named graph boundchecker.org be given by the single triple
(:x,:is,:unbound).20

20Actually, the predicate and object constants in that graph do not play a role, it is only important that the subject is
a blank node.

TECHNICAL REPORT DBAI-TR-2013-84 51

SELECT ?X
FROM <alice.org>
FROM NAMED <boundchecker>
WHERE { ?X a foaf:Person. OPT { ?X foaf:nick ?N }

GRAPH <boundchecker> ?N :is :unbound }

Now observe, that blank node in Graph boundchecker.org only joins only to unbound variables
from the OPT pattern, simply because blank nodes from different graphs (the default graph and
the named graph), can never join.

Interestingly, the latter example contradicts some early conjectures made before the official formal
definition of the SPARQL semantics was fixed: Proposition 1 in (Schenk & Staab, 2007) stated
that non-monotonicity in SPARQL can exclusively arise from the use of BOUND in filters in
combination with OPT, which was later revised and adapted in (Schenk & Staab, 2008), where
this proposition is removed.

The discussion around well-designed patterns as a well-behaving fragment of SPARQL is still
ongoing, see for instance (Letelier, Pérez, Pichler, & Skritek, 2012). However, we note that prob-
ably the definitions and considerations on well-designedness need to be extended on new features
within SPARQL1.1, such as EXISTS, MINUS, and also BIND, which might be in a similar sense
non-compositional as OPT. We leave this to future work.

5.2 SPARQL as a Rules Language
As stated in earlier works (Schenk & Staab, 2008; Polleres et al., 2007) SPARQL itself may be
viewed as an expressive rules language on top of RDF: CONSTRUCT statements have an obvious
similarity with view definitions in SQL, and thus may be seen as rules themselves.

Intuitively, in the translation of CONSTRUCT we “stored” the new triples in a new triple
outside the dataset DS, defining a new “context” C. We can imagine a similar construction in
order to define the semantics of queries over datasets mixing such CONSTRUCT statements with
RDF data in the same RDF file.

An example of such an “extended RDF Graph”, shown in Figure 2, would be a FOAF file that
imports information from another graph, for instance, the following extended graph, would enrich
the author’s FOAF information by adding implicit foaf:knows relations to co-authors according to
DBLP.21

Let us assume such a mixed file containing CONSTRUCT rules and RDF triples web-
accessible at IRI g, and a query Q = (DS,P, SM), with DS = (G,Gnamed). The semantics
of a query over a dataset containing g may then be defined by recursively adding ΠQC to ΠQ for
any CONSTRUCT query QC in g plus the rules (2) above where the rule head is changed from
triple(s, p, o,C) to triple(s, p, o, g). We further need to add a rule

triple(s, p, o, default) :- triple(s, p, o, g).

21using DBLP’s RDF export available at http://dblp.l3s.de/d2r/.

TECHNICAL REPORT DBAI-TR-2013-84 52

:me a foaf:Person.
:me foaf:name "Axel Polleres".

CONSTRUCT { :me foaf:knows :P . :P foaf:name ?N }
FROM <http://dblp.l3s.de/d2r/>
WHERE { ?D dc:creator [foaf:name ?N]; }

dc:creator <http://dblp.l3s.de/d2r/resource/authors/Axel Polleres>.
FILTER (?N != "Axel Polleres".) }

:me foaf:knows [foaf:name "Herbert Polleres"].
:me foaf:knows [foaf:name "Mechthild Polleres"].

Figure 2: Extended RDF Graph containing explicit and implicit triples in Turtle+SPARQL syntax.

for each g ∈ G, in order not to omit any of the implicit triples defined by such “CONSTRUCT
rules”.

Naturally, the resulting programs possibly involve recursion, and, even worse, recursion over
default negation. Fortunately, the general answer set semantics, which we use, can cope with this.
We note though, that CONSTRUCT queries with blank nodes such as the one in Example 4.4
are problematic in that case, recursion over the constructed blank nodes becomes possible. Thus,
strong safety is no longer guaranteed. Similar problems would arise if CONSTRUCT queries
involved BIND patterns. For a more in-depth discussion of extended graphs we refer to (Polleres
et al., 2007), where the concept of “extended graphs” was introduced based on our original trans-
lation from (Polleres, 2007). Schenk and Staab (Schenk & Staab, 2007, 2008) define and have
implemented “networked graphs” – similar to the notion of “extended graphs”. Their approach
works on top of a standard SPARQL engine on top of which they implement the well-founded
semantics, rather than relying on the answer set semantics.

5.3 Entailment Regimes and the Interplay with RDFS, OWL and RIF
The current SPARQL query language specification considers mainly RDF simple entail-
ment (Hayes, 2004, Section 2). Defining “higher” entailment regimes such as RDF entailment
is not trivial, since even ordinary RDF entailment (Hayes, 2004, Section 3) is already problem-
atic as a basis for SPARQL query evaluation due to the presence of an infinite set of axiomatic
triples; a simple query pattern like P = (?X, rdf:type, rdf:Property) would have infinitely many
solutions even on the empty (sic!) dataset by matching the infinitely many axiomatic triples in the
RDF(S) semantics. The new SPARQL1.1 Entailment Regimes (Glimm et al., 2013) document thus
provides reasonable restrictions, that restrict the answers under “higher” entailment regimes, not
only for RDF and RDFS, but also for OWL and RIF.

Even more complex issues arise when combining a non-monotonic query language like
SPARQL with monotonic ontology languages such as OWL. Our embedding of SPARQL into
a non-monotonic rules language might provide valuable insights here, since it opens up a whole
body of work done on combinations of such rules languages with first-order logic based ontology
languages, see e.g. (Eiter et al., 2006; Rosati, 2006a; de Bruijn, Eiter, et al., 2007; Motik & Rosati,

TECHNICAL REPORT DBAI-TR-2013-84 53

2007; de Bruijn, Pearce, Polleres, & Valverde, 2007). As such, with the translation herein, we aim
at providing a first step towards a common logical framework where Semantic Web standard play
together. As mentioned in the introduction, there are plenty of works on embedding (fragments of)
OWL and ASP style rules into a common logical framework; with the present work we hope to
have opened the door a bit further towards including SPARQL in this picture. We note that such
a common logical framework would open up work on equivalences of SPARQL queries modulo
ASP over RDF, plus ASP-expressible fragments of OWL, such as e.g. OWL RL (Motik et al.,
2012). Existing work on equivalences of SPARQL queries (Pérez et al., 2009; Schmidt, Meier,
& Lausen, 2010; Letelier et al., 2012) or on conjunctive queries for ontologies (Eiter, Lutz, Ortiz,
& Simkus, 2009; Glimm, Lutz, Horrocks, & Sattler, 2008; Glimm, Horrocks, & Sattler, 2008;
Krötzsch, Rudolph, & Hitzler, 2007b; Glimm & Rudolph, 2010) do not yet cover these combined
aspects; an exception here is the work of Melisachew Chekol et al. who suggest to encode parts
of OWL and SPARQL into µ-calculus to test query containment in this framework, see (Chekol,
Jérôme, & Pierre Genevés, 2012; Chekol, 2013). We believe that looking into ASP – and (quanti-
fied) Equilibrium Logic (Pearce & Valverde, 2008) as its underlying logic – could be an interesting
alternative path along these lines.

5.4 Implementing SPARQL on top of ASP Engines and Relational Database
Systems

We have incorporated an earlier version of our translation within the dlv-DB (Ianni, Krennwall-
ner, Martello, & Polleres, 2009) system, towards a rule-enabled RDF store with SPARQL support.
As for related work here, we should not forget to remark that also work by Cyganiak (Cyganiak,
2005), Lu et al. (Lu, Cao, Ma, Yu, & Pan, 2007) who embed SPARQL in more traditional rela-
tional algebra, in order to implement SPARQL on top of existing SQL engines. SPARQL access
to databases, by the way, is not restricted to the usage of a relational database system as an RDF
Store, but so-called RDB-to-RDF mappings based on views or rules can allow to integrate arbitrary
relational schemata and legacy databases with the Semantic Web and SPARQL worlds, cf. (Das,
Sundara, & Cyganiak, 2012; Arenas, Bertails, Prud’hommeaux, & Sequeda, 2012; Sequeda, Are-
nas, & Miranker, 2012). Particularly, it should be noted here that (Sequeda et al., 2012) base their
mappings on Datalog, which provides a possible connection to our work.

6 Conclusions
In this paper, we extended the formalisation of the SPARQL semantics based on (Pérez et al.,
2009; Arenas et al., 2009) and (Polleres et al., 2007) by the new features of SPARQL1.1 and
provided a translation to ASP.

In particular, we studied the new features of subqueries, solution modifiers, property paths,
negation patterns and assignment. Some of these have been investigated before, in (Angles &
Gutierrez, 2011) several types of subqueries were presented and in (Arenas, Conca, & Pérez, 2012)

TECHNICAL REPORT DBAI-TR-2013-84 54

an in-depth treatment of an earlier version of property paths is shown. We based our formal se-
mantics on these works and on the recent SPARQL1.1 specification (Harris & Seaborne, 2013).

Moreover we collected and extended the discussion of peculiarities in the specification, e.g.
the treatment of FILTER expressions and bound or unbound variables, which depend whether the
filter occurs as a top level filter in an OPT pattern or if the variable occurs in an EXISTS atomic
filter. The newly introduced MINUS pattern is close to usual set difference based on incompatible
substitutions, with the subtle difference, that disjoint substitutions are handled as a special case.

We provided a full translation of the SPARQL1.0 features to ASP nr (i.e., the ASP fragment
corresponding to non-recursive Datalog with default negation), confirming the results of (Angles
& Gutierrez, 2008) for the official W3C semantics. For the translation of solution modifiers, as
well as new features in SPARQL1.1 we require more general fragments of ASP. The translation
of property paths and solution modifiers needs recursion for the variable length paths and the
ordering of solutions. The assignment pattern BIND and CONSTRUCT queries add the additional
requirement of external predicates to handle the creation of new values. Strong safety and hence
termination is still guaranteed in these programs, as long as we restrict to the translation of single
queries, whereas extended RDF graphs (from the discussion in Section 5.2) would possibly involve
recursion also potentially over default negation. ASP, as a generalized form of Datalog, augmented
with external predicates (such as provided in HEX-programs (Eiter et al., 2005)) can cope with
these requirements and therefore is a particular candidate for further investigating foundations and
extensions of SPARQL1.1. We left out one feature of SPARQL1.1, namely aggregates, which
fall into a similar category as CONSTRUCT queries and those that contain BIND, since such
aggregate functions create new values as well. As discussed in (Polleres et al., 2007), one could
again use HEX-programs for encoding these, as HEX-programs allow external predicates to inspect
a whole interpretation to compute e.g. an average value.

Acknowledgments
This article is based on first results published in the paper titled “From SPARQL to Rules (and
back)” (Polleres, 2007) which appeared in the proceedings of the World Wide Web conference
2007. The authors are grateful for reviewer comments for the conference version. Special thanks
go to Jos de Bruijn, Giovambattista Ianni, and Reto Krummenacher for discussions on earlier ver-
sions of this document, to Bijan Parsia, Jorge Pérez, and Andy Seaborne for valuable insights
gained through various email-discussions, and finally to Roman Schindlauer and Thomas Kren-
nwallner for their invaluable help on prototype implementations on top of dlvhex. Moreover,
thanks go to all members of the SPARQL1.1 working group. This work was started supported
by the Spanish MEC under the project TIC-2003-9001, in the course of which the corresponding
author also had the opportunity to collaborate directly with David Pearce, to whom this special
issue is dedicated to; therefore, part of our gratitude we could start the work on SPARQL origi-
nally also goes to David. This work has been funded by the Vienna Science and Technology Fund
(WWTF) through project ICT12-015.

TECHNICAL REPORT DBAI-TR-2013-84 55

Bibliography
Abiteboul, S., Hull, R., & Vianu, V. (1995). Foundations of Databases. Addison-Wesley.
Alkhateeb, F., Baget, J.-F., & Euzenat, J. (2009). Extending SPARQL with regular expression

patterns (for querying RDF). Journal of Web Semantics, 7(2), 57-73.
Angles, R., & Gutierrez, C. (2008). The expressive power of SPARQL. In A. P. Sheth et al. (Eds.),

International Semantic Web Conference (ISWC 2008) (Vol. 5318, pp. 114–129). Karlsruhe,
Germany: Springer.

Angles, R., & Gutierrez, C. (2011). Subqueries in SPARQL. In P. Barceló & V. Tannen (Eds.),
Proceedings of the 5th Alberto Mendelzon International Workshop on Foundations of Data
Management, Santiago, Chile, May 9-12, 2011 (Vol. 749). CEUR-WS.org.

Arenas, M., Bertails, A., Prud’hommeaux, E., & Sequeda, J. (2012, September 27). A direct
mapping of relational data to rdf. (W3C Recommendation, available at http://www.w3
.org/TR/2012/REC-rdb-direct-mapping-20120927/)

Arenas, M., Conca, S., & Pérez, J. (2012). Counting beyond a Yottabyte, or how SPARQL 1.1
property paths will prevent adoption of the standard. In A. Mille, F. L. Gandon, J. Misselis,
M. Rabinovich, & S. Staab (Eds.), Proceedings of the 21st world wide web conference 2012
(www2012) (p. 629-638). ACM.

Arenas, M., Gutierrez, C., & Pérez, J. (2009). On the Semantics of SPARQL. In R. D. Virgilio,
F. Giunchiglia, & L. Tanca (Eds.), Semantic Web Information Management - A Model-Based
Perspective (p. 281-307). Springer.

Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., & Patel-Schneider, P. F. (Eds.). (2003).
The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge
University Press.

Baral, C. (2003). Knowledge representation, reasoning and declarative problem solving. Cam-
bridge University Press.

Beckett, D., & Berners-Lee, T. (2008, January 14). Turtle - Terse RDF Triple Language. (W3C
Team Submission, http://www.w3.org/TeamSubmission/turtle/)

Berners-Lee, T. (1999). Weaving the web. Harper.
Berners-Lee, T. (2006). Linked Data. (http://www.w3.org/DesignIssues/

LinkedData.html)
Boley, H., Kifer, M., Pătrânjan, P.-L., & Polleres, A. (2007, September 3–7). Rule interchange on

the web. In Reasoning web 2007 (Vol. 4636, pp. 269–309). Springer.
Brewka, G., Eiter, T., & Truszczynski, M. (2011). Answer set programming at a glance. Commu-

nications of the ACM, 54(12), 92-103.
Brickley, D., & Guha, R. (2004, February 10). RDF vocabulary description language 1.0:

RDF Schema. (W3C Recommendation, available at http://www.w3.org/TR/rdf
-schema/)

Brickley, D., & Miller, L. (2007, November 2). FOAF Vocabulary Specification 0.91. (http://
xmlns.com/foaf/spec/)

Calimeri, F., & Ianni, G. (2005, September 5–8). External sources of computation for Answer
Set Solvers. In C. Baral, G. Greco, N. Leone, & G. Terracina (Eds.), Proceedings of the 8th

TECHNICAL REPORT DBAI-TR-2013-84 56

international conference on logic programming and nonmonotonic reasoning (Vol. 3662, pp.
105–118). Diamante, Italy: Springer Verlag.

Carroll, J., Bizer, C., Hayes, P., & Stickler, P. (2005). Named graphs. Journal of Web Semantics,
3(4), 247–267.

Chekol, M. W. (2013). Analyse statique de requête pour le web sémantique (static analysis of
semantic web queries). Unpublished doctoral dissertation. (defended)

Chekol, M. W., Jérôme, & Pierre Genevés, N. L. (2012). Sparql query containment under rdfs
entailment regime. In International joint conference on automated reasoning (ijcar2012).

Cyganiak, R. (2005, September 28). A relational algebra for sparql (Tech. Rep. No. HPL-2005-
170). Bristol, UK: HP Labs.

Dantsin, E., Eiter, T., Gottlob, G., & Voronkov, A. (2001). Complexity and Expressive Power of
Logic Programming. ACM Computing Surveys, 33(3), 374–425.

Das, S., Sundara, S., & Cyganiak, R. (2012, September 27). R2rml: Rdb to rdf mapping
language. (W3C Recommendation, available at http://www.w3.org/TR/2012/
REC-r2rml-20120927/)

de Bruijn, J. (2010, June 22). RIF RDF and OWL Compatibility. (W3C Recommendation, available
at http://www.w3.org/TR/rif-rdf-owl/)

de Bruijn, J., Eiter, T., Polleres, A., & Tompits, H. (2007, January 6–12). Embedding Non-Ground
Logic Programs into Autoepistemic Logic for Knowledge-Base Combination. In Twentieth
International Joint Conference on Artificial Intelligence (IJCAI’07) (pp. 304–309). Hyder-
abad, India: AAAI.

de Bruijn, J., Franconi, E., & Tessaris, S. (2005, November). Logical reconstruction of normative
RDF. In OWL: Experiences and directions workshop (OWLED-2005). Galway, Ireland.

de Bruijn, J., Pearce, D., Polleres, A., & Valverde, A. (2007, June 7–8). Quantified equilibrium
logic and hybrid rules. In M. Marchiori, J. Z. Pan, & C. de Sainte Marie (Eds.), First
international conference on web reasoning and rule systems (rr2007) (Vol. 4524, pp. 58–
72). Innsbruck, Austria: Springer.

de Bruijn, J., Pearce, D., Polleres, A., & Valverde, A. (2010). A semantical framework for hybrid
knowledge bases. Knowledge and Information Systems (KAIS), 25(1), 81–104.

Duerst, M., & Suignard, M. (2005, January). Internationalized Resource Identifiers (IRIs) (No.
3987). RFC 3987 (Proposed Standard). IETF. (available at rfc3987.txt)

Eiter, T., Ianni, G., & Krennwallner, T. (2009). Answer set programming: A primer. In S. Tessaris
et al. (Eds.), Reasoning web. semantic technologies for information systems, 5th interna-
tional summer school 2009, brixen-bressanone, italy, august 30 - september 4, 2009, tutorial
lectures (Vol. 5689, p. 40-110). Springer.

Eiter, T., Ianni, G., Krennwallner, T., & Polleres, A. (2008, September 7–11). Rules and ontolo-
gies for the semantic web. In C. Baroglio, P. A. Bonatti, J. Maluszynski, M. Marchiori,
A. Polleres, & S. Schaffert (Eds.), Reasoning web 2008 (Vol. 5224, pp. 1–53). San Servolo
Island, Venice, Italy: Springer.

Eiter, T., Ianni, G., Polleres, A., Schindlauer, R., & Tompits, H. (2006, September 4–8). Reasoning
with rules and ontologies. In Reasoning web 2006 (Vol. 4126, pp. 93–127). Lisbon, Portugal:
Springer.

TECHNICAL REPORT DBAI-TR-2013-84 57

Eiter, T., Ianni, G., Schindlauer, R., & Tompits, H. (2005, August). A Uniform Integration of
Higher-Order Reasoning and External Evaluations in Answer Set Programming. In Interna-
tional Joint Conference on Artificial Intelligence (IJCAI) 2005 (pp. 90–96). Edinburgh, UK:
Professional Book Center.

Eiter, T., Lukasiewicz, T., Schindlauer, R., & Tompits, H. (2004). Combining answer set pro-
gramming with description logics for the semantic web. In Proceedings of the ninth interna-
tional conference on principles of knowledge representation and reasoning (kr’04). Whistler,
Canada: AAAI Press.

Eiter, T., Lutz, C., Ortiz, M., & Simkus, M. (2009, July 11–17). Query answering in description
logics with transitive roles. In Proceedings of the 21st international joint conference on
artificial intelligence (ijcai 2009) (p. 759-764). Pasadena, California, USA.

Faber, W., Leone, N., & Pfeifer, G. (2004, September). Recursive aggregates in disjunctive logic
programs: Semantics and complexity. In J. J. Alferes & J. Leite (Eds.), Proceedings of the
9th European Conference on Artificial Intelligence (JELIA 2004) (pp. 200–212). Lisbon,
Portugal: Springer Verlag.

Gebser, M., Kaminski, R., Kaufmann, B., & Schaub, T. (2012). Answer set solving in practice.
Morgan & Claypool.

Gelder, A. V., Ross, K., & Schlipf, J. S. (1988). Unfounded sets and well-founded semantics
for general logic programs. In 7th acm symposium on principles of database systems (pp.
221–230). Austin, Texas: ACM.

Gelfond, M., & Lifschitz, V. (1988). The stable model semantics for logic programming. In
R. A. Kowalski & K. Bowen (Eds.), 5th int’l conf. on logic programming (pp. 1070–1080).
Cambridge, Massachusetts: The MIT Press.

Gelfond, M., & Lifschitz, V. (1991). Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing, 9, 365–385.

Glimm, B., Horrocks, I., & Sattler, U. (2008, September 16–19). Unions of conjunctive queries in
shoq. In Principles of knowledge representation and reasoning: Proceedings of the eleventh
international conference, kr 2008 (pp. 252–262). Sydney, Australia: AAAI Press.

Glimm, B., Lutz, C., Horrocks, I., & Sattler, U. (2008). Conjunctive query answering for the
description logic shiq. J. Artif. Intell. Res. (JAIR), 31, 157-204.

Glimm, B., Ogbuji, C., Hawke, S., Herman, I., Parsia, B., Polleres, A., & Seaborne, A. (2013,
March 21). SPARQL 1.1 Entailment Regimes. (W3C Recommendation, available at
http://www.w3.org/TR/sparql11-entailment/)

Glimm, B., & Rudolph, S. (2010, May 9–13). Status QIO: Conjunctive query entailment is de-
cidable. In Proceedings of the 12th international conference on the principles of knowledge
representation and reasoning (kr-10) (pp. 225–235). Toronto, Canada: AAAI Press.

Grosof, B. N., Horrocks, I., Volz, R., & Decker, S. (2003). Description logic programs: Combining
logic programs with description logic. In 12th international conference on world wide web
(www’03) (pp. 48–57). Budapest, Hungary: ACM.

Harris, S., & Seaborne, A. (2013, March 21). SPARQL 1.1 Query Language. (W3C Recommen-
dation at http://www.w3.org/TR/sparql11-query/)

Hayes, P. (2004, February). RDF semantics. (W3C Recommendation, available athttp://

TECHNICAL REPORT DBAI-TR-2013-84 58

www.w3.org/TR/rdf-mt/)
Heath, T., & Bizer, C. (2011). Linked data: Evolving the web into a global data space. Morgan &

Claypool.
Ianni, G., Krennwallner, T., Martello, A., & Polleres, A. (2009, October 25–29). Dynamic query-

ing of mass-storage rdf data with rule-based entailment regimes. Washington DC, USA:
Springer.

Kifer, M., & Boley, H. (2012, December 11). RIF Overview. (W3C Working Group Note, available
at http://www.w3.org/TR/rif-overview/)

Kollia, I., Glimm, B., & Horrocks, I. (2011). SPARQL query answering over OWL ontologies. In
8th extended semantic web conference (eswc2011) (Vol. 6643, pp. 382–396). Springer.

Krisnadhi, A., Maier, F., & Hitzler, P. (2011). OWL and rules. In Reasoning web 2011 (p. 382-
415).

Krötzsch, M., Rudolph, S., & Hitzler, P. (2007a, July 22–26). Complexity boundaries for horn
description logics. In Proceedings of the twenty-second aaai conference on artificial intelli-
gence (aaai) (pp. 452–457). Vancouver, British Columbia, Canada.

Krötzsch, M., Rudolph, S., & Hitzler, P. (2007b, November 11–15). Conjunctive queries for
a tractable fragment of OWL 1.1. In Proceedings of the 6th international semantic web
conference and 2nd asian semantic web conference, iswc 2007 + aswc 2007 (pp. 310–323).
Busan, Korea.

Letelier, A., Pérez, J., Pichler, R., & Skritek, S. (2012). Static analysis and optimization of
semantic web queries. In Proceedings of the 31st acm sigmod-sigact-sigart symposium on
principles of database systems (pods 2012) (p. 89-100).

Levy, A. Y., & Rousset, M.-C. (1998). Combining horn rules and description logics in CARIN.
Artificial Intelligence, 104, 165–209.

Lifschitz, V. (1999). Answer set planning. In Iclp (p. 23-37).
Losemann, K., & Martens, W. (2012, May 20–24). The complexity of evaluating path expressions

in sparql. In Proceedings of the 31st acm sigmod-sigact-sigart symposium on principles of
database systems, (pods 2012) (p. 101-112). Scottsdale, AZ, USA: ACM.

Lu, J., Cao, F., Ma, L., Yu, Y., & Pan, Y. (2007). An Effective SPARQL Support over Relational
Databases. In Swdb-odbis (p. 57-76).

Lukasiewicz, T. (2010). A novel combination of answer set programming with description logics
for the semantic web. IEEE Transactions on Knowledge and Data Engineering (TKDE). (In
press)

Manola, F., & Miller, E. (2004, February 10). RDF primer. (W3C Recommendation, available at
http://www.w3.org/TR/rdf-primer/)

Marek, V. W. (1999). Stable models and an alternative logic programming paradigm. In In the
logic programming paradigm: a 25-year perspective (pp. 375–398). Springer-Verlag.

Motik, B., Grau, B. C., Horrocks, I., Wu, Z., Fokoue, A., & Lutz (eds.), C. (2012, December 11).
OWL 2 web ontology language profiles (second edition). (W3C Recommendation, available
at http://www.w3.org/TR/2012/REC-owl2-profiles-20121211/)

Motik, B., & Rosati, R. (2007). A faithful integration of description logics with logic program-
ming. In Twentieth international joint conference on artificial intelligence (ijcai’07) (pp.

TECHNICAL REPORT DBAI-TR-2013-84 59

477–482). Hyderabad, India: AAAI.
Motik, B., Sattler, U., & Studer, R. (2005). Query answering for OWL-DL with rules. Journal of

Web Semantics, 3(1), 41–60.
Niemelä, I. (1999). Logic programs with stable model semantics as a constraint programming

paradigm. Ann. Math. Artif. Intell., 25(3-4), 241-273.
Niemelä, I., Simons, P., & Soininen, T. (1999). Stable model semantics of weight constraint rules.

In M. Gelfond, N. Leone, & G. Pfeifer (Eds.), Lpnmr (Vol. 1730, p. 317-331). Springer.
Pearce, D., & Valverde, A. (2008). Quantified equilibrium logic and foundations for answer set

programs. In 24th international conference on logic programming (iclp2008) (p. 546-560).
Pérez, J., Arenas, M., & Gutierrez, C. (2006, May 26). Semantics and complexity of SPARQL. In

Iswc 2006, 5th international semantic web conference (Vol. 4273, pp. 30–43). Springer.
Pérez, J., Arenas, M., & Gutierrez, C. (2008). nSPARQL: A navigational language for RDF. In

7th international semantic web conference, iswc 2008 (Vol. 5318, pp. 66–81). Springer.
Pérez, J., Arenas, M., & Gutierrez, C. (2009). Semantics and complexity of SPARQL. ACM

Transactions on Database Systems, 34(3), Article 16 (45 pages).
Polleres, A. (2007, May 8–12). From SPARQL to rules (and back). In Proceedings of the 16th

world wide web conference (www2007) (pp. 787–796). Banff, Canada: ACM Press.
Polleres, A. (2013, January). Agreement technologies and the semantic web. In S. Ossowski (Ed.),

Agreement technologies (Vol. 8, pp. 57–68). Springer. (To appear)
Polleres, A., Scharffe, F., & Schindlauer, R. (2007, November 27–29). SPARQL++ for mapping

between RDF vocabularies. In Otm 2007, part i : Proceedings of the 6th international
conference on ontologies, databases, and applications of semantics (odbase 2007) (Vol.
4803, pp. 878–896). Vilamoura, Algarve, Portugal: Springer.

Polleres, A., & Schindlauer, R. (2007, September 13). dlvhex-sparql: A SPARQL-compliant
query engine based on dlvhex. In 2nd international workshop on applications of logic pro-
gramming to the web, semantic web and semantic web services (alpsws2007) (Vol. 287, pp.
3–12). Porto, Portugal: CEUR-WS.org.

Prud′hommeaux, E., & Seaborne, A. (2008, January 15). SPARQL Query Language for
RDF. (W3C Recommendation, available at http://www.w3.org/TR/rdf-sparql
-query/)

Przymusinski, T. C. (1988). On the Declarative Semantics of Deductive Databases and Logic
Programs. In J. Minker (Ed.), Foundations of Deductive Databases and Logic Programming
(pp. 193–216). Morgan Kaufmann Publishers, Inc.

Rosati, R. (2005a). On the decidability and complexity of integrating ontologies and rules. Journal
of Web Semantics, 3(1), 61–73.

Rosati, R. (2005b). Semantic and computational advantages of the safe integration of ontologies
and rules. In Proceedings of the third international workshop on principles and practice of
semantic web reasoning (ppswr 2005) (Vol. 3703, pp. 50–64). Springer.

Rosati, R. (2006a, September 4–8). Integrating Ontologies and Rules: Semantic and Computa-
tional Issues. In P. Barahona, F. Bry, E. Franconi, U. Sattler, & N. Henze (Eds.), Reasoning
web, second international summer school 2006, lissabon, portugal, september 25-29, 2006,
tutorial lectures (Vol. 4126, pp. 128–151). Springer.

TECHNICAL REPORT DBAI-TR-2013-84 60

Rosati, R. (2006b). DL + log: Tight integration of description logics and disjunctive datalog. In
Proceedings of the tenth international conference on principles of knowledge representation
and reasoning (kr’06) (pp. 68–78).

Schenk, S., & Staab, S. (2007). Networked rdf graphs (Tech. Rep.). Koblenz, Germany: Universität
Koblenz-Landau. (http://www.uni-koblenz.de/˜sschenk/publications/
2006/ngtr.pdf)

Schenk, S., & Staab, S. (2008). Networked graphs: A declarative mechanism for sparql rules,
sparql views and rdf data integration on the web. In Proceedings www-2008 (pp. 585–594).
Beijing, China: ACM Press.

Schindlauer, R. (2006). Answer-set programming for the semantic web. Unpublished doctoral
dissertation, Vienna University of Technology.

Schmidt, M., Meier, M., & Lausen, G. (2010, March 22–25). Foundations of SPARQL query
optimization. In 13th international conference on database theory (icdt2010). Lausanne,
Switzerland.

Sequeda, J., Arenas, M., & Miranker, D. P. (2012). On directly mapping relational databases to
RDF and OWL. In Proceedings of the 21st world wide web conference 2012 (www2012)
(p. 649-658).

Smith, M. K., Welty, C., & McGuinness, D. L. (2004, February 10). OWL Web Ontology
Language Guide. (W3C Recommendation, available at http://www.w3.org/TR/
owl-guide/)

SQL-99. (1999, October 1). Information Technology - Database Language SQL- Part 3: Call
Level Interface (SQL/CLI) (Tech. Rep. No. INCITS/ISO/IEC 9075-3). INCITS/ISO/IEC.
(Standard specification)

Ullman, J. D. (1989). Principles of Database and Knowledge Base Systems. New York, NY, USA:
Computer Science Press.

W3C OWL 2 Working Group. (2012, December 11). OWL 2 Web Ontology Language Docu-
ment Overview (Second Edition). (W3C Recommendation, available at http://www.w3
.org/TR/owl2-overview/)

TECHNICAL REPORT DBAI-TR-2013-84 61

Appendix: Translations of Sample Queries
In this appendix we provide corresponding programs and answers for some sample queries men-
tioned in this paper in order to exemplify the translation. We will, for each query, first give the
query in SPARQL syntax as specified in (Harris & Seaborne, 2013), then provide the pattern in
our notation and, finally provide the translated logic programs.

For reasons of clarity, we explicitly specify the dataset in the form of FROM and FROM
NAMED clauses in SPARQL syntax. As before, we omit and the leading ’http://’ or other schema
identifiers in IRIs. Note that we omit the ASP rules for solution modifiers in these example trans-
lations for readability, except for the translation of Example 2.6. Therefore we will include the
translation of the SELECT clause also only in the last translation of Example 2.6, since the pro-
jection of the SELECT clause is included in the solution modifiers.

Query 1
We start with the query from Figure 1.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?Y ?X
FROM <alice.org>
FROM <ex.org/bob>
WHERE { ?Y foaf:name ?X . }

This corresponds to Q1 = (DS1, P1, SM1) with DS1 = ({ex.org/bob, alice.org}, ∅), SM1 =
((), {?X, ?Y }, false, 0, 0), and

P1 = (?Y, foaf:name, ?X)

ΠQ1 = ΠDS1

FILTER ∪

triple(S,P,O,default) :- rdf["ex.org/bob"](S,P,O).
triple(S,P,O,default) :- rdf["alice.org"](S,P,O).
ans1(X,Y,default) :- triple(Y,foaf:name,X,default).

The query delivers the following answers:

{ ans1("Bob",_:a,default),
ans1("Bob",_:c,default),
ans1("Alice","alice.org#me",default) }

Query 2
We continue with the second query from Example 2.3.

TECHNICAL REPORT DBAI-TR-2013-84 62

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?N
FROM <ex.org/bob>
WHERE { ?A foaf:knows+/foaf:name ?N .

?A foaf:name "Alice"}

This corresponds to Q2 = (DS2, P2, SM2) with DS2 = ({ex.org/bob, alice.org}, ∅), SM2 =
((), {?N}, false, 0, 0), and

P2 = ((?A, foaf:knows + /foaf:name, ?N) AND (?A, foaf:name, ”Alice”))

ΠQ1 = ΠDS1

FILTER ∪ Join(1) ∪

triple(S,P,O,default) :- rdf["ex.org/bob"](S,P,O).
triple(S,P,O,default) :- rdf["alice.org"](S,P,O).
ans1(A,N,S1,default) :- ans2(A’,N’,S1’,default),

ans3(A’’,default),
join1(A’,A’’,A).

ans2(A,N,S1,default) :- ans4(A,S1’,default),
ans5(N,S1’’,default),
join1(S1’,S1’’,S1).

ans3(A,default) :- triple(A,foaf:name,"Alice",default).
ans4(A,S1,default) :- reach4(A,S1,default).
reach4(X4,Y4,default) :- ans8(X4,Y4,default).
reach4(Z4,Y4,default) :- reach4(Z4,X4,default),

ans8(X4,Y4,default).
ans5(N,S1,default) :- triple(S1,foaf:name,N,default).
ans8(X4,Y4,default) :- triple(X4,foaf:knows,Y4,default).

The query delivers the following answer:

{ ans1(_:b,"Bob",_:c,default)}

Query 3
We continue with the query from Example 2.4.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?N
FROM <alice.org>
WHERE { ?P foaf:name ?N .

FILTER ?G (EXISTS (?P foaf:knows ?F .
?F foaf:name "Bob")) }

TECHNICAL REPORT DBAI-TR-2013-84 63

This corresponds to Q3 = (DS3, P3, SM3) with DS3 = ({ex.org/bob, alice.org}, ∅),
SM3 = ((), {?N}, false, 0, 0), and

P3 = ((?P, foaf:name, ?M)
FILTER (EXISTS((?P, foaf:knows, ?F) AND (?F, foaf:name, ”Bob”))))

ΠQ3 = ΠDS3

FILTER ∪ Join(1)∪

triple(S,P,O,default) :- rdf["ex.org/bob"](S,P,O).
triple(S,P,O,default) :- rdf["alice.org"](S,P,O).
ans1(M,P,default) :- ans2(P,M,default), filter1_1(P,M,true).
ans2(M,P,default) :- triple(P,foaf:name,N,default).
filter1_1(M’,P’,true) :- ans3_1(F,P,M’,P’,default).
filter1_1(M,P,false) :- ans2(M,P,default),

not filter1_1(M,P,true).
ans3_1(F,P,M21,P21,default) :- ans6_1(F’,P,M21,P21,default),

ans7_1(F’’,M21,P21,default),
join1(F’,F’’,F).

ans6_1(F,P,M,P’,default) :- triple(F,foaf:knows,P,default),
ans2(M21,P21,default),
join1(P,P21,P21s).

ans7_1(F,M21,P21,default) :-
triple(F,foaf:name,"Bob",default),
ans2(M21,P21,default).

The query delivers the following answer:

{ ans1("Alice",_:b,default) }

Query 4
We continue with the query from Example 2.5.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?X
FROM <alice.org>
WHERE { ?P foaf:nick ?N .

?P foaf:name ?M .
BIND concat(?M," a.k.a. ",?N) AS ?X}

This corresponds to Q4 = (DS4, P4, SM4) with DS4 = ({ex.org/bob, alice.org}, ∅),
SM4 = ((), {?X}, false, 0, 0), and

TECHNICAL REPORT DBAI-TR-2013-84 64

P4 = (((?P, foaf:nick, ?N) AND (?P, foaf:name, ?M))
BIND concat(?M, ”a.k.a.”, ?N) AS ?X

ΠQ4 = ΠDS4

FILTER ∪ Join(1)∪

triple(S,P,O,default) :- rdf["ex.org/bob"](S,P,O).
triple(S,P,O,default) :- rdf["alice.org"](S,P,O).
ans1(M,N,P,X,default) :-

eval["concat(?1,\" a.k.a. \",?2)",M,N](X),
ans2(M,N,P,default).

ans2(M,N,P,default) :- ans3(N,P’,default),
ans4(M,P’’,default),
join1(P’,P’’,P).

ans3(N,P,default) :- triple(P,foaf:nick,N,default).
ans3(M,P,default) :- triple(P,foaf:name,M,default).

The query delivers the following answer:

{ ans1("Bob","Bobby",_:c,"Bob a.k.a. Bobby",default) }

Query 5
We continue with the second query from Example 2.6.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT DISTINCT ?N
FROM <alice.org>
FROM <ex.org/bob>
WHERE { { ?P foaf:name ?M . } UNION { ?P foaf:nick ?N . } }
ORDER BY ?N OFFSET 2 LIMIT 1

This corresponds to Q5 = (DS5, P5, SM5) with DS5 = ({ex.org/bob, alice.org}, ∅),
SM5 = ((?N), {?N}, true, 2, 1), and

P5 = (((?P, foaf:name, ?M) UNION (?P, foaf:nick, ?N))

ΠQ5 = ΠDS5

FILTER ∪ Join(1)∪

triple(S,P,O,default) :- rdf["ex.org/bob"](S,P,O).
triple(S,P,O,default) :- rdf["alice.org"](S,P,O).
ans2(M,null,P,default) :- ans4(M,P,default).
ans2(null,N,P,default) :- ans5(N,P,default).
ans4(M,P,default) :- triple(P,foaf:name,M,default).
ans5(N,P,default) :- triple(P,foaf:nick,N,default).

TECHNICAL REPORT DBAI-TR-2013-84 65

lt2(M,N,P,M’,N’,P’,U1’,default) :-
ans2(M,N,P,default),
ans2(M’,N’,P’,default),
N < N’.

lt2(M,N,P,M’,N,P’,default) :-
ans2(M,N,P,default),
ans2(M’,N,P’,default),
M < M’.

lt2(M,N,P,,M,N,P’,,default) :-
ans2(M,N,P,default),
ans2(M,N,P’,default),
P < P’.

remove2(M,N,P,default) :- lt2(M’,N,P’,M,N,P,default).
notsucc2(M,N,P,M’,N’,P’,default) :-

lt2(M,N,P,M’,N’,P’,default)
lt2(M’,N’,P’,M’’,N’’,P’’,default),
not remove2(M’,N’,P’,default).

succ2(M,N,P,M’,N’,P’,default) :-
lt2(M,N,P,M’,N’,P’,default),
not notsucc2(M,N,P,M’,N’,P’,default),
not remove2(M,N,P,default).
not remove2(M’,N’,P’’,default).

notinf2(M,N,P,default) :-
lt2(M’,N’,P’,M,N,P,default),
not remove2(M’,N’,P’,default).

inf2(M,N,P,default) :-
ans2(M,N,P,default),
not notinf2(M,N,P,default),
not remove2(M,N,P,default).

anso2(M,N,P,default,1) :- inf2(M,N,P,default).
anso2(M,N,P,default,O) :-

anso2(M’,N’,P’,default,O’),
succ2(M’,N’,P’,M,N,Pdefault),
O = O’ + 1.

ans1(N,default) :- anso2(M,N,P,default,O), 2<O, O<=2+1.

The query delivers the following answer:

{ ans1("Bob",default) }

Note that here we also see an example with the projection of the SELECT clause.

