
TECHNICAL

R E P O R T

Institut für Informationssysteme

Abteilung Datenbanken und

Artificial Intelligence

Technische Universität Wien

Favoritenstr. 9

A-1040 Vienna, Austria

Tel: +43-1-58801-18403

Fax: +43-1-58801-18493

sekret@dbai.tuwien.ac.at

www.dbai.tuwien.ac.at
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Abstract. To study mechanisms common across a variety of preference formalisms, we
introduce a novel abstract preference framework. We use that framework to study strong
equivalence in preference formalisms, a version of equivalence that guarantees semantic-
preserving replacements of parts of preference theories. To this end we identify abstract
postulates in the language of preference frameworks, capturing natural semantic properties
of preferences, and show that they lead to characterizations, applicable in many practical
settings. In a similar way, we study the separability of constraints and preferences. Pref-
erence languages have to capture constraints on the domain of interest that give rise to
intended outcomes, and preferences that describe what is desirable. In many preference
formalisms these two objectives are clearly separated, in some they are not. We identify
abstract postulates that guarantee separability of a preference formalism and lead to its
“separated” variant.
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1 Introduction
The literature on preferences and preference formalisms is vast; the collection of articles edited by
Goldsmith and Junker [10] and the monograph by Kaci [12] provide good overviews and are ex-
cellent sources of references. The main objectives of the area are to design expressive yet intuitive
languages to model preferences, and to characterize the notions of optimality they define. Recently,
researchers identified another fundamental problem related to preference languages, that of char-
acterizing various notions of equivalence of preference theories. A particularly important one is
strong equivalence [9]. Strong equivalence guarantees semantic-preserving replacements of parts
of preference theories, the so-called replacement property, and is fundamental for understanding
preference rewriting and modularity.

Preference formalisms are inherently nonmonotonic, that is, additional preferences can add to
the set of optimal outcomes and not only remove from them. Consequently, they figured promi-
nently in the studies of nonmonotonic logics [6]. Faber et al. [9] observed that as in other non-
monotonic formalisms, the standard notion of equivalence, requiring that two theories have the
same preferred outcomes, is too weak to guarantee the replacement property. Building on earlier
work on strong equivalence of logic programs with the answer-set semantics [13], Faber et al. [9]
introduced and studied strong equivalence of preference theories in the language of answer-set
optimization (ASO) problems.

Our goal is to identify general principles behind strong equivalence in order to extend the
results of Faber et al. [9] to other preference formalisms. The main challenge is the vast diversity of
preference formalisms. To overcome it, we propose the notion of an abstract preference framework
and study strong equivalence in that language.

Preference languages have to capture two phenomena: (i) physical and logical constraints on
the domain of interest that must be obeyed — they give rise to intended or feasible outcomes; and
(ii) preferences that describe what is desirable (but not absolutely necessary) — they are employed
to select out of the intended outcomes the most preferred or desirable ones. The distinction be-
tween the two is often explicit in the language, such that different constructs specify constraints
and preferences, and preference theories are pairs consisting of a theory in a “pure” constraint
formalism and another theory in a “pure” preference one. Following the terminology proposed
by Faber et al. [9], we refer to these two components as generators and selectors, respectively.
Examples of such preference systems include logic programs with optimization statements [5, 15],
ASO problems [9], and formalisms obtained by extending common preference languages such as
CP-nets with a constraint language [1].

However, in other languages such a distinction is less clear. Theories are built of statements that
combine constraints with preferences in ways that make it hard to separate their effects. Examples
of such languages include prioritized versions of logic programming and default logic [3, 6] and
logic programs with ordered disjunctions (LPODs) [4]. In such formalisms, one can define the
concepts of a generator and a selector. The problem is how to represent an arbitrary theory as a
pair consisting of a generator and a selector, and whether such a “separation” is even possible. The
preference framework that we introduce here provides a setting that encompasses both types of
preference languages and allows us to study the question of “separability” in abstract terms.
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The concepts of generator and selector theories suggest several forms of strong equivalence.
We say that preference theories x, y are strongly equivalent (strongly generator equivalent, strongly
selector equivalent) if for every preference (generator, selector) theory z, the extensions of x and
of y with z have the same semantics, that is, the same preferred (or optimal) outcomes. The main
objective when studying strong equivalence is to find characterizations which do not refer to z and
can be stated entirely in terms of theories x and y being compared. Such characterizations are
known for nonmonotonic logics [13, 16] and for some specific preference formalisms [7, 8, 9].
By imposing abstract postulates on the semantics of preference frameworks, we obtain the result
already anticipated by Faber et al. [9], namely that for many preference formalisms the charac-
terization of strong equivalence is fully determined by characterizations of the simpler notions of
strong generator and strong selector equivalence. Under some additional postulates on preferences
we also obtain a natural abstract characterization of strong selector equivalence.

The main contributions of our paper are as follows:

• We introduce the notion of an abstract preference framework. Abstract preference frame-
works make weak syntactic assumptions and their semantics is specified in terms of intended
outcomes and preference preorders.

• We introduce abstract generator and selector frameworks for describing constraints and pref-
erences independently of each other. We use these notions to define separated abstract pref-
erence frameworks which, speaking informally, are the products of generator and selector
frameworks.

• For general abstract preference frameworks we study the problem of their separability, that
is representability by means of a separated framework, and provide sufficient conditions to
guarantee that property.

• We characterize strong equivalence in separated preference frameworks in terms of char-
acterizations of strong equivalence in generator and selector frameworks. We then lift the
results to the separable case. The results apply to all preference formalisms which are (sep-
arable) instantiations of our framework.

• We illustrate the notion of separability by showing that logic programs with ordered disjunc-
tion are separable and, therefore, in principle, admit a simpler, separated representation.

2 Abstract Preference Frameworks
We represent preference theories by elements from some set L. We make no assumptions on the
syntax of preference theories. However, we allow two preference theories to be combined into
a single one. We denote that theory “conjunction” (or “union”) operation by the symbol ∧. We
impose on ∧ the properties of commutativity (the order in which the theories to be combined are
listed should not matter), associativity (if more than two theories are to be combined, the order
in which ∧ is applied should not matter), and idempotence (combining a theory with itself should
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not change the meaning of the theory). We also assume the existence of a preference theory,
denoted by >, that when conjoined with any other preference theory, does not change the meaning
of the latter (that is, does not impose any constraints and does not distinguish between any two
outcomes). This is modeled by assuming that> is the unit element of ∧. In preference formalisms
considered in the literature, preference theories are typically represented as sets of “elementary”
preference formulas. In such cases, L is the powerset of the set of preference formulas, the union
operator plays the role of ∧ and the empty theory that of >. All such cases fall under the scope of
our abstract representation. Examples include the penalty and possibilistic logics [12], answer set
optimization [9], and general CP-nets [17, 11].

An algebraic structure L = 〈L,∧,>〉 with the properties we enumerated is a bounded meet
semilattice. Bounded meet semilattices, for simplicity referred to from now on just as semilat-
tices (as we do not consider any other semilattices here), arguably represent the weakest abstract
desiderata on the space of preference theories. Semilattices can equivalently be thought of as par-
tially ordered sets that have a greatest element and in which every finite set has a greatest lower
bound: the relation � defined by x � y if x ∧ y = x is such a partial order.

Since we do not adopt any syntactic assumptions on preference theories, we also do not make
any assumptions about the nature of outcomes. We simply assume that they are elements of some
set I of all possible outcomes. To reflect the fact that preference theories typically encompass
both constraints and preferences, we specify the semantics of preference theories by means of two
functions. The first one, ι, assigns to each preference theory x its set of feasible outcomes ι(x). It
models the constraints contained in x. However, the constraints show up only implicitly, we see
them through the effect they have on the outcomes — ι(x) consists precisely of those outcomes
that satisfy all the constraints. The second function,≥, assigns to x the preorder≥x implied by the
preferences in x. That preorder specifies the concept of desirability represented by x. If outcomes
α, β ∈ I satisfy α ≥x β, then α is at least as desirable as β. The preferences in x are, again,
implicit, as is the mechanism by which they are combined to yield the preorder ≥x.

These considerations lead us to the following definition of an abstract preference framework.

Definition 1. An abstract preference framework (or just a preference framework) is a quadruple
σ = 〈L, I, ι,≥〉, where L = 〈L,∧,>〉 is a semilattice of preference theories; I is the space of
outcomes; ι is a function that assigns to each x ∈ L a set ι(x) ⊆ I of feasible (or intended)
outcomes for x; and ≥ is a function that assigns to each x ∈ L a preorder ≥x on I (a binary
relation that is reflexive and transitive).

The preorder ≥x gives rise to its strict version >x. For every outcomes α, β ∈ I, we define
α >x β if α ≥x β and β 6≥x α, and read α >x β as “α is strictly more desirable than β in a
preference theory x.” For �∈ {>,≥} and S ⊆ I, we also use �S for the restriction of � to S.

Let σ = 〈L, I, ι,≥〉 be a preference framework. For every x ∈ L, we define the set of optimal
outcomes for x:

π(x) = {α ∈ ι(x) | for every β ∈ ι(x), β 6>x α}.

The function π assigning optimal outcomes to preference theories determines the semantics of σ.
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In some situations, we consider optimality wrt a preorder ≥x but in the context of a set S of
outcomes other than ι(x). In such cases we use the notation

πS(x) = {α ∈ S | for every β ∈ S, β 6>x α}.

Generators and Selectors. Preference theories typically combine constraint and preference com-
ponents in a non-trivial way. Some preference theories can however be regarded as concerned ex-
clusively with just one of these two aspects. We thus define for a preference framework 〈L, I, ι,≥〉
its generator theories Lg, and its its selector theories Lπ as

1. Lg = {x ∈ L | for every y ∈ L, ≥y∧x=≥y},

2. Lπ = {x ∈ L | for every y ∈ L, ι(y ∧ x) = ι(y)}.

Elements in Lg (Lπ, respectively) can be regarded as concerned purely with constraints (prefer-
ences, respectively) as they do not affect preferences (constraints, respectively) when conjoined
with any other preference theory.

In any preference framework 〈L, I, ι,≥〉, since> is the unit element of∧,> ∈ Lg and> ∈ Lπ.
Moreover, for every y, z ∈ Lg,

≥x∧(y∧z)=≥(x∧y)∧z=≥x∧y=≥x

and for every y, z ∈ Lπ,

ι(x ∧ (y ∧ z)) = ι((x ∧ y) ∧ z) = ι(x ∧ y) = ι(x).

Thus, both Lg and Lπ are closed under ∧. It follows that 〈Lg,∧,>〉 and 〈Lπ,∧,>〉 are semi-
lattices and, in fact, sub-semilattices of 〈L,∧,>〉. They can be viewed as “one-dimensional”
preference frameworks concerned with generating intended outcomes, and with selecting among
all outcomes those optimal wrt preferences. One of the key questions, which we discuss later in
the paper, is whether a preference framework is “separable,” that is, can be reconstructed from its
one-dimensional “generator” and “selector” frameworks (or of some sub-frameworks thereof).
(Non)Monotonicity. A semantics s on preference theories, that is, any function from L to I, for
instance, ι or π, is monotone if for every x, z ∈ L, s(x ∧ z) ⊆ s(x) (equivalently, if for every
x, y ∈ L such that x � y, s(x) ⊆ s(y)). In general, (the semantics of) preference formalisms are
not monotone as new constraints or preferences (or both) may “promote” non-optimal outcomes to
become optimal. New constraints may render outcomes that were more desirable no longer feasible
and hence, eliminate them from the optimization process; new preferences may put additional
importance on some non-optimal outcomes, pushing them up on the scale of desirability.

If only the preferences behave nonmonotonically, our framework is already sufficient. How-
ever, in general, we require one further concept determined by ι. An outcome α ∈ I is potentially
intended for a preference theory x ∈ L if it is an intended outcome of x ∧ z, for some z ∈ L (be-
comes intended under some extension of x). We denote the set of all potentially intended outcomes
of x by µ(x):

µ(x) =
⋃
y∈L

ι(x ∧ y).
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Clearly, for every x ∈ L, ι(x) ⊆ µ(x) (since x∧> = x). One can also check that if ι is monotone
then ι(x) = µ(x) (and then does not need not to be explicitly introduced).
Notions of Equivalence. The fact that preference theories are not monotonic has an important
consequence when considering two preference theories as equivalent. The first concept that comes
to mind is based on the comparison of optimal outcomes: two preference theories x and y are
equivalent, written x ≡ y, if they have the same optimal outcomes, that is, if π(x) = π(y). How-
ever, extending x and y with new information z may “promote” to the level of optimality outcomes
that (without z in the picture) were below optimal ones, a manifestation of nonmonotonicity of
preference formalisms discussed above. Hence, π(x) = π(y) does not necessarily imply that
π(x ∧ z) = π(y ∧ z). In other words, the equivalence of x and y is too weak to guarantee mutual
replaceability of x and y wrt common new information.

Consequently, an alternative concept of equivalence, based directly on the idea of replaceability
is of more interest. Preference theories x and y are strongly equivalent, written x ≡s y, if for every
preference theory z, x∧ z ≡ y∧ z, that is, π(x∧ z) = π(y∧ z). We already mentioned the concept
of separability of a preference framework into its generator and selector components. These give
rise for two further definitions: preference theories x and y are strongly g-equivalent, in symbols
x ≡gs y, if for each z ∈ Lg, π(x ∧ z) = π(y ∧ z), and strongly π-equivalent, in symbols x ≡πs y, if
for each z ∈ Lπ, π(x∧z) = π(y∧z). In this paper we study characterizations of strong equivalence
in the abstract setting of preference frameworks, and show that strong equivalence of preference
theories can be understood in terms of the “one-dimensional” versions of strong equivalence just
introduced.

3 Separated Preference Frameworks
We start with the case of preference frameworks in which the separation between constraints and
preferences is explicit. Most of the current preference formalisms are or can be extended to be in
that form. We start by defining “one-dimensional” preference frameworks which are concerned
only with constraints, resp. with preferences.

A generator framework is a triple σg = 〈G, I, ι〉, where G = 〈G,∧,>〉 is a semilattice, I is a
set of outcomes and ι is a function assigning to each g ∈ G a set ι(g) ⊆ I of intended outcomes
for g. Since the concept of a potentially intended outcome in preference frameworks depends only
on the function ι, it can also be defined for generator frameworks where, as before we write µ(x)
for the set of all potentially intended outcomes of x ∈ G. For x, y ∈ G, we write (with some
abuse of notation) x ≡s y to denote that for every z ∈ G, ι(x ∧ z) = ι(y ∧ z) and refer to
this relation as strong equivalence in σg. Strong equivalence implies equivalence wrt potentially
intended outcomes.

Proposition 1. Let G = 〈G,∧,>〉 be a generator framework. For every x, y ∈ G, if x ≡s y then
µ(x) = µ(y).

Proof: For every z ∈ G we have ι(x∧ z) = ι(y ∧ z). Thus, the claim follows directly from the
definition of the function µ. 2
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A selector framework is a triple σπ = 〈P , I,≥〉, where P = 〈P,∧,>〉 is a semilattice, I is a
set of outcomes and≥ is a function assigning to each p ∈ P a preorder≥p on I. For p, q ∈ P , and
S ⊆ I we write p ≡s,S q if for every r ∈ P , πS(p ∧ r) = πS(q ∧ r) and refer to this relation as
strong equivalence in σπ relative to S.

From a generator framework σg = 〈G, I, ι〉 and a selector framework σπ = 〈P , I,≥〉, we can
build a preference framework σg × σπ = 〈L, I, ι′,≥′〉 by setting:

1. L = G × P , that is, L is the product of G and P (L = G × P ; for every (x, p), (y, q) ∈ L,
(x, p) ∧ (y, q) = (x ∧ y, p ∧ q); and the top element of L is (>,>))

2. for every (x, p) ∈ L, ι′((x, p)) = ι(x) and ≥′(x,p)=≥p .

We call preference frameworks of that type separated. To simplify the notation we use the same
symbols for the corresponding concepts coming from different semilattices. Thus, we write ι for ι′

and ≥ for ≥′. We also often write ι(x, p) for ι((x, p)) and similarly µ(x, p) for µ((x, p)). Finally,
we note that for every (x, p) ∈ L,

µ(x, p) =
⋃

(y,q)∈L

ι((x, p) ∧ (y, q)) =
⋃

(y,q)∈L

ι(x ∧ y, p ∧ q)

=
⋃
y∈G

ι(x ∧ y) = µ(x).

(Here µ on the left-hand side denotes the “µ”-function for L and the one on the right-hand side the
“µ”-function for G.)

To obtain useful characterizations of strong equivalence in separated frameworks, we impose
some additional assumptions on generator and selector frameworks. These assumptions are natural
and hold for many specific formalisms.
The filter property. Let σg = 〈G, I, ι〉 be a generator framework. An element y ∈ G is a filter if
for every x ∈ G, ι(x ∧ y) = ι(x) ∩ µ(y). A preference framework σg satisfies the filter property if
for every outcome α ∈ I, there is a filter y such that µ(y) = {α}.
The generator promotion (GP) property. A generator framework σg = 〈G, I, ι〉 satisfies the
generator promotion property if for every x, y ∈ G and every α, β ∈ µ(x) ∩ µ(y), there is z ∈ G
such that ι(x ∧ z) = ι(y ∧ z) = {α, β}.

All standard constraint satisfaction formalisms, including propositional logic and answer set
programming (with choice rules), satisfy both properties.

The first result provides conditions characterizing the property (x, p) ≡gs (y, q). We note that
the statement claiming that µ(x) = µ(y) is justified (cf. Proposition 1).

Theorem 2. Let σg × σπ be a separated preference framework obtained from σg = 〈G, I, ι〉 and
σπ = 〈P , I,≥〉, and let σg satisfy the filter and the GP properties. For every x, y ∈ G and
p, q ∈ P , (x, p) ≡gs (y, q) if and only if x ≡s y (in σg) and >µ

p=>
µ
q , where µ is the common value

of µ(x) and µ(y).
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Proof: (⇐) Let us consider any z ∈ G. Since x ≡s y, ι(x∧z) = ι(y∧z), and, by the definition,

ι(x ∧ z, p) = ι(x ∧ z) = ι(y ∧ z) = ι(y ∧ z, q).

Denoting the common value of these four sets by ι we have ι ⊆ µ(x) = µ. Since >µ
p=>

µ
q , it

follows that >ι
(x∧z,p)=>

ι
(y∧z,q). Thus, π(x ∧ z, p) = π(y ∧ z, q).

Next, let (z, s) ∈ Lg. Then,

≥p∧s=≥(x,p)∧(z,s)=≥(x,p)=≥p .

In a similar way, we show>q∧s=>q. Since π(x∧z, p) = π(y∧z, q), π(x∧z, p∧s) = π(y∧z, q∧s).
Since (z, s) was an arbitrary element of Lg, (x, p) ≡gs (y, q) follows.
(⇒) Since (x, p) ≡gs (y, q), and since for every z ∈ G, (z,>) ∈ Lg, it follows that for every
z ∈ G, ι(x ∧ z) = ι(y ∧ z). Indeed, if α ∈ ι(x ∧ z) \ ι(y ∧ z), then by the filter property, there
is a filter t such that µ(t) = {α}. It follows that ι(x ∧ z ∧ t) = {α} and ι(y ∧ z ∧ t) = ∅.
Consequently, ι(x ∧ z ∧ t, p) = {α} and ι(y ∧ z ∧ t, q) = ∅. Thus, trivially, π(x ∧ z ∧ t, p) = {α}
and π(y ∧ z ∧ t, q) = ∅. Since z ∧ t ∈ G, this is a contradiction with (x, p) ≡gs (y, q). It follows
that ι(x ∧ z) ⊆ ι(y ∧ z). The converse inclusion follows by the symmetry argument and implies
ι(x ∧ z) = ι(y ∧ z). As z is an arbitrary element form G, x ≡s y (in σg).
By the property just proved and Proposition 1, we have µ(x) = µ(y). Let µ be the common value
of these two sets. If >µ

p 6=>µ
q , then there are α, β ∈ µ such that (i) α >p β and α 6>q β, or (ii)

α 6>p β and α >q β. Wlog we assume the first alternative. By the GP property, there is z ∈ G such
that ι(x ∧ z) = ι(y ∧ z) = {α, β}. Thus, ι(x ∧ z, p) = ι(y ∧ z, q) = {α, β}. Since >µ

p=>
µ
(x∧z,p)

and >µ
q=>

µ
(y∧z,q), it follows that α >(x∧z,p) β and α 6>(y∧z,q) β. Consequently, β /∈ π(x∧ z, p) and

β ∈ π(y ∧ z, q), a contradiction. 2

This result shows that strong equivalence wrt changing generators in a separated framework
can be characterized by the strong equivalence in the generator framework, and a natural condition
on the preference orders. An interesting aspect here is that G×{>} is (in general) a proper subset
of Lg. Nevertheless, ≡gs , which is defined relative to elements in Lg can be characterized in terms
of ≡s in σg, which is defined relative to elements in G.

Next, we consider strong equivalence wrt changing selectors. As before, we introduce an
additional assumption.
The selector promotion (SP) property. For every α, β ∈ I and for every p, q ∈ P , there is t ∈ P
such that (i) α >s β if and only if α >s∧t β, where s ∈ {p, q}; (ii) for every γ ∈ I \ {α, β},
γ 6>s∧t α, β, where s ∈ {p, q}.

We note that the SP property is not particularly restrictive. It holds for many preference for-
malisms, in particular, for the selectors used by ASO problems [9], as well as in preference for-
malisms based on some forms of utility such as the penalty and possibilistic logics.

Theorem 3. Let σg × σπ be a separated preference framework obtained from σg = 〈G, I, ι〉
and σπ = 〈P , I,≥〉, and let σπ satisfy the SP property. For every x, y ∈ G and p, q ∈ P ,
(x, p) ≡πs (y, q) if and only if ι(x) = ι(y) and p ≡s,ι q (in σπ) with ι the common value of ι(x) and
ι(y).
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Proof: (⇐) Let s ∈ P . First, we note that

ι(x, p ∧ s) = ι(x) = ι = ι(y) = ι(y, q ∧ s).

Second, we obeserve that πι(p ∧ s) = πι(q ∧ s). Since

≥(x,p∧s)=≥p∧s and ≥(y,q∧s)=≥q∧s,

the equality π(x, p ∧ s) = π(y, q ∧ s) follows.
Now, let (z, s) ∈ Lπ. It follows that

ι(x) = ι(x, p) = ι((x, p) ∧ (z, s)) = ι(x ∧ z, p ∧ s) = ι(x ∧ z).

Thus, ι(x) = ι(x∧z) and, similarly, ι(y) = ι(y∧z). Since π(x, p∧s) = π(y, q∧s), π(x∧z, p∧s) =
π(y∧z, q∧s) and, consequently, π((x, p)∧(z, s)) = π((y, q)∧(z, s)). Since (z, s) was an arbitrary
element of Lπ, (x, p) ≡πs (y, q) follows.
(⇒) Let (x, p) ≡πs (y, q). Since for every s ∈ P , (>, s) ∈ Lπ, for every s ∈ P we also have
π(x, p ∧ s) = π(y, q ∧ s). Let us assume that for some α ∈ I, α ∈ ι(x) \ ι(y). By the SP property
(applied to α and to β = α), there is s ∈ P such that α ∈ πI(p ∧ s). Thus, α ∈ π(x, p ∧ s). Next,
we note that α /∈ ι(y) and so, α /∈ ι(y, q∧s). It follows that α /∈ π(y, q∧s). This is a contradiction.
Thus, ι(x) ⊆ ι(y). The converse inclusion holds by symmetry and so we have ι(x) = ι(y).

Let ι be the common value of ι(x) and ι(y). Let s ∈ P and let us assume that there is α ∈ ι
such that α ∈ πι(p ∧ s) \ πι(q ∧ s). Since

≥(x,p∧s)=≥p∧s and ≥(y,q∧s)=≥q∧s,

it follows that α ∈ π(x, p ∧ s) \ π(y, q ∧ s), a contradiction. Thus, πι(p ∧ s) ⊆ πι(q ∧ s). The
converse inclusion holds by symmetry and so πι(p ∧ s) = πι(q ∧ s). Thus, p ≡s,ι q holds. 2

This result shows that strong equivalence wrt changing selectors in a separated framework, can
be characterized by the strong equivalence in the selector framework relative to a certain set of
outcomes (the set of intended outcomes for x and y). As before, it is important to stress a non-
trivial aspect of the characterization that comes from the fact that {>} × P is in general a proper
subset of Lπ.

Finally, we present results concerning the “combined” case of strong equivalence in a separated
framework.

Theorem 4. Let σg × σπ be a separated preference framework obtained from σg = 〈G, I, ι〉 and
σπ = 〈P , I,≥〉, and let σg satisfy the filter and the GP properties and σπ satisfy the SP property.
For every x, y ∈ G and p, q ∈ P , (x, p) ≡s (y, q) if and only if x ≡s y (in σg), and p ≡s,µ q (in
σπ), where µ is the common value of µ(x) and µ(y).

Proof: (⇐) Let z ∈ G and s ∈ P . We have to show that π((x, p) ∧ (z, s)) = π((y, q) ∧ (z, s)).
First, we note that

ι((x, p) ∧ (z, s)) = ι(x ∧ z) = ι(y ∧ z) = ι((y, q) ∧ (z, s)).
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The “middle” equality follows from the assumption x ≡s y. Next, let us assume that for some α ∈ ι
(we write ι for the common value of ι(x∧z) and ι(y∧z)), α ∈ π((x, p)∧(z, s))\π((y, q)∧(z, s)).
It follows that for some β ∈ ι, β >(y,q)∧(z,s) α and β 6>(x,p)∧(z,s) α. Thus, β >q∧s α and β 6>p∧s α.

Clearly, α, β ∈ µ. Let t ∈ P be the element guaranteed by the SP property for α, β, p ∧ s
and q ∧ s. Then, β >q∧s∧t α, β 6>p∧s∧t α, and for every γ 6= α, β, γ 6>p∧s∧t α. Thus, α /∈
πµ(q ∧ s ∧ t) and α ∈ πµ(p ∧ s ∧ t). Since s ∧ t ∈ P , this is a contradiction. It follows that
π((x, p) ∧ (z, s)) ⊆ π((y, q) ∧ (z, s)). The converse inclusion follows by the symmetry argument.
Thus, π((x, p) ∧ (z, s)) = π((y, q) ∧ (z, s)).
(⇒) Since (x, p) ≡s (y, q), (x, p) ≡gs (y, q) follows. Thus, by Theorem 2, x ≡s y. It follows now
by Proposition 1 that µ(x) = µ(y). We set µ = µ(x) = µ(y). To complete the proof, we need to
show that p ≡s,µ q.

To this end, let s ∈ P . Let us assume that for some α ∈ µ, α ∈ πµ(p ∧ s) \ πµ(q ∧ s). Since
α /∈ πµ(q ∧ s), there is β ∈ µ such that β >q∧s α. By the GP property, there is z such that α, β ∈
ι(x∧ z). Since x ≡s y, ι(x∧ z) = ι(y∧ z). Thus, α, β ∈ ι(y∧ z), too. Since ι(x∧ z) ⊆ µ(x) = µ,
α ∈ π(x ∧ z, p ∧ s) = π((x, p) ∧ (z, s)). Moreover, β >q∧s α implies β >(y∧z,q∧s) α. Since
α, β ∈ ι(y∧z), α /∈ π((y, q)∧ (z, s)). Thus, π((x, p)∧ (z, s)) 6= π((y, q)∧ (z, s)), a contradiction.
It follows that πµ(p ∧ s) ⊆ πµ(q ∧ s). The converse inclusion follows by the symmetry argument
and so, πµ(p ∧ s) = πµ(q ∧ s). Since s ∈ P is arbitrary, p ≡s,µ q follows. 2

This result shows that strong equivalence in a separated framework can be characterized by
the strong equivalence of the generator components and the strong equivalence of the selector
components relative to the set of potentially intended outcomes for x and y. Potentially intended
outcomes are relevant here (and not intended outcomes, as in the case of Theorem 3) because
now generators can vary too and that may make any potentially intended outcome intended in the
extended theory.

4 Separable Preference Frameworks
A preference framework σ = 〈L, I, ι,≥〉 gives rise to sub-semilattices Lg = 〈Lg,∧,>〉 and
Lπ = 〈Lπ,∧,>〉, and to two related preference frameworks:

1. σ∗ = 〈L∗, I, ι,≥〉, where L∗ = {xg ∧ xπ : xg ∈ Lg, xπ ∈ Lπ}, and ι and ≥ are the
restrictions to L∗ of the corresponding functions in σ; it is easy to verify thatL∗ is a (bounded
meet) semilattice and a sub-semilattice of L

2. σ×, the separated framework σg×σπ obtained from the generator framework σg = 〈Lg, I, ι〉
and the selector framework σπ = 〈Lπ, I,≥〉.

The strong equivalence concepts in σ× can be expressed in terms of strong equivalence in σg
and σπ as discussed in the previous section. We will show that these characterizations extend to
strong equivalence notions in σ∗ and σ. The first result relates strong equivalence in preference
frameworks σ× and σ∗. Regarding items (2) and (3) in Theorems 5 and 6 below, we note that for
elements in L∗, the relations ≡gs and ≡πs in σ and σ∗ coincide, as both are defined relative to the
same sets of elements, Lg and Lπ, respectively.
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Theorem 5. For every xg, yg ∈ Lg and xπ, yπ ∈ Lπ:

1. xg ∧ xπ ≡s yg ∧ yπ (in σ∗) if and only if (xg, xπ) ≡s (yg, yπ)

2. xg ∧ xπ ≡gs yg ∧ yπ if and only if (xg, xπ) ≡gs (yg, yπ)

3. xg ∧ xπ ≡πs yg ∧ yπ if and only if (xg, xπ) ≡πs (yg, yπ).

Proof: We prove (1) only. The other parts can be proved by providing similar sequences of
identities.

Let z be an arbitrary element of L∗. Then, z = zg ∧ zπ for some zg ∈ Lg and zπ ∈ Lπ. We
have to show that

π(xg ∧ xπ ∧ zg ∧ zπ) = π(yg ∧ yπ ∧ zg ∧ zπ)

if and only if

π((xg, xπ) ∧ (zg, zπ)) = π((yg, yπ) ∧ (zg, zπ)).

We have:

1. ι(xg ∧ xπ ∧ zg ∧ zπ) = ι(xg ∧ zg)

2. ι(yg ∧ yπ ∧ zg ∧ zπ) = ι(yg ∧ zg)

3. ι((xg, xπ) ∧ (zg, zπ)) = ι(xg ∧ zg)

4. ι((yg, xπ) ∧ (zg, zπ)) = ι(yg ∧ zg)

5. ≥xg∧xπ∧zg∧zπ=≥xπ∧zπ

6. ≥yg∧yπ∧zg∧zπ=≥yπ∧zπ

7. ≥(xg ,xπ)∧(zg ,zπ)=≥xπ∧zπ

8. ≥(yg ,xπ)∧(zg ,zπ)=≥yπ∧zπ .

It follows that π(xg∧xπ∧zg∧zπ) = π((xg, xπ)∧ (zg, zπ)) and π(yg∧yπ∧zg∧zπ) = π((yg, yπ)∧
(zg, zπ)), which implies the equivalence. 2

Theorem 5 implies that to relate strong equivalence in σ× and σ, it suffices to relate strong
equivalence in σ∗ and σ. To this end, we need additional concepts and assumptions.

A preference framework σ = 〈L, I, ι,≥〉 is g-complete, if there is a homomorphism (·)g from
L to Lg (that is, for every x ∈ L, x 7→ xg ∈ Lg) such that for every x ∈ L, ι(x) = ι(xg). A
preference framework 〈L, I, ι,≥〉 is π-complete, if there is a homomorphism (·)π from L to Lπ

(that is, for every x ∈ L, x 7→ xπ ∈ Lπ) such that for every x ∈ L, ≥x=≥xπ . A preference
framework 〈L, I, ι,≥〉 is separable if it is both g- and π-complete and if:

1. the homomorphism (·)g is the identity on Lg
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2. the homomorphism (·)π is the identity on Lπ

3. for every x ∈ L, (xg)π ∈ Lg and (xπ)g ∈ Lπ.

We now define a function (·)∗ : L→ L (that is, for every x ∈ L, x 7→ x∗ ∈ L) by x∗ = xg∧xπ.

Theorem 6. Let σ = 〈L, I, ι,≥〉 be a separable preference framework. For every x, y ∈ L:

1. x ≡s y (in σ) if and only if x∗ ≡s y∗ (in σ∗)

2. x ≡gs y (in σ) if and only if x∗ ≡gs y∗

3. x ≡πs y (in σ) if and only if x∗ ≡πs y∗.

Proof: We observe that for every x ∈ L, π(x) = π(x∗). Indeed,

ι(x) = ι(xg) = ι(xg ∧ xπ) = ι(x∗). (1)

It follows that when computing π(x) and π(x∗), the same space of outcomes is considered. More-
over,

≥x=≥xπ=≥xg∧xπ=≥x∗ . (2)

Thus, the same preorder is used in each case, too and so, the same optimal elements are specified.
Next, we observe that for every z ∈ L∗, z∗ = z ∧ w, where w ∈ Lg ∩ Lπ. Indeed, there are

u ∈ Lg and v ∈ Lπ such that z = u ∧ v. Thus,

z∗ = (u ∧ v)g ∧ (u ∧ v)π = ug ∧ uπ ∧ vg ∧ vπ.

Since (·)g and (·)π are identities on Lg and Lπ, respectively, z∗ = u ∧ v ∧ uπ ∧ vg. Setting
w = uπ ∧ vg, we get z∗ = z ∧w. Moreover, uπ ∈ Lg ∩Lπ and vg ∈ Lg ∩Lπ. Thus, w ∈ Lg ∧Lπ.

Finally, we note that for every x ∈ L and w ∈ Lg ∩ Lπ, π(x ∧ w) = π(x).

(1) Let us assume that x ≡s y (in σ) and let z ∈ L∗. Then, π(x ∧ z) = π(y ∧ z) and z = z∗ ∧ w,
where w ∈ Lg ∩ Lπ. Consequently,

π(x∗ ∧ z) = π(x∗ ∧ z ∧ w) = π(x∗ ∧ z∗) = π((x ∧ z)∗)
= π(x ∧ z) = π(y ∧ z) = π((y ∧ z)∗)
= π(y∗ ∧ z∗) = π(y∗ ∧ z ∧ w) = π(y∗ ∧ z)

and x∗ ≡s y∗ (in σ∗) follows.
To prove the converse implication, let z ∈ L. Then z∗ ∈ L∗ and, since x∗ ≡s y∗ (in σ∗),

π(x∗ ∧ z∗) = π(y∗ ∧ z∗). Thus, we have

π(x ∧ z) = π((x ∧ z)∗) = π(x∗ ∧ z∗) = π(y∗ ∧ z∗)
= π((y ∧ z)∗) = π(y ∧ z)

12



and x ≡s y (in σ) follows.
(2) Let z ∈ Lg. Then z∗ = z ∧ w, for some w ∈ Lg ∩ Lπ (since Lg ⊆ L∗). Thus,

π(x ∧ z) = π(x ∧ z ∧ w) = π((x ∧ z)∗) = π(x∗ ∧ z∗)
= π(x∗ ∧ z ∧ w) = π(x∗ ∧ z).

Similarly, we show that π(y ∧ z) = π(y∗ ∧ z). Consequently, the claim follows.
(3) Let z ∈ Lπ. Then z∗ = z ∧ w, for some w ∈ Lg ∩ Lπ (since Lπ ⊆ L∗). Thus,

π(x ∧ z) = π((x ∧ z)∗) = π(x∗ ∧ z∗)
= π(x∗ ∧ z ∧ w) = π(x∗ ∧ z).

Similarly, π(y ∧ z) = π(y∗ ∧ z). Consequently, the claim follows. 2

Putting Theorems 5 and 6 together with earlier characterizations of strong equivalence in sep-
arated frameworks, we obtain the following result of strong equivalence in separable frameworks.

Theorem 7. Let σ be a separable preference framework, such that the generator framework σg (of
σ×) satisfies the filter and the GP properties and the selector framework σπ (of σ×) satisfies the SP
property. Then

1. x ≡gs y if and only if xg ≡s yg (in σg) and >µ
xπ=>

µ
yπ , where µ is the common value of µ(x)

and µ(y)

2. x ≡πs y if and only if ι(x) = ι(y) and xπ ≡s,ι yπ (in σπ), where ι is the common value of
ι(x) and ι(y)

3. x ≡s y if and only if xg ≡s yg (in σg) and xπ ≡s,µ yπ (in σπ), where µ is the common value
of µ(x) and µ(y).

5 Characterizing Strong Equivalence in Selector Frameworks
Strong equivalence in formalisms for specifying constraints is well understood. In most cases, such
formalisms satisfy a strong monotonicity property that for every theories x and y, ι(x∧y) = ι(x)∩
ι(y). It is the case for propositional logic and for all standard constraint satisfaction languages.
That property implies that for every theories x and y, if ι(x) = ι(y) then for every theory z,
ι(x ∧ z) = ι(y ∧ z). That, in turn, implies that strong and classical equivalence coincide. The
situation is different in the formalisms in which the strong monotonicity property above does not
hold. Answer-set programming is a prominent example of that class of constraint systems. Strong
equivalence in answer set programming has been thoroughly investigated and characterizations of
its basic form and numerous variants are well known [13, 16]. These results can be used to replace
the condition “xg ≡s yg (in σg)” in Theorem 7 by more specific ones (depending on a constraint
formalism used).

We will now show that under some additional postulates on selector frameworks we can provide
an elegant characterization of strong equivalence in selector frameworks, too.
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The uniformity property. A selector framework σπ = 〈P , I,≥〉 satisfies the uniformity property
if for every p, q, s ∈ P , ≥p=≥q implies ≥p∧s=≥q∧s.
The conservative promotion (CP) property. For all outcomes α, β ∈ I and all preferences
p, q ∈ P such that α ≥p β and α 6≥q β there is a preference u ∈ P such that α >p∧u β and
α 6>q∧u β.

Both postulates hold for standard preference formalisms (for instance, the penalty and the
possibilistic logics), and ASO problems [9].

Theorem 8. Let σπ = 〈P , I,≥〉 be a selector framework satisfying the uniformity, CP and SP
properties. For every X ⊆ I and for every p, q ∈ P , p ≡s,X q if and only if ≥Xp =≥Xq .

Proof: (⇐) By the uniformity property, for every s ∈ P we have ≥Xp∧s=≥Xq∧s. Thus, πX(p ∧
s) = πX(q ∧ s) and p ≡s,X q follows.
(⇒) Let us assume that there are α, β ∈ X such that α ≥p β and α 6≥q β. By the CP property
there is u ∈ P such that α >p∧u β and α 6>q∧u β. Applying the SP property to α, β, p ∧ u and
q ∧ u, we let t ∈ P be such that (i) α >p∧u∧t β, α 6>q∧u∧t β, and (ii) for every γ ∈ X \ {α, β},
γ 6>s∧u∧t α, β, where s ∈ {p, q}. It follows that β /∈ πX(p ∧ u ∧ t) and β ∈ πX(q ∧ p ∧ q), a
contradiction.

Thus, if α ≥p β then α ≥q β. The converse implication follows by the symmetry argument.
Thus, ≥Xp =≥Xq . 2

This theorem can be used to replace the conditions “p ≡s,X q” and “xπ ≡s,X yπ” in the earlier
results with ≥Xp =≥Xq and ≥Xxπ=≥Xyπ , respectively (for the appropriate value of X).

6 Discussion
Our results on separated frameworks are broadly applicable, as they rely only on the weakest
assumptions on the structure of generator and selector theories. For instance, our results on sepa-
rated frameworks apply to ASO problems and yield characterizations for the class of “non-ranked”
problems obtained by Faber et al. ([9]; Corollary 5 and Corollary 14).

Our results on separable frameworks are also of interest. While preference frameworks that
are not explicitly separated are not common, some formalisms of that kind were indeed proposed
and studied. A prominent example is the formalism of logic programs with ordered disjunction
or LPODs [4] stemming from qualitative choice logic [2]. LPODs can be cast as a preference
framework and, moreover, this framework can be shown to be separable. We will now state these
results formally for a slight generalization of LPODs that allows for the use of so-called choice
rules [14], which are widely used in answer set programming.

An LPOD [4] is a finite set of rules. These rules can be ordered disjunction rules (od rules, for
short) of the form

p1 × · · · × pk ← pk+1, . . . , pm, not pm+1, . . . , not pn (3)

or choice rules of the form

{p1, . . . , pk} ← pk+1, . . . , pm, not pm+1, . . . , not pn (4)
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where (in both cases) 1 ≤ k ≤ m ≤ n, and each pi (1 ≤ i ≤ n) is an atom from a fixed,
suitably large universe U . We denote the positive body atoms of a rule r of form (3) or (4) by
body+(r) = {pk+1, . . . , pm}, the negative body atoms as body−(r) = {pm+1, . . . , pn}, body atoms
body(r) = body+(r) ∪ body−(r), head atoms head(r) = {p1, . . . , pk}, and for od rules the i-th
head atom as head i(r) = pi and head<i(r) = {p1, . . . , pi−1} (1 ≤ i ≤ k). We will occasionally
write rule bodies as body+(r), not body−(r).

An interpretation I ⊆ U satisfies an od rule r (I |= r) if I∩head(r) 6= ∅ whenever body+(r) ⊆
I , and I ∩ body−(r) = ∅. A choice rule is satisfied by all interpretations. A model of a program P
is an interpretation M that satisfies all of its rules.

The reduct rI , as defined in [8], of an od rule r with respect to an interpretation I is
{head i(r) ← body+(r)} if I ∩ (body−(r) ∪ head<i(r)) = ∅ and head i(r) ∈ I (i ≤ k);
rI = {headk(r) ← body+(r)} if I ∩ (body−(r) ∪ head(r)) = ∅ (where headk(r) is the last
head atom); and rI = ∅ otherwise. The reduct rI [14] of a choice rule r of the form (4) with
respect to an interpretation I is {p ← body+(r) | p ∈ head(r) ∩ I} if I ∩ body−(r) = ∅; and
rI = ∅ otherwise.

The reduct P I of an LPOD P is
⋃
r∈P r

I . An interpretation I is an answer set if I is the subset
minimal model of P I . The set of all answer sets of P is denoted by AS (P ).

An od rule r contributes to degree j in interpretation I (vI(r) = j) if body+(r) ⊆ I , body−(r)∩
I = ∅, head j(r) ∈ I , and head<j(r) ∩ I = ∅ (j ≤ k). If body+(r) * I or body−(r) ∩ I 6= ∅,
the rule is irrelevant and we set vI(r) = 1. If I 6|= r (body+(r) ⊆ I , body−(r) ∩ I = ∅, and
head(r) ∩ I = ∅), it is also irrelevant and vI(r) = 1. Choice rules contribute to degree 1 in all
interpretations. We denote by PI [j] the set of rules in an LPOD P that contribute to degree j in
interpretation I .

Given two interpretations I, J of an LPOD P , I >c
P J if there is a k such that |PI [k]| > |PJ [k]|,

and for all j < k, |PI [j]| = |PJ [j]|; I ≥cP J if I >c
P J or |PI [k]| = |PJ [k]| for all 1 ≤ k. An

interpretation I is a (card)-preferred answer set of an LPOD P if I ∈ AS (P ) and there is no
J ∈ AS (P ) such that J >c

P I .
Since od rules participate both in “generating” answer sets and in specifying the preference,

LPODs do not have an explicit separated nature. However, LPODs are separable. To show that,
we first note that LPODs give rise to a semilattice Lod = 〈Lod ,∪, ∅〉, where Lod is the set of all
LPODs over U , ∪ plays the role of ∧ and ∅ the role of >, and σod = 〈Lod , 2

U ,AS ,≥c〉 forms
the preference framework of LPODs under cardinality-based preferences. The notion of preferred
outcomes applied to σod matches exactly the definition of (card)-preferred answer sets.

We next provide characterizations of Lgod and Lπod , respectively. We start with necessary con-
ditions. For Lgod the first (simple) observation is that for such LPODs cardinalities of all degrees
must be equal for all interpretations.

Lemma 1. If P ∈ Lgod then for all interpretations I, J and all i ≥ 1, |PI [i]| = |PJ [i]|.

Proof. Assume that there is an i ≥ 0 such that |PI [i]| < |PJ [i]| holds for two interpretations I, J
(and for all k < i, |PI [i]| = |PJ [i]|). Then for Q = ∅ ∈ L we have I ≥cQ J but I 6≥cQ∪P J , hence
P 6∈ Lgod .

Next we show that rules in programs in Lgod must contribute to degree 1 in all interpretations.
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Lemma 2. If P ∈ Lgod then each rule r ∈ P contributes to degree 1 in all interpretations.

Proof. Consider the maximal-truth interpretation U , in which all atoms are true. Any rule con-
tributes to degree 1 in U : Choice rules contribute to degree 1 in all interpretations. For an od
rule, if its negative body is non-empty (n > m in (3)) then it contributes to degree 1 in U because
{pm+1, . . . , pn} ∩ U 6= ∅; otherwise {pk+1, . . . , pm} ⊆ U and p1 ∈ U , so it also contributes to
degree 1 in U . Therefore PU [1] = P , and PU [i] = 0 for all i > 0, and together with Lemma 1 the
result follows.

The next lemma states that the condition of Lemma 2 is also a sufficient condition for programs
in Lgod .

Lemma 3. If each rule in an LPOD P contributes to degree 1 in all interpretations, then P ∈ Lgod .

Proof. Given such an LPOD P and an arbitrary LPOD Q, we have that |(P ∪Q)I [1]| = |QI [1]|+
|(P \Q)I [1]| = |QI [1]|+ |(P \Q)| and |(Q ∪ P )I [i]| = |QI [i]| for any interpretation I . Consider
interpretations I, J such that I ≥cQ J . Case 1: |QI [1]| > |QJ [1]|, then also |(P ∪ Q)I [1]| =
|QI [1]|+ |(P \Q)| > |QJ [1]|+ |(P \Q)| = |(P ∪Q)J [1]|. Case 2: |QI [i]| > |QJ [i]| for some i > 1
and |QI [j]| = |QJ [j]| for all 1 ≤ j < i, then |(P ∪ Q)I [j]| = |QI [j]| = |QJ [j]| = |(P ∪ Q)J [j]|
for 1 < j < i, |(P ∪ Q)I [1]| = |QI [1]| + |(P \ Q)| = |QJ [1]| + |(P \ Q)| = |(P ∪ Q)J [1]|,
and |(P ∪ Q)I [j]| = |QI [j]| > |QJ [j]| = |(P ∪ Q)J [j]|. Case 3: |QI [i]| = |QJ [i]| for all
i ≥ 1, then |(P ∪ Q)I [1]| = |QI [1]| + |(P \ Q)| = |QJ [1]| + |(P \ Q)| = |(P ∪ Q)J [1]| and
|(P ∪Q)I [i]| = |QI [i]| = |QJ [i]| = |(P ∪Q)J [i]| for i > 1. So in all cases I ≥cP∪Q J . The other
direction is analogous.

Corollary 1. For an LPOD P , P ∈ Lgod iff each rule in P contributes to degree 1 in all interpre-
tations.

Definition 2. An LPOD rule is purely generating iff it is (i) a choice rule, (ii) an od rule such that
body+(r) ∩ body−(r) 6= ∅, (iii) an od rule such that |head(r)| = 1, or (iv) an od rule such that
head1(r) ∈ body+(r).

Lemma 4. For an LPOD P , P ∈ Lgod iff each rule in P is purely generating.

Proof. By Corollary 1, it is sufficient to show that an LPOD rule r contributes to degree 1 in all
interpretations iff it is purely generating.

Choice rules contribute to degree 1 in all interpretations by definition. If r is of type (ii) then
body+(r) * I or body−(r)∩ I 6= ∅ for all interpretations I , hence vI(r) = 1. For rules of type (iii)
and an interpretation I , either the body of r is false (body+(r) * I or body−(r) ∩ I 6= ∅), or the
body of r is true (body+(r) ⊆ I , body−(r) ∩ I = ∅) and either head1(r) ∈ I or head(r) ∩ I = ∅,
in each case vI(r) = 1. For rules of type (iv) and an interpretation I , either the body of r is false;
or it is true (body+(r) ⊆ I , body−(r) ∩ I = ∅) and head1(r) ∈ I , so in both cases vI(r) = 1.

Assume now that r is an LPOD rule not of types (i)-(iv). So it is an od rule for which body+(r)∩
body−(r) = ∅, |head(r)| > 1, and head1(r) 6∈ body+(r). We can create an interpretation I such
that body+(r) ⊆ I , body−(r)∩ I = ∅, head1(r) 6∈ I , and head i(r) ∈ I where i > 1 is the smallest
such that head i(r) 6= head1(r) (guaranteed to exist because |head(r)| > 1). It is easy to see that
vI(r) = i > 1.

16



We now characterize Lπod .

Definition 3. An LPOD rule is purely selecting iff it is (a) a choice or od rule such that
body+(r) ∩ body−(r) 6= ∅, (b) a choice rule such that head(r) ⊆ body(r), or (c) an od rule
such that head i(r) ∈ body+(r) and head<i(r) ⊆ body−(r).

Lemma 5. For an LPOD P , P ∈ Lπod iff each rule r in P is purely selecting.

Proof. Assume first that an LPOD P consists only of purely selecting rules, and consider some
LPOD Q. To prove AS (Q) = AS (Q ∪ P ), we show that I |= P I holds for all interpretations I
(it is sufficient, since then an interpretation I is a subset minimal model of QI iff it also a subset
minimal for (Q ∪ P )I = QI ∪ P I).

We now show that I |= P I , for any interpretation I . For any rule r ∈ P of type (a) we observe
that each rule r′ in rI is such that body+(r′) * I because body+(r′) = body+(r), body+(r) ∩
body−(r) 6= ∅ and body−(r) ∩ I = ∅. For any rule r ∈ P of type (b) we observe that each rule r′

in rI is such that head1(r
′) ∈ body+(r′), because for any p ∈ head(r) ∩ body−(r) there is no rule

r′′ in rI such that p ∈ head(r′′). For any rule r ∈ P of type (c) we observe that each rule r′ in rI

is one of the following: (i) if head i(r) ∈ I then head i(r) ∈ body+(r), or (ii) if head i(r) 6∈ I then
body+(r) * I .

Assume now that there is a rule in P that is not of type (a)-(c). First assume that it is an od
rule such that head(r) ∩ body+(r) = ∅ and body+(r) ∩ body−(r) = ∅. Construct an interpretation
I = body+(r), implying body−(r) ∩ I = ∅ and head(r) ∩ I = ∅, and consider LPOD Q =
{a ←| a ∈ I} for which AS (Q) = {I}. Now rI = {headu(r) ← body+(r)} for some u, but
since by construction body+(r) ⊆ I and headu(r) 6∈ I , I is not a model of rI and thus neither
of P I or (Q ∪ P )I , and therefore I 6∈ AS (Q ∪ P ) and AS (Q) 6= AS (Q ∪ P ). In the following
we thus may assume that P does not contain any od rule such that head(r) ∩ body+(r) = ∅ and
body+(r) ∩ body−(r) = ∅.

Consider now that P contains a choice rule r such that head(r) * body(r) and body+(r) ∩
body−(r) = ∅. Construct an interpretation I such that body+(r) = I , hence body−(r) ∩ I = ∅
and p 6∈ I for all p ∈ head(r) \ body(r). Consider LPOD Q = {a ←| a ∈ I}, for which
AS (Q) = {I}. Consider I ′ = I ∪ {p} for some p ∈ head(r) \ body(r). rI′ contains one rule
r∗ of the form p ← body+(r) and all other rules r′ in rI

′ are such that head(r′) ⊆ body(r′),
because apart from p the only true atoms in I ′ are in body+(r) = body(r′). Observe that all
rules in rI

′ are satisfied by I ′ and r∗ is not satisfied by I . For all other choice rules s in P ,
we trivially obtain that I ′ satisfies sI′ . By our earlier assumption, all other od rules s in P are
such that head(s) ∩ body+(s) 6= ∅ or body+(s) ∩ body−(s) 6= ∅. For such an od rule s, we
have one of the following: (i) body−(s) ∩ I ′ 6= ∅, then sI

′
= ∅; (ii) body−(s) ∩ I ′ = ∅ and

head(s) ∩ body+(s) 6= ∅, then sI′ = {head j(s) ← body+(s)} and either body+(s) * I ′ or both
body+(s) ⊆ I ′ and head j(s) ∈ I ′; (iii) body−(s) ∩ I ′ = ∅ and body+(s) ∩ body−(s) 6= ∅, then
sI
′
= {head j(s)← body+(s)} and body+(s) * I ′. I ′ satisfies sI′ in all cases (i)-(iii). We can thus

observe that I ′ satisfies P I′ , and hence also (Q ∪ P )I′ and it is also a minimal model of (Q ∪ P )I′

because of r∗. Therefore I ′ ∈ AS (Q ∪ P ) and AS (Q) 6= AS (Q ∪ P ).
Consider now that P contains an od rule r such that head i(r) ∈ body+(r) and head<i(r) *

body−(r). Let i be the smallest integer that has this property, then we can be sure that (head<i(r)\
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body−(r)) ∩ body+(r) = ∅ since otherwise either i is not minimal or r is of type (c). Similar to
the previous case, construct an interpretation I such that body+(r) = I , hence body−(r) ∩ I = ∅
and p 6∈ I for all p ∈ head<i(r) \ body−(r). Consider LPOD Q = {a ←| a ∈ I}, for which
AS (Q) = {I}. Consider I ′ = I ∪ {p} for the p ∈ head<i(r) \ body−(r) such that p = head j(r)
and head<j(r) * body−(r) (i.e., p is the leftmost head atom that is not in body−(r)). We get
rI
′
= {p← body+(r)} and clearly I ′ satisfies rI′ while I does not. Now consider the other rules in

P : for any choice rule s, I ′ trivially satisfies sI′ . For any other od rule s by our earlier assumption
head(s) ∩ body+(s) 6= ∅ or body+(s) ∩ body−(s) 6= ∅. We proceed as above: for such an od rule
s, we have one of the following: (i) body−(s) ∩ I ′ 6= ∅, then sI′ = ∅; (ii) body−(s) ∩ I ′ = ∅ and
head(s) ∩ body+(s) 6= ∅, then sI′ = {head j(s) ← body+(s)} and either body+(s) * I ′ or both
body+(s) ⊆ I ′ and head j(s) ∈ I ′; (iii) body−(s) ∩ I ′ = ∅ and body+(s) ∩ body−(s) 6= ∅, then
sI
′
= {head j(s)← body+(s)} and body+(s) * I ′. I ′ satisfies sI′ in all cases (i)-(iii). We can thus

observe that I ′ satisfies P I′ , and hence also (Q ∪ P )I′ and it is also a minimal model of (Q ∪ P )I′

because of rI′ . Therefore I ′ ∈ AS (Q ∪ P ) and AS (Q) 6= AS (Q ∪ P ).

We next show that σod is g-complete by providing a homomorphism (·)g from Lod to Lgod .

Definition 4. Let r be an LPOD rule. When r is purely generating, we set rg = {r}. Otherwise,
rg = {rg1, . . . , r

g
j} where j is the smallest integer such that head j(r) ∈ body+(r) or k (the head

size of r) if head(r) ∩ body+(r) = ∅; for i < k, rgi is {head i(r)} ← body+(r), not (body−(r) ∪
head<i(r)) and rgk is headk(r)← body+(r), not (body−(r) ∪ head<k(r)). For an LPOD P , P g is
then

⋃
r∈P r

g.

By virtue of Lemma 4, P g is guaranteed to be in Lgod as all rules in P g are purely generating.
Moreover, we can show that the mapping preserves the intended outcomes, i.e. the answer sets.

Lemma 6. For every LPOD P , AS (P ) = AS (P g).

Proof. We show that for any LPOD rule r and any interpretation I , for each interpretation J ⊆ I it
holds that J |= rI iff J |= (rg)I , from which the result follows. If r is purely generating, the claim
follows immediately. Otherwise, let r be an od rule. We distinguish several cases:

1. body−(r) ∩ I = ∅ and headh(r) ∈ I for some h ≤ k, head<h(r) ∩ I = ∅, and head<h(r) ∩
body+(r) = ∅. In this case we have rI = {headh(r) ← body+(r)} = (rg)I since, for
rg = {rg1, . . . , r

g
i } as defined above, h ≤ i. So (rgh)

I = {headh(r) ← body+(r)} while
(rgj )

I = ∅ for 1 ≤ j < h since head atom head j(r
g
j ) 6∈ I , and (rgj )

I = ∅ for h < j ≤ i since
headh(r) ∈ I and headh(r) ∈ body−(rgj ). Since rI = (rg)I , J |= rI iff J |= (rg)I holds for
all interpretations J .

2. body−(r) ∩ I = ∅ and headh(r) ∈ I for some h ≤ k, head<h(r) ∩ I = ∅, and head<h(r) ∩
body+(r) 6= ∅. In this case we have rI = {headh(r) ← body+(r)} and (rg)I = ∅. For
rg = {rg1, . . . , r

g
i } as defined above, here h > i. Clearly (rgj )

I = ∅ for 1 ≤ j ≤ i since
head atom head j(r

g
j ) 6∈ I . However, we note that since head<h(r)∩ I = ∅ and head<h(r)∩

body+(r) 6= ∅, it follows that b 6∈ I for some b ∈ body+(r), and thus J |= rI for all J ⊆ I
(as b 6∈ J either). Since J |= (rg)I trivially, J |= rI iff J |= (rg)I holds for all J ⊆ I .
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3. body−(r) ∩ I = ∅, head(r) ∩ I = ∅, and head<k(r) ∩ body+(r) = ∅ where k is the head
size of r. In this case, rI = {headk(r) ← body+(r)} = (rg)I , since, for rg = {rg1, . . . , r

g
j}

as defined above, j = k (from head<k(r) ∩ body+(r) = ∅) and (rgk)
I = {headk(r) ←

body+(r)} and (rgi )
I = ∅ for 1 ≤ i < k because head i(r) 6∈ I in the respective rule heads.

4. body−(r) ∩ I = ∅, head(r) ∩ I = ∅, and head<k(r) ∩ body+(r) 6= ∅. In this case, rI =
{headk(r) ← body+(r)} where k is the head size of r, and (rg)I = ∅ since, for rg =
{rg1, . . . , r

g
j} as defined above, j ≤ k (from head<k(r) ∩ body+(r) = ∅) and (rgi )

I = ∅
for 1 ≤ i ≤ j because head i(r) 6∈ I in the respective rule heads. However, we note that
since head(r) ∩ I = ∅ and head<k(r) ∩ body+(r) 6= ∅, it follows that b 6∈ I for some
b ∈ body+(r), and thus J |= rI for all J ⊆ I (as b 6∈ J either). Since J |= (rg)I trivially,
J |= rI iff J |= (rg)I holds for all J ⊆ I .

5. body−(r) ∩ I 6= ∅. In this case, rI = ∅ = (rg)I since in each rule r′ ∈ rg, body−(r′) ⊇
body−(r) and hence body−(r′) ∩ I 6= ∅. Clearly J |= rI iff J |= (rg)I holds for all J ⊆ I .

We next show that σod is π-complete by providing a homomorphism (·)π from Lod to Lπod .

Definition 5. Let r be an LPOD rule. When r is purely selecting, we set rπ = {r}. Otherwise, if r
is an od rule we define rπ = {rπ1 , . . . , rπk} where rπi is head1(r) × · · · × head i(r) ← (head i(r) ∪
body+(r)), not (body−(r) ∪ head<i(r)) for i ≤ k, where k is the head size of r. For choice rules
r that are not purely selecting, let rπ = ∅. For an LPOD P , P π is then

⋃
r∈P r

π.

By virtue of Lemma 5 P π is guaranteed to be in Lπod , as each rule in P π is purely selecting.
Moreover, we can show that the mapping preserves the preference relation.

Lemma 7. For every LPOD P , ≥cP=≥cPπ .

Proof. Let P c be the set of choice rules in P and cP = |P c|. Furthermore, let P s be the set of
purely selecting rules in P . For an od rule of form (3), let chr denote k. We show that for any
interpretation I , |PI [1]| = |P π

I [1]| − cP +
∑

r∈P\(P c∪P s)(c
h
r − 1) and |PI [i]| = |P π

I [i]| for i > 1,
from which the stated result follows.

For each od rule r of form (3) in P that is not purely selecting, we distinguish the following
cases:

• body+(r) * I or body−(r) ∩ I 6= ∅: In this case, r contributes to degree 1 in I . Also all chr
rules in rπ contribute to degree 1.

• body+(r) ⊆ I and body−(r) ∩ I = ∅ and head1(r) ∈ I: Also in this case r contributes
to degree 1 in I . For rπ, we observe that rπ1 contributes to degree 1 since ({head1(r)} ∪
body+(r)) ⊆ I and body−(r) ∩ I = ∅, while rπ2 , . . . , r

π
k (chr − 1 rules) also contribute

to degree 1 because for each rπi (2 ≤ i ≤ k), body−(rπi ) ∩ I 6= ∅ because head1(r) ∈
(body−(r) ∪ head<i(r)) ∩ I .
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• body+(r) ⊆ I and body−(r) ∩ I = ∅, head i(r) ∈ I , and head<i(r) ∩ I = ∅ for i > 1:
Here, r contributes to degree i. Concerning rπ, we observe that rπi contributes to degree i,
while all other chr − 1 rules in rπ contribute to degree 1, since for rπj with j < i we have
body+(rπj ) = (head j(r) ∪ body+(r)) * I and for rπj with j > i we have body−(rπj ) ∩ I 6= ∅
because head i(r) ∈ (body−(r) ∪ head<j(r)) ∩ I .

• body+(r) ⊆ I and body−(r) ∩ I = ∅ and head(r) ∩ I = ∅: In this case r is not satisfied and
therefore contributes to degree 1. All chr rules in rπ also contribute to degree 1 because one
head i(r) 6∈ I (1 ≤ i ≤ k) is contained in each positive body.

We obtain thus that whenever r contributes to degree i ≥ 1 in I , 1 rule in rπ contributes to
degree i in I and chr − 1 rules in rπ contribute to degree 1 in I . For purely selecting od rules r,
rπ = {r} and hence these rules for each degree contribute exactly the same number of rules in P
and P π. Finally we note that choice rules in P all contribute to degree 1 in any interpretation and no
choice rule is present in P π, and hence conclude that |PI [1]| = |P π

I [1]|−cP+
∑

r∈P\(P c∪P s)(c
h
r−1)

and |PI [i]| = |P π
I [i]| for i > 1.

Theorem 9. σod is separable.

Proof. We have already shown that σod is g-complete and π-complete by providing homomor-
phisms (·)g and (·)π, respectively. Using Lemmas 4 and 5, it is easy to see that (·)g and (·)π are the
identity functions on Lgod and Lπod , respectively.

What is left to show is that for any LPOD P , (P g)π ∈ Lgod and (P π)g ∈ Lπod . Consider first
P g, we know P g ∈ Lgod and by Lemma 4 this means that it contains only purely generating rules.
Any r ∈ P g is therefore either (i) a choice rule, (ii) an od rule such that body+(r)∩ body−(r) 6= ∅,
(iii) an od rule such that |head(r)| = 1, or (iv) an od rule such that head1(r) ∈ body+(r). In
case (i), r is either purely selecting, then rπ = {r} ∈ Lgod , or otherwise rπ = ∅ ∈ Lgod . For
(ii), r is also purely selecting, hence rπ = {r} ∈ Lgod . For (iii), observe that for all r′ ∈ rπ,
head(r′) ⊆ head(r) and therefore |head(r′)| = 1 implying that rπ ∈ Lgod . For (iv), observe that
for all r′ ∈ rπ, head1(r

′) = head1(r) and body+(r′) ⊇ body+(r), thus head1(r
′) ∈ body+(r′),

implying rπ ∈ Lgod . We thus obtain (P g)π ∈ Lgod .
Consider now P π, we know P π ∈ Lπod and by Lemma 5 this means that it contains only

purely selecting rules. Any r ∈ P π is therefore either (a) a choice or od rule such that body+(r) ∩
body−(r) 6= ∅, (b) a choice rule such that head(r) ⊆ body(r), or (c) an od rule such that head i(r) ∈
body+(r) and head<i(r) ⊆ body−(r). In case (a) and (b), r is purely generating, hence rg = {r} ∈
Lπod . For case (c), rg consists of choice rules rgj = {head j(r)} ← body+(r), not body−(r) for
1 ≤ j < i, which are purely selecting since head(rgj ) ⊆ body−(rgj ), and either another choice rule
rgi = {head i(r)} ← body+(r), not body−(r) (purely selecting as head(rgi ) ⊆ body+(rgi )) or (if i is
equal to the head size) an od rule rgi = head i(r) ← body+(r), not body−(r), which is also purely
selecting as head1(r

g
i ) ∈ body+(rgi ) (and head<1(r

g
i ) = ∅ ⊆ body−(rgi )). r

g ∈ Lπod follows.

The last two results suggest that the formalism of LPODs can be presented in a simplified
form as a separated one based on combinations of a generator from Lgod and a selector from Lπod .
Combined with the earlier results, they also provide characterizations of strong equivalence for
LPODs.

20



7 Conclusions
We introduced abstract preference frameworks as a unifying language to study fundamental as-
pects of preferences that cut across many specific formalisms. We showed the effectiveness of the
abstract setting by using it to study the problems of strong equivalence and separability.

Our paper suggests several open problems. First, our conditions for separability are quite re-
strictive as they require that Lg and Lπ be used as generators and selectors, respectively. These
sets were defined to contain every element that could possibly be regarded as a generator or a
selector, respectively. They may, however, contain redundant elements. Using “non-redundant”
sub-semilattices of Lg and Lπ may lead to simpler and more natural “separations.” Next, many
specific preference formalisms explicitly “rank” preferences according to their importance. It is
therefore of interest to find an abstract account for ranks in preference frameworks and extend our
results to that broader setting. Finally, a comprehensive study of specific preference formalisms
from the perspective of abstract preference frameworks (we alluded to some results here and con-
sidered in more detail just one, LPODs) is also left for the future.
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