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Abstract.Abstract argumentation frameworks nowadays provide the most popular formal-
ization of argumentation on a conceptual level. Numerous semantics for this paradigm
have been proposed, whereby the cf2 semantics has shown to solve particular problems
concerned with odd-length cycles in such frameworks. Due to the complicated definition of
this semantics it has somehow been neglected in the literature. In this article, we introduce
an alternative characterization of the cf2 semantics which, roughly speaking, avoids the
recursive computation of sub-frameworks. This facilitates further investigation steps, like a
complete complexity analysis. Furthermore, we show how the notion of strong equivalence
can be characterized in terms of the cf2 semantics. In contrast to other semantics, it turns
out that for the cf2 semantics strong equivalence coincides with syntactical equivalence.
We make this particular behavior more explicit by defining a new property for argumenta-
tion semantics, called the succinctness property. If a semantics σ satisfies the succinctness
property, then for every framework F , all its attacks contribute to the evaluation of at least
one framework F ′ containing F . We finally characterize strong equivalence also for the
stage and the naive semantics. Together with known results these characterizations imply
that none of the prominent semantics for abstract argumentation, except the cf2 semantics,
satisfies the succinctness property.
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1 Introduction
Abstract argumentation frameworks (AFs), introduced by Dung [11], represent the most popular
approach for formalizing and reasoning over argumentation problems on a conceptual level. Dung
already introduced different extension-based semantics (preferred, complete, stable, grounded) for
such frameworks. In addition, recent proposals tried to overcome several shortcomings observed
for those original semantics. For instance, the semi-stable semantics [8], and likewise the stage
semantics [23], handles the problem of the possible non-existence of stable extensions, while the
ideal semantics [12] is proposed as a unique-status approach (each AF possesses exactly one ex-
tension) less skeptical than the grounded extension.

Another family of semantics, the so-called SCC-recursive semantics has been introduced in [7].
Hereby, a recursive decomposition of the given AF along strongly connected components (SCCs)
is necessary to obtain the extensions. Among them, the cf2 semantics, first proposed in [3] and
later discussed in [7], has been introduced in order to solve particular problems arising for AFs
with odd-length cycles. It fulfills several requirements such as the symmetric treatment of odd-
and even-length cycles, and ensures that attacks from self-defeating arguments have no influence
on the selection of other arguments to be included in an extension. Furthermore, the cf2 semantics
satisfies most of the evaluation criteria proposed in [4]. Basically, only the admissibility- and
reinstatement criteria are violated. This is due to fact that cf2 semantics explicitly gives up on
these conditions when it comes to evaluate SCCs. At this point, it has to be mentioned however
that the property of admissibility turns out to be crucial when abstract argumentation is employed
in certain forms of instantiation-based argumentation, see e.g. [9].

Due to the quite complicated definition of its semantics, the cf2 approach has been somehow
neglected in the literature. For instance, a complete complexity analysis is still missing, although
Nieves et al. observed in [19] that the decision problem of verifying whether a set of arguments is a
cf2 extension is polynomial-time computable. However, cf2 semantics attracted specific attention
lately, for example in [1] it has been used to handle loops in Talmudic Logic.

In another branch of research, attention was directed to the investigation of redundant patterns
in AFs. Oikarinen and Woltran [20] identified kernels which eliminate those redundant attacks of
AFs and introduced the concept of strong equivalence: Two AFs are strongly equivalent wrt. a se-
mantics σ (i.e. they provide the same σ-extensions no matter how the two AFs are simultaneously
extended), if their σ-kernels coincide. In [2] the notion of equivalence wrt. stable semantics has
been studied also for logic-based argumentation systems. To the best of our knowledge, redundan-
cies for the cf2 semantics have not been studied yet. As we show in this paper, the cf2 semantics
have the interesting feature that strong equivalence coincides with syntactical equivalence. In other
words, for the cf2 semantics there are no redundant attacks.

The main contributions of this article are the following.

• To simplify further investigation, we first give an alternative characterization for the cf2
semantics. The original definition of Baroni et al. [7] involves a recursive computation of
different sub-frameworks. Our aim here is to shift the need of recursion from generating sub-
frameworks to arguments. We show that the required set of arguments can be captured via a
fixed-point operator. This allows to characterize cf2 semantics using only linear recursion.
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• With the alternative characterization at hand, we formally prove the following complexity
results. (1) Verifying if a given set is a cf2 extension is in P; (2) deciding if an argument is
contained in some cf2 extension (credulous acceptance) is NP-complete; (3) deciding if an
argument is contained in all cf2 extension (skeptical acceptance) is coNP-complete; and (4)
checking whether there exists a nonempty cf2 extension is in P.

• As the third main contribution we define a new property for argumentation semantics called
the succinctness property. As outlined above, a semantics satisfies the succinctness property
or is maximal succinct iff no redundant attacks for this semantics do exist. It turns out that
the cf2 semantics is the only one which is maximal succinct, whereas for other semantics
we can reuse results about strong equivalence [20] for an analysis on their succinctness. Our
results thus provide a new classification for argumentation semantics, namely in terms of
redundant attacks.

Parts of this article have been published in proceedings of conferences [17, 18]. Completely
novel material is provided by the complexity analysis as well as by the investigations on the suc-
cinctness property.

2 Preliminaries
In this section we introduce the basics of abstract argumentation, the semantics we need for further
investigations and some properties of the semantics we are mainly interested in this work, the cf2
semantics.

2.1 Abstract Argumentation
The definition of abstract argumentation frameworks and the semantics are based on [11, 23].

Definition 2.1 An argumentation framework (AF ) is a pair F = (A,R), where A is a finite
set of arguments and R ⊆ A × A. The pair (a, b) ∈ R means that a attacks b. A set S ⊆ A of
arguments defeats b (in F ), if there is an a ∈ S, such that (a, b) ∈ R. An argument a ∈ A is
defended by S ⊆ A (in F ) iff, for each b ∈ A, it holds that, if (b, a) ∈ R, then S defeats b (in F ).

The inherent conflicts between the arguments are solved by selecting subsets of arguments, where
a semantics σ assigns a collection of sets of arguments to an AF F . The basic requirement for all
semantics is that none of the selected arguments attack each other.

Definition 2.2 Let F = (A,R) be an AF. A set S ⊆ A is said to be conflict-free (in F ), if there
are no a, b ∈ S, such that (a, b) ∈ R. We denote the collection of sets which are conflict-free (in F )
by cf (F ). A set S ⊆ A is maximal conflict-free or naive, if S ∈ cf (F ) and for each T ∈ cf (F ),
S 6⊂ T . We denote the collection of all naive sets of F by naive(F ). For the empty AF F0 = (∅, ∅),
we set naive(F0) = {∅}.

Beside the naive semantics we will consider the following semantics in this work.

3



Figure 1: The argumentation framework F from Example 2.4.

Definition 2.3 Let F = (A,R) be an AF. A set S ⊆ A is said to be

• a stable extension (of F ), i.e. S ∈ stable(F ), if S ∈ cf (F ) and each a ∈ A \ S is defeated
by S in F .

• a stage extension (of F ), i.e. S ∈ stage(F ), if S ∈ cf (F ) and there is no T ∈ cf (F ) with
T+
R ⊃ S+

R , where S+
R = S ∪ {b | ∃a ∈ S, s. t. (a, b) ∈ R}.

• an admissible extension, i.e. S ∈ adm(F ) if S ∈ cf (F ) and each a ∈ S is defended by S.

• a preferred extension, i.e. S ∈ pref (F ) if S ∈ adm(F ) and for each T ∈ adm(F ), S 6⊂ T .

We illustrate the different behavior of the introduced semantics in the following example.

Example 2.4 Consider the AF F = (A,R) with A = {a, b, c, d, e, f, g} and R = {(a, b), (c, b),
(c, d), (d, c), (d, e), (e, f), (f, f), (f, g), (g, e)} as in Figure 1. Then, the above defined semantics
yield the following extensions.

• stable(F ) = ∅;

• naive(F ) = stage(F ) = {{a, d, g}, {a, c, e}, {a, c, g}};

• adm(F ) = {{}, {a}, {c}, {d}, {a, c}, {a, d}};

• pref (F ) = {{a, c}, {a, d}}.

3

2.2 The cf2 Semantics
The semantics we are mainly interested in this work is based on a decomposition along the strongly
connected components (SCCs) of an AF. Hence, we require some further formal machinery. A
directed graph is called strongly connected if there is a path from each vertex in the graph to every
other vertex of the graph. By SCCs(F ), we denote the set of strongly connected components of an
AF F = (A,R), i.e. sets of vertices of the maximal strongly connected sub-graphs of F ; SCCs(F )
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Figure 2: The argumentation framework F from Example 2.5.

is thus a partition of A. Moreover, for an argument a ∈ A, we denote by CF (a) the component of
F where a occurs in, i.e. the (unique) set C ∈ SCCs(F ), such that a ∈ C. AFs F1 = (A1, R1) and
F2 = (A2, R2) are called disjoint if A1 ∩ A2 = ∅. Moreover, the union between (not necessarily
disjoint) AFs is defined as F1 ∪ F2 = (A1 ∪ A2, R1 ∪R2).

Example 2.5 We consider the framework F = (A,R) with A = {a, b, c, d, e, f, g, h, i} and R =
{(a, b), (b, c), (c, a), (b, d), (b, e), (d, f), (e, f), (f, e), (f, g), (g, h), (h, i), (i, f)} as illustrated
in Figure 2. F has three SCCs, namely C1 = {a, b, c}, C2 = {d} and C3 = {e, f, g, h, i}. For
example, the argument g belongs to C3, thus CF (g) = C3. 3

It turns out to be convenient to use two different concepts to obtain sub-frameworks of AFs.
Let F = (A,R) be an AF and S a set of arguments. Then, F |S = ((A ∩ S), R ∩ (S × S)) is
the sub-framework of F wrt. S and we also use F − S = F |A\S . We note the following relation
(which we use implicitly later on), for an AF F and sets S, S ′: F |S\S′ = F |S−S ′ = (F −S ′)|S . In
particular, for an AF F , a component C ∈ SCCs(F ) and a set S we thus have F |C\S = F |C − S.

For the framework F of Example 2.5 and the set S = {f}. Then, F |C3 − S =
({e, g, h, i}, {(g, h), (h, i)}).

We now give the definition of the cf2 semantics which slightly differs from (but is equivalent
to) the original definition in [3, 7]. (i) We use some of the notation established above, like the con-
cept of sub-frameworks and the corresponding relations; (ii) DF (S), as introduced next, replaces
the set “DF (S,E)” and F |C − DF (S ) replaces “F↓UPF (S,E)”; moreover, the set of undefeated ar-
guments “UF (S,E)” as used in the general schema from [7], is not required here, because the base
function for the cf2 semantics does not make use of this set. Next, we define the set of component-
defeated arguments DF (S) which identifies all arguments which are attacked from a given set S
from outside their SCC.

Definition 2.6 Let F = (A,R) be an AF and S ⊆ A. An argument b ∈ A is component-defeated
by S (in F ), if there exists an a ∈ S, such that (a, b) ∈ R and a /∈ CF (b). The set of arguments
component-defeated by S in F is denoted by DF (S).

Definition 2.7 Let F = (A,R) be an argumentation framework and S a set of arguments. Then,
S is a cf2 extension of F , i.e. S ∈ cf2 (F ), iff

• in case |SCCs(F )| = 1, then S ∈ naive(F ),
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• otherwise, ∀C ∈ SCCs(F ), (S ∩ C) ∈ cf2 (F |C − DF (S )).

In words, the recursive definition cf2 (F ) is based on a decomposition of the AF F into its SCCs
depending on a given set S of arguments. We illustrate the behavior of this procedure in the
following example.

Example 2.8 Consider the framework F from Example 2.5. We want to check whether S = {a, d,
e, g, i} is a cf2 extension of F (the arguments of the set S are highlighted in Figure 3). Following
Definition 2.7, we first identify the SCCs of F , hence SCCs(F ) = {C1, C2, C3} as in Example 2.5.
Due to the attack (d, f) and d ∈ S we obtain f as the only component-defeated argument, thus
DF (S) = {f}. This leads us to the following checks (see also Figure 4 which shows the involved
sub-frameworks). Note here that in case F |Ci

−DF (S) = F |Ci
we only write (S∩Ci) ∈ cf2 (F |Ci

).

1. (S ∩ C1) ∈ cf2 (F |C1): F |C1 consists of a single SCC; hence, we have to check whether
(S ∩ C1) = {a} ∈ naive(F |C1), which indeed holds.

2. (S ∩ C2) ∈ cf2 (F |C2): F |C2 consists of a single argument d (and thus of a single SCC);
(S ∩ C2) = {d} ∈ naive(F |C2) thus holds.

3. (S ∩ C3) ∈ cf2 (F |C3 − {f}): F |C3 − {f} = F |{e,g,h,i} consists of four SCCs, namely
C4 = {e}, C5 = {g}, C6 = {h} and C7 = {i}. Hence, we need a second level of recursion
for F ′ = F |{e,g,h,i} and S ′ = S∩C3. Note that we haveDF ′(S ′) = {h}. The single-argument
AFs F ′|C4 = F |{e}, F ′|C5 = F |{g}, F ′|C7 = F |{i} all satisfy (S ′ ∩Ci) ∈ naive(F ′|Ci

); while
F ′|C6−{h} yields the empty AF. Therefore, (S ′∩C6) = ∅ ∈ cf2 (F |C6−{h}) holds as well.

We thus conclude that S is a cf2 extension of F . Further cf2 extensions of F are {b, f, h}, {b, g, i}
and {c, d, e, g, i}. The extensions of the other semantics for this example are as follows:

• stable(F ) = ∅;

• adm(F ) = {{}, {g, i}};

• pref (F ) = {{g, i}}.

For the stage semantics we obtain the same result as for the cf2 semantics, but this is not the case
in general, as we are going to discuss in the next subsection. 3

2.3 Properties of the cf2 Semantics
The cf2 semantics has some special properties which clearly differ from the admissible based
semantics. Especially the treatment of odd- and even-length cycles is more uniform in the case of
cf2 semantics.

For our framework of Example 2.5 we obtain {g, i} as the only preferred extension. This
comes due to the fact that in an odd-length cycle, as is the case in this example for the arguments
a, b and c, none of these arguments can be defended. Lets modify the framework in the sense
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Figure 3: The argumentation framework F from Example 2.5.

Figure 4: Tree of recursive calls for computing cf2 (F ). from Example 2.5.

that we include a new argument x which makes the cycle even, as illustrated in Figure 5. Then,
we obtain totally different preferred extensions, namely {b, x, g, i}, {b, x, f, h} and {a, c, d, e, g, i}
which are conform with the cf2 extensions of the modified AF F ′. One possible application for
the cf2 semantics, which makes use of that special behavior, would be for example that we have
three agents, let’s call them A, B and C, where agent A disagrees with agent B, B disagrees with
C and agent C disagrees with agent A. Additionally we have further arguments and attacks as in
Figure 2 which are independent from the disagreement of the agents. We would now want to have
at least one of the agents to be chosen, which is not possible with the admissible based semantics
like preferred. This is exactly what the cf2 semantics does by selecting the maximal conflict free
sets of the SCC {a, b, c}. If now there comes a fourth agent into play, let’s call himX like in Figure
5, the situation of the whole framework does not change that drastically, we just have four in turn
of three agents. But now, we obtain for both semantics, the preferred and the cf2 semantics, the
same results.

One special case of an odd-length cycle are self-attacking arguments.

Example 2.9 Consider the following AF F :

Then, the empty set is the only preferred extension, whereas {a} is a cf2 extension. The motivation
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Figure 5: The modified AF F ′.

behind selecting {a} as a reasonable extension is that it is not necessary to defend a against the
attack from b, as b is a self-attacking argument. 3

Till now, we only mentioned positive properties of the cf2 semantics compared to the admissible
based semantics. The next example will show a more questionable behavior.

Example 2.10 Consider the AF F :

We obtain stage(F ) = pref (F ) = stable(F ) = {{a, c, e}, {b, d, f}}, but cf2 (F ) = naive(F ) =
{{a, d}, {b, e}, {c, f}, {a, c, e}, {b, d, f}}. In this example we have an even-length cycle and the
cf2 semantics produce three more extensions. This does not really coincide with the motivation for
a symmetric treatment of odd- and even-length cycles, as now the results differ significantly for an
even-length cycle. 3

One suggestion to repair the undesired behavior from Example 2.10, could be to check in Defini-
tion 2.7 for the case |SCCs(F )| = 1 whether S ∈ stage(F ) instead of S ∈ naive(F ). We leave a
formalization of this modification for future work.

The relation between the introduced semantics is illustrated in Figure 6, an arrow from seman-
tics σ to semantics τ encodes that each σ-extension is also a τ -extension. The relations between
the cf2 semantics and the stable, resp. the naive semantics, are due to [6].

As pointed out in Example 2.8, there is no particular relation between the cf2 and the pre-
ferred semantics, but the stage and the cf2 semantics coincide for this framework. The following
examples will show that there is no particular relation between stage and cf2 extensions as well.

Example 2.11 Consider the following AF F :
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Figure 6: Relations between Semantics

Here {a, c} is the only stage extension of F (it is also stable). Concerning the cf2 semantics, note
that F is built from a single SCC . Thus, the cf2 extensions are given by the maximal conflict-free
sets of F , which are {a, c} and {a, d}. Thus, we have stage(F ) ⊂ cf2 (F ).

As an example for a framework G such that cf2 (G) ⊂ stage(G), consider the following AF:

Then G consists of two SCCs namely C1 = {a} and C2 = {b, c}. The conflict-free sets of G are
E1 = {a} and E2 = {b}. Now it remains to check if E1 and E2 are also cf2 extensions of G. First
we make the check for E1. Due to the attack (a, b) and a ∈ E1 we obtain DG(E1) = {b}. We have
the following two cases:

• (E1 ∩ C1) ∈ cf2 (G|C1), which holds, since {a} ∈ naive(G|C1).

• (E1 ∩ C2) ∈ cf2 (G|C2 −DG(E1)), which holds, since ∅ ∈ naive(G|{c}).

For E2 we obtain DG(E2) = ∅. The check (E2 ∩ C1) ∈ cf2 (G|C1) does not hold, since
naive(G|C1) = {a}. Hence, E2 is not a cf2 extension of G. Thus, cf2 (G) = {E1} but
stage(G) = {E1, E2}. 3
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Figure 7: Separation of the AF F from Example 2.5.

3 An Alternative Characterization for the cf2 Semantics
In the original definition of the SCC-recursive semantics in [7], the computation is based on check-
ing recursively whether a set of arguments fulfills a base function (depending on the semantics)
in a single SCC. Thus, the computation is based on a decomposition of the framework along its
SCCs. Our alternative characterization is based on the idea to decompose the framework as well,
but differently to the original approach the decomposition is only recursive in terms of a certain set
of arguments, for which we provide a fixed-point operator. This modification allows us to avoid
the recursive computation of several sub-frameworks. Instead we only compute one, possibly not
connected, framework where we eliminate the arguments and corresponding attacks which are,
what we call, ”recursively component defeated”.

We start with the following concept.

Definition 3.1 An AF F = (A,R) is called separated if for each (a, b) ∈ R, CF (a) = CF (b). We
define [[F ]] =

⋃
C∈SCCs(F ) F |C and call [[F ]] the separation of F .

In words, an AF is separated if there are no attacks between different strongly connected compo-
nents. Thus, the separation of an AF always yields a separated AF.

The separation of the framework F of Example 2.5 is depicted in Figure 7. The following
technical lemma will be useful later.

Lemma 3.2 For any AF F and set S of arguments,
⋃
C∈SCCs(F )[[F |C − S]] = [[F − S]].

Proof. We first note that for disjoint AFs F and G, [[F ]] ∪ [[G]] = [[F ∪G]] holds. Moreover, for
a set S of arguments and arbitrary frameworks F and G, (F − S) ∪ (G − S) = (F ∪ G) − S is
clear. Using these observations, we obtain⋃

C∈SCCs(F )

[[F |C − S]] = [[
⋃

C∈SCCs(F )

(F |C − S)]] =

[[(
⋃

C∈SCCs(F )

F |C)− S]] = [[[[F ]]− S]].

It remains to show that [[[[F ]]−S]] = [[F −S]]. Obviously, both AFs possess the same arguments
A. Thus, let R be the attacks of [[[[F ]] − S]] and R′ the attacks of [[F − S]]. R ⊆ R′ holds by
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the fact that each attack in [[F ]] is also contained in F . To show R′ ⊆ R, let (a, b) ∈ R′. Then
a, b /∈ S, and CF−S(a) = CF−S(b). From the latter, CF (a) = CF (b) and thus (a, b) is an attack in
[[F ]] and also in [[F ]]− S. Again using CF−S(a) = CF−S(b), shows (a, b) ∈ R. 2

Next, we define the level of recursiveness a framework shows with respect to a set S of arguments
and then the aforementioned set of recursively component defeated arguments (by S) in an AF.

Definition 3.3 For an AF F = (A,R) and a set S of arguments, we recursively define the level
`F (S) of F wrt S as follows:

• if |SCCs(F )| = 1 then `F (S) = 1;

• otherwise, `F (S) = 1 + max ({`F |C−DF (S)(S ∩ C) | C ∈ SCCs(F )}).

For our running example we obtain the level `F (S) wrt the set S = {a, d, e, g, i} as follows.
`F (S) = 1 +max ({`F |C−DF (S)(S ∩C) | C ∈ SCCs(F )}), where DF (S) = {f} and SCCs(F ) =
{C1, C2, C3} with C1 = {a, b, c}, C2 = {d} and C3 = {e, f, g, h, i}. This leads to the following
recursive calls:

• `F |C1
(S ∩ C1) = 1,

• `F |C2
(S ∩ C2) = 1,

• `F ′(S ′) = 1+max ({`F ′|C′−DF ′ (S′)(S
′∩C ′) | C ′ ∈ SCCs(F ′)}). Where F ′ = F |C3−DF (S),

S ′ = S ∩ C3 = {e, g, i} and DF ′(S ′) = {h}, furthermore SCCs(F ′) = {C4, C5, C6, C7}
with C4 = {e}, C5 = {g}, C6 = {h} and C7 = {i}. As all those SCCs of F ′ are single
SCCs, we obtain in each recursive call level 1.

To sum up the level of F wrt S is `F (S) = 3. One can compare the tree of recursive calls in
Figure 3 with the computation of `F (S). When the height h of a tree is the length of the path from
the root to the deepest node in the tree, we denote the height of the computation tree for the cf2
semantics for an AF F wrt S as hF (S), then `F (S) = hF (S) + 1.

Definition 3.4 Let F = (A,R) be an AF and S a set of arguments. We define the set of arguments
recursively component defeated by S (in F ) as follows:

• if |SCCs(F )| = 1 thenRDF (S) = ∅;

• otherwise,RDF (S) = DF (S) ∪
⋃
C∈SCCs(F )RDF |C−DF (S)(S ∩ C).

We are now prepared to give our first alternative characterization, which establishes a cf2 extension
S of a given AF F by checking whether S is maximal conflict-free in a certain separated framework
constructed from F using S.

Lemma 3.5 Let F = (A,R) be an AF and S be a set of arguments. Then,

S ∈ cf2 (F ) iff S ∈ naive([[F −RDF (S)]]).
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Proof. We show the claim by induction over `F (S).
Induction base. For `F (S) = 1, we have |SCCs(F )| = 1. By definition RDF (S) = ∅ and we
have [[F −RDF (S)]] = [[F ]] = F . Thus, the assertion states that S ∈ cf2 (F ) iff S ∈ naive(F )
which matches the original definition for the cf2 semantics in case the AF has a single strongly
connected component.
Induction step. Let `F (S) = n and assume the assertion holds for all AFs F ′ and sets S ′ with
`F ′(S ′) < n. In particular, we have by definition that, for each C ∈ SCCs(F ), `F |C−DF (S)(S ∩
C) < n. By the induction hypothesis, we thus obtain that, for each C ∈ SCCs(F ), the following
holds:

(S ∩ C) ∈ cf2 (F |C − DF (S )) iff

(S ∩ C) ∈ naive
(

[[(F |C − DF (S ))−R′F,C,S]]
)

(1)

where R′F,C,S = RDF |C−DF (S)(S ∩ C). Let us fix now a C ∈ SCCs(F ). Since for each further
C ′ ∈ SCCs(F ) (i.e. C 6= C ′), no argument fromRDF |C ′−DF (S)(S ∩ C ′) occurs in F |C , we have

(F |C − DF (S ))−R′F,C,S =(
(F |C − DF (S ))−R′F,C,S

)
−

⋃
C′∈SCCs(F );C 6=C′

RDF |C ′−DF (S)(S ∩ C ′) =(
F |C − DF (S )

)
−

⋃
C∈SCCs(F )

RDF |C−DF (S)(S ∩ C) =

F |C −
(
DF (S) ∪

⋃
C∈SCCs(F )

RDF |C−DF (S)(S ∩ C)
)

= F |C −RDF (S).

Thus, for any C ∈ SCCs(F ), relation (1) amounts to

(S ∩ C) ∈ cf2 (F |C − DF (S )) iff
(S ∩ C) ∈ naive

(
[[F |C −RDF (S)]]

)
. (2)

We now prove the assertion. Let S ∈ cf2 (F ). By definition, for each C ∈ SCCs(F ), (S ∩ C) ∈
cf2 (F |C − DF (S )). Using (2), we get that for each C ∈ SCCs(F ), (S ∩ C) ∈ naive([[F |C −
RDF (S)]]). By the definition of components and the semantics of being maximal conflict-free,
the following relation thus follows:⋃

C∈SCCs(F )

(S ∩ C) ∈ naive
( ⋃
C∈SCCs(F )

[[F |C −RDF (S)]]
)
.

Since S =
⋃
C∈SCCs(F )(S ∩ C) and, by Lemma 3.2,

⋃
C∈SCCs(F )[[F |C − RDF (S)]] = [[F −

RDF (S)]], we arrive at S ∈ naive([[F −RDF (S)]]) as desired. The other direction is by essen-
tially the same arguments. 2

Next, we provide an alternative characterization for RDF (S) via a fixed-point operator. In other
words, this yields a linearization in the recursive computation of this set. To this end, we require a
parametrized notion of reachability.

12



Definition 3.6 Let F = (A,R) be an AF, arguments a, b ∈ A and B ⊆ A. We say that b is
reachable in F from a modulo B, in symbols a ⇒B

F b, if there exists a path from a to b in F |B,
i.e. there exists a sequence c1, . . . , cn (n > 1) of arguments such that c1 = a, cn = b, and
(ci, ci+1) ∈ R ∩ (B ×B), for all i with 1 ≤ i < n.

Definition 3.7 For an AF F = (A,R), D ⊆ A, and a set S of arguments,

∆F,S(D) = {a ∈ A | ∃b ∈ S : b 6= a, (b, a) ∈ R, a 6⇒A\D
F b}.

The operator is clearly monotonic, i.e. ∆F,S(D) ⊆ ∆F,S(D′) holds for D ⊆ D′. As usual, we
let ∆0

F,S = ∆F,S(∅) and, for i > 0, ∆i
F,S = ∆(∆i−1

F,S). Due to monotonicity the least fixed-point
(lfp) of the operator exists and, with slightly abuse of notation, will be denoted as ∆F,S . The ∆F,S

operator applied to the empty-set computes recursively the arguments which are defeated from
outside their component. Hence, it also takes into account that the SCCs of the framework may
change during the computation. We need two more lemmata before showing that ∆F,S captures
RDF (S).

Lemma 3.8 For any AF F = (A,R) and any set S ⊆ A, ∆0
F,S = DF (S).

Proof. We have ∆0
F,S = ∆F,S(∅) = {a ∈ A | ∃b ∈ S : b 6= a, (b, a) ∈ R, a 6⇒A

F b}. Hence,
a ∈ ∆0

F,S , if there exists a b ∈ S, such that (b, a) ∈ R and a does not reach b in F , i.e. b 6∈ CF (a).
This meets exactly the definition of DF (S). 2

Lemma 3.9 For any AF F = (A,R) and any set S ∈ cf (F ),

∆F,S = DF (S) ∪
⋃

C∈SCCs(F )

∆F |C−DF (S),(S∩C).

Proof. Let F = (A,R). For the ⊆-direction, we show by induction over i ≥ 0 that ∆i
F,S ⊆

DF (S) ∪
⋃
C∈SCCs(F ) ∆F |C−DF (S),(S∩C). To ease notation, we write ∆̄F,S,C as a shorthand for

∆F |C−DF (S),(S∩C), where C ∈ SCCs(F ).
Induction base. For i = 0, ∆0

F,S ⊆ DF (S) ∪
⋃
C∈SCCs(F ) ∆̄F,S,C follows from Lemma 3.8.

Induction step. Let i > 0 and assume ∆j
F,S ⊆ DF (S)∪

⋃
C∈SCCs(F ) ∆̄F,S,C holds for all j < i. Let

a ∈ ∆i
F,S . Then, there exists a b ∈ S, such that (b, a) ∈ R and a 6⇒D

F b, where D = A \ ∆i−1
F,S .

If b /∈ CF (a), we have also a 6⇒A
F b and thus a ∈ DF (S). Hence, suppose b ∈ CF (a). Then,

a /∈ DF (S) and, since S ∈ cf (F ) and b ∈ S, also b /∈ DF (S). Thus, both a and b are contained in
the framework F |C − DF (S ) (and so is the attack (b, a)) for C = CF (a). Moreover, b ∈ (S ∩ C).
Towards a contradiction, assume now a /∈ ∆̄F,S,C . This yields that a ⇒D′

F |C−DF (S) b for D′ =

A \ ∆̄F,S,C , i.e. there exist arguments c1, . . . , cn (n > 1) in F |C − DF (S) but not contained in
∆̄F,S,C , such that c1 = a, cn = b, and (ci, ci+1) ∈ R, for all i with 1 ≤ i < n. Obviously all the ci’s
are contained in F as well, but since a 6⇒D

F b (recall that D = A \∆i−1
F,S), it must hold that at least

one of the ci’s, say c, has to be contained in ∆i−1
F,S . By the induction hypothesis, we get c ∈ ∆̄F,S,C ,

a contradiction.
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For the ⊇-direction of the claim we proceed as follows. By Lemma 3.8, we know that DF (S) =
∆0
F,S and thus DF (S) ⊆ ∆F,S . It remains to show that

⋃
C∈SCCs(F ) ∆F |C−DF (S),(S∩C) ⊆ ∆F,S . We

show by induction over i that ∆i
F |C−DF (S),(S∩C) ⊆ ∆F,S holds for each C ∈ SCCs(F ). Thus, let

us fix a C ∈ SCCs(F ) and use ∆̄i
F,S,C as a shorthand for ∆i

F |C−DF (S),(S∩C).

Induction base. Let a ∈ ∆̄0
F,S,C . Then, there is a b ∈ (S ∩ C), such that b attacks a in F ′ =

F |C − DF (S) and a 6⇒A′

F ′ b, where A′ denotes the arguments of F ′, i.e. A′ = C \ DF (S). Since
F |C is built from a SCC C of F , it follows that a 6⇒A\DF (S)

F b. Since b ∈ S, (b, a) ∈ R, and
DF (S) = ∆0

F,S (Lemma 3.8), we get a ∈ ∆1
F,S ⊆ ∆F,S .

Induction step. Let i > 0 and assume ∆̄j
F,S,C ⊆ ∆F,S for all j < i. Let a ∈ ∆̄i

F,S,C . Then, there
is a b ∈ (S ∩ C), such that b attacks a in F ′ and a 6⇒D′

F ′ b, where D′ = A′ \ ∆̄i−1
F,S,C . Towards a

contradiction, suppose a /∈ ∆F,S . Since b ∈ S and (b, a) ∈ R, it follows that there exist arguments
c1, . . . , cn (n > 1) in F \∆F,S , such that c1 = a, cn = b, and (ci, ci+1) ∈ R, for all iwith 1 ≤ i < n.
All these ci’s are thus contained in the same component as a, and moreover these ci’s cannot be
contained in DF (S), since DF (S) ⊆ ∆F,S . Thus, they are contained in F |C − DF (S), but since
a 6⇒D′

F ′ b, there is at least one such ci, say c, contained in ∆̄i−1
F,S,C . By the induction hypothesis,

c ∈ ∆F,S , a contradiction. 2

We now are able to obtain the desired relation.

Lemma 3.10 For any AF F = (A,R) and any set S ∈ cf (F ), ∆F,S = RDF (S).

Proof. The proof is by induction over `F (S).
Induction base. For `F (S) = 1, |SCCs(F )| = 1 by Definition 3.3. From this and Definition 3.4,
we obtain RDF (S) = DF (S) = ∅. By Lemma 3.8, ∆0

F,S = DF (S) = ∅. By definition, ∆F,S = ∅
follows from ∆0

F,S = ∅.
Induction step. Let `F (S) = n and assume the claim holds for all pairs F ′, S ′ ∈ cf (F ′),
such that `F ′(S ′) < n. In particular, this holds for F ′ = F |C − DF (S ) and S ′ = (S ∩ C),
with C ∈ SCCs(F ). Note that (S ∩ C) is indeed conflict-free in F |C − DF (S ). By defini-
tion we have, RDF (S) = DF (S) ∪

⋃
C∈SCCs(F )RDF |C−DF (S)(S ∩ C) and by Lemma 3.9 we

know that ∆F,S = DF (S) ∪
⋃
C∈SCCs(F ) ∆F |C−DF (S),S∩C . Using the induction hypothesis, i.e.

∆F |C−DF (S),S∩C = RDF |C−DF (S)(S ∩ C), the assertion follows. 2

We finally reached our main result in this section, i.e. an alternative characterization for cf2 se-
mantics, where the need for recursion is delegated to a fixed-point operator.

Theorem 3.11 For any AF F , cf2 (F ) = {S | S ∈ cf (F ) ∩ naive([[F −∆F,S]])}.

Proof. The result holds by the following observations. By Lemma 3.5, S ∈ cf2 (F ) iff S ∈
naive([[F − RDF (S)]]). Moreover, from Lemma 3.10, for any S ∈ cf (F ), ∆F,S = RDF (S).
Finally, S ∈ cf2 (F ) implies S ∈ cf (F ) (see [7], Proposition 47). 2
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Figure 8: Graph of instance [[F −∆F,S]] of Example 3.12.

Figure 9: Graph of instance [[F −∆F,S′ ]] of Example 3.12.

Example 3.12 To exemplify the behavior of ∆F,S and [[F − ∆F,S]], we consider the AF F and
S = {a, d, e, g, i} from Example 2.8. In the first iteration of computing the lfp of ∆F,S , we have
∆F,S(∅) = {f} because the argument f is the only one which is attacked by S but its attacker d is
not reachable by f in F . In the second iteration, we obtain ∆F,S({f}) = {f, h}, and in the third
iteration we reach the lfp with ∆F,S({f, h}) = {f, h}. Hence, [[F −∆F,S]] of the AF F wrt S is
given by

[[F −∆F,S]] =
(
{a, b, c, d, e, g, i}, {(a, b), (b, c), (c, a)}

)
.

Figure 8 shows the graph of [[F − ∆F,S]]. It is easy to see that S ∈ naive([[F − ∆F,S]]) as
expected, since S ∈ cf2 (F ). For comparison, Figure 9 shows the graph of [[F − ∆F,S′ ]] wrt the
cf2 extension S ′ = {b, f, h} consisting of two SCCs. 3

4 Complexity Analysis
In this section we investigate the computational complexity of the cf2 semantics. We consider the
following decision problems for given F = (A,R), a ∈ A and S ⊆ A:

• Vercf2 : is S ∈ cf2 (F )?

• Credcf2 : is a contained in at least one cf2 extension of F ?

• Skeptcf2 : is a contained in every cf2 extension of F ?

• NEcf2 : is there any S ∈ cf2 (F ) for which S 6= ∅?

So far, the only mentionable reference in this context is the article of Nieves et al. [19], where the
authors state that the decision problem Vercf2 is in P. In the following we proof this statement with
the help of our alternative characterization.

15



Figure 10: AF Fϕ for the example 3-CNF ϕ.

Theorem 4.1 Vercf2 is in P.

Proof. For any AF F = (A,R) and a set S ⊆ A, to check if S ∈ cf2 (F ) can be computed in
polynomial time. We show that all steps in Definition 3.11 are in P. Verifying if S ∈ cf (F ) and
S ∈ naive(F ) can be done in polynomial time. Given ∆F,S , computing the instance [[F −∆F,S]]
can be done efficiently; this follows from known results about graph reachability and efficient
algorithms for computing SCCs [22]. It remains to show that the operator ∆F,S(D) reaches its
fixed-point after a polynomial number of iterations. The operator is clearly monotonic, and it is
easy to see that in every iteration less or equal connections between the arguments do exist. Hence,
the computation terminates when no argument a is attacked from any b ∈ S, and a 6⇒A\D

F b. 2

For the hardness proofs of Credcf2 and Skeptcf2 we use the standard reduction from proposi-
tional formulas in conjunctive normal form (CNF) to AFs as in [10, 13].

Definition 4.2 Given a 3-CNF formula ϕ =
∧m
j=1Cj over atoms Z with Cj = lj1 ∨ lj2 ∨ lj3

(1 ≤ j ≤ m) the corresponding AF Fϕ = (Aϕ, Rϕ) is built as follows:

Aϕ = Z ∪ Z̄ ∪ {C1, . . . , Cm} ∪ {ϕ} ∪ {¬ϕ}
Rϕ = {(z, z̄), (z̄, z) | z ∈ Z} ∪ {(Cj, ϕ) | j ∈ {1, . . . ,m}} ∪ {(ϕ,¬ϕ)} ∪

{(z, Cj) | j ∈ {1, . . . ,m}, z ∈ {lj1, lj2, lj3}} ∪
{(z̄, Cj) | j ∈ {1, . . . ,m},¬z ∈ {lj1, lj2, lj3}}

Figure 10 illustrates the AF Fϕ for the formula ϕ = (z1∨z2∨z3)∧(¬z2∨¬z3∨¬z4)∧(¬z1∨z2∨z4).

Lemma 4.3 For any cf2 extension E of the AF Fϕ = (Aϕ, Rϕ) and zi ∈ Z for i ∈ {1, . . . , n},
either zi ∈ E or z̄i ∈ E.
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Proof. The AF Fϕ has the following singleton SCCs {ϕ}, {¬ϕ}, and Ci (1 ≤ i ≤ m). The remain-
ing SCCs are Cli ∈ {Cl1 , . . . , Cln}, with Cli = {zi, z̄i}. As all Cli are not attacked from outside
their component they remain unchanged in [[Fϕ − ∆Fϕ,E]] and naive(Fϕ|Cli

) = {{zi}, {z̄i}}.
Hence, either zi ∈ E or z̄i ∈ E (but never both). 2

Theorem 4.4 Credcf2 is NP-complete.

Proof. For hardness, we show that any 3-CNF formula ϕ is satisfied iff the corresponding AF Fϕ
as in Definition 4.2 has a cf2 extension containing ϕ.
For the if direction, let ϕ be a 3-CNF formula over Z and M ⊆ Z a model of ϕ. We show that
E = {{zi | zi ∈M}∪{z̄i | zi ∈ Z \M}∪{ϕ}} is a cf2 extension of Fϕ. We need to show that (i)
E is conflict free in Fϕ and (ii) E ∈ naive([[Fϕ −∆Fϕ,E]]). As to (i), from Lemma 4.3 we know
that for all i ∈ {1, . . . , n} either zi or z̄i is in E, so there are no conflicts between the arguments in
Z and Z̄. The argument ϕ is not attacked by any zi at all. Hence, E ∈ cf (Fϕ). As to (ii), let us first
compute ∆Fϕ,E , where ∆Fϕ,E(∅) = {x ∈ Aϕ | ∃l ∈ E : l 6= x, (l, x) ∈ Rϕ, x 6⇒ l}. As M is a
model of ϕ, all clauses in ϕ are satisfied, hence, ∀Cj∃li such that (li, Cj) ∈ Rϕ, where li ∈ {zi, z̄i}
for j = {1, . . . ,m} and i = {1, . . . , n}. Furthermore, ϕ ∈ E, (ϕ,¬ϕ) ∈ Rϕ and ¬ϕ 6⇒ ϕ.
Therefore, we obtain ∆Fϕ,E(∅) = {C1, . . . , Cm,¬ϕ} which is also the lfp ∆Fϕ,E . Finally, we
compute the instance [[Fϕ − ∆Fϕ,E]] = (Aϕ \ {C1, . . . , Cm,¬ϕ}, {(z, z̄), (z̄, z) | z ∈ Z}). It is
easy to see that E ∈ naive([[Fϕ −∆Fϕ,E]]) holds.
Only if: Let E ∈ cf2 (Fϕ) such that ϕ ∈ E. We show that M = {zi | zi ∈ E} ∪ {¬zi | z̄i ∈ E}
is a model of ϕ. As ϕ ∈ E we know that it is not attacked by any d ∈ ∆Fϕ,E . Assume there
exists a Cj 6∈ ∆Fϕ,E with (Cj, ϕ) ∈ Rϕ. We know Cj 6∈ E because E ∈ cf (Fϕ), hence from
Definition 3.7 we conclude there is no x ∈ E such that (x,Cj) ∈ Rϕ. In this case, the argument Cj
is contained in [[Fϕ −∆Fϕ,E]], but this is a contradiction to E ∈ naive([[Fϕ −∆Fϕ,E]]), because
the set E ′ = E ∪ {Cj} is conflict-free in [[Fϕ −∆Fϕ,E]]. It follows that for each Cj there exists a
li ∈ {zi, z̄i} such that (li, Cj) ∈ Rϕ, for j = {1, . . . ,m}. This means that for every clause Cj there
exists a literal li ∈M . Hence, M is a model of ϕ.
For membership one can construct an algorithm as follows. For any AF F = (A,R) and a ∈ A,
guess S ⊆ A with a ∈ S and check S ∈ cf2 (F ). As Vercf2 ∈ P, this yields an NP algorithm. 2

Theorem 4.5 Skeptcf2 is coNP-complete.

Proof. For hardness, we show that a given 3-CNF formula ϕ is unsatisfiable iff ¬ϕ is contained
in every cf2 extension of Fϕ, where Fϕ is constructed following Definition 4.2. From the proof
of Theorem 4.4, we already know that ϕ is contained in a cf2 extension iff ϕ is satisfiable. By
definition of the cf2 semantics, it is easily seen that each cf2 extension of Fϕ which does not
contain argument ϕ, has to contain ¬ϕ. Thus, in case ϕ is unsatisfiable, argument ¬ϕ is indeed
skeptically accepted.

Membership can be shown as follows via the complementary problem. Thus, for given AF
F = (A,R) and a ∈ A we guess a set S with a /∈ S and check S ∈ cf2 (F ). As Vercf2 ∈ P, this
yields an NP algorithm for the complementary problem of Skeptcf2 . Hence, Skeptcf2 is in coNP.
2
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cf2 stable stage adm pref
Verσ in P in P coNP-c in P coNP-c
Credσ NP-c NP-c ΣP

2 -c NP-c NP-c
Skeptσ coNP-c coNP-c ΠP

2 -c Trivial ΠP
2 -c

NEσ in P NP-c in L NP-c NP-c

Table 1: Complexity of decision problems (C-c denotes completeness for class C).

Theorem 4.6 NEcf2 ∈ P

Proof. Recall, that for every AF F it holds that each cf2 extension of F is also a naive extension
of F . Thus, in case we have that F possesses only the empty set as its cf2 extension, we know that
the empty set is also the only naive extension of F . However, this is only the case if all arguments
of F are self-attacking. Thus to decide whether there exists a nonempty cf2 extension, of an AF
F = (A,R), it is sufficient to check if there exists any argument a ∈ A such that (a, a) 6∈ R. This
can be done in polynomial time. 2

Our results are summarized in the first column of Table 1 together with results of the other se-
mantics used in this context ([10, 13, 14, 15]). We observe that the complexity of the cf2 semantics
behaves slightly different to these semantics.

5 Strong Equivalence of Argumentation Semantics
So far, we have focused exclusively on the cf2 semantics. In this section, we will show a dis-
tinguished feature of the cf2 semantics, which separates it from all other important semantics
proposed for abstract argumentation. In a nutshell, this particular property states that each attack
in an AF has a potential “meaning” under the cf2 semantics, while this is not the case for other
semantics where attacks may be redundant as the following example illustrates.

Example 5.1 Consider the following AFs F and G.

For both AFs there does not exist any stable extension, hence stable(F ) = stable(G) = ∅.
Now, we add the new AF H = ({b, e}, {(b, e)}), then they still have the same stable extensions
stable(F ∪H) = stable(G ∪H) = {{b, d}}, as highlighted in the following graphs.
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In fact, the attacks {(a, b), (e, b)} in F as well as the attacks {(a, d), (e, c), (e, d)} in G are redun-
dant under the stable semantics. Furthermore, it can be shown that no matter which framework H
one adds to F and G they will always posses the same stable extensions. 3

The concept described in Example 5.1 has been analyzed by Oikarinen and Woltran in [20] and is
defined as strong equivalence.

Definition 5.2 Two AFs F and G are strongly equivalent to each other wrt. a semantics σ, in
symbols F ≡σs G, iff for each AF H , σ(F ∪H) = σ(G ∪H).

By definition, F ≡σs G implies σ(F ) = σ(G), but the other direction is not true in general.
In what follows, we show that for the cf2 semantics strong equivalence coincides with syntactic

equivalence. Afterwards, we characterize strong equivalence for the stage and naive semantics,
both of them have not been considered in [20].

5.1 Strong Equivalence wrt. cf2 Semantics
Interestingly, it turns out that for this semantics there are no redundant attacks at all. In fact, even in
the case where an attack links two self-attacking arguments, this attack might play a role by gluing
two components together. Having no redundant attacks means that strong equivalence coincides
with syntactic equivalence. Before we give the next theorem we provide two lemmata which will
also be useful later.

Lemma 5.3 For any AFs F and G with A(F ) 6= A(G), there exists an AF H such that A(H) ⊆
A(F ) ∪ A(G) and σ(F ∪H) 6= σ(G ∪H), for the semantics σ ∈ {naive, stage, cf2}.

Proof. In case σ(F ) 6= σ(G), we just consider H = (∅, ∅) and get σ(F ∪H) 6= σ(G ∪H). Thus
assume σ(F ) = σ(G) and let wlog. a ∈ A(F ) \ A(G). Thus for all E ∈ σ(F ), a 6∈ E. Consider
the framework H = ({a}, ∅). Then, for all E ′ ∈ σ(G ∪H), we have a ∈ E ′. On the other hand,
F ∪H = F and also σ(F ∪H) = σ(F ). Hence, a is not contained in any E ∈ σ(F ∪H), and we
obtain σ(F ∪H) 6= σ(G ∪H). 2

Lemma 5.4 For any AFs F and G such that (a, a) ∈ R(F ) \ R(G) or (a, a) ∈ R(G) \ R(F ),
there exists an AF H such that A(H) ⊆ A(F ) ∪ A(G) and σ(F ∪ H) 6= σ(G ∪ H), for σ ∈
{naive, stage, cf2}.
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Figure 11: F ∪H Figure 12: G ∪H

Figure 13: [[(F∪H)−∆F∪H,E]] Figure 14: [[(G∪H)−∆G∪H,E]]

Proof. Let the self-attack (a, a) ∈ R(F ) \ R(G) and consider the framework H =
(A, {(a, b), (b, b) | a, b ∈ A, a 6= b}) with A = A(F ) ∪ A(G). Then σ(G ∪ H) = {a}
while σ(F ∪ H) = {∅} for all considered semantics σ ∈ {naive, stage, cf2}. For exam-
ple, in case σ = cf2 we obtain ∆G∪H,E = {b | b ∈ A \ {a}}. Moreover, {a} is conflict-
free in G ∪ H and {a} ∈ naive(G′), where G′ = (G ∪ H) − ∆G∪H,E = ({a}, ∅). On the
other hand, cf2 (F ∪ H) = {∅} since all arguments in F ∪ H are self-attacking. The case for
(a, a) ∈ R(G) \R(F ) is similar. 2

Theorem 5.5 For any AFs F and G, F ≡cf2
s G iff F = G.

Proof. Since for any AFs F = G obviously implies for all AFs H , cf2 (F ∪ H) = cf2 (G ∪ H),
we only have to show that if F 6= G there exists an AF H such that cf2 (F ∪H) 6= cf2 (G ∪H).
From Lemma 5.3 and Lemma 5.4 we know that in case the arguments or the self-loops are not
equal in both frameworks, there exists an AF H such that cf2 (F ∪ H) 6= cf2 (G ∪ H). We thus
assume that A = A(F ) = A(G) and (a, a) ∈ R(F ) iff (a, a) ∈ R(G), for each a ∈ A. Let us thus
suppose wlog. an attack (a, b) ∈ R(F ) \R(G) and consider the AF

H = (A ∪ {d, x, y, z}, {(a, a), (b, b), (b, x), (x, a), (a, y), (y, z), (z, a),

(d, c) | c ∈ A \ {a, b}}),

see also Figures 11 and 12 for illustration. Then, there exists a set E = {d, x, z}, such that
E ∈ cf2 (F ∪ H) but E 6∈ cf2 (G ∪ H). To show that E ∈ cf2 (F ∪ H), we first compute
∆F∪H,E = {c | c ∈ A \ {a, b}}. Thus, in the instance [[(F ∪H) −∆F∪H,E]] we have two SCCs
left, namely C1 = {d} and C2 = {a, b, x, y, z} as illustrated in Figure 13. Furthermore, all attacks
between the arguments of C2 are preserved, and we obtain that E ∈ naive([[(F ∪H)−∆F∪H,E]]),
and as it is also conflict-free we have that E ∈ cf2 (F ∪H) as well. On the other hand, we obtain
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∆G∪H,E = {a} ∪ {c | c ∈ A \ {a, b}}, and the instance G′ = [[(G ∪ H) − ∆G∪H,E]] consists
of five SCCs, namely C1 = {d}, C2 = {b}, C3 = {x}, C4 = {y} and C5 = {z}, with b being
self-attacking as illustrated in Figure 14. Thus, the set E ′ = {d, x, y, z} ⊃ E is conflict-free in G′.
Therefore, we obtain E 6∈ naive(G′), and hence, E 6∈ cf2 (G ∪H). F 6≡cf2

s G follows. 2

In other words, the proof of Theorem 5.5 shows that no matter which AFs F 6= G are given,
we can always construct a framework H such that cf2 (F ∪ H) 6= cf2 (G ∪ H). In particular,
we can always add new arguments and attacks such that the missing attack in one of the original
frameworks leads to different SCCs in the modified ones and therefore to different cf2 extensions,
when suitably augmenting the two AFs under comparison.

The cf2 semantics is the only semantics considered so far, where strong equivalence coincides
with syntactic equivalence. This can be seen as another special property of the cf2 semantics which
gives raise to a more formal investigation. Therefore, we introduce a new property for argumen-
tation semantics which we call the succinctness property. In contrast to strong equivalence which
considers particular AFs, the succinctness property denotes a general property for argumentation
semantics and is comparable to the evaluation criteria proposed in [4]. Hence, it is independent of
the specific instantiation method.

In Example 5.1 we already talked informally about redundant attacks in AFs, in the next def-
inition we make this idea formal; for AFs F = (A,R) and F ′ = (A′, R′) we write F ⊆ F ′ to
denote that A ⊆ A′ and R ⊆ R′ jointly hold. Moreover, we use F \ (a, b) as a shorthand for the
framework (A,R \ {(a, b)}).

Definition 5.6 For an AF F = (A,R) and semantics σ we call an attack (a, b) ∈ R redundant in
F wrt. σ if for all F ′ with F ⊆ F ′, σ(F ′) = σ(F ′ \ (a, b)).

The succinctness property identifies to which extend attacks contribute in terms of a given se-
mantics. In other words, we are interested here in how many attacks are possibly ignored in the
computation of a semantics. The concept of succinctness is now captured as follows.

Definition 5.7 An argumentation semantics σ satisfies the succinctness property or is maximal
succinct iff no AF contains a redundant attack wrt. σ.

The following theorem gives the link between the succinctness property and strong equivalence.1

Theorem 5.8 An argumentation semantics σ satisfies the succinctness property iff for any AFs
F , G with A(F ) = A(G) it holds that strong equivalence between F and G wrt. σ (F ≡σs G)
coincides with syntactic equivalence, i.e. F = G.

1The result as stated here requiresA(F ) = A(G), since we do not impose any prerequisites on the given semantics
σ. However, in case A(F ) 6= A(G) implies F 6≡σs G (as it is the case for all semantics studied in terms of strong
equivalence so far, see also Lemma 5.3), the result is even stronger saying that succinctness holds, if and only if, strong
and syntactic equivalence coincide.
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Proof. Suppose σ does not satisfy the the succinctness property, i.e. there exists an AF F and an
attack (a, b) in F such that σ(F ∪ H) = σ((F \ (a, b)) ∪ H) for any AF H . Obviously, F and
F \ (a, b) are given over the same arguments and we have F ≡σs F \ (a, b) but F 6= F \ (a, b).

Suppose we have AFs F , G with A(F ) = A(G) such that F 6= G and F ≡sσ G. W.l.o.g. let
(a, b) be an attack in F which does not occur in G. Since F ≡sσ G, σ(F ∪ H) = σ(G ∪ H), in
particular for all H not containing (a, b). Since F ∪H ∪ (a, b) = F ∪H , we get that σ(G∪ (a, b)∪
H) = σ(G ∪ H) for all H . By setting G′ = G ∪ (a, b), we observe that (a, b) is redundant in G′

wrt. σ. Hence, σ cannot be maximal succinct. 2

From Theorem 5.5 and Theorem 5.8 we conclude that the cf2 semantics satisfies the succinctness
property.

5.2 Strong Equivalence wrt. other Semantics
To complete the picture about strong equivalence and succinctness, we give characterizations for
strong equivalence wrt. the stage and the naive semantics. As it turns out, these characterizations
will be different to syntactical equivalence. By Theorem 5.8, these two semantics are thus not
maximal succinct. Recall that the results in [20] in combination with Theorem 5.8 show that many
other semantics are not maximal succinct, as well.

To characterize strong equivalence, Oikarinen and Woltran used in [20] so-called kernels for
different semantics which implicitly remove the redundant attacks of the compared frameworks.
As shown in [20], deciding strong equivalence then amounts to checking the syntactic equivalence
of the kernels of the two compared frameworks. More precisely, such kernels have been provided
for many important semantics, viz. for admissible, preferred, ideal, semi-stable, eager, complete
and grounded semantics. All these kernels are non-trivial in the sense that certain attacks are
removed.

In order to characterize strong equivalence wrt. stage semantics, we require here exactly the
same kernel as already used in [20] to characterize strong equivalence wrt. stable semantics.

Example 5.9 Consider the frameworks F and G:

They only differ in the attacks outgoing from the argument a which is self-attacking and yield the
same single stage extension, namely {c}, for both frameworks. We can now add, for instance,
H = ({a, c}, {(c, a)}) and the stage extensions for F ∪ H and G ∪ H still remain the same. In
fact, no matter how H looks like, stage(F ∪H) = stage(G ∪H) will hold. 3

The following kernel reflects the intuition given in the previous example.

Definition 5.10 For an AF F = (A,R), define F sk = (A,Rsk) where

Rsk = R \ {(a, b) | a 6= b, (a, a) ∈ R}.
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Figure 15: F ∪H Figure 16: G ∪H

Theorem 5.11 For any AFs F and G, F ≡stage
s G iff F sk = Gsk .

Proof. Only-if: Suppose F sk 6= Gsk , we show that F 6≡stage
s G. From Lemma 5.3 and Lemma 5.4

we know that in case the arguments or the self-loops are not equal in both frameworks, F ≡stage
s G

does not hold. We thus assume that A = A(F ) = A(G) and (a, a) ∈ F iff (a, a) ∈ G, for each
a ∈ A. Let thus wlog. (a, b) ∈ F sk \ Gsk . We can conclude (a, b) ∈ F and (a, a) /∈ F , thus
(a, a) /∈ G and (a, b) /∈ G. Let c be a fresh argument and take

H = {A ∪ {c}, {(b, b)} ∪ {(c, d) | d ∈ A} ∪ {(a, d) | d ∈ A ∪ {c} \ {b}}).

Then, {a} is a stage extension of F ∪H (it attacks all other arguments) but not of G ∪H (b is not
attacked by {a}); see also Figures 15 and 16 for illustration.
For the if-direction, suppose F sk = Gsk . Let us first show that F sk = Gsk implies cf (F ∪ H) =
cf (G ∪ H), for each AF H . Towards a contradiction, suppose such an H exists and wlog. let
T ∈ cf (F ∪ H) \ cf (G ∪ H). Since F sk = Gsk , we know A(F ) = A(G). Thus there exist
a, b ∈ T (not necessarily a 6= b) such that (a, b) ∈ G ∪ H or (b, a) ∈ G ∪ H . On the other hand
(a, b) /∈ F ∪H and (b, a) /∈ F ∪H hold since a, b ∈ T and T ∈ cf (F ∪H)). Thus, in particular,
(a, b) /∈ F and (b, a) /∈ F as well as (a, b) /∈ H and (b, a) /∈ H; the latter implies (a, b) ∈ G or
(b, a) ∈ G. Suppose (a, b) ∈ G (the other case is symmetric). If (a, a) ∈ G then (a, a) ∈ Gsk , but
(a, a) /∈ F sk (since a ∈ T and thus (a, a) /∈ F ). If (a, a) /∈ G, (a, b) ∈ Gsk but (a, b) /∈ F sk (since
(a, b) /∈ F ). In either case F sk 6= Gsk , a contradiction.

We next show that F sk = Gsk implies (F ∪ H)sk = (G ∪ H)sk for any AF H . Thus, let
(a, b) ∈ (F ∪H)sk , and assume F sk = Gsk ; we show (a, b) ∈ (G∪H)sk . Since, (a, b) ∈ (F ∪H)sk

we know that (a, a) 6∈ F ∪H and therefore, (a, a) 6∈ F sk , (a, a) 6∈ Gsk and (a, a) 6∈ Hsk . Hence,
we have either (a, b) ∈ F sk or (a, b) ∈ Hsk . In the later case, (a, b) ∈ (G ∪H)sk follows because
(a, a) 6∈ Gsk and (a, a) 6∈ Hsk . In case (a, b) ∈ F sk , we get by the assumption F sk = Gsk , that
(a, b) ∈ Gsk and since (a, a) 6∈ Hsk it follows that (a, b) ∈ (G ∪H)sk .

Finally we show that for any frameworks K and L such that Ksk = Lsk , and any S ∈ cf (K)∩
cf (L), S+

R (K) = S+
R (L). This follows from the fact that for each s ∈ S, (s, s) is neither contained

in K nor in L. But then each attack (s, b) ∈ K is also in Ksk , and likewise, each attack (s, b) ∈ L
is also in Lsk . Now since Ksk = Lsk , S+

R (K) = S+
R (L) is obvious.

Thus, we showed that, given F sk = Gsk , the following relations hold for each AF H: cf (F ∪
H) = cf (G ∪ H); (F ∪ H)sk = (G ∪ H)sk ; and S+

R (F ∪ H) = S+
R (G ∪ H) holds for each

S ∈ cf (F ∪ H) = cf (G ∪ H) (taking K = F ∪ H and L = G ∪ H). Thus, stage(F ∪ H) =
stage(G ∪H), for each AF H . Consequently, F ≡stage

s G. 2
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The second semantics we consider here is the naive semantics, as it is closely related to the
cf2 semantics and has not yet been included in [20]. Here, strong equivalence is only a marginally
more restricted concept than standard equivalence, namely in case the two compared AFs are not
given over the same arguments. To proof the next theorem we need the following lemma.

Lemma 5.12 Let F and H be AFs and S be a set of arguments. Then, S ∈ cf (F ∪H) iff, jointly
(S ∩ A(F )) ∈ cf (F ) and (S ∩ A(H)) ∈ cf (H).

Proof. The only-if direction is clear. Thus suppose S /∈ cf (F ∪ H). Then, there exist a, b ∈ S,
such that (a, b) ∈ F ∪ H . By our definition of “∪”, then (a, b) ∈ F or (a, b) ∈ H . But then
(S ∩ A(F )) /∈ cf (F ) or (S ∩ A(H)) /∈ cf (H) follows. 2

Theorem 5.13 The following statements are equivalent: (1) F ≡naive
s G; (2) naive(F ) =

naive(G) and A(F ) = A(G); (3) cf (F ) = cf (G) and A(F ) = A(G).

Proof. (1) implies (2): basically by the definition of strong equivalence and Lemma 5.3.
(2) implies (3): Assume naive(F ) = naive(G) but cf (F ) 6= cf (G). Wlog. let S ∈ cf (F ) \

cf (G). Then, there exists a set S ′ ⊇ S such that S ′ ∈ naive(F ) and by assumption then S ′ ∈
naive(G). However, as S 6∈ cf (G) there exists an attack (a, b) ∈ R(G), such that a, b ∈ S. But as
S ⊆ S ′, we have S ′ 6∈ cf (G) as well; a contradiction to S ′ ∈ naive(G).

(3) implies (1): Suppose F 6≡naive
s G, i.e. there exists a frameworkH such that naive(F ∪H) 6=

naive(G∪H). Wlog. let now S ∈ naive(F ∪H)\naive(G∪H). From Lemma 5.12 one can show
that (S ∩ A(F )) ∈ naive(F ) and (S ∩ A(H)) ∈ naive(H), as well as (S ∩ A(G) 6∈ naive(G).
Let us assume S ′ = S ∩ A(F ) = S ∩ A(G), otherwise we are done yielding A(F ) 6= A(G). If
S ′ /∈ cf (G) we are also done (since S ′ ∈ cf (F ) follows from S ′ ∈ naive(F )); otherwise, there
exists an S ′′ ⊃ S ′, such that S ′′ ∈ cf (G). But S ′′ /∈ cf (F ), since S ′ ∈ naive(F ). Again we obtain
cf (F ) 6= cf (G) which concludes the proof. 2

It follows that the stage and naive semantics are not maximal succinct due to Theorem 5.8.

6 Discussion
In this paper, we investigated the cf2 semantics in several ways. We introduced an alternative char-
acterization which is based on a certain fixed-point operator in order to avoid the more involved
recursions from the original definition [7]. With this new characterization we were able to prove
complexity results for the reasoning problems Vercf2 , NEcf2 , Credcf2 and Skeptcf2 . While the for-
mer two problems can be decided in polynomial time we obtained that Credcf2 is NP-complete and
Skeptcf2 is coNP-complete. Except for NEcf2 , the cf2 semantics thus has the same complexity as
the stable semantics. Let us mention here also that the behavior of the cf2 semantics is similar to
the stage semantics. Both semantics are based on the computation of conflict-free sets, they can se-
lect arguments out of an odd-length cycle and they are not influenced by self-attacking arguments.
However, for the stage semantics both, credulous and skeptical acceptance is on the second level
of the polynomial hierarchy. This mirrors the benefit of using graph-theoretic properties for the
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computation of extensions. Furthermore, it shows that the graph representation is not only useful
for illustrating the frameworks, but also for using the structural properties in the characterization of
the semantics. Additionally, our new characterization of the cf2 semantics allowed us to provide
a relatively compact encoding for computing cf2 extensions in terms of logic programs; these re-
ductions have been incorporated to the ASP-based argumentation system ASPARTIX, see [16, 17]
for details.

The newly introduced succinctness property allows to relate the semantics according to how
much meaning every attack has for the computation of the extensions. It can be seen as an addi-
tional possibility to compare argumentation semantics. Amgoud and Vesic criticized in [2] that the
notion of strong equivalence as introduced in [20] is too strong and has no practical application at
all. We do agree that for logic-based argumentation systems no self-attacking arguments do exist,
but if one uses a different formalism for the instantiation process, like the ASPIC+ system [21] or
ASP (as proposed by Dung in [11]), self-attacking arguments can occur. Therefore, knowing about
redundant attacks for specific semantics, and the classification of them in terms of succinctness,
is useful and can make the evaluation easier. As redundant attacks have no influence, they can be
omitted already during the instantiation process which can be a useful optimization step.

For future work, we will investigate the option to adapt the cf2 semantics by replacing the
naive semantics by stage semantics as a base function; recall Example 2.10 where we illustrated a
certain undesired behavior of the cf2 semantics for even cycles. Concerning the newly introduced
succinctness property, we have already classified most of the argumentation semantics which are
considered important nowadays. So far, cf2 semantics is the only one which satisfies this property.
As a next step an investigation of the resolution-based semantics [5] is planned. In particular,
we claim that the resolution-based grounded semantics behaves here like the grounded semantics
itself, which, as we already know from [20] and Theorem 5.8, violates the succinctness property.
Finally, it also would be interesting to consider different levels of succinctness to have a more
fine-grained classification of different semantics.
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