
TECHNICAL

R E P O R T

Institut für Informationssysteme

Abteilung Datenbanken und

Artificial Intelligence

Technische Universität Wien

Favoritenstr. 9

A-1040 Vienna, Austria

Tel: +43-1-58801-18403

Fax: +43-1-58801-18492

sekret@dbai.tuwien.ac.at

www.dbai.tuwien.ac.at

INSTITUT FÜR INFORMATIONSSYSTEME

ABTEILUNG DATENBANKEN UND ARTIFICIAL INTELLIGENCE

Towards Practical Feasibility of Core
Computation in Data Exchange

DBAI-TR-2008-57

Reinhard Pichler, Vadim Savenkov

DBAI T ECHNICAL REPORT

2008



DBAI T ECHNICAL REPORT

DBAI T ECHNICAL REPORT DBAI-TR-2008-57, 2008

Towards Practical Feasibility of Core Computation in
Data Exchange

Reinhard Pichler, Vadim Savenkov,1

Abstract. Data exchange is concerned with the transfer of data betweendatabases with dif-
ferent schemas, whereby certain integrity constraints have to be observed. Given a source
database, a target database fulfilling all the integrity constraints is called a ”solution” to the
data exchange problem.
In general, a source database admits a big number of solutions, which may significantly
differ in size. The most compact one among the most general (universal) solutions is called
the core. Fagin et al. gave convincing arguments that, in many cases, the core is the pre-
ferred solution to a data exchange problem. Moreover, Gottlob and Nash showed that the
core can be computed in polynomial time under very general conditions. Nevertheless, core
computation has not yet been incorporated into existing data exchange tools.
The aim of this paper is to address the principal obstacles tothe practical feasibility of core
computation and to make a big step forward towards the integration of core computation
into data exchange systems.

1Technische Universität Wien mailto:{pichler|savenkov}@dbai.tuwien.ac.at

Copyright c© 2008 by the authors



1. INTRODUCTION
Data exchange is concerned with the transfer of data be-

tween databases with different schemas. While data integra-
tion usually deals with query translation and query process-
ing among multiple databases [10, 6], data exchange aims
at actually materializing a target database stemming from
some source database [4]. In order to make sure that the
source data is accurately reflected by the target data, the
materialization of the data in the target schema is governed
by a set of source-to-target dependencies (STDs). Moreover,
the target database may also impose additional integrity
constraints, called target dependencies (TDs). Following [4,
5], we confine ourselves to relational schemas and to depen-
dencies which may either be tuple generating dependencies
(TGDs) or equality generating dependencies (EGD) [1].

The source schema S and the target schema T together
with the set Σst of STDs and the set Σt of TDs constitute the
data exchange setting . The data exchange problem for a data
exchange setting (S,T,Σst,Σt) is the task of constructing a
target instance J for a given source instance I, s.t. all STDs
Σst and TDs Σt are satisfied. Such a J is called a solution
to the data exchange problem. Typically, the number of
possible solutions to a data exchange problem is infinite.

Example 1.1. Suppose that the source instance consists
of two relations Tutorial(course, tutor): {(’java’, ’Yves’)}
and BasicUnit(course): {’java’}. Moreover, let the target
schema have four relation symbols NeedsLab(id tutor,lab),
Tutor(idt,tutor), Teaches(id tutor, id course) and Course(idc,
course). Now suppose that we have the following STDs:

1. BasicUnit(C)→ Course(Idc, C).
2. Tutorial(C, T )→ Course(Idc, C),Tutor(Idt, T ),

Teaches(Idt, Itc).

and the TDs are given by the two TGDs:

3. Course(Idc, C)→ Tutor(Idt, T ),Teaches(Idt, Idc).
4. Teaches(Idt, Idc)→ NeedsLab(Idt, L).

Then the following instances are all valid solutions:

J = {Course(C1, ’java’), Course(C2, ’java’),
Tutor(T2,N), Teaches(T2,C1), NeedsLab(T2,L2),
Tutor(T1,’Yves’), Teaches(T1,C2), NeedsLab(T1,L1)},

Jc = {Course(C1,’java’), Tutor(T1,’Yves’), Teaches(T1,C1),
NeedsLab(T1,L1)},

J ′ = {Course(’java’,’java’), Tutor(T1,’Yves’),
Teaches(T1,’java’), NeedsLab(T1,L1)}

A natural requirement (proposed in [4]) on the solutions
is universality , that is, there should be a homomorphism
from the materialized solution to any other possible solu-
tion. Note that J ′ in Example 1.1 is not universal, since
there exists no homomorphism h : J ′ → J . Indeed, a homo-
morphism maps any constant onto itself and, therefore, the
fact Course(’java’,’java’) cannot be mapped onto a fact in J .

In general, a data exchange problem has several universal
solutions, which may significantly differ in size. However,
there is – up to isomorphism – one particular, universal so-
lution, called the core [5], which is the most compact one.
For instance, solution Jc in Example 1.1 is a core.

Fagin et al. [5] gave convincing arguments that, in many
cases, the core should be the database to be materialized.
Moreover, Gottlob and Nash [8] showed that the core can
be computed in polynomial time under very general condi-
tions. Nevertheless, core computation has not yet been in-
corporated into existing data exchange tools like, e.g., Clio
[9]. This is mainly due to the following counter-arguments
which have been put forward against core computation: (1)

Despite the theoretical tractability of core computation, we
are still far away from a practically efficient implementation
of core computation. In fact, no implementation at all of
the algorithm in [8] exists. (2) The core computation looks
like a separate technology which cannot be easily integrated
into existing database technology.

The principal aim of this paper is to make a big step for-
ward towards the integration of core computation into data
exchange systems. The starting point of our work is the
FindCore algorithm developed by Gottlob and Nash [8].
One of the specifics of FindCore is that EGDs in the tar-
get dependencies are simulated by TGDs. As a consequence,
the core computation becomes an integral part of finding any
solution to the data exchange problem. As we shall point out
in Section 5, the simulation of EGDs by TGDs, in general,
causes a significant loss of performance. Moreover, there
are other data exchange semantics [11] that favor the mate-
rialization of canonical universal solutions (for a definition,
see Section 2) rather than cores. Hence, the core compu-
tation should be treated as an optional service and strictly
separated from the process of finding a solution.

Results. The main contribution of this work is twofold:
(1) We present an enhanced version of the FindCore al-

gorithm. The most significant advantage of our algorithm
(which we shall refer to as FindCoreE) is that it avoids
the simulation of EGDs by TGDs. The activities of solving
the data exchange problem and of computing the core are
thus fully uncoupled. The core computation can then be
considered as an optional add-on feature of data exchange
which may be omitted or deferred to a later time (e.g., to
periods of low database user activity). Moreover, the direct
treatment of EGDs leads to a performance improvement of
an order of magnitude. Another order of magnitude can
be gained by approximating the core. Our experimental
results suggest that the partial execution of the core com-
putation may already yield a very good approximation to
the core. Since all intermediate instances computed by our
FindCoreE algorithm are universal solutions, one may stop
the core computation at any time and content oneself with
an approximation to the core.

(2) We also report on a proof-of-concept implementation
of the enhanced algorithm. It is built on top of a rela-
tional database system and mimics data exchange-specific
features by automatically generated views and SQL queries.
This gives the implementation a lot of flexibility and avoids
rebuilding functionality which is provided by any RDBMS
anyway. Moreover, this shows that the integration of core
computation into existing database technology is clearly fea-
sible. The lessons learned from the experiments with this
implementation yield important hints concerning future im-
provements of core computation.

Structure of the paper. This paper is organized as fol-
lows. In Section 2, we recall some basic notions as well
as the FindCore algorithm. The FindCoreE algorithm is
presented in Section 3. In Section 4, we outline a prototype
implementation. First experimental results are presented
and discussed in Section 5. We conclude with Section 6.

2. PRELIMINARIES
2.1 Basic concepts of data exchange
Data exchange problem. A schema σ = {R1, . . . , Rn}
is a set of relation symbols Ri each of a fixed arity. An in-
stance over a schema σ consists of a relation for each relation
symbol in σ, s.t. both have the same arity. We only consider
finite instances. By slight abuse of notation, we sometimes
identify a relation with its relation symbol (and vice versa).

1



Tuples of the relations may contain two types of terms:
constants and variables. The latter are also called labeled
nulls. Two labeled nulls are equal iff they have the same
label. For every instance J , we write dom(J), var(J), and
const(J) to denote the set of terms, variables, and constants,
respectively, of J . Clearly, dom(J) = var(J) ∪ const(J) and
var(J) ∩ const(J) = ∅. If a tuple (x1, x2, . . . , xn) belongs
to the relation R, we say that J contains the fact R(x1, x2,
. . . , xn). We also write ~x for a tuple (x1, x2, . . . , xn) and if
xi ∈ X, for every i, then we also write ~x ∈ X instead of
~x ∈ Xn. Likewise, we write r ∈ ~x if r = xi for some i.

Let S = {S1, . . . , Sn} and T = {T1, . . . , Tm} be schemas
with no relation symbols in common. We call S the source
schema and T the target schema. We write 〈S,T〉 to denote
the schema {S1, . . . , Sn, T1, . . . , Tm}. Instances over S (resp.
T) are called source instances (resp. target instances). If
I is a source instance and J a target instance, then their
combination 〈I, J〉 is an instance of the schema 〈S,T〉.

Embedded dependencies [3] over a schema σ are first-order
formulae of the form

∀~x (φ(~x )→ ∃~y ψ(~x, ~y ))

where premise φ and conclusion ψ are conjunctions of atomic
formulas with relational symbols from σ or equalities, s.t. all
variables in ~x actually do occur in φ(~x ). Throughout this
paper, we shall omit the universal quantifiers. By conven-
tion, all variables occurring in the premise are universally
quantified (over the entire formula). Moreover, we shall of-
ten also omit the existential quantifiers, unless we want to
emphasize them. By convention, all variables occurring in
the conclusion only are existentially quantified over the con-
clusion. We shall thus use the notations φ(~x )→ ψ(~x, ~y ) and
φ(~x )→ ∃~y ψ(~x, ~y ) interchangeably for the above formula.

Let Σ be a set of dependencies and I an instance. We
write I |= Σ to denote that the instance I satisfies Σ.

In the context of data exchange, we are mainly dealing
with source-to-target dependencies (STDs) and target de-
pendencies (TDs). In STDs, the premise may only use re-
lation symbols from the source schema while the conclusion
may only use relation symbols from the target schema. In
TDs, both the premise and the conclusion may only use
relation symbols from the target schema. Note that source
dependencies may be important for deriving STDs (see [12]).
However, they play no direct role in data exchange, where
we take the source instance to be given.

A data exchange setting is given by a quadruple (S,T,Σst,
Σt) consisting of the source schema S, the target schema T,
the set of STDs Σst and the set of TDs Σt. The data ex-
change problem associated with this setting is the following:
Given a (ground) source instance I, find a target instance J ,
s.t. 〈I, J〉 |= Σst and J |= Σt. Such a J is called a solution
for I or, simply, a solution if I is clear from the context.

TGDs and EGDs. Following [4, 5], we consider depen-
dencies in Σst and Σt of the following forms: Each STD in
Σst is a tuple generating dependency (TGD) of the form

φS(~x )→ ψT(~x, ~y )

where φS(~x ) is a conjunction of atomic formulas over S and
ψT(~x, ~y ) is a conjunction of atomic formulas over T. Each
TD in Σt is either a TGD, of the form

φT(~x )→ ψT(~x, ~y )

or an equality generating dependency (EGD) of the form

φT(~x )→ (xi = xj).

In these dependencies, φT(~x ) and ψT(~x, ~y ) are conjunctions
of atomic formulas over T, and xi, xj are among the vari-
ables in ~x. The special case of a TGD without (existentially

quantified) variables ~y is called a full TGD , i.e. we have
φS(~x )→ ψT(~x ) and φT(~x )→ ψT(~x ), respectively.

Chase. The data exchange problem can be solved by the
chase [1], a sequence of steps, each enforcing a single con-
straint within some limited set of tuples. More precisely,
let Σ contain a TGD τ : φ(~x ) → ψ(~x, ~y ), s.t. I |= φ(~a ) for
some assignment ~a on ~x and I 2 ∃~yψ(~a, ~y ). Then we have to
extend I with facts corresponding to ψ(~a, ~z ), where the ele-
ments of ~z are fresh labeled nulls. Likewise, suppose that Σ
contains an EGD τ : φ(~x )→ xi = xj , s.t. I |= φ(~a ) for some
assignment ~a on ~x. This EGD enforces the equality ai = aj .
We thus choose a variable v among ai, aj and replace every
occurrence of v in I by the other term; if ai, aj ∈ const(I)
and ai 6= aj , the chase halts with failure. The result of
chasing I with dependencies Σ is denoted as IΣ.

A sufficient condition to guarantee the termination of the
chase is that the set of TGDs be weakly acyclic (see [2, 4]).
This property is formalized as follows. For a dependency set
Σ, construct a dependency graph GD whose vertices are fields
Ri where i denotes a position (an “attribute”) of relation R.
Let φ(~x )→ ψ(~x, ~y ) be a TGD in Σ and suppose that some
variable x ∈ ~x occurs in the field Ri. Then the edge

`
Ri, Sj

´
is present in GD if either (1) x also occurs in the field Sj in
ψ(~x, ~y ) or (2) x occurs in some other field T k in ψ(~x, ~y ) and
there is a variable y ∈ ~y in the field Sj in ψ(~x, ~y ). Edges
resulting from rule (2) are called special .

A set of TGDs is weakly acyclic if there is no cycle con-
taining a special edge. Obviously, the set of STDs is always
weakly acyclic, since the dependency graph contains only
edges from fields in the source schema to fields in the target
schema, but not vice versa. In summary, we only consider
data exchange settings (S,T,Σst, Σt) where Σst is a set of
TGDs and Σt is a set of EGDs and weakly acyclic TGDs.

Figure 1 below shows the dependency graph for the tar-
get TGDs in Example 1.1, where special edges are marked
with *. Clearly, this graph has no cycle containing a spe-
cial edge (actually, it contains no cycle at all). Hence, these
TGDs are weakly acyclic.

Tutortutor

idt

Course

course

idc
Teaches

id_tutor

id_course

NeedsLab

id_tutor

lab

*
 
*

  * *

Figure 1: Dependency graph.

Universal solutions and core. Let I,I ′ be instances. A
homomorphism h : I → I ′ is a mapping dom(I)→ dom(I ′),
s.t. (1) whenever R(~x ) ∈ I, then R(h(~x )) ∈ I ′, and (2) for
every constant c, h(c) = c. An endomorphism is a homo-
morphism I → I, and a retraction is an idempotent endo-
morphism, i.e. r ◦ r = r. An endomorphism or a retraction
is proper if it is not surjective (for finite instances, this is
equivalent to being not injective), i.e., if it “shrinks” the do-
main, so to speak. The image r(I) under a retraction r is
called a retract of I. An instance is called a core if it has no
proper retractions. A core C of an instance I is a retract of
I, s.t. C is a core. Cores of an instance I are unique up to
isomorphism. We can therefore speak about the core of I.

Consider an arbitrary data exchange setting where Σst is
a set of TGDs and Σt is a set of EGDs and weakly acyclic
TGDs. Then the solution to a source instance S can be com-
puted as follows: We start off with the instance (S, ∅), i.e.,
the source instance is S and the target instance is initially

2



empty. Chasing (S, ∅) with Σst yields the instance (S, T ),
where T is called the preuniversal instance. This chase al-
ways succeeds since Σst contains no EGDs. Then T is chased
with Σt. This chase may fail because of the EGDs in Σt. If
the chase succeeds, then we end up with U = TΣt , which is
referred to as the canonical universal solution. Both T and
U can be computed in polynomial time w.r.t. the size of the
source instance [4].

Depth, height, width, blocks. Let Σ be a set of depen-
dencies with dependency graph GD. The depth of a field
Rj of a relation symbol R is the maximal number of special
edges in any path of GD that ends in Rj . The depth of Σ
is the maximal depth of any field in Σ. Given a dependency
τ : φ(~x )→ ψ(~x, ~y ) in Σ, we define the width of τ to be |~x|,
and the height as |~y|. The width (resp. the height) of Σ is
the maximal width (resp. height) of the dependencies in Σ.

Our main topic here is the core computation, which is es-
sentially a search for appropriate homomorphisms. It was
shown in [5], that the key complexity factor when search-
ing for homomorphisms is the block size, which is defined as
follows: The Gaifman graph G(I) of an instance I is an undi-
rected graph whose vertices are variables of I and, whenever
two variables v1 and v2 share a tuple in I, there is an edge
(v1, v2) in G(I). A block is a connected component of G(I).
Every variable v of I belongs exactly to one block, denoted
as block(v, I). The block size of instance I is the maximal
number of variables in any of its blocks. In [5], the following
important results concerning the block size were proved:

Theorem 2.1. [5] Let A and B be instances, and suppose
that blocksize(A) ≤ c holds. Then the check if a homomor-
phism h : A→ B exists and, if so, the computation of h can
both be done in time O(|A| · |B|c).

Proof. (Sketch) The crucial observation is that, in or-
der to search for a homomorphism h : A→ B, we may search
for homomorphisms from every block of A onto B separately.
Note that A has ≤ |A| blocks, each containing ≤ c variables.
Hence, from each block of A we have to consider ≤ |B|c pos-
sible mappings onto B.

Theorem 2.2. [5] If Σst is a set of STDs of height e, S
is ground, and (S, T ) = (S, ∅)Σst , then blocksize(T ) ≤ e.

Sibling, parent, ancestor. Consider the chase of the pre-
universal instance T with TDs Σt and suppose that ~y is a tu-
ple of variables created by enforcing a TGD φ(~x )→ ψ(~x, ~y )
in Σt, s.t. the precondition φ(~x) was satisfied with a tuple ~a.
Then the elements of ~y are siblings of each other; every vari-
able of ~a is a parent of every element of ~y; and the ancestor
relation is the transitive closure of the parent relation.

2.2 Core computation with FindCore
In this section, we recall the FindCore algorithm of [8].

To this end, we briefly explain the main ideas underlying
the steps (1) – (11) of this algorithm.

The chase. FindCore starts in (1) with the computa-
tion of the preuniversal instance. But then, rather than di-
rectly computing the canonical universal solution by chasing
T with Σt, the EGDs in Σt are simulated by TGDs. Hence,
in (2), the set Σt of EGDs and TGDs over the signature τ
is transformed into the set Σ̄t of TGDs over the signature
τ ∪ E, where E (encoding equality) is a binary relation not
present in τ . The transformation proceeds as follows:

1. Replace all equations x = y with E(x, y) thus turning
every EGD into a TGD.

2. Add the following equality constraints:

• E(x, y)→ E(y, x)

Procedure FindCore

Input: Source ground instance S
Output: Core of a universal solution for S

(1) Chase (S,∅) with Σst to obtain (S, T ) := (S, ∅)Σst ;
(2) Compute Σ̄t from Σt;

(3) Chase T with Σ̄t (using a nice order) to get U := T Σ̄t ;
(4) for each x ∈ var(U), y ∈ dom(U), x 6= y do
(5) Compute Txy;
(6) Look for h : Txy → U s.t. h(x) = h(y);
(7) if there is such h then
(8) Extend h to an endomorphism h′ on U ;
(9) Transform h′ into a retraction r;
(10) Set U := r(U);
(11) return U.

• E(x, y), E(y, z)→ E(x, z)
• R(x1, . . . , xk)→ E(xi, xi)

for every R ∈ τ and i ∈ {1, 2, . . . , k} where k is
the arity of R

3. Add the following consistency constraints:

• R(x1, . . . , xk), E(xi, y)→ R(x1, . . . , y, . . . , xk)
for every R ∈ τ and i ∈ {1, 2, . . . , k}

Even if Σt was weakly acyclic, Σ̄t may possibly not be
so. Hence, a special nice chase order is defined in [8] which
ensures termination of the chase by Σ̄t. It should be noted
that U computed in (3) is not a universal solution since, in
general, the EGDs of Σt are not satisfied. Their enforcement
happens as part of the core computation.

Retractions. The FindCore algorithm computes the core
by iteratively computing a succession of nested retracts.
This is motivated by the fact that retractions have the fol-
lowing favorable properties: (1) embedded dependencies are
closed under retractions and (2) any proper endomorphism
can be effectively transformed into a retraction [8]:

Theorem 2.3. [8] Let r : A→ A be a retraction with B =
r(A) and let Σ be a set of embedded dependencies. If A |= Σ,
then B |= Σ.

Theorem 2.4. [8] Given an endomorphism h : A → A
such that h(x) = h(y) for some x, y ∈ dom(A), there is a
proper retraction r on A s.t. r(x) = r(y). Such a retraction
can be found in time O(|dom(A)|2).

Note that U after step (3) clearly satisfies the dependen-
cies Σst and Σ̄t. Steps (4) – (8), which will be explained
below, search for a proper endomorphism h on U . If this
search is successful, we use Theorem 2.4 to turn h into a
retraction r in step (9) and replace U by r(U) in step (10).
By Theorem 2.3 we know that Σst and Σ̄t are still satisfied.

Searching for proper endomorphisms. At every step
of the descent to a core, the FindCore algorithm attempts
to find a proper endomorphism for the current instance U in
the steps (5) – (8) of the algorithm. Given a variable x and
another domain element y, we try to find an endomorphism
which equates x and y. However, by Theorem 2.1, the time
needed to find an appropriate homomorphism may be expo-
nential w.r.t. the block size. The key idea in FindCore is,
therefore, to split the search for a proper endomorphism into
two steps: For given x and y, there exists an instance Txy

(defined below) whose block size is bounded by a constant
depending only on Σst ∪ Σt. So we first search for a homo-
morphism h : Txy → U with h(x) = h(y); and then h is ex-
tended to a homomorphism h : U → U , s.t. h(x) = h(y) still

3



holds. Hence, h is still non-injective and, thus, h is a proper
endomorphism, since we only consider finite instances.

The properties of Txy and the existence of an extension h′

of h are governed by the following results from [8]:

Lemma 2.1. [8] For every weakly acyclic set Σ of TGDs,
instance T and x, y ∈ dom(TΣ), there exist constants b, c
which depend only on Σ and an instance Txy satisfying

1. x, y ∈ dom(Txy),

2. T ⊆ Txy ⊆ TΣ,

3. dom(Txy) is closed under parents and siblings, and

4. |dom(Txy)| ≤ |dom(T )|+ b

Moreover, Txy can be computed in time O(|dom(T )|c).

Theorem 2.5. (Lifting) [8] Let TΣ be a universal solu-
tion of a data exchange problem obtained by chasing a pre-
universal instance T with the weakly acyclic set Σ of target
TGDs. If B and W are instances such that:

1. B |= Σ,

2. T ⊆W ⊆ TΣ, and

3. dom(W ) is closed under ancestors and siblings,

then any homomorphism h : W → B can be extended in time
O(|dom(T )|b) to a homomorphism h′ : TΣ → B where b de-
pends only on Σ.

Summary. Recall that the auxiliary predicate E is used
to simulate equality. Hence, if step (3) of the algorithm
generates a fact E(ai, aj) with ai 6= aj then the data ex-
change problem has no solution and the core computation
should halt with failure. Otherwise, the loop in steps (4) –
(10) tries to successively shrink dom(U). When no further
shrinking is possible, then the core is reached. In fact, it is
proved in [8] that such a minimal instance U resulting from
FindCore indeed satisfies all the EGDs. Hence, U minus
all auxiliary facts with leading symbol E constitutes the core
of a universal solution. In total, we thus have

Theorem 2.6. [8] Let (S,T,Σst,Σt) be a data exchange
setting with STDs Σst and TDs Σt. Moreover, let S be a
ground instance of the target schema S. If this data ex-
change problem has a solution, then FindCore correctly
computes the core of a canonical universal solution in time
O(|dom(S)|b) for some b that depends only on Σst ∪ Σt.

3. ENHANCED CORE COMPUTATION
The crucial point of our enhanced algorithm FindCoreE

is the direct treatment of the EGDs, rather than simulating
them by TGDs. Hence, our algorithm produces the canon-
ical universal solution U first (or detects that no solution
exists), and then successively minimizes U to the core. On
the surface, our FindCoreE algorithm proceeds exactly as
the FindCore algorithm from Section 2.2 algorithm, i.e.:

• compute an instance Txy

• search for a non-injective homomorphism h : Txy → U

• lift h to a proper endomorphism h′ : U → U

• construct a proper retraction r from h′.

Actually, the construction of a retraction r via Theorem 2.4
and the closure of embedded dependencies w.r.t. retractions
according to Theorem 2.3 are not affected by the application
of the EGDs. In contrast, the first 3 steps above require
significant adaptations in order to cope with EGDs, e.g.:

• Txy in Section 2.2 is obtained by considering only a
small portion of the target chase, thus producing a
subinstance of U . Now that EGDs are involved, the
domain of U may no longer contain all elements that
were present in T or in some intermediate result of the
chase. Hence, we will need to define Txy differently.

• The computational cost of the search for a homomor-
phism h : Txy → U depends on the block size of Txy

which in turn depends on the block size of the pre-
universal instance T . EGDs have a positive effect in
that they eliminate variables, thus reducing the size
of a single block. Conversely, EGDs may also have a
negative effect in that they may merge different blocks
of the preuniversal instance T . Hence, without fur-
ther measures, this would destroy the tractability of
the search for a homomorphism h : Txy → U .

• Since we have to define Txy differently from Section 2.2,
also the lifting of h : Txy → U to a proper endomor-
phism h′ : U → U will have to be modified. More-
over, it will turn out that a completely new approach
is needed to prove the correctness of this lifting.

The details of the FindCoreE algorithm and of the re-
quired modifications w.r.t. Section 2.2 are worked out below.

Introduction of an id. Chasing with EGDs results in the
substitution of variables. Hence, the application of an EGD
to an instance J produces a syntactically different instance
J ′. However, we find it convenient to regard the instance
J ′ after enforcement of an EGD as a new version of the
instance J rather than as a completely new instance. In
other words, the substitution of a variable produces new
versions of facts that have held that variable, but the facts
themselves persist. We formalize this idea as follows.

Given a data exchange setting S = (S,T,Σst,Σt), we
define an id-aware data exchange setting Sid by augmenting
each relation R ∈ T with an additional id field inserted at
position 0. Hence, in the atoms of the conclusions of STDs
and in all atoms occurring in TDs, we have to add a unique
existentially-quantified variable at position 0. For example,
the source-to-target TGD τ : S(x)→ R(x, y) is transformed
into τ id : S(x)→ Rid(t, x, y) for fresh variable t.

These changes neither have an effect on the chase nor
on the core computation (apart from increasing the vari-
able domains of target instances), as no rules rely on val-
ues in the added columns. It is immediate that a fact
R(x1, x2, . . . , xn) s present in the target instance at some
phase of solving the original data exchange problem iff the
fact Rid(id, x1, x2, . . . , xn) is present at the same phase of
solving its id-aware version. In fact, this modification does
not even need to be implemented - we just introduce it to
allow the discussion about facts in an unambiguous way.

During the chase, every fact of the target instance is as-
signed a unique id variable, which is never substituted by
an EGD. We can therefore identify a fact with this variable:

1. If Rid(t1, x1, . . . , xn) is a fact of a target instance T,
then we refer to it as fact t1.

2. We define equality on facts as equality between their
id terms: Rid(t1, x1, . . . , xn) = Rid(t2, y1, . . . , yn) iff
t1 = t2

We also define a position by means of the id of a fact plus
a positive integer indicating the place of this position inside
the fact. Thus, if J is an instance and R(idR, x1, x2, . . . , xn)
is an id-aware version of R(x1, . . . , xn) ∈ J , then we say that
the term xi occurs at the position (idR, i) in J .

Source position and origin. By the above considerations,
facts and positions in an id-aware data exchange setting ,

4



persist in the instance once they have been created – in spite
of possible modifications of the variables. New facts and,
therefore, new positions in the target instance are introduced
by TGDs. If a position p = (idR, i) occurring in the fact
R(idR, x1, . . . , xn) was created to hold a fresh null, we call
p native to its fact idR. Otherwise, if an already existing
variable was copied from some position p′ in the premise of
the TGD to p, then we say that p is foreign to its fact idR.
Moreover, we call p′ the source position of p. Note that there
may be multiple choices for a source position. For instance,
in the case of the TGD R(y, x) ∧ S(x) → P (x): a term
of P/1 may be copied either from R/2 or from S/1. Any
possibility can be taken in such a case: the choice is don’t
care non-deterministic.

Of course, a source position may itself be foreign to its
fact. Tracing the chain of source positions back until we
reach a native position leads to the notion of origin posi-
tion, which we define recursively as follows: If a position
p = (idR, i) is native to the fact R(idR, x1, . . . , xn), then its
origin position is p itself. Otherwise, if p is foreign, then the
origin of p is the origin of a source position of p.

The fact holding the origin position of p is referred to as
the origin fact of the position p. Finally, we define the origin
fact of a variable x, denoted as Originx, as the origin fact
of one of the positions where it was first introduced (again
in a don’t care non-deterministic way).

Example 3.1. Let J = {S(idS1, x1, y1)} be a preuniver-
sal instance and consider the following target dependencies:

1. S(idS , x, y)→ P (idP , y, z)

2. P (idP , y, z)→ Q(idQ, y, v),

yielding the canonical universal solution JΣ shown in Fig-
ure 2: JΣ = {S(idS1, x1, y1), P (idP1, y1, z1), Q(idQ1, y1, v1)}.

Every position of J is native, being created by the source-
to-target chase, which never copies labeled nulls. Thus the
origin positions of (idS1, 1) and (idS1, 2) are these positions
themselves. The latter is also the origin position for the two
foreign positions (idP1, 1) and (idQ1, 1), introduced by the
target chase. The remaining two positions of the facts idP1

and idQ1 are native.
The origin positions of the variables are as follows: (idS1, 1)

for x1, (idS1, 2) for y1, (idP1, 2) for z1, and (idQ1, 2) for v1.

ZY Y V

S(X,Y)→∃Z. P(Y,Z)  P(Y,Z)→∃V. Q(Y,V)  

X Y

S.a

S.b P.b Q.b

P.a Q.a

*
*

S.a S.b P.a P.b Q.a Q.b
(a)

(b)

source & origin source

origin

1 1 1 1 1 1

Figure 2: Positions of the instance JΣ (foreign positions
are dashed) (a) and the dependency graph of Σ (b).

Lemma 3.1. Let I be an instance. Moreover, let p a po-
sition in I and op its origin position. Then p and op always
contain the same term.

Proof. If p is native to its fact, then p = op by definition.
Hence, in this case, p and op trivially hold the same term.

Otherwise, let p 6= op. Then there exists a chain p0, p1,
. . . , pn of positions, s.t. pi−1 is the source position of pi for
every i ∈ {1, . . . , n} and p0 = op and pn = p. We proceed
by induction on i: Of course, p0 always contains the same
term as op, since p0 = op. Now suppose that, at any stage of
the chase, pi−1 contains the same term as op. By definition,
pi−1 is the source position of pi, i.e.: When pi is created by
firing a TGD, then the term contained in pi−1 is copied to
pi. Hence, pi will always contain the same term as pi−1, no
matter which EGDs are applied in the course of the chase.
Thus, by the induction hypothesis, it will always contain the
same term as op.

Normalization of TGDs. Let τ : φ(~x ) → ψ(~x, ~y ) be a
non-full TGD, i.e., ~y is non-empty. Then we can set up the
Gaifman graph G(τ) of the atoms in the conclusion ψ(~x, ~y),
considering only the new variables ~y, i.e., G(τ) contains
as vertices the variables in ~y. Moreover, two variables yi

and yj are adjacent (by slight abuse of notation, we iden-
tify vertices and variables), if they jointly occur in some
atom of ψ(~x, ~y). Let G(τ) contain the connected compo-
nents ~y1, . . . , ~yn. Then the conclusion ψ(~x, ~y ) is of the form

ψ(~x, ~y ) = ψ0(~x ) ∧ ψ1(~x, ~y1) ∧ · · · ∧ ψn(~x, ~yn),

where the subformula ψ0(~x ) contains all atoms of ψ(~x, ~y )
without variables from ~y and each subformula ψi(~x, ~yi) con-
tains exactly the atoms of ψ(~x, ~y ) containing at least one
variable from the connected component ~yi.

Now let the full TGD τ0 be defined as τ0 : φ(~x )→ ψ0(~x )
and let the non-full TGDs τi with i ∈ {1, . . . , n} be defined
as τi : φ(~x ) → ψi(~x, ~yi). Then τ is clearly logically equiva-
lent to the conjunction τ0 ∧ τ1 ∧ · · · ∧ τn. Hence, τ in the set
Σt of target dependencies may be replaced by τ0, τ1, . . . , τn.

We say that Σt is in normal form if every TGDs τ in
Σt is either full or its Gaifman graph G(τ) has exactly 1
connected component. By the above considerations, we will
henceforth assume w.l.o.g., that Σt is in normal form. Such
target dependencies have the following property, which plays
an important role in the proof of Theorem 3.1.

Lemma 3.2. Let the preuniversal instance J be chased
with the set Σt of TDs in normal form. Suppose that at some
step in the chase, the non-full TGD τ : φ(~x )→ ψ(~x, ~y ) fires.
Then τ introduces a new fact for every atom in the conclu-
sion ψ(~x, ~y ). More precisely, suppose that τ fires with the
assignment ~a on ~x and assignment ~z on ~y. Then all atoms
in ψ(~a, ~z ) are newly created by this chase step.

Proof. Let J ′ denote the instance prior to this chase
step. The TGD τ is only fired if it introduces at least one
new fact. Let ρ(~a, ~z ) denote the subformula of ψ(~a, ~z ),
s.t. all atoms in ρ(~a, ~z ) are newly created by this chase
step, while all atoms in the remaining subformula ρ′(~a, ~z )
of ψ(~a, ~z ) already exist in J ′. We have to show that ρ(~a, ~z )
comprises all atoms of ψ(~a, ~z ).

Suppose to the contrary that ρ(~a, ~z ) is a proper subfor-
mula of ψ(~a, ~z ). Since this application of τ creates new
facts for every atom in ρ(~a, ~z ), the assignment ~z instanti-
ates all variables in ~y occurring in ρ(~a, ~z ) to fresh nulls.
By the normalization of τ , the Gaifman graph G(τ) has ex-
actly 1 connected component. Hence, there exists at least
one atom A in ρ′(~a, ~y ), s.t. A shares with ρ(~a, ~y ) a variable
from ~y. Hence, the atom A[~y ← ~z ] in ρ′(~a, ~z ) contains at
least one fresh null. But this contradicts the assumption
that A[~y ← ~z ] already existed in J ′.

Example 3.2. Consider the non-full TGD

τ : S(x, y)→ ∃z, v(P (x, z) ∧R(x, y) ∧Q(y, v)).

5



Then τ is logically equivalent to the conjunction of the three
TGDs: τ0 : S(x, y) → R(x, y), τ1 : S(x, y) → ∃z P (x, z),
and τ2 : S(x, y) → ∃v Q(y, v). Clearly, these dependencies
τ0, τ1, and τ2 are normalized in the sense above.

Extension of the parent and sibling relation to facts.
Let I be an instance after the jth chase step and suppose that
in the next chase step, the non-full TGD τ : φ(~x )→ ψ(~x, ~y )
is enforced, i.e.: I |= φ(~a ) for some assignment ~a on ~x and
I 2 ∃~yψ(~a, ~y ), s.t. the facts corresponding to ψ(~a, ~z ), where
the elements of ~z are fresh labeled nulls, are added. Let t
be a fact introduced by this chase step, i.e., t is an atom of
ψ(~a, ~z ). Then all other facts introduced by the same chase
step (i.e., by Lemma 3.2, all other atoms of ψ(~a, ~z )) are
the siblings of t. Given a fact t, its parent set consists of
the origin facts for any foreign position in t or in any of
its siblings. The ancestor relation on facts is the transitive
closure of the parent relation.

This definition of siblings and parents implies that facts
introducing no fresh nulls (since we are assuming the above
normal form, these are the facts created by a full TGD) can
be neither parents nor siblings.

Recall that we identify facts by their ids rather than by
their concrete values. Hence, any substitutions of nulls that
happen in the course of the chase do not change the set of
siblings, the set of parents, or the set of ancestors of a facts.

Example 3.3. Let us revisit the two TGDs S(idS , x, y)→
P (idP , y, z) and P (idP , y, z) → Q(idQ, y, v) from Exam-
ple 3.1, see also Figure 2. Although the creation of the atom
Q(y1, v1) was triggered by the atom P (y1, z1), the only par-
ent of Q(y1, v1) is the origin fact of y1, namely S(x1, y1).

Some useful notation. To reason about the effects of
EGDs, it is convenient to introduce some additional nota-
tion, following [5]. Let J be a canonical preuniversal instance
and J ′ the canonical universal solution, resulting from chas-
ing J with a set of target dependencies Σt. Moreover, sup-
pose that u is a term which either exists in the domain of J or
which is introduced in the course of the chase. Then we write
[u] to denote the term to which u is mapped by the chase.
More precisely, let t = S(u1, u2, . . . , us) be an arbitrary fact,
which either exists in J or which is introduced by the chase.
Then the same fact t in J ′ has the form S([u1], [u2], . . . , [us]).
By Lemma 3.1, every [ui] is well-defined, since it corresponds
to the term produced by the chase in the corresponding ori-
gin position. For any set Σt of TDs, constants are mapped
onto themselves: ∀c ∈ const(J) c = [c]. For u, v ∈ dom(J),
we write u ∼ v if [u] = [v], i.e. two terms have the same im-
age in J ′. If Σt contains no EGDs, then ∀u ∈ dom(J)u = [u]
holds. The following property of [·] is immediate:

Proposition 3.1. The mapping [·] : J → J ′ is a homo-
morphism.

We are now ready to prove the main results underlying the
FindCoreE algorithm, i.e.: Definition of Txy (Lemma 3.3),
search for a homomorphism h : Txy → U (Lemma 3.4 and
Theorem 3.3), and lifting a homomorphism h : Txy → U to
a non-injective homomorphism TΣst → U (Theorem 3.1).

Lemma 3.3. For every weakly acyclic set Σt of TGDs and
EGDs, instance T , and x, y ∈ dom(TΣt), there exist con-
stants b, c which depend only on Σ = Σst ∪ Σt and an in-
stance Txy satisfying

1. Originx,Originy ⊆ Txy,

2. All facts of T are in Txy, and Txy ⊆ TΣt ,
3. Txy is closed under parents and siblings over facts,

4. |dom(Txy)| ≤ |dom(T )|+ b.

Moreover, Txy can be computed in time O(|dom(T )|c).

Proof. Let d denote the depth of Σt. Given variable x,
let the set Fx (= the “family” of x) denote the set of facts
obtained as follows: At the deepest level j (with j ≤ d),
Fx contains Originx and all siblings thereof. On the next
higher level j − 1, Fx contains all parents of facts on level
j plus all siblings thereof. This procedure is continued until
the top level is reached. Thus, Fx contains Originx and is
closed under the parent and sibling relations. Then the set
Txy := TΣst ∪ Fx ∪ Fy satisfies the conditions 1–3.

The desired upper bound on the domain size of Fx and,
therefore, of Txy is obtained as follows: On every level, ev-
ery fact has at most constantly many siblings with at most
constantly many variables, where this constant only depends
on Σ. Likewise, for the transition from one level to the next
higher one, we observe that every fact has at most constantly
many foreign positions, each with at most constantly many
parents. Hence, since also the depth d of Σt is a constant
of Σ, Txy contains only constantly many facts in addition to
the facts of T , and each new fact introduces only constantly
many new variables. Note that EGDs cannot augment the
domain size of any set of facts, since they result only in
replacements of some variable u with some already present
term v at all occurrences of u. Finally, the polynomial upper
bound on the computation time needed to construct Txy is
clear, once we have the bound on the facts of Txy.

Having a homomorphism h : Txy → U , we want to extend
it to a homomorphism h′ : TΣst → U , analogously to The-
orem 2.5. However, compared with Lemma 2.1, we had to
redefine the set Txy. Moreover, the unification of variables
caused by EGDs in the chase invalidates some essential as-
sumptions in the proof of the corresponding result in [8,
Theorem 7]. At any rate, the following theorem shows that
also in our case, the lifting can be performed efficiently by
essentially the same procedure as described in [8].

Theorem 3.1. ( Lifting) Let TΣt be a universal solution
of a data exchange problem obtained by chasing a preuniver-
sal instance T with the weakly acyclic set Σt of TGDs and
EGDs. If B and W are instances such that:

1. B |= Σ with Σ = Σst ∪ Σt;

2. All facts of T are in W (i.e. W contains facts with the
same ids) and W ⊆ TΣt , and

3. W is closed under ancestors and siblings (over facts),

then any homomorphism h : W → B can be transformed in
time O(|dom(T )|b) into a homomorphism h′ : TΣt → B, s.t.
∀x ∈ dom(h) : h(x) = h′(x), where b depends only on Σ.

Proof. Although every fact of T is in W , there may of
course be variables in dom(T ) which are not in dom(W ), be-
cause of the EGDs. Hence, ∀x ∈ dom(T )\dom(W ) : x 6= [x],
and ∀x ∈ dom(T ) ∩ dom(W ) : x = [x].

Suppose that the chase of a preuniversal instance T with
Σt has length n. Then we write Ts with 0 ≤ s ≤ n to
denote the result after step s of the chase. In particular,
we have T0 = T and Tn = TΣt . For every s, we say that
a homomorphism hs : Ts → B is consistent with h if ∀x ∈
dom(hs), such that [x] ∈ dom(h), hs(x) = h([x]) holds. We
claim that for every s ∈ {0, . . . , n}, such a homomorphism
hs consistent with h exists. Then h′ = hn is the desired
homomorphism. This claim can be proved by induction on
s (see Appendix A).

In order to actually construct the homomorphism h′ = hn,
we may thus simply replay the chase and construct hs for

6



every s ∈ {0, . . . , n}. The length n of the chase is poly-
nomially bounded (cf. Section 2.1). The action required to
construct hs from hs−1 fits into polynomial time as well. We
thus get the desired upper bound on the time needed for the
construction of h′.

Even though the proof of Theorem 3.1 directly yields an
algorithm for transforming a homomorphism h : W → B to
an appropriate homomorphism h′ : TΣt → B in polynomial
time, it is slightly unsatisfactory. In fact, as intermediate
steps, it may process variables which are not present any
more in dom(Ts). Naturally, it would be desirable to skip
such unnecessary steps. We therefore propose the following
simplified procedure Extend, which allows us to literally
extend h to h′ : TΣt → B starting with W and considering
only the variables present in TΣt . The correctness of the
procedure Extend is the subject of the following theorem.

Procedure Extend

Input: Canonical universal solution TΣt

Input: Subinstance W ⊆ TΣt closed under parents and
siblings, s.t. W contains all facts of T

Input: Homomorphism h : W → B with B |= Σ
Output: Homomorphism h′ : TΣt → B such that

∀x ∈ dom(W ) h′(x) = h(x)

(1) Set h′ := h;
(2) while exists a fact A ∈ TΣt \W , s.t. Parents(A) ⊆W
(3) Set P := Parents(A)
(4) Set S := {A} ∪ Siblings(A)
(5) Find homomorphism g : S ∪ P → B,

such that ∀x ∈ dom(g) ∩ dom(h′) : g(x) = h′(x);
(6) Set h′ := h′ ∪ g;
(7) Set W := W ∪ S;
(8) return h′.

Theorem 3.2. Let T , TΣt , B, W , and h : W → B be as
in Theorem 3.1. Then the procedure Extend extends h to
a homomorphism h′ : TΣ → B.

Proof. Let Wj with j ≥ 1 denote the set W when the
while-loop in the Extend procedure is entered for the j-th
time. It can be shown by induction on j (see Appendix B)
that Wj fulfills the following properties: Wj ⊆ TΣt , Wj

contains all facts from T , Wj is closed under parents and
siblings, and hj : Wj → B is a homomorphism s.t. ∀x ∈
dom(W ) : h′(x) = h(x) holds.

Clearly, for every j, the transition from Wj to Wj+1 cor-
responds to the application of a non-full TGD in the course
of the target chase. Hence, the number of iterations of the
while-loop is bounded by the length n of the chase.

The only ingredient missing for our FindCoreE algo-
rithm is an efficient search for a homomorphism h : Txy → U
with U ⊆ TΣt . By the construction of Txy according to
Lemma 3.3, the domain size of Txy as well as the number
of facts in it are only by a constant larger than those of the
corresponding preuniversal instance T . By Theorem 2.1, the
complexity of searching for a homomorphism is determined
by the block size. The problem with EGDs in the target
chase is that they may destroy the block structure of T by
equating variables from different blocks of T . However, we
show below that the search for a homomorphism on Txy may
still use the blocks of TΣst computed before the target chase.
To achieve this, we adapt the Rigidity Lemma from [5].

Definition 3.1. Let K be an instance whose elements
are constants and nulls. Let y be some element of K. We
say that y is rigid if h(y) = y for every endomorphism h on
K. In particular, all constants of K are rigid.

The original Rigidity Lemma was formulated for sets of
target dependencies consisting of EGDs only. A close in-
spection of the proof in [5] reveals that it remains valid when
TGDs are added.

Lemma 3.4. ( Rigidity) Assume a data exchange setting
where Σst is a set of TGDs and Σt is a set of EGDs and
TGDs. Let J be the canonical preuniversal instance and let
J ′ = JΣt be the canonical universal instance. Let x and y be
nulls of J s.t. x v y (i.e., [x] = [y]) and s.t. [x] is a nonrigid
null of J ′. Then x and y are in the same block of J .

Proof. (Sketch) (cf. [5]) Unifications performed while
chasing EGDs are logically forced, i.e., given the formula
τ : φ→ x = y where φ is a diagram of the instance J (that is,
the conjunction of all facts in J , where all domain elements
of J are now treated as first-order variables), Σt |= τ holds.
Moreover, since J ′ satisfies Σt, it follows that J ′ satisfies τ .

Assume that x and y are nulls in different blocks of J with
x v y. Moreover, let h be an arbitrary homomorphism on
J ′. We have to show that then x is rigid, i.e.: h([x]) = [x].

We construct a valuation V for the terms of φ as follows:
Let V (z) = [z] if z occurs in the block B of x and V (z) =
h([z]) otherwise. Let R(u1, . . . , un) be a fact in J (and,
therefore, a conjunct in φ). Then the fact R([u1], . . . , [un])
is in J ′ by the definition of [·]. Moreover, it can be shown (by
exactly the same arguments as in [5]), that V (ui) = h([ui])
holds for every element ui ∈ dom(J). Hence, R(V (u1), . . . ,
V (un)) = R(h([u1]), . . . , h([un])). The latter tuple is con-
tained in J ′, since h is an endomorphism. Hence, V is a
valid assignment for φ in J ′. Thus, V (x) = V (y), since J ′

satisfies τ . Now V (x) = h([x]) and V (y) = [y] by definition
of V . So h([x]) = V (x) = V (y) = [y]. By x v y, we have
[x] = [y] and, therefore, in total h([x]) = [y] = [x].

Next, we formalize the idea of considering the blocks of J
when searching for a homomorphism of J ′.

Definition 3.2. We define the non-rigid Gaifman graph
G′(I) of an instance I as the usual Gaifman graph but re-
stricted to vertices corresponding to non-rigid variables. We
define non-rigid blocks of an instance I as the connected
components of the non-rigid Gaifman graph G′(I).

Theorem 3.3. Let T be a preuniversal instance obtained
via the STDs Σst. Let Σt be a set of weakly acyclic TGDs
and EGDs, and let U be a retract of TΣt . Moreover, let
x, y ∈ dom(TΣt) and let Txy ⊆ TΣt be constructed according
to Lemma 3.3. Then we can check if there exists a homomor-
phism h : Txy → U , s.t. h(x) = h(y) in time O(|dom(U)|c)
for some c which depends only on Σ = Σst ∪ Σt.

Proof. First, we prove that the rigid variables of TΣt

are also rigid in Txy. Assume to the contrary that x ∈
var(Txy) is rigid in TΣt and that there exists a homomor-
phism h : Txy → U s.t. h(x) 6= x. By Theorem 3.1, h can
be transformed into an endomorphism h′ : TΣ → U , s.t.
∀x ∈ dom(h) : h(x) = h′(x). Thus, we get h′(x) = h(x) 6= x,
which contradicts the assumption that x is rigid in TΣ.

Hence, the search for a homomorphism h : Txy → U pro-
ceeds by checking all possible homomorphisms on the non-
rigid blocks of Txy individually. This is justified by the
following observation: Let B1, . . . , Bn denote the non-rigid
blocks of Txy. Moreover, for every i ∈ {1, . . . , n}, let hi : Bi →

7



U be a homomorphism. Then the mapping h : Txy → U de-
fined as follows is well-defined and a homomorphism: For
every z ∈ Bi, we set h(z) := hi(z) and for all z outside all
Bi (i.e, z is rigid), we set h(z) := [z].

Recall from Lemma 3.3 that Txy has only constantly many
variables in addition to T . By Theorem 2.2, the block size
of T depends only on Σst. Hence, also the non-rigid block
size of Txy is bounded by a constant depending only on Σ.
In principle, we thus get, analogously to Theorem 2.1, the
upper bound O(n · |dom(U)|c), where n is the number of
(non-rigid) blocks. However, we are dealing with the sit-
uation that U is a retract of TΣt , i.e., we already have a
retraction r : TΣ → U . Hence, in order to search for a ho-
momorphism h with h(x) = h(y) it suffices to inspect the
blocks containing x and y and to set h(z) = r(z) for the
variables of all other blocks. This allows us to eliminate the
factor n from the above upper bound, and the claim of the
theorem follows immediately.

Procedure FindCoreE

Input: Source ground instance S
Output: Core of a universal solution for S

(1) Chase (S,∅) with Σst to obtain (S, T ) := (S, ∅)Σst ;
(2) Chase T with Σt to obtain U := TΣt ;
(3) for each x ∈ var(U), y ∈ dom(U), x 6= y do
(4) Compute Txy;
(5) Look for h : Txy → U s.t. h(x) = h(y);
(6) if there is such h then
(7) Extend h to an endomorphism h′ on U

by calling the procedure Extend;
(8) Transform h′ into a retraction r;
(9) Set U := r(U);
(10) return U.

Putting all these pieces together, we get the FindCoreE

algorithm. It has basically the same overall structure as the
FindCore algorithm of [8], which we recalled in Section 2.2.
Of course, the correctness of our algorithm and its polyno-
mial time upper bound are now based on the new results
proved in this section. In particular, step (4) is based on
Lemma 3.3, step (5) is based on Lemma 3.4 and Theorem
3.3, and step (7) is based on Theorems 3.1 and 3.2. Analo-
gously to Theorem 2.6, we thus get

Theorem 3.4. Let (S,T,Σst,Σt) be a data exchange set-
ting with STDs Σst and TDs Σt. Moreover, let S be a ground
instance of the target schema S. If this data exchange prob-
lem has a solution, then FindCoreE correctly computes the
core of a canonical universal solution in time O(|dom(S)|b)
for some b that depends only on Σst ∪ Σt.

In other words, the asymptotic worst-case behavior of the
two algorithms FindCore and FindCoreE is very similar.
In particular, both algorithms are exponential w.r.t. some
constant b which depends on the dependencies Σst ∪ Σt of
the data exchange setting. Actually, in [7] it was shown that
the core computation for a given target instance J is fixed-
parameter intractable w.r.t. its block size. Hence, a signifi-
cant reduction of the worst-case complexity is not likely to be
achievable. Nevertheless we shall illustrate below by means
of experimental results that our new approach may clearly
outperform the previous one under realistic assumptions.

4. IMPLEMENTATION

Source 
Database

Data 
Exchange 
engine XSLT

<XML/>
Data

Exchange 
Scenario

Target 
Database

Figure 3: Overview of the implementation.

NULL Yves

idt tutor

T1

idt_var

NULL

tutor_var

NULL NULLT2 N

Tutor (table with null labels)

T1

var_id

T2

Map (a homomorphism)

Tutor table mapped (a view)

NULL Yves

idt tutor

T1

idt_var

NULL

tutor_var

NULL YvesT1 NULL

T1

var

T1

NULL

const

NULL

N NULL Yves

Duplicate row

Figure 4: Modelling labeled nulls.

We have implemented a prototype system based on the
FindCoreE algorithm presented in Section 3, relying on a
DBMS back-end. Its principal architecture is shown in Fig-
ure 3. This approach allowed us to delegate the storage and
querying of relational data to the systems best suited for
that and concentrate on the core computation itself. Cur-
rently, the implementation works with Oracle 11g as well
as with the freely available HSQLDB and PostgreSQL. Of
course, it can be easily adapted to any other RDBMS.

For specifying data exchange scenarios, we use XML con-
figuration files. The schema of the source and target DB
as well as the STDs and TDs are thus cleanly separated
from the scenario-independent Java code. The XML con-
figuration data is passed to the Java program, which uses
XSLT templates to automatically generate those code parts
which depend on the concrete scenario – in particular, the
SQL-statements for managing the target database (creating
tables and views, transferring data between tables etc.).

None of the common DBMSs to-date support labeled nulls.
Therefore, to implement this feature, we had to augment
every target relation (i.e., table) with additional columns,
storing null labels. For instance, for a column tutor of the
Tutor table, a column tutor_var is created to store the la-
bels for nulls of tutor. To simulate homomorphisms, we use
a table called Map storing variable mappings, and views that
substitute labeled nulls in the data tables with their images
given by a homomorphism. Figure 4 gives a flavor of what
this part of the database looks like.

The target database contains many more auxiliary tables
for maintaining the relevant information of the core compu-
tation like information on variables (e.g., are they rigid or
not) and blocks of the preuniversal instance, information on
sibling and parent relations, a log of non-full TGD applica-
tions (which is needed by the Extend procedure), etc.

A great deal of the core computation is delegated to the
target DBMS via SQL commands. Profiling the test runs
with our implementation shows that about 90% of the entire
time is spent by the database system on SQL processing. Of
course, the chase lends itself naturally to an SQL-realization,

8



bearing in mind that the premise and conclusion of depen-
dencies are basically conjunctive queries. But also the var-
ious steps of the FindCoreE algorithm make heavy use of
SQL. For instance, the homomorphism computation in step
5 of FindCoreE is performed in the following way. Let a
variable x and a term y be selected at step 3 of the algo-
rithm, and let the set Txy be computed at step 4. We want
to build a homomorphism h : Txy → U , s.t. h(x) = h(y).
To do so, we need to inspect all possible mappings from the
block of x and from the block of y. Each of these steps boils
down to generating and executing a database query that
fetches all possible substitutions for the variables in each
block. Extending the homomorphism h to an endomorphism
h′ requires finding images for the yet unmapped variables –
consistent with the already found mappings. This task is
also accomplished by a series of SQL commands.

Example 4.1. Let us revisit the data exchange setting
from Example 1.1. Suppose that the canonical solution is

J = {Course(C1, ’java’), Course(C2, ’java’),
Tutor(T2,N), Teaches(T2,C1), NeedsLab(T2,L2),
Tutor(T1,’Yves’), Teaches(T1,C2), NeedsLab(T1,L1)}

Suppose that we look for a proper endomorphism h′ on J .
Step 4 of FindCoreE might, e.g., yield the set TN,′Yves′ =
{Tutor(T2,N), Teaches(T2,C1), Course(C1,’java’)}.

At step 5, a homomorphism h : Txy → J (with x = N and
y =′ Yves′), s.t. h(N) = ′Yves′ has to be found. In the ab-
sence of EGDs, non-rigid blocks are the same as usual blocks,
and the block of N in TN,′Yves′ is {N,T2, C1}. The following
SQL query returns all possible instantiations of the variables
{T2, C1} compatible with the mapping h(N) = ′Yves′:

SELECT Tutor.idt var AS T2, Course.idc var AS C1
FROM Tutor JOIN Teaches ON Tutor.idt var = Teaches.id tutor var

JOIN Course ON Teaches.id course var = Course.idc var
WHERE Tutor.tutor=’Yves’ AND Course.course=’java’

In our example, the result is {T2 ← T1, C1 ← C2}. In order
to extend h : TN,′Yves′ → J with var(TN,′Yves′) = {N,C1, T2}
to an endomorphism h′ on J , we have to find images of one
variable after the other in J \ TN,′Yves′ . For instance, the
following SQL query finds an image for variable L2 (gener-
ated by the non-full TGD #4) consistent with the previously
found mappings for N,C1, T2:

SELECT NeedsLab.lab var AS L2
FROM NeedsLab JOIN Teaches ON

NeedsLab.id tutor var = Teaches.id tutor var
WHERE Teaches.id tutor var = ’T1’ AND

Teaches.id course var = ’C2’

The query returns L1, as expected, i.e., h(L2) = L1.

At every iteration, the algorithm tries to find an endo-
morphism, that would map a variable on some other term.
Since all the variables are distributed among the facts by the
chase, we may analyze the dependencies to prune impossi-
ble substitutions, e.g., in our running example, it makes no
sense to try to unify a variable from the id_tutor column
with any term from id_course. We capture this with the no-
tion of field partitions, i.e., sets of fields that possibly share
terms. Two fields f1 and f2 belong to the same partition, if
there is

1. a variable shared between f1 in the premise and f2 in
the conclusion of the same TGD,

2. a variable shared by f1 and f2 in the conclusion of a
TGD,

3. an EGD unifying two variables occurring at fields f1

and f2 in its premise.

Back to the Example 1.1, the target field partitions are
{Course.course}, {Tutor.tutor}, {NeedsLab.lab},
{Course.idc, Teaches.id_course} and {Tutor.idt,
Teaches.id_tutor, NeedsLab.id_tutor}.

5. EXPERIMENTS AND DISCUSSION
So far, neither the core computation nor labelled nulls

are featured in any data integration tool resp. DBMS and,
to the best of our knowledge, no established benchmark
for testing such a functionality exists. To conduct our ex-
periments, we synthesized several test cases reflecting com-
mon schema transformations: normalization/denormaliza-
tion and enforcement of additional functional and inclusion
dependencies. Our focus was on testing the effectiveness of
the minimization phase of FindCoreE . Adding or omitting
certain functional and inclusion dependencies, synthesizing
nearly duplicate tuples in the source database, and rule or-
dering in the chase allowed us to vary the minimization effort
for the core computation from mere checking the optimality
of the instance to removing approximately half of the tuples
generated by the chase. Some details on the test scenarios
are given in Appendix C.

We have run experiments with our prototype implementa-
tion on several scenarios with varying size of the schema, the
dependencies and the actual source data. Typical runtimes
for the core computation are displayed in Figure 5. They
were obtained by tests on a workstation running Suse Linux
with 2 QuadCore processors (2.3 GHz) and 16 GB RAM.
Oracle 11g was used as database system.

2000 5000 8000 11000 14000 17000 20000 23000

# variables

0

20

40

60

80

100

120

ru
n

n
in

g 
 t

im
e,

  m
in

Original FindCore alg. 10% redundancy

Enhanced algorithm 50% redundancy

Enhanced alg. 10% redundancy

1 iteration 50% redundancy

1 iteration 10% redundancy

Figure 5: Performance of core computation.

In a setting where the canonical solution had about 50%
more nulls than the core, our system handled only about
7,000 nulls in the target DB in 120 min (2nd solid curve
from the left). In contrast, about 22,000 nulls were handled
in similar time (3rd solid curve) when the canonical solution
was only 10% larger than the core.

We have also implemented the FindCore algorithm of [8]
in order to compare its performance with our algorithm. The
left-most curve in Figure 5 corresponds to a run of Find-
Core on the “core-friendly” data exchange problem. The
runtime is comparable to (in fact, worse than) the case when
the target instance has five times more redundancy, but the
extended algorithm is applied. Actually, this is not surpris-
ing: The negative effect of simulating the EGDs by TGDs
is illustrated by the following simple example:

Example 5.1. Let J = {R(x, y), P (y, x)} be a preuniver-
sal instance, and a single EGD R(z, v), P (v, z) → z = v
constitute Σt. In order to simulate this EGD by TGDs, the
following set of dependencies Σ̄t has to be constructed ac-
cording to the algorithm in [8]:

9



R(z, v), P (v, z)→ E(z, v) P (x, y)→ E(x, x)
E(x, y)→ E(y, x) P (x, y)→ E(y, y)
E(x, y), E(y, z)→ E(x, z) R(x, y), E(x, z)→ R(z, y)
R(x, y)→ E(x, x) R(x, y), E(y, z)→ R(x, z)
R(x, y)→ E(y, y) P (x, y), E(x, z)→ P (z, y)

P (x, y), E(y, z)→ P (x, z)

where E is an auxiliary predicate representing equality.
Chasing J with Σ̄t (in a nice order), yields the instance

J Σ̄t = {R(x, y), R(x, x), R(y, x), R(y, y), P (y, x), P (y, y),
P (x, y), P (x, x), E(x, x), E(x, y), E(y, x), E(y, y)}.

Note that, if a fact contains k occurrences of any of the two
terms that have to be unified (in our case, the variables x
and y), then the chase produces 2k variants of this fact.

The core computation applied to J Σ̄t will produce either
the solution {R(x, x), P (x, x)} or {R(y, y), P (y, y)}.

On the other hand, if EGDs are directly enforced by the
target chase, then the chase ends with the canonical universal
solution JΣt = {R(x, x), P (x, x)}.

Another interesting observation is that, in many cases, the
result of applying just a small number of endomorphisms
already leads to a significant elimination of redundant nulls
(i.e., nulls present in the canonical solution but not in the
core) from the target database and that further iterations
of this procedure are much less effective with respect to the
number of nulls eliminated vs. time required. A typical
situation is shown in Figure 6: The solid line shows the
number of redundant nulls remaining after i iterations (i.e., i
nested endomorphisms) while the dotted line shows the total
time required for the first i iterations. To achieve this, we
used several heuristics to choose the best homomorphisms.
The following hints proved quite useful:

• Prefer constants over variables.

• Prefer terms already used as substitutions.

• Avoid mapping a variable on itself.

As was already mentioned in Section 3, every intermediate
database instance of the FindCoreE algorithm is a univer-
sal solution to the data exchange problem. Hence, our pro-
totype implementation also allows the user to restrict the
number of nested endomorphisms to be constructed, thus
computing an approximation of the core rather than the
core itself. The dotted curves in Figure 5 correspond to
a “partial” core computation, with only 1 iteration of the
while-loop in FindCoreE . In both scenarios, even a sin-
gle endomorphism allowed us to eliminate over 85% of all
redundant nulls.

1 2 3 4 5 6 7

# iterations

250

300

350

400

450

500

550

#
 n

u
lls

  i
n

  t
h

e 
 c

or
e 

 a
p

p
ro

xi
m

at
io

n

50

100

150

200

250

300

ru
n

n
in

g 
ti

m
e,

 s
ec

Figure 6: Progress of core computation.

Lessons learned. Our experiments have clearly revealed
the importance of carefully designing target EGDs. In some
sense, they play a similar role as the core computation in
that they lead to an elimination of nulls. However, the EGDs
do it much more efficiently. Another observation is that it is
well worth considering to content oneself with an approxima-
tion of the core since, in general, a small number of iterations
of our algorithm already leads to a significant reduction of
nulls. Finally, the experience gained with our experiments
gives us several hints for future performance improvements.
We just give four examples:

(i) Above all, further heuristics have to be incorporated
concerning the search for an endomorphism which maps a la-
beled null onto some other domain element. So far, we have
identified and implemented only the most straightforward,
yet quite effective, rules. Apparently, additional measures
are needed to further prune the search space.

(ii) We have already mentioned the potential of approxi-
mating the core by a small number of endomorphisms. Again,
we need further heuristics concerning the search for the most
effective endomorphisms. Moreover, it would be desirable to
add an estimation of the redundancy in the instance, mea-
suring the remaining ”distance” to the core.

(iii) Some phases of the endomorphism search allow for
concurrent implementation. This potential of paralleliza-
tion, which has not been exploited so far, clearly has to be
leveraged in future versions of our implementation.

(iv) Profiling has revealed that currently most of the exe-
cution time ( about 90%) is spent in the RDBMS when exe-
cuting the SQL-commands. So far, no efforts of database
tuning or SQL tuning (like de-normalization of auxiliary
structures) have been made. This is clearly required next.

6. CONCLUSION
In this paper we have revisited the core computation in

data exchange and we have come up with an enhanced ver-
sion of the FindCore algorithm from [8], which avoids the
simulation of EGDs by TGDs. The algorithms FindCore
and FindCoreE look similar in structure and have essen-
tially the same asymptotic worst-case behavior (see Theo-
rem 2.6 and 3.4). Nevertheless, there are some fundamental
differences between them, as has been detailed in Section 5.
In particular, our approach allows us to strictly separate the
search for a solution of a data exchange problem from the
core computation and to consider the latter as an optional
service. Moreover, the direct treatment of EGDs has led to
a performance improvement of an order of magnitude. An-
other order of magnitude can be gained by contenting our-
selves with an approximation to the core, which has been
made possible with our new approach.

We have also presented a prototype implementation of our
algorithm, which delegates most of its work to the underly-
ing RDBMS via SQL. It has thus been demonstrated that
core computation fits well into existing database technology
and is clearly not a separate technology. Although the data
exchange scenarios tackled so far are not industrial size ex-
amples, we expect that there is ample space for performance
improvements. The experience gained with our prototype
gives valuable hints for directions of future work.

7. REFERENCES
[1] C. Beeri and M. Y. Vardi. A proof procedure for data

dependencies. J. ACM, 31(4):718–741, 1984.
[2] A. Deutsch and V. Tannen. Reformulation of xml queries

and constraints. In Proc. ICDT’03, volume 2572 of LNCS,
pages 225–241. Springer, 2002.

[3] R. Fagin. Horn clauses and database dependencies. J.
ACM, 29(4):952–985, 1982.

10



[4] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data
exchange: semantics and query answering. Theor. Comput.
Sci., 336(1):89–124, 2005.

[5] R. Fagin, P. G. Kolaitis, and L. Popa. Data exchange:
getting to the core. ACM Trans. Database Syst.,
30(1):174–210, 2005.

[6] G. D. Giacomo, D. Lembo, M. Lenzerini, and R. Rosati.
On reconciling data exchange, data integration, and peer
data management. In Proc. PODS’07, pages 133–142.
ACM, 2007.

[7] G. Gottlob. Computing cores for data exchange: new
algorithms and practical solutions. In Proc. PODS’05,
pages 148–159. ACM Press, 2005.

[8] G. Gottlob and A. Nash. Data exchange: computing cores
in polynomial time. In Proc. PODS’06, pages 40–49. ACM
Press, 2006.

[9] L. M. Haas, M. A. Hernández, H. Ho, L. Popa, and
M. Roth. Clio grows up: from research prototype to
industrial tool. In Proc. SIGMOD’05, pages 805–810.
ACM, 2005.

[10] M. Lenzerini. Data integration: A theoretical perspective.
In Proc. PODS’02, pages 233–246. ACM, 2002.

[11] L. Libkin. Data exchange and incomplete information. In
Proc. PODS’06, pages 60–69. ACM Press, 2006.

[12] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernández, and
R. Fagin. Translating web data. In Proc. VLDB’02, pages
598–609. Morgan Kaufmann, 2002.

APPENDIX
A. PROOF OF THEOREM 3.1

Theorem 3.1 Let TΣt be a universal solution of a data ex-
change problem obtained by chasing a preuniversal instance
T with the weakly acyclic set Σt of TGDs and EGDs. If B
and W are instances such that:

1. B |= Σ with Σ = Σst ∪ Σt;
2. All facts of T are in W (i.e. W contains facts with the

same ids) and W ⊆ TΣt , and
3. W is closed under ancestors and siblings (over facts),

then any homomorphism h : W → B can be transformed in
time O(|dom(T )|b) into a homomorphism h′ : TΣt → B, s.t.
∀x ∈ dom(h) : h(x) = h′(x), where b depends only on Σ.

Proof. Suppose that the chase of a preuniversal instance
T with Σt has length n. Then we write Ts with 0 ≤ s ≤ n
to denote the result after step s of the chase. In particu-
lar, we have T0 = T and Tn = TΣt . For every s, we say
that a homomorphism hs : Ts → B is consistent with h if
∀x ∈ dom(hs), such that [x] ∈ dom(h): hs(x) = h([x])
holds. We claim that for every s ∈ {0, . . . , n}, such a homo-
morphism hs consistent with h exists. Then h′ = hn is the
desired homomorphism. The only part missing in the proof
in Section 3 was a proof of this claim by induction on s.

[induction begin.] We define h0 : T = T0 → B by setting
h0(x) = h([x]) for all x ∈ dom(T ). Then h0 is consistent
with h by definition. By condition 2 of the theorem, all
facts of T are in W and W ⊆ TΣt . Hence, for every fact
P (u1, . . . , uk) ∈ T0, we have P ([u1], . . . , [uk]) ∈ W and,
therefore, P (h(u1), . . . , h(uk)) = P (h([u1]), . . . , h([uk])) ∈
B. Hence h0 is the desired homomorphism.

[induction step.] Let hs−1 : Ts−1 → B be a homomor-
phism, s.t. hs−1 is consistent with h. At step s of the chase,
there are four types of dependencies that can be enforced:

1. an EGD,
2. a full TGD,
3. a non-full TGD, introducing facts not present in W .
4. a non-full TGD, introducing facts present in W .

Note that cases 3 and 4 do not intersect, by Lemma 3.2 and
by the fact that W is closed under siblings.

Below we show that in each of these 4 cases, it is indeed
possible to transform hs−1 : Ts−1 → B into a homomor-
phism hs : Ts → B consistent with h. The following simple
fact is used throughout the proof: if there is an assignment
~a ∈ dom(Ti) for some conjunction φ(~x ) s.t. Ti |= φ(~a ), and
hi : Ti → B is a homomorphism, then B |= φ(hi(~a )).

Case 1. Ts is obtained from Ts−1 via the EGD ϕ(~x) →
xi = xj , where i, j ≤ |~x| s.t. Ts−1 |= φ(~a ). W.l.o.g., ai ∈
var(Ts−1) is a variable and Ts is obtained from Ts−1 by
replacing every occurrence of ai by aj . Clearly, dom(Ts) =
dom(Ts−1) \ {ai}. We claim that hs = hs−1|dom(Ts) is the
desired homomorphism, i.e. hs is obtained from hs−1 simply
by restricting its domain.

Let P (~b ) be a fact in Ts. Then either P (~b ) is also a fact in
Ts−1 (not containing the variable ai) or Ts−1 contains some

fact P (~c ), s.t. ~b = ~c [ai ← aj ], i.e., ~b is obtained from ~c by
replacing all occurrences of ai with aj . In the former case,

we clearly have P (hs(~b )) = P (hs−1(~b )) ∈ B. It remains to
consider the latter case: We again have P (hs−1(~c )) ∈ B.

In order to show that also P (hs(~b )) = P (hs−1(~c )) ∈ B,
it suffices to show that hs−1(ai) = hs−1(aj). Indeed, we
have Ts−1 |= φ(~a ), since the EGD ϕ(~x ) → xi = xj fires
with this assignment in step s of the chase. Then B |=
φ(hs−1(~a )), since hs−1 is a homomorphism. By condition 1

11



of the Theorem, B |= Σ. In particular, the EGD ϕ(~x ) →
xi = xj holds in B. But then hs−1(ai) = hs−1(aj).

Case 2. A full TGD φ(~x )→ ψ(~x ) leaves the domain un-
changed. Thus, we simply set hs = hs−1. Suppose that φ(~x )
was satisfied by Ts−1 with some assignment ~a. Hence, the
only facts introduced by this chase step are atoms ψ(~a ). We
have to show that ψ(hs(~a )) (which is identical to ψ(hs−1(~a )))
holds in B. We use the same argument as above: Ts−1 |=
φ(~a ) holds, since the TGD τ fires with this assignment on
~x. Hence, B |= φ(hs−1(~a )), since hs−1 is a homomorphism
Finally, since B |= Σ, also B |= ψ(hs−1(~a )) holds.

Case 3. Ts is obtained from Ts−1 via the non-full TGD
φ(~x )→ ψ(~x, ~y ) with assignment ~a on ~x and assignment ~z on
~y. Moreover, all atoms in ψ(~a, ~z ) are outside W . As above,
we have Ts−1 |= φ(~a ) and B |= φ(hs−1(~a )). Moreover,
by B |= Σ, there exist a vector ~c of terms in dom(B), s.t.
ψ(h(~a ),~c ) ⊆ B. By Lemma 3.2, all atoms in ψ(h(~a ),~c )
are newly created in Ts and, hence, all terms in ~z are fresh
nulls. We extend hs−1 to hs by setting hs(~z ) := ~c. Then hs

is a homomorphism, since the image ψ(h(~a ),~c ) of the new
atoms ψ(h(~a ), ~z ) in Ts is in B by definition. Moreover, hs is
consistent with h, since hs−1 is consistent with h and hs−1

differs from hs only on variables ~z outside dom(T ).
Case 4. Ts is obtained from Ts−1 via the non-full TGD

φ(~x ) → ψ(~x, ~y ) with assignment ~a on ~x and assignment ~z
on ~y. Moreover, W already contains a fact for every atom
in ψ(~a, ~z ). Analogously to case 3, the vector ~z consists of
fresh nulls. Moreover, since all atoms of ψ([~a ], [~z ]) are con-
tained in W , the homomorphism h : W → B is defined on
all variables occurring in ψ([~a ], [~z ]). Since h is a homomor-
phism, we have B |= ψ(h([~a ]), h([~z ])). We extend hs−1 to
hs by setting hs(~z ) := h([~z ]) and hs(x) := hs−1(x) for all
variables x ∈ dom(hs−1). In other words, native positions
in ψ(~a, ~z ) are mapped consistently with h. In order to show
that hs is a homomorphism, it remains to prove that all
atoms in ψ(hs(~a ), hs(~z )) are contained in B. By definition,
we have hs(~z ) = h([~z ]). Hence, it suffices to show that
hs−1(~a ) = h([~a ]) holds.
W is closed under parents and siblings and, therefore, the

origin of every position of ψ(~a, ~z ) is contained in W , by the
definition of the parent relation over facts. According to
Lemma 3.1, a position p and its origin position op (which is
either contained in some fact in T or which was introduced
previously at some chase step k < s) are always occupied
by the same term. If the position op is contained in some
fact in T , then the term u at op was mapped to h([u]) by h0

according to the induction begin. If op is contained in some
fact introduced at some chase step k < s, then the term u
at op was mapped to h([u]) by hk according to Case 4. Note
that none of the four cases considered by the induction step
modifies a previously chosen image. Hence, op is mapped
to h([u]) also by hs−1. Hence, we indeed have hs−1(~a ) =
h([~a ]), as required.

This concludes the induction.

B. PROOF OF THEOREM 3.2
Theorem 3.2 Let T , TΣt , B, W , and h : W → B be as

in Theorem 3.1. Then the procedure Extend extends h to
a homomorphism h′ : TΣ → B.

Proof. The only part missing is the proof of the follow-
ing properties: Wj ⊆ TΣt , Wj contains all facts from T , Wj

is closed under parents and siblings, and hj : Wj → B is a
homomorphism s.t. ∀x ∈ dom(W ) : h′(x) = h(x) holds. We
prove this claim by induction on j:

[induction begin.] When the while-loop is entered for the
first time, we have W1 = W and the above properties are
trivially fulfilled.

[induction step.] Suppose that the while-loop is entered
for the (j + 1)-st time. By the induction hypothesis, Wj to-
gether with the homomorphism hj : Wj → B fulfills the as-
sumptions on W in Theorem 3.1. Hence, hj can be extended
to a homomorphism h : TΣt → B, s.t. ∀x ∈ dom(hj) : h′(x) =
hj(x). Then it is of course also possible to extend hj to the
homomorphism hj+1 : Wj+1 → B where Wj+1 = W ∪ S ⊆
TΣt , s.t. S is a set of siblings whose parents are in Wj .

This concludes the induction.

C. TEST CASE EXAMPLE
For illustrative purposes, we describe in this appendix one

of the test scenarios used for evaluation of the system. The
source schema comprises four denormalized tables, provid-
ing information on university departments and their staff
members, their publications and received grants:

• Articles(FirstAuthor, LastAuthor, Title, Journal,
IssueDate, CiteSystem). CiteSystem takes either the
value ’ABC’ or ’Medical’ – the former means that au-
thors are listed in alphabetical order while the latter at-
taches a special role of main contributor to the first
author and that of principal investigator (team lead) to
the last author.

• GrantResults(GrantName, University, ProjectLead,
FinalArticle).

• FacultyLeaders(University, Department, Prof1,
Prof2).

• TopFundRaisers(University, Researcher, Rank).

The target schema represents the same information in a
normalized form:

• Department(DeptId, University, DeptName).

• Researcher(ResearcherId, Name).

• Affiliation(ResearcherId, DeptId).

• Grant(GrantCode, DeptId, PcInvestId, FinalArti-
cleId). Besides the grant code and the department ID,
grants are associated with a principle investigator and
with a final project report.

• Article(ArtId, Title).

• Journal(JournalId, JournalName).

• Publication(ArtId, JournalId, PubDate).

• Author(ResearcherId, ArtId, Role). Role can be ei-
ther Principal Investigator (’PI’) or Main Contributor
(’MC’).

There are eleven source-to-target dependencies in the data
exchange setting. Recall from Section 2.1 that we normally
write dependencies without quantifiers: variables occurring
in the conclusion of the formula but not in its premise are
assumed to be existentially quantified; all other variables
are universally quantified. Below, we shall further simplify
the notation in the following ways: We replace variables oc-
curring only once in the formula by underscores (names of
those variables are irrelevant). Moreover, we replace succes-
sive underscores with dots. Finally, we shall separate the
conjuncts in either the premise or conclusion of a depen-
dency by a comma rather than the ∧-symbol.

• Articles(..., Title, Journal, IssueDate,_) →
Article(ArtId, Title), Journal(JnId, Journal),
Publication(ArtId, JnId, IssueDate).

• Articles(Aut1, _, Title,..., ’ABC’ ) →
Researcher(ResId, Aut1), Article(ArtId, Title),
Author(ResId, ArtId, _). If authors are listed in al-
phabetical order, we cannot infer special roles (’MC’ or
’PI’) of the authors.

12



• Articles( Aut1, _, Title,..., ’Medical’) →
Researcher(ResId, Aut1), Article(ArtId, Title),
Author(ResId, ArtId, ’MC’). For medical articles, the
first author is usually the main contributor.

• Articles(_, AutLast, Title,..., ’ABC’) →
Researcher(ResId, AutLast), Article(ArtId, Title),
Author(ResId, ArtId, _).

• Articles( AutLast, Title, ’Medical’ ) →
Researcher(ResId, AutLast), Article(ArtId, Title),
Author(ResId, ArtId, ’PI’). For medical articles, the
last author is usually the principal investigator of the
team.

• GrantResults(..., ProjLead, FinalArticle) →
Researcher(ResId, ProjLead), Article(ArtId, Fi-
nalArticle), Author(ResId, ArtId, ’PI’). Assume
that the project lead is a co-author of the final report.

• GrantResults(GrantName, Uni, ProjLead, _) →
Grant(GrantName, DeptId,...), Department(DeptId,
Uni, _), Researcher(ResId, ProjLead),
Affiliation(ResId, DeptId).

• GrantResults(GrantName,..., FinalArticle) →
Grant(GrantName,..., ArtId), Article(ArtId, Fi-
nalArticle).

• FacultyLeaders(Uni, Dept, Prof1, _) →
Department(DeptId, Uni,Dept), Researcher(ResId,
Prof1), Affiliation(ResId, DeptId).

• FacultyLeaders(Uni, Dept, _, Prof2 ) →
Department(DeptId, Uni,Dept), Researcher(ResId,
Prof2), Affiliation(ResId, DeptId).

• TopFundRaisers(Uni, Researcher, _) →
Department(DeptId, Uni, _), Researcher(ResId, Re-
searcher), Affiliation(ResId, DeptId), Grant(_,
DeptId, ResId, _).

Target dependencies further restrain the situation with
staff, publications and grants in the addressed universities.
One can either include or omit any of those dependencies,
or introduce arbitrary variations thereof to obtain more or
less nulls in the target instance.

• Article(Id1, Title), Article(Id2, Title) →
Id1=Id2. Assume that article title is unique.

• Journal(Id1, Jrn), Journal(Id2, Jrn) →
Id1 = Id2. Assume that journal name is unique.

• Researcher(Id2, Name), Researcher(Id1, Name) →
Id1 = Id2. Assume that researcher name is unique.

• Grant(GrantCode, Dept1, Researcher1, Article1),
Grant(GrantCode, Dept2, Researcher2, Article2)
→ Dept1 = Dept2, Researcher1=Researcher2,
Article1 = Article2. Inclusion of this rule allows to
deprecate joint grants.

• Department(Id1, Uni, Dept), Department(Id2, Uni,
Dept) → Id1 = Id2. Assume that department id is
unique.

• Author(AuthorId,...)→ Researcher(AuthorId,_).
List all authors as researchers

• Author(AuthorId, ArtId, _) → Article(ArtId, _),
Publication(ArtId, JnId, _), Journal(JnId, _).
Authors must be published.

• Publication(ArtId,...) → Author(_, ArtId, _).
Publications must be associated with at least one author.

• Affiliation(ResId,DeptId1), Department(Dept1,
DeptName1, Uni), Affiliation(ResId, DeptId2),
Department(DeptId2, DeptName2, Uni) →

DeptId1 = DeptId2, DeptName1 = DeptName2. We as-
sume that one researcher cannot work in more than one
department of the same university.

• Researcher(ResId, Name) → Department(DeptId, Uni,
DeptName), Affiliation(ResId, DeptId). Assume
that all researchers are affiliated.

• Grant(_, DeptId, ResearcherId, ArtId),
Department(DeptId, _, _) → Author(ResearcherId,
ArtId, ’PI’), Affiliation(ResearcherId, DeptId).
Issue of a grant to a department implies that the prin-
cipal investigator is employed in that department.

13


	
	

