
UMAP: A Universal Layer for
Schema Mapping Languages

The Implementation

Florin Chertes

Technische Universität Wien, Vienna, Austria
Institut für Informationssysteme

FlorinChertes@acm.org

1 Introduction

Umap a new universal layer for schema mapping languages which provides a
unified abstraction and middleware for high-level visual mapping languages was
presented in [1]. The main Tools used for the Umap implementation were:

– as operating system (OS), Windows XP (WIN32),
– as Uml modeling tool, the well known and appreciated product Sparx Sys-

tems’ Enterprise Architect 9.1 (EA) and
– as integrated development environment (IDE) for C++, the product Mi-

crosoft Visual C++ 2010 Express (MSVC).

No specific WIN32, EA or MSVC features were used making the implementation
OS, modeling tool and IDE independent. The implementation is dependent on
standard Xml, standard Uml-Ocl and the target programming languages like
standard C++11. At the same time the C++ features used are limited to those
that are to be found in languages like Java and XQuery.

First we designed with the help of the modeling tool the classes representing
the source, the target and the mapping. We augmented them with the functions
for reading and writing the data from and to the Xml files and the functions
for the mapping. The mapping functions were further defined with the help of
the Ocl expressions. The model was saved in a file of type EAP (Enterprise
Architect Project).

Second using the modeling tool we generated the definition and the imple-
mentation files of these classes. The programming language C++ uses for each
class two files: a header file defining the class and an implementation file for the
member functions of the class. The mapping function were implemented using
the Ocl expressions as definition.

Third, using the IDE we created a project, a MSVC specific artifact with
a main function, a C++ specific artifact. The project was saved in a file of
type SLN (Microsoft Visual Studio Solution). We added the generated files to
the project. The generated files are OS (Windows, Linux) and IDE (MSVC,
Eclipse) independent, this means that we could as well choose on Linux the
Eclipse as IDE. The MSVC IDE could immediately create an executable. The



main program was extended to use the topmost classes from the model: the
source, the target and the mapping class.

Last, the implementation was executed. In this way the input file, a Xml file
defining the source, used in the CLIP presentation, was transform in another
Xml file, the target, defined by the mapping.

2 Implementation of the CLIP feature: Mapping with
Context Propagation

All the files, implementing the classes from the diagram Fig. 1 (presented in [1,
Fig. 2]) are stored in the archive file ex205 reg emp.zip, Fig. 2. Each class from
the class diagram hat its implementation files.

Fig. 1: Mapping with Context Propagation, the class diagram



Fig. 2: Mapping with Context Propagation, the implementation files

The main function, Fig. 3 triggers the mapping. It uses:

– an object of the class deptSet named aDeptSet representing the source,

– an object of the class deptBuilder named builder representing the mapping
and

– an object of the class departmentSet named aDepartmentSet representing
the target.

The lines 11-12 create an instance of the source and read the input from the Xml
input file, Fig. 4. The lines 14-15 create an instance of the mapping object and
use it to map the source to the target. The line 15 executes the mapping. The
mapping object, using the function build takes as argument the source-object
and produces the target-object. The line 17 writes the target-objet to an Xml
output file, Fig. 5.



Fig. 3: Mapping with Context Propagation, the main function



Fig. 4: Mapping with Context Propagation, the input



Fig. 5: Mapping with Context Propagation, the output

3 Implementation of the CLIP feature: Mapping with
Join

All the files, implementing the classes from the diagram Fig. 6 (presented in [1,
Fig. 4]) are stored in the archive file ex207 reg emp.zip, Fig. 7. Each class from
the class diagram hat its implementation files.



Fig. 6: Mapping with Join, the class diagram



Fig. 7: Mapping with Join, the implementation files

The main function, Fig. 8 triggers the mapping. It uses:

– an object of the class deptSet named aDeptSet representing the source,

– an object of the class project empBuilder named builder representing the
mapping and

– an object of the class project empSet named aProject empSet representing
the target.

The lines 10-11 create an instance of the source and read the input from the Xml
input file, Fig. 9. The lines 13-14 create an instance of the mapping object and
use it to map the source to the target. The line 14 executes the mapping. The
mapping object, using the function build takes as argument the source-object
and produces the target-object. The line 16 writes the target-objet to an Xml
output file, Fig. 10.



Fig. 8: Mapping with Join, the main function



Fig. 9: Mapping with Join, the input



Fig. 10: Mapping with Join, the output



4 Implementation of the CLIP feature: Mapping with
Join and Grouping

All the files, implementing the classes from the diagram Fig. 11 (presented in [1,
Fig. 5]) are stored in the archive file ex208 reg emp.zip, Fig. 12. Each class from
the class diagram hat its implementation files.

Fig. 11: Mapping with Join and Grouping, the class diagram



Fig. 12: Mapping with Join and Grouping, the implementation files

The main function, Fig. 13 triggers the mapping. It uses:

– an object of the class deptSet named aDeptSet representing the source,

– an object of the class projectSetBuilder named builder representing the map-
ping and

– an object of the class projectSet named aProjectSet representing the target.

The lines 11-12 create an instance of the source and read the input from the Xml
input file, Fig. 14. The lines 14-15 create an instance of the mapping object and
use it to map the source to the target. The line 15 executes the mapping. The
mapping object, using the function build takes as argument the source-object
and produces the target-object. The line 18 writes the target-objet to an Xml
output file, Fig. 15.



Fig. 13: Mapping with Join and Grouping, the main function



Fig. 14: Mapping with Join and Grouping, the input



Fig. 15: Mapping with Join and Grouping, the output



5 Conclusion

In this document we presented the UMAP implementation. The complete im-
plementation translates all seven Clip [2] main use cases to Umap. We presented
here only the most important three. As future work we plan to implement inter-
faces and semi-automatic compilation to several targets for additional schema
mapping languages and tools.

References

1. Florin Chertes. DBAI-TR-2012-76. Technical report, DBAI, Institute of Information
Systems, Vienna University of Technology, 2012.

2. Alessandro Raffio, Daniele Braga, Stefano Ceri, Paolo Papotti, and Mauricio A.
Hernández. Clip: a visual language for explicit schema mappings. In ICDE 2008,
pages 30–39. IEEE, 2008.


