
TECHNICAL

R E P O R T

Institut für Informationssysteme

Abteilung Datenbanken und

Artificial Intelligence

Technische Universität Wien

Favoritenstr. 9

A-1040 Vienna, Austria

Tel: +43-1-58801-18403

Fax: +43-1-58801-18492

sekret@dbai.tuwien.ac.at

www.dbai.tuwien.ac.at

INSTITUT FÜR INFORMATIONSSYSTEME

ABTEILUNG DATENBANKEN UND ARTIFICIAL INTELLIGENCE

Fast Counting with Bounded Treewidth

DBAI-TR-2008-61

Michael Jakl Reinhard Pichler Stefan Rümmele

Stefan Woltran

DBAI TECHNICAL REPORT

2008

DBAI TECHNICAL REPORT

DBAI TECHNICAL REPORT DBAI-TR-2008-61, 2008

Fast Counting with Bounded Treewidth

Michael Jakl Reinhard Pichler Stefan Rümmele

Stefan Woltran1

Abstract. Many intractable problems have been shown to become tractable if the treewidth

of the underlying structure is bounded by a constant. An important tool for deriving such

results is Courcelle’s Theorem, which states that all properties defined by Monadic-Second

Order (MSO) sentences are fixed-parameter tractable with respect to the treewidth. Arnborg

et al. extended this result to counting problems defined via MSO properties. However, the

MSO description of a problem is of course not an algorithm. Consequently, proving the

fixed-parameter tractability of some problem via Courcelle’s Theorem can be considered as

the starting point rather than the endpoint of the search for an efficient algorithm. Gottlob et

al. have recently presented a new approach via monadic datalog to actually devise efficient

algorithms for decision problems whose tractability follows from Courcelle’s Theorem. In

this paper, we extend this approach and apply it to some fundamental counting problems in

logic an artificial intelligence.

1Institute for Information Systems 184/2, Technische Universität Wien, Favoritenstrasse 9-11, 1040 Vi-

enna, Austria. E-mail: {jakl | pichler | ruemmele | woltran }@dbai.tuwien.ac.at

Acknowledgements: The authors acknowledge support by the Austrian Science Fund (FWF) grant

P20704-N18.

This is an extended version of a paper published in the Proceedings of the 15th International Con-

ference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR’08).

Copyright c© 2009 by the authors

1 Introduction

Many problems which are, in general, intractable, have been shown to become tractable

if the treewidth of the underlying structure is bounded by a constant. An important

tool for deriving such results is Courcelle’s Theorem [1]. It states that any property

of finite structures, which is expressible by a Monadic Second Order (MSO) sentence,

can be decided in linear time (data complexity) if the structures under consideration

have bounded treewidth. Courcelle’s Theorem has been successfully applied to de-

rive tractability results in a great variety of fields. Recently, also its applicability to AI

has been underlined by showing that many fundamental problems in the area of non-

monotonic reasoning and knowledge representation can be encoded as MSO sentences

[2]. In [3], it was shown that the fixed-parameter tractability (FPT) via Courcelle’s The-

orem can be extended to counting problems defined via MSO properties.

Clearly, the MSO description of a problem is not an algorithm. Previous methods

for constructing concrete algorithms from an MSO description [3, 4] first transform

the MSO evaluation problem into a tree language recognition problem, which is then

solved via a finite tree automaton (FTA). However, this approach has turned out to be

only of theoretical value, since even very simple MSO formulae quickly lead to a “state

explosion” of the FTA (see [5]). Consequently, it was already stated in [6] that the

algorithms derived via Courcelle’s Theorem are “useless for practical applications” and

that the main benefit of Courcelle’s Theorem is in providing “a simple way to recognize

a property as being linear time computable”. Of course, this also applies to the extension

of Courcelle’s Theorem to counting problems according to [3]. In other words, proving

the FPT of some problem by showing that it is MSO expressible is the starting point

rather than the end point of the search for an efficient algorithm.

Recently, an alternative method to tackle this class of fixed-parameter tractable

problems via monadic datalog has been proposed in [7]. In particular, it has been shown

that if some property of finite structures is expressible in MSO then it can also be ex-

pressed by means of a monadic datalog program over the structure plus the tree decom-

position. The monadic datalog approach has been applied to problems from different

areas [7, 8] including propositional satisfiability (SAT) and abduction. In this paper, we

show that the monadic datalog approach can be extended in such a way that it also

provides concrete algorithms for some fundamental counting problems.

Results. We present new algorithms for the following problems: #SAT – the prob-

lem of counting all models of a propositional formula (without restriction, this is a

classical #P-complete problem); #CIRCUMSCRIPTION – the problem of counting the

(subset) minimal models of a propositional formula (this problem was, apart from the

generic #Π1SAT-problem, one of the first problems to be shown #NP-complete [9]);

and #HORN-ABDUCTION – the problem of counting the solutions of a propositional

abduction problem where the underlying theory is given by a set of Horn clauses. The

#P-completeness of this problem has been recently shown in [10]. Finally, we also

report on experimental evaluations of the #SAT algorithm. In particular, we compare

a dedicated implementation (where datalog serves as a “specification”) with direct re-

alizations of the datalog approach on top of the DLV-system [11]. Our experiments

underline that our approach of counting indeed yields the expected fixed-parameter

tractability and that – in great contrast to the MSO-to-FTA approach – there are no

“hidden constants” in the runtime behavior to render these algorithms useless.

3

Related Work. As mentioned above, counting problems defined via MSO proper-

ties were shown in [3] to be FPT w.r.t. the treewidth of the input structures. In [12], this

FPT result was extended to graphs with bounded clique-width. An algorithm for solving

#SAT and #GENSAT in case of bounded treewidth or clique-width of the primal or inci-

dence graph was presented in [13]. Moreover, it is sketched how this approach based on

recursive splitting can be extended to other #P-complete problems. In [14], new #SAT-

algorithms based on dynamic programming were presented for bounded treewidth of

several graphs related to a propositional formula in CNF, namely the primal graph, dual

graph, and incidence graph. Our notion of treewidth of a CNF-formula (see Section 2)

corresponds to the treewidth of the incidence graph.

2 Preliminaries

Finite Structures and Treewidth. Let τ = {R1, . . . , RK} be a set of predicate sym-

bols. A finite structure A over τ (a τ -structure, for short) is given by a finite domain

A = dom(A) and relations RA
i ⊆ Aα, where α is the arity of Ri ∈ τ . A tree decom-

position T of a τ -structure A is a pair 〈T, (At)t∈T 〉 where T is a tree and each At is

a subset of A, s.t. the following properties hold: (1) Every a ∈ A is contained in some

At. (2) For every Ri ∈ τ and every tuple (a1, . . . , aα) ∈ RA
i , there exists a node t ∈ T

with {a1, . . . , aα} ⊆ At. (3) For every a ∈ A, {t | a ∈ At} induces a subtree of T .

The sets At are called the bags of T . The width of a tree decomposition 〈T, (At)t∈T 〉
is defined as max{|At| | t ∈ T} − 1. The treewidth of A is the minimal width of all

tree decompositions of A. It is denoted as tw(A). For given w ≥ 1, it can be decided in

linear time if some structure has treewidth ≤ w. Moreover, in case of a positive answer,

a tree decomposition of width w can be computed in linear time [15].

Example 1 ([2]). We can represent propositional formulae in CNF as finite structures

over the alphabet τ = {cl(.), var(.), pos(. , .), neg(. , .)} where cl(z) (resp. var(z))
means that z is a clause (resp. a variable) and pos(x, c) (resp. neg(x, c)) means that x
occurs unnegated (resp. negated) in the clause c. For instance, the formula ϕ = (x1 ∨
¬x2 ∨ x3)∧ (¬x1 ∨ x4 ∨¬x5)∧ (x2 ∨¬x4 ∨ x6) corresponds to the structure A given

by the set of ground atoms {var(x1), var(x2), var(x3), var(x4), var(x5), var(x6),
cl(c1), cl(c2), cl(c3), pos(x1, c1), pos(x3, c1), pos(x4, c2), pos(x2, c3), pos(x6, c3),
neg(x2, c1), neg(x1, c2), neg(x5, c2), neg(x4, c3)}. Two tree decompositions T1 and

T2 of A are given in Figure 1. Note that the maximal size of the bags is 3 in both

decompositions. Hence, the treewidth is ≤ 2. On the other hand, it can be shown that

these tree decompositions are optimal in the sense that we have tw(ϕ) = tw(A) = 2. ¦

In [7], it was shown that the following form of normalized tree decompositions can

be obtained in linear time: (1) All bags contain either w or w + 1 pairwise distinct

elements. W.l.o.g., we may assume that the domain contains at least w elements. (2)

Every internal node t ∈ T has either 1 or 2 child nodes. (3) If a node t has one child

node t′, then the bag At is obtained from At′ either by removing one element or by

introducing a new element. (4) If a node t has two child nodes then these child nodes

have identical bags as t. In this case, we call t a branch node. In this paper, we only

deal with finite structures representing propositional formulae in CNF (possibly Horn).

Hence, the domain elements are either variables or clauses. Consequently, in case (3),

4

x1, x2, x4

x1, x2, c1 x1, x2, x4

x3, c1 x1, x4, c2 x2, x4, c3

x5, c2 x6, c3

x1, x2, x4

x1, x4

x1, x2, x4

x1, x2, x4 x1, x2, x4 x1, x2, x4

x1, x2

x1, x2, c1

x1, c1

x1, x3, c1

x3, c1

x1, x4, c2

x1, c2

x1, x5, c2

x5, c2

x2, x4

x2, x4, c3

x2, c3

x2, x6, c3

x6, c3

(a) tree decomposition T1 (b) tree decomposition T2

Fig. 1. Tree decompositions of formula ϕ of Example 1.

we call a node t in the tree decomposition a variable removal node, a clause removal

node, a variable introduction node, or a clause introduction node, respectively.

The tree decomposition T2 in Figure 1 is normalized in this sense.

MSO and Monadic Datalog. MSO extends First Order logic (FO) by the use of set

variables (denoted by upper case letters), which range over sets of domain elements.

In contrast, the individual variables (denoted by lower case letters) range over sin-

gle domain elements. An MSO formula ϕ(x) with exactly one free individual vari-

able is called a unary query. Datalog programs are function-free logic programs. The

(minimal-model) semantics can be defined as the least fixpoint (lfp) of applying the im-

mediate consequence operator. Predicates occurring only in the body of rules are called

extensional. Predicates occurring also in the head of some rule are called intensional.

Let A be a τ -structure of treewidth w ≥ 1. Then we define the extended signature

τtd = τ ∪{root , leaf , child1, child2, bag}, where the unary predicates root and leaf as

well as the binary predicates child1 and child2 are used to represent the tree of a tree

decomposition (of width w) in the obvious way. Finally, predicate bag has arity k + 2
with k ≤ w, where bag(t, a0, . . . , ak) means that the bag at node t is (a0, . . . , ak).

In [7], the following connection between unary MSO queries over structures with

bounded treewidth and monadic datalog was established:

Theorem 1. Let τ and w ≥ 1 be arbitrary but fixed. Every MSO-definable unary query

over τ -structures of treewidth w is also definable by a monadic datalog program over

τtd. Moreover, the resulting program can be evaluated in linear time w.r.t. the size of

the original τ -structure.

3 Counting all models

We start our investigation of counting problems with the #SAT problem, i.e.: given

a clause set C over variables V , count the number of all models J ⊆ V of C (We

identify an assignment with the set of atoms that are true in it). Suppose that an instance

of #SAT is given as a τtd-structure with τtd = {cl , var , pos , neg , root , leaf , child1,

child2, bag}, encoding a clause set together with a tree decomposition T of width w (as

explained Example 1). An extended datalog program for #SAT is displayed in Figure 2.

5

Program #SAT

/* leaf node. */

sat(v, P, N, Cu, 1) ← leaf (v), bag(v, X, C), partition(X, P, N), true(P, N, Cu, C).

/* variable removal node. */

sat(v, P, N, Cu, j1 + j2) ← bag(v, X, C), child1(v1, v), bag(v1, X ⊎ {x}, C),

sat(v1, P ⊎ {x}, N, Cu, j1), sat(v1, P, N ⊎ {x}, Cu, j2).

sat(v, P, N, Cu, j) ← bag(v, X, C), child1(v1, v), bag(v1, X ⊎ {x}, C),

sat(v1, P ⊎ {x}, N, Cu, j), not sat(v1, P, N ⊎ {x}, Cu,).

sat(v, P, N, Cu, j) ← bag(v, X, C), child1(v1, v), bag(v1, X ⊎ {x}, C),

sat(v1, P, N ⊎ {x}, Cu, j), not sat(v1, P ⊎ {x}, N, Cu,).

/* clause removal node. */

sat(v, P, N, Cu, j) ← bag(v, X, C), child1(v1, v), bag(v1, X, C ⊎ {c}),

sat(v1, P, N, Cu ⊎ {c}, j).

/* variable introduction node. */

sat(v, P ⊎ {x}, N, Cu, SUM(j)) ← bag(v, X ⊎ {x}, C), child1(v1, v), bag(v1, X, C),

sat(v1, P, N, C1, j), true({x}, ∅, C2, C), C1 ∪ C2 = Cu.

sat(v, P, N ⊎ {x}, Cu, SUM(j)) ← bag(v, X ⊎ {x}, C), child1(v1, v), bag(v1, X, C),

sat(v1, P, N, C1, j), true(∅, {x}, C2, C), C1 ∪ C2 = Cu.

/* clause introduction node. */

sat(v, P, N, Cu, j) ← bag(v, X, C ⊎ {c}), child1(v1, v), bag(v1, X, C),

sat(v1, P, N, C1, j), true(P, N, C2, {c}), C1 ∪ C2 = Cu.

/* branch node. */

sat(v, P, N, Cu, SUM(j)) ← child1(v1, v), bag(v1, X, C), sat(v1, P, N, C1, j1),

child2(v2, v), bag(v2, X, C), sat(v2, P, N, C2, j2),

bag(v, X, C), C1 ∪ C2 = Cu, j1 ∗ j2 = j.

/* result (at the root node). */

count(SUM(j)) ← root(v), bag(v, X, C), sat(v, P, N, C, j).

Fig. 2. #SAT program.

In this program, we adhere to the following notational conventions: Lower case let-

ters v, c, x, and j (possibly with subscripts) are used as datalog variables for a single

node in T , for a single clause, for a single propositional variable, or for an integer num-

ber, respectively. Upper case letters are used as datalog variables denoting sets of vari-

ables (in the case of X,P, N) or sets of clauses (in the case of C). In particular, for the

sake of readability, we present the extensional predicate bag in the form bag(v, X, C),
where X (resp. C) denotes the set of variables (resp. clauses) in the bag at node v in

T . Note that all these sets are not sets in the general sense, since their cardinality is

restricted by the maximal size w + 1 of the bags, where w is a fixed constant. Indeed,

we ultimately feed these sets to the datalog system DLV in the form of individual argu-

ments of appropriate variants of the predicates involved, see Section 6.

We are also using non-datalog expressions involving the ∪- and ⊎-operator for or-

dinary resp. disjoint union. They could be easily replaced by “proper” datalog expres-

sions, e.g., C1 ∪ C2 = Cu can of course be replaced by union(C1, C2, Cu). Moreover,

we need arithmetic expressions j1 + j2 and j1 ∗ j2 as well as the SUM-operator for

the counting. The SUM-operator occurs as the expression SUM(j) in the rule heads

6

only. Its semantics is like the SUM aggregate function in ordinary SQL, where we first

apply a GROUP BY over all remaining head variables to the result of evaluating the

conjunctive query in the body of the rule.

For the discussion of the #SAT program below, it is convenient to introduce the

following notation: Let C denote the input clause set with variables in V and tree de-

composition T . For any node v in T , we write Tv to denote the subtree of T rooted at

v. By Cl(v) we denote the clauses in the bag of v while Cl(Tv) denotes the clauses that

occur in any bag in Tv . Analogously, we write Var(v) and Var(Tv) as a short-hand

for the variables occurring in the bag of v respectively in any bag in Tv . Finally, the

restriction of a clause c to the variables in some set U ⊆ V will be denoted by c|U .

The #SAT program contains four intensional predicates sat , true, partition , and

count . The crucial predicate is sat(v, P, N, C, j) with the following intended mean-

ing: v denotes a node in T . P and N form a partition of Var(v) representing a truth

assignment on Var(v), s.t. all variables in P are true and all variables in N are false.

C denotes a subset of Cl(v) and j denotes a positive integer. For arbitrary values of

v, P, N, C, we define the following set of truth assignments:

S(v, P, N, C) = {J | J is an extension of (P,N) to Var(Tv),

for each c ∈ (Cl(Tv) \ Cl(v)) ∪ C, c is true in J ,

for each c ∈ Cl(v) \ C, c|Var(Tv) is false in J . }

We can now characterize the least fixpoint (lfp) of the #SAT program as follows.

Property A. If S(v, P, N, C) = ∅ then no atom sat(v, P, N, C,) is in the lfp of #SAT.

If S(v, P, N, C) 6= ∅ then the following equivalence holds: sat(v, P, N, C, j) is in the

lfp of #SAT iff |S(v, P, N, C)| = j.

This property implies that, for any given values v, P, N, C, we can derive at most one

fact sat(v, P, N, C, j). The main task of the program is the computation of all facts

sat(v, P, N, C, j) by means of a bottom-up traversal of the tree decomposition T . In-

deed, all the rules only allow us to derive sat-facts for some node v in T from sat-facts

at the child node(s) of v. Consequently, on the ground level, the program contains only

stratified negation, since the not-operator in the rules of variable removal nodes is only

applied to sat-facts of the child node v1 of v.

The other predicates have the following meaning: true(P,N, Cu, C) means that

Cu contains precisely those clauses from C which are true in the (partial) assignment

given by (P,N). We do not specify the implementation of this predicate here. It can be

easily achieved via the extensional predicates pos and neg . A fact partition(X,P, N)
expresses that (P,N) is a partition of X . The predicate count holds the final result. The

datalog program in Figure 2 solves the #SAT problem in the following way.

Theorem 2. Let C be an instance of #SAT, encoded by a τtd-structure Atd. Then,

count(j) with j ≥ 1 is in the lfp of the #SAT-program evaluated on Atd iff C is satisfi-

able and has exactly j models. Moreover, both the construction of the τtd-structure Atd

and the evaluation of the program take time O(f(tw(C)) ∗ ‖C‖) for some function f , if

we assume constant runtime for the arithmetic operations.

Proof. Suppose that the predicate sat indeed fulfills Property A, which can be proved

by structural induction on T . The case distinction over all possible kinds of nodes is

7

rather straightforward – the only non-trivial case being the case of branch nodes. A

detailed proof is given in Appendix A.

Now consider the root node v of the tree decomposition T with bag(v, X, C). A

fact sat(v, P, N, C, j) in the lfp means that the assignment (P,N) on the variables X
has exactly j extensions to all variables, s.t. all clauses in C are true. But then, by the

semantics of the SUM-operator explained above, the rule with head count(SUM(j))
indeed means that a fact count(j′) with j′ ≥ 1 is in the lfp iff j′ is the number of

assignments that satisfy all clauses in C, i.e., j′ is the sum of j over all possible partitions

(P,N) of X , s.t. sat(v, P, N, C, j) is in the lfp. We are thus using that the root v of

T is unique and the values of X and C in the bag at v are uniquely determined by v.

Moreover, for every pair of (P,N) (together with C, which is fixed for v), the value of

j is also uniquely determined.

The linear time data complexity is due to the fact that our #SAT program is essen-

tially a succinct representation of a monadic datalog program extended by a counter

j. For instance, in the atom sat(v, P, N, C, j), the sets P , N , and C are subsets of

bounded size of the bag of v. Hence, each combination P,N,C could be represented

by sets r, s, t ⊆ {0, . . . , w} referring to indices of elements in the bag of v. Recall

that w is a fixed constant. Hence, sat(v, P, N, C, j) is simply a succinct representation

of constantly many predicates of the form satr,s,t(v, j). Hence, without the counter j,

the linear time bound is implicit in Theorem 1. Moreover, j is uniquely determined for

every combination of v, P, N, C, and the concrete value of j is computed by simple

addition and multiplication of the corresponding values in sat-facts at the child node(s)

of v. Hence, maintaining this additional argument j does not destroy the linearity. ¤

4 Counting the minimal models

We now extend the #SAT program in order to solve the #CIRCUMSCRIPTION problem,

i.e.: given a propositional formula ϕ, count the number of minimal models of ϕ. The

goal of the program in Figure 3 and 4 is, on the one hand, to keep track of all models

of a formula ϕ given by the input τtd-structure. This is done by the sat-predicate which

works essentially as in the #SAT program. However, at the end of the day, we may only

count the minimal models. Our #CIRCUMSCRIPTION program therefore also contains

an unsat-predicate, which is used to propagate “unsat”-conditions in the sense that some

model J is minimal only if all strictly smaller assignments J ′ ⊂ J do not satisfy ϕ.

Recall that we identify an assignment with the set of atoms that are true in it.

A complication which our program has to overcome is that we have to keep track

which unsat-conditions refer to which sat-condition. Thus the sat-predicate has an index

i ∈ {0, 1, 2, . . . } as additional argument. The first four arguments v, i, P, N allow us to

associate each unsat-fact with the correct sat-fact. The sat- and unsat-predicates have

the following meaning: Let v denote a node in the tree decomposition T . Let the sets P
and N (resp. P ′ and N ′) denote a partition of Var(v) representing a truth assignment

on Var(v), s.t. all variables in P (resp. in P ′) are true and all variables in N (resp. in

N ′) are false. Let C and C ′ denote subsets of Cl(v). Furthermore let i ∈ {0, 1, 2, . . . }
be an index used to distinguish different extensions of a truth assignment and let j be

a positive integer used for counting extensions of a truth assignment. Moreover, let the

set S(v, P, N, C) of truth assignments be defined as in Section 3. Then, occurrences

of the ground facts sat(v, i, P, N, C, j) and unsat(v, i, P, N, P ′, N ′, C ′) in the least

fixpoint (lfp) of #CIRCUMSCRIPTION are determined as follows:

8

Program #CIRCUMSCRIPTION

/* leaf node. */

sat(v, 0, P, N, Cu, 1) ← leaf (v), bag(v, X, C), partition(X, P, N), true(P, N, Cu, C).

unsat(v, 0, P, N, P ′, N ′, C′

u
) ← leaf (v),

sat(v, 0, P, N, , 1), sat(v, 0, P ′, N ′, C′

u
, 1), P ′ ⊂ P .

/* variable removal node. */

auxsat(v, i, 0, P, N, Cu, j) ← bag(v, X, C), child1(v1, v), bag(v1, X ⊎ {x}, C),

sat(v1, i, P ⊎ {x}, N, Cu, j).

auxsat(v, i, 1, P, N, Cu, j) ← bag(v, X, C), child1(v1, v), bag(v1, X ⊎ {x}, C),

sat(v1, i, P, N ⊎ {x}, Cu, j).

auxunsat(v, i, 0, P, N, P ′ \ {x}, N ′ \ {x}, C′

u
) ← bag(v, X, C), child1(v1, v),

bag(v1, X ⊎ {x}, C), unsat(v1, i, P ⊎ {x}, N, P ′, N ′, C′

u
).

auxunsat(v, i, 1, P, N, P ′, N ′ \ {x}, C′

u
) ← bag(v, X, C), child1(v1, v),

bag(v1, X ⊎ {x}, C), unsat(v1, i, P, N ⊎ {x}, P ′, N ′, C′

u
).

/* clause removal node. */

sat(v, i, P, N, Cu, j) ← bag(v, X, C), child1(v1, v), bag(v1, X, C ⊎ {c}),

sat(v1, i, P, N, Cu ⊎ {c}, j).

unsat(v, i, P, N, P ′, N ′, C′

u
) ← bag(v, X, C), child1(v1, v), bag(v1, X, C ⊎ {c}),

sat(v1, i, P, N, Cu ⊎ {c},), unsat(v1, i, P, N, P ′, N ′, C′

u
⊎ {c}).

/* variable introduction node. */

sat(v, i, P ⊎ {x}, N, C1 ∪ C2, j) ← bag(v, X ⊎ {x}, C), child1(v1, v), bag(v1, X, C),

sat(v1, i, P, N, C1, j), true({x}, ∅, C2, C).

sat(v, i, P, N ⊎ {x}, C1 ∪ C2, j) ← bag(v, X ⊎ {x}, C), child1(v1, v), bag(v1, X, C),

sat(v1, i, P, N, C1, j), true(∅, {x}, C2, C).

unsat(v, i, P ⊎ {x}, N, P ′ ⊎ {x}, N ′, C1 ∪ C2) ← bag(v, X ⊎ {x}, C), child1(v1, v),

bag(v1, X, C), unsat(v1, i, P, N, P ′, N ′, C1), true({x}, ∅, C2, C).

unsat(v, i, P ⊎ {x}, N, P ′, N ′ ⊎ {x}, C1 ∪ C2) ← bag(v, X ⊎ {x}, C), child1(v1, v),

bag(v1, X, C), unsat(v1, i, P, N, P ′, N ′, C1), true(∅, {x}, C2, C).

unsat(v, i, P ⊎ {x}, N, P, N ⊎ {x}, C1 ∪ C2) ← bag(v, X ⊎ {x}, C), child1(v1, v),

bag(v1, X, C), sat(v1, i, P, N, C1,), true(∅, {x}, C2, C).

unsat(v, i, P, N ⊎ {x}, P ′, N ′ ⊎ {x}, C1 ∪ C2) ← bag(v, X ⊎ {x}, C), child1(v1, v),

bag(v1, X, C), unsat(v1, i, P, N, P ′, N ′, C1), true(∅, {x}, C2, C).

/* clause introduction node. */

sat(v, i, P, N, C1 ∪ C2, j) ← bag(v, X, C ⊎ {c}), child1(v1, v), bag(v1, X, C),

sat(v1, i, P, N, C1, j), true(P, N, C2, {c}).

unsat(v, i, P, N, P ′, N ′, C1 ∪ C2) ← bag(v, X, C ⊎ {c}), child1(v1, v), bag(v1, X, C),

unsat(v1, i, P, N, P ′, N ′, C1), true(P ′, N ′, C2, {c}).

Fig. 3. #CIRCUMSCRIPTION program.

Property B. There exists an atom sat(v, , P, N,C,) in the lfp of the #CIRCUMSCRIP-

TION program iff S(v, P, N, C) 6= ∅. Moreover, a fact unsat(v, i, P,N, , , ,) is in

the lfp only if also a fact sat(v, i, P, N, ,) is. Finally, if S(v, P, N, C) 6= ∅ then

there exists a partition {Si1 , . . . , Sin
} with n ≥ 1 of S(v, P, N, C) which fulfills the

following conditions:

1. A fact sat(v, i, P, N, C,) is contained in the lfp iff i ∈ {i1, . . . , in}.

9

Program #CIRCUMSCRIPTION (continued)

/* branch node. */

auxsat(v, i1, i2, P, N, C1 ∪ C2, j1 ∗ j2) ← bag(v, X, C), child1(v1, v), bag(v1, X, C),

sat(v1, i1, P, N, C1, j1), child2(v2, v), bag(v2, X, C), sat(v2, i2, P, N, C2, j2).

auxunsat(v, i1, i2, P, N, P ′, N ′, C1 ∪ C2) ← bag(v, X, C),

child1(v1, v), bag(v1, X, C), unsat(v1, i1, P, N, P ′, N ′, C1),

child2(v2, v), bag(v2, X, C), unsat(v2, i2, P, N, P ′, N ′, C2).

auxunsat(v, i1, i2, P, N, P, N, C1 ∪ C2) ← bag(v, X, C),

child1(v1, v), bag(v1, X, C), sat(v1, i1, P, N, C1,),

child2(v2, v), bag(v2, X, C), unsat(v2, i2, P, N, P, N, C2).

auxunsat(v, i1, i2, P, N, P, N, C1 ∪ C2) ← bag(v, X, C),

child1(v1, v), bag(v1, X, C), unsat(v1, i1, P, N, P, N, C1),

child2(v2, v), bag(v2, X, C), sat(v2, i2, P, N, C2,).

/* variable removal and branch node: aux ⇒ sat */

sat(v, i, P, N, Cu, j) ← auxsat(v, i1, i2, P, N, Cu,), reduce(v, P, N, i, i1, i2, j).

unsat(v, i, P, N, P ′, N ′, C′

u
) ← auxunsat(v, i1, i2, P, N, P ′, N ′, C′

u
),

reduce(v, P, N, i, i1, i2,).

/* result (at the root node). */

count(SUM(j)) ← root(v), bag(v, X, C), sat(v, i, P, N, C, j),

not unsat(v, i, P, N, P ′, N ′, C).

Fig. 4. #CIRCUMSCRIPTION program.

2. The fact sat(v, i, P, N, C, j) is contained in the lfp iff |Si| = j.
3. For every partition (P ′, N ′) of Var(v) and every subset C ′ ⊆ Cl(v), the following

two equivalences hold:

The fact unsat(v, i, P, N, P ′, N ′, C ′) is contained in the lfp ⇔
there exists a J ∈ Si and an assignment J ′ ⊂ J , s.t. J ′ ∈ S(v, P ′, N ′, C ′) ⇔
for all J ∈ Si there exists an assignment J ′ ⊂ J , s.t. J ′ ∈ S(v, P ′, N ′, C ′).

Condition 2 above implies that, for any values v, i, P, N, C, there is at most one fact

sat(v, i, P, N, C,) in the lfp. Condition 3 ensures that, at the root node v of T , either

all j models described by a fact sat(v, i, P, N, C, j) are minimal or none of them is.

The predicates true and partition have the same meaning as in the #SAT program.

In addition, we have the predicates auxsat, auxunsat, and reduce with the following

meaning: Recall that the index i in sat(v, i, P, N, C,) is used to keep different as-

signments J ∈ S(v, P, N, C) apart. Of course, in principle, there can be exponen-

tially many such J . Nonetheless, the predicates auxsat, auxunsat, and reduce guaran-

tee the fixed-parameter tractability in the following way. In the first place, we com-

pute facts auxsat(v, i1, i2, P, N,C,) and auxunsat(v, i1, i2, P, N, P ′, N ′, C ′), where

we use pairs of indices (i1, i2) rather than a single index i to associate the auxunsat-

facts with the correct auxsat-fact. Now suppose that for two distinct pairs (i1, i2) and

(i′1, i
′
2) a fact auxsat(v, i1, i2, P,N, C,) and auxsat(v, i′1, i

′
2, P, N,C,) exists in the

lfp and, moreover, the auxunsat-facts for (v, i1, i2, P, N) and (v, i′1, i
′
2, P, N) are the

same, i.e., for indices i, j, let Val(v, i, j, P, N) = {(P ′, N ′, C ′) | there exists a fact

auxunsat(v, i, j, P,N, P ′, N ′, C ′) in the lfp }. Then Val(v, i1, i2, P, N) = Val(v, i′1,

i′2, P, N) holds. Intuitively, this means that the pairs of indices (i1, i2) and (i′1, i
′
2)

10

are not distinguishable by the sat- and unsat-conditions for this particular combina-

tion of (v, P, N). The purpose of the reduce-predicate is, in such a situation, to con-

tract (i1, i2) and (i′1, i
′
2) to a single index i and to take care of the actual counting

and summation. More precisely, a fact reduce(v, P, N, i, i1, i2, j) means that the pair

of indices (i1, i2) is mapped to the single index i and that j is the sum of all j′ in

facts auxsat(v, i′1, i
′
2, P, N , C, j′), s.t. (i′1, i

′
2) is mapped to i. In principle, the reduce-

predicate predicate can be realized in datalog (see Appendix B). However, in the long

run, an efficient implementation via hash tables inside the datalog processor is clearly

preferable. The datalog program in Figure 3 and 4 solves the #CIRCUMSCRIPTION

problem in the following way:

Theorem 3. Let C be an instance of #CIRCUMSCRIPTION, encoded by a τtd-structure

Atd. Then, count(j) with j ≥ 1 is in the lfp of the #CIRCUMSCRIPTION-program eval-

uated on Atd iff C is satisfiable and has exactly j (subset) minimal models. Moreover,

both the construction of the τtd-structure Atd and the evaluation of the program take

time O(f(tw(C)) ∗ ‖C‖) for some function f , if we assume constant runtime for the

arithmetic operations.

Proof. The proof is based on essentially the same ideas as the proof of Theorem 2.

In particular, the correctness follows easily as soon as the correctness of Property B is

established, which can be done by structural induction (see Appendix C). The linear

time bound is again shown via Theorem 1 and the fact that the arithmetic operations

required for the counting do not destroy the linear time data complexity. ¤

5 Horn abduction

Abduction is an important method in artificial intelligence and, in particular, in diag-

nosis. A propositional abduction problem (PAP) is given by a tuple P = 〈V,H,M, C〉,
where V is a finite set of variables, H ⊆ V is the set of hypotheses, M ⊆ V is the set

of manifestations and C is a consistent theory in the form of a propositional clause set.

A set S ⊆ H is a solution to P if C ∪ S is consistent and C ∪ S |= M holds.

In [8], the decision problem (i.e., does a given PAP have a solution) of proposi-

tional abduction with bounded treewidth was considered. In order to illustrate the wide

applicability of the datalog approach, we concentrate on the special case of #HORN-

ABDUCTION, i.e., given a PAP P whose theory is a set of Horn clauses, count the

number of solutions S of P . The datalog program in Figure 5 has a significantly differ-

ent flavour than the ones in the previous sections and can be considered as prototypical

for rule-based problems.

Before we explain this program, we introduce some useful terminology and con-

ventions: In general, Horn clauses are either rules, facts, or goals. For our purposes, it

is convenient to consider every clause r of C as a rule consisting of a head (denoted as

head(r)) and a body (denoted as body(r)). Goals of the form ¬p1 ∨ · · · ∨ ¬pk are thus

considered as rules of the form p1 ∧ · · · ∧ pk → ⊥ and a fact q in C is considered as a

rule of the form → q with an empty body. A PAP is represented by a τ -structure with

τ = {cl , var ,neg , pos, hyp,man}, where the predicates hyp and man indicate that

some variable a is a hypothesis (i.e., hyp(a)) or a manifestation (i.e., man(a)). By the

above consideration, var(⊥) is now also fulfilled. Moreover, neg(a, r) (resp. pos(a, r))

11

Program #HORN-ABDUCTION

/* leaf node. */
solve(v, S, 0, Co, RC, ∆C, RO1 ∪ RO2, 1) ← leaf (v), bag(v, X, R), S ∩ Co = ∅,

Co ⊆ X , RC ⊆ R, svar(v, S), explains(v, S ∪ Co), consistent(RC, S, Co, X),

derived(∆C, Co, RC), outside(RO1, R, X \ (S ∪ Co)), inside(RO2, R, S ∪ Co).

/* variable removal node. */
aux (v, S, i, 0, Co, RC, ∆C, RO, j) ← bag(v, X, R), child1(v1, v), bag(v1, X ⊎ {x}, R),

solve(v1, S ⊎ {x}, i, Co, RC, ∆C, RO, j).

aux (v, S, i, 1, Co, RC, ∆C, RO, j) ← bag(v, X, R), child1(v1, v), bag(v1, X ⊎ {x}, R),

solve(v1, S, i, Co ⊎ {x}, RC, ∆C ⊎ {x}, RO, j).

aux (v, S, i, 1, Co, RC, ∆C, RO, j) ← bag(v, X, R), child1(v1, v), bag(v1, X ⊎ {x}, R),

solve(v1, S, i, Co, RC, ∆C, RO, j), x 6∈ S, x 6∈ Co.

/* rule removal node. */
solve(v, S, i, Co, RC, ∆C, RO, j) ← bag(v, X, R), child1(v1, v), bag(v1, X, R ⊎ {r}),

solve(v1, S, i, Co, RC ⊎ {r}, ∆C, RO ⊎ {r}, j).

solve(v, S, i, Co, RC, ∆C, RO, j) ← bag(v, X, R), child1(v1, v), bag(v1, X, R ⊎ {r}),

solve(v1, S, i, Co, RC, ∆C, RO ⊎ {r}, j).

/* variable introduction node. */
solve(v, S ⊎ {x}, i, Co, RC, ∆C, RO, j) ← bag(v, X ⊎ {x}, R), child1(v1, v),

bag(v1, X, R), solve(v1, S, i, Co, RC, ∆C, RO, j), hyp(x).

solve(v, S, i, Co ⊎ {x}, RC, ∆C, RO, j) ← bag(v, X ⊎ {x}, R), child1(v1, v),

bag(v1, X, R), solve(v1, S, i, Co, RC, ∆C, RO, j),

consistent(RC, S, Co ⊎ {x}, X ⊎ {x}).

solve(v, S, i, Co, RC, ∆C, RO1 ∪ RO2, j) ← bag(v, X ⊎ {x}, R), child1(v1, v),

bag(v1, X, R), solve(v1, S, i, Co, RC, ∆C, RO1, j), not man(x),

outside(RO2, R, {x}), consistent(RC, S, Co, X ⊎ {x}).

/* rule introduction node. */
solve(v, S, i, Co, RC ⊎{r}, ∆C ⊎{x}, RO⊎{r}, j) ← bag(v, X, R⊎{r}), child1(v1, v),

bag(v1, X, R), solve(v1, S, i, Co, RC, ∆C, RO, j), consistent(RC ⊎ {r}, S, Co, X),

pos(x, r), x 6∈ ∆C, x 6= ⊥.

solve(v, S, i, Co, RC, ∆C, RO1 ∪ RO2 ∪ RO3, j) ← bag(v, X, R ⊎ {r}), child1(v1, v),

bag(v1, X, R), solve(v1, S, i, Co, RC, ∆C, RO1, j),

outside(RO2, R ⊎ {r}, X \ (S ⊎ Co)), inside(RO3, R ⊎ {r}, S ⊎ Co).

/* branch node. */
aux (v, S, i1, i2, C

o, RC, ∆C1 ⊎ ∆C2, RO1 ⊎ RO2, j1 ∗ j2) ← bag(v, X, R),

child1(v1, v), bag(v1, X, R), solve(v1, S, i1, C
o, RC, ∆C1, RO1, j1),

child2(v2, v), bag(v2, X, R), solve(v2, S, i2, C
o, RC, ∆C2, RO2, j2),

derived(∆C, Co, RC), ∆C1 ∩ ∆C2 = ∆C.

/* variable removal and branch node: aux ⇒ solve */
solve(v, S, i, Co, RC, ∆C, RO, j) ← aux (v, S, i1, i2, C

o, RC, ∆C, RO, j′),

reduce(v, S, i, i1, i2, j).

/* result (at the root node). */
count(SUM(j)) ← root(v), bag(v, X, R), solve(v, S, i, Co, RC, ∆C, RO, j),

Co = ∆C, RO = R, not unsuccess(S, i, Co).

unsuccess(S, i, Co

1) ← root(v), bag(v, X, R), solve(v, S, i, Co

2 , RC, ∆C, RO, j),

Co

2 = ∆C, RO = R, Co

2 < Co

1 .

Fig. 5. #HORN-ABDUCTION program.

12

means that a occurs in the body of r (resp. in the head of r). For the input tree decom-

position, we assume that a bag containing some rule r also contains the variable a in the

head of r. This will greatly simplify the presentation of our datalog program and can,

in the worst-case, only double the width of the resulting decomposition.

For S ⊆ V ∪ {⊥}, we write S+ to denote the closure of S w.r.t. the theory C,

i.e.: An element q ∈ V ∪ {⊥} is contained in S+ iff either q ∈ S or there exists a

“derivation sequence” of q from S in C of the form S → S ∪ {q1} → S ∪ {q1, q2} →
. . . → S ∪ {q1, . . . , qn}, s.t. qn = q and for every i ∈ {1, . . . , n}, there exists a

rule ri ∈ C with body(ri) ⊆ S ∪ {q1, . . . , qi−1} and head(ri) = qi. Hence, a subset

S ⊆ H is a solution of the PAP P iff ⊥ /∈ S+ and M ⊆ S+. Our #HORN-ABDUC-

TION program searches for the number of solutions S ⊆ H by applying precisely this

criterion. The predicate solve(v, S, i, Co, RC, ∆C, RO, j), which is at the heart of the

#HORN-ABDUCTION program, has the following intended meaning: v denotes a node

in the tree decomposition T . S is the projection of a solution S onto Hyp(v) and Co is

the projection of S+ \ S onto Var(v). We consider S+ \ S as well as Co as ordered

(which is indicated by the superscript o) w.r.t. some derivation sequence of S+ from

S. The arguments RC,∆C, and RO are used to check that Co is indeed the projection

of S+ \ S onto Var(v). Informally, the arguments RC and ∆C ensure that Co is not

too big, while RO ensures that Co is not too small. These tasks are accomplished as

follows: RC contains those rules in v which are used in the above derivation sequence.

Furthermore, the set ∆C contains those variables of Co, for which we have already

found the corresponding derivation rule. Of course, in the bottom-up traversal of the

tree decomposition, every element of Co ultimately has to end up in ∆C. On the other

hand, RO contains those rules r in the bag of v which do not constitute a contradiction

with the closedness of S+, i.e., either the head of r is contained in S+ anyway or we

have already encountered in Var(Tv) a variable in body(r) which is not contained in

S+. The last argument j is used to count the number of different solutions.

In the program, we again use ∪ and ⊎ to denote ordinary union resp. disjoint union.

By Co ⊎ {x}, we mean that x is arbitrarily “inserted” into Co, leaving the order of the

remaining elements unchanged. Analogously to the #CIRCUMSCRIPTION program, we

need an index i in order to distinguish between different derivation sequences leading

to different orderings on the elements in S+ \ S. Moreover, we need an aux-predicate

maintaining pairs of indices in case of variable removable and branch nodes. More-

over, we also need a reduce-predicate to contract aux-facts aux (v, S, i1, i2, . . .) and

aux (v, S, i′1, i
′
2, . . .) for partial solutions which are indistinguishable by the aux-facts

in the lfp. The actual counting and summation is again done in the reduce-predicate (see

Appendix D).

Formally, the correctness of the #HORN-ABDUCTION program can be shown via

the Property C defined below. Let Hyp(v), Man(v), Hyp(Tv), and Man(Tv) denote

the restriction of H and M to the variables in the bag of v or in any bag in Tv , respec-

tively. For arbitrary values of v, S, Co, RC, ∆C, and RO, we define the following set

of extensions S of S to Hyp(Tv):

Sol(v, S, Co, RC, ∆C, RO) = { S | S ⊆ S ⊆ Hyp(Tv) and ∃Co ∃RC with

Co ⊆ Co ⊆ Var(Tv) and RC ⊆ RC ⊆ Cl(Tv), s.t.

1. S ∩ Co = ∅, ⊥ /∈ Co, and Man(Tv) ⊆ S ∪ Co.

2. ∀r ∈ RC, head(r) ∈ Co and ∀p ∈ body(r) ∩ Var(Tv): either p ∈ S or p ∈ Co

with p < head(r).

13

3. RO = {r ∈ Cl(v) | body(r) ∩ Var(Tv) 6⊆ S ∪ Co} ∪ {r ∈ Cl(v) | head(r) ∈
S ∪ Co} and ∀r ∈ Cl(Tv) \ Cl(v), if head(r) 6∈ S ∪ Co then body(r) 6⊆ S ∪ Co.

4. ∆C = {p ∈ Co | r ∈ RC, head(r) = p} and ∀p ∈ Co \ Co, ∃r ∈ RC with

head(r) = p. }

Then, occurrences of the ground facts solve(v, S, i, Co, RC, ∆C, RO, j) in the lfp

of #HORN-ABDUCTION are determined as follows:

Property C. If Sol(v, S, Co, RC, ∆C, RO) = ∅ then no atom solve(v, S, , Co, RC,

∆C, RO,) is in the lfp of #HORN-ABDUCTION. On the other hand, if Sol(v, S, Co,

RC, ∆C, RO) 6= ∅ then the following conditions are fulfilled:

(a) A fact solve(v, S, , Co, RC, ∆C, RO, j) is in the lfp of #HORN-ABDUCTION

iff |Sol(v, S, Co, RC, ∆C, RO)| = j.

(b) For any further tuple of values (Co
1 , RC1, ∆C1, RO1) we have Sol(v, S, Co,

RC,∆C, RO) = Sol(v, S, Co
1 , RC1, ∆C1, RO1) iff there exists an index i and a value

j, s.t. there are facts solve(v, S, i, Co, RC, ∆C, RO, j) and solve(v, S, i, Co
1 , RC1,

∆C1, RO1, j) in the lfp of #HORN-ABDUCTION.

The other predicates have the following intended meaning: svar(v, S) is used to

select sets of hypotheses. It is true for every subset S ⊆ Hyp(v). A fact explains(v, X)
is in the lfp iff Man(v) ⊆ X . These two predicates are only used to ease the notation at

the leaf nodes of T . The remaining predicates consistent, outside, inside, and derived

take care of the conditions 2 – 4 of the definition of Sol(v, S, Co, RC, ∆C, RO) in the

following way: A fact consistent(RC,S, Co, X) is in the lfp iff ∀r ∈ RC we have

head(r) ∈ Co and ∀p ∈ body(r) ∩ X it holds that either p ∈ S or p ∈ Co with

p < head(r), i.e. the rules in RC are only used to derive greater variables from smaller

ones (plus variables from S), cf. condition 2 above. A fact outside(RO, R,X) is in the

lfp iff RO = {r ∈ R | body(r) ∩ X 6= ∅}. Hence, for X ⊆ V \ S+, the rules in RO
do not constitute a contradiction with the closedness of S+ because their bodies have

a variable of X (and, therefore, outside S+) in their body. A fact inside(RO,R, X) is

in the lfp iff RO = {r ∈ R | head(r) ∈ X}. Hence, for X ⊆ S+, the rules in RO
do not constitute a contradiction with the closedness of S+ because their head is inside

this set. A fact derived(∆C, Co, RC) means that ∆C contains those variables of Co

for which RC already contains the rule which is used in the last step of the derivation,

i.e., ∆C = {q ∈ Co | r ∈ RC, q = head(r)}. Analogously to Theorems 2 and 3, the

#HORN-ABDUCTION-program in Figure 5 has the following properties:

Theorem 4. Let P = 〈V,H, M, C〉 be an instance of #HORN-ABDUCTION, encoded

by a τtd-structure Atd. Then, count(j) with j ≥ 1 is in the lfp of the #HORN-ABDUC-

TION-program evaluated on Atd iff the PAP P is solvable and has j solutions. More-

over, both the construction of the τtd-structure Atd and the evaluation of the program

take time O(f(tw(P)) ∗ ‖P‖) for some function f , if we assume constant runtime for

the arithmetic operations.

6 Experimental Evaluation

A practical evaluation of the monadic datalog approach presented in earlier work [7] is

still missing. So far, datalog programs (like the ones established in [7, 8]) only served

as a “specification” for an implementation in C++, rather than being used as a method

14

tw # vars # clauses # nodes # models Haskell datalog

3 75 25 220 2.1E13 0.00 5.67

3 150 50 439 2.2E25 0.00 22.22

3 300 100 949 4.6E54 0.00 177.90

4 75 25 214 9.8E11 0.00 6.07

4 150 50 453 9.0E28 0.00 22.72

4 300 100 950 2.6E52 0.01 233.24

5 300 100 913 2.3E51 0.01 166.72

6 300 100 981 1.7E53 0.02 141.20

7 300 100 979 3.6E52 0.04 259.97

10 309 103 1044 5.1E48 4.12 2841.10

Table 1. Processing Time in sec. for #SAT.

of its own for solving the problem. However, using the datalog approach directly would

be very appealing, for instance, for rapid prototyping. Below we report on some first

lessons learned when experimenting with implementations of the #SAT program.

When evaluating the #SAT-program on a datalog engine, several obstacles have

to be overcome: First, encodings for the non-standard datalog operations, especially

those for set arithmetic, are non-trivial and must be done very carefully (avoiding

the introduction of cycles, etc.). A recent extension of the DLV-system [11], which

is called DLV-Complex (see http://www.mat.unical.it/dlv-complex), provides special

built-in predicates for set arithmetic. Our experiments showed that such built-ins nor-

mally lead to a better performance than a direct realization of the #SAT-program in

“pure” datalog. Another interesting observation was that the DLV-system did not rec-

ognize that the solve()-predicate can be evaluated without any cycles by a bottom-up

traversal of the tree-decomposition. We therefore relaxed the separation of the program

and the data and generated the programs using predicates solvev(), for each node v in

the tree-decomposition instead of having v as an argument in solve() – thus making

the acyclicity explicit. This led to a significant speed-up. Note that we could have put

more and more computation tasks into the generation of the datalog program. However,

to keep the method generic (w.r.t. different problems) we restricted ourselves to exploit

only structural information, i.e. the shape of the tree decomposition. Further, DLV is

handicapped in the way that no values bigger than 1010 can be processed.

We carried out experiments with two implementations of our #SAT program: one

executing the datalog program directly on DLV-complex (compiling the tree structure

into the program as discussed above) and one using a general-purpose, Turing complete

programming language (in contrast to [7, 8], we used Haskell rather than C++, because

we found it more convenient). Table 1 shows a glimpse of our results for various values

of the treewidth (tw), number of variables (# vars), clauses (# clauses) and nodes in

the tree decomposition (# nodes). The experiments were done on a recent Core2Duo

processor with 2GB of RAM and two cores at 1.86 GHz. The time was measured with

the Unix tool “time”. DLV was called with the default optimization parameters. Haskell

was compiled with increased optimization levels. Comparing a compiled program with

an interpreted program might be “unfair”, but the Haskell program does not need to be

recompiled when the tree changes whereas the DLV program has to be generated for

each instance.

15

In theory, our #SAT algorithm specified in terms of a datalog program is fixed-

parameter linear whenever the program is evaluated in an “optimal” way. This is what

our Haskell implementation does. For the time being, it is unclear how the design of

the datalog program (or the underlying datalog engine) has to be changed such that the

datalog engine yields similar results. This is subject of ongoing research. Nevertheless

the datalog approach scales reasonably for instances of medium size. Therefore, al-

ready now, datalog engines can be employed as tools for rapid prototyping and to verify

specifications, which are planned to be realized by a program in another language.

7 Conclusion

We have shown that the monadic datalog approach of [7] can be extended to counting

problems defined via MSO. It should be noted that – as opposed to [13, 14] – our ulti-

mate goal is not an efficient algorithm for the #SAT problem. Instead we are aiming at a

general-purpose method which allows us to systematically turn theoretical tractability

results based on Courcelle’s Theorem and generalizations thereof into efficient com-

putations. The experiments with our proof-of-concept implementation demonstrate that

our goal is realistic even though there is still a lot of work ahead of us.

Analogously to [13, 14], our datalog programs ultimately follow a dynamic pro-

gramming approach. This is not surprising if we keep the crucial observation underlying

Courcelle’s Theorem in mind: Consider a structure A with tree decomposition T and

some node s in T . If a domain element a in some bag above s and an element b below

s jointly occur in some tuple in A then – by the definition of tree decompositions – b
also occurs in the bag of s. Hence, the essential properties of the substructure induced

by the subtree rooted at s can be described in terms of the elements in the bag of s –

without taking the concrete form of the subtree rooted at s into account. Indeed, our

#SAT program behaves very similar to the dynamic programming algorithm in [14] for

the incidence graph. Nevertheless, we find the declarative style of datalog appealing and

it has proved convenient in tackling not only #P problems but also the #NP-problem

#CIRCUMSCRIPTION. Moreover, the use of datalog allows us to take advantage of all

future improvements of datalog engines, which is a very active research area [16].

As future work in this area, we are planning to prove a general expressivity result as

to how monadic datalog has to be extended in order to be applicable to any MSO-based

counting problem over structures with bounded treewidth. Moreover, we also want to

integrate further extensions of Courcelle’s Theorem (like sum, minimum, and maxi-

mum, which are studied in [3]) into the monadic datalog approach of [7]. As far as our

implementation on top of DLV is concerned, we have already identified some directions

of future work in Section 6. Note that we have so far used DLV only as a “black box” by

converting a #SAT problem instance plus the extended datalog program for #SAT into

the DLV syntax. Integrating some of the extensions into the datalog system itself (e.g.,

an efficient implementation of the reduce-predicate in Figures 4 and 5 via hash tables)

would clearly help to improve the performance.

References

1. Courcelle, B.: Graph rewriting: An algebraic and logic approach. In: Handbook of Theoret-

ical Computer Science, Volume B. Elsevier Science Publishers (1990) 193–242

16

2. Gottlob, G., Pichler, R., Wei, F.: Bounded treewidth as a key to tractability of knowledge

representation and reasoning. In: Proc. AAAI’06. (2006) 250–256

3. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. J.

Algorithms 12 (1991) 308–340

4. Flum, J., Frick, M., Grohe, M.: Query evaluation via tree-decompositions. J. ACM 49 (2002)

716–752

5. Frick, M., Grohe, M.: The complexity of first-order and monadic second-order logic revis-

ited. In: Proc. LICS’02. (2002) 215–224

6. Grohe, M.: Descriptive and parameterized complexity. In: Proc. CSL’99. Volume 1683 of

LNCS. (1999) 14–31

7. Gottlob, G., Pichler, R., Wei, F.: Monadic datalog over finite structures with bounded

treewidth. In: Proc. PODS’07. (2007) 165–174

8. Gottlob, G., Pichler, R., Wei, F.: Abduction with bounded treewidth: From theoretical

tractability to practically efficient computation. In: Proc. AAAI’08. (2008) 1541–1546

9. Durand, A., Hermann, M., Kolaitis, P.G.: Subtractive reductions and complete problems for

counting complexity classes. Theor. Comput. Sci. 340 (2005) 496–513

10. Hermann, M., Pichler, R.: Counting complexity of propositional abduction. In: Proc. IJCAI

2007. (2007) 417–422

11. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV

system for knowledge representation and reasoning. ACM Trans. Comput. Log. 7 (2006)

499–562

12. Courcelle, B., Makowsky, J.A., Rotics, U.: On the fixed parameter complexity of graph enu-

meration problems definable in monadic second-order logic. Discrete Applied Mathematics

108 (2001) 23–52

13. Fischer, E., Makowsky, J.A., Ravve, E.V.: Counting truth assignments of formulas of

bounded tree-width or clique-width. Discrete Applied Mathematics 156 (2008) 511–529

14. Samer, M., Szeider, S.: Algorithms for propositional model counting. In: Proc. LPAR’07.

Volume 4790 of LNCS., Springer (2007) 484–498

15. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small

treewidth. SIAM J. Comput. 25 (1996) 1305–1317

16. Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schaub, T., Truszczyński, M.: The

first answer set programming system competition. In: Proc. LPNMR’07. Volume 4483 of

LNCS., Springer (2007) 3–17

17

A Correctness Proof of the #SAT Program

The only part missing in the proof of Theorem 2 is that the predicate sat() indeed

has the intended meaning, i.e. Property A holds. We prove the “if”- and the “only

if”-direction separately, and proceed in each part by structural induction on the tree

decomposition:

“only if”-direction. Let the fact sat(v, P, N, Cu, j) be in the lfp of the program. We

have to show that j is an integer with j ≥ 1 and the set S(v, P, N, Cu) indeed has the

cardinality |S(v, P, N, Cu)| = j.

base case. Let v be a leaf node. Then j = 1 and the facts partition(X, P, N) with

X = Var(v) and true(P,N,Cu, C) with C = Cl(v) are also in the lfp. This means,

P and N form a partition of Var(v) and therefore represent a truth value assignment

(P,N). Since v is a leaf node, Var(v) = Var(Tv) and thus the only extension J of

(P,N) to Var(Tv) is (P,N) itself. Furthermore the atom true ensures that Cu contains

exactly those clauses c ∈ Cl(v), for which c is true in J . Therefore S(v, P, N, Cu) =
{J} and hence, |S(v, P, N, Cu)| = 1 = j.

induction step. We distinguish between the five different types of inner nodes of T
assuming that Property A holds for all child nodes.

(1) Let v be a variable removal node with removal of variable x and let v1 denote the

child of v. We have to distinguish three cases. In the first case the two atoms sat(v1, P ⊎
{x}, N, Cu, j1) and sat(v1, P, N ⊎ {x}, Cu, j2) are both in the lfp and j = j1 + j2.

By the induction hypothesis both j1 ≥ 1 and j2 ≥ 1. Furthermore the sets S1 =
S(v1, P ⊎{x}, N, Cu) and S2 = S(v1, P, N ⊎{x}, Cu) have cardinality |S1| = j1 and

|S2| = j2 respectively. By definition of S = S(v, P, N, Cu) it holds that S1 ⊆ S and

S2 ⊆ S. Note that S1∩S2 = ∅ since their elements differ on the truth value assignment

of x. Let J ∈ S be an extension of (P,N) to Var(Tv). Then either J(x) = true or

J(x) = false. But then by definition of S, either J ∈ S1 or J ∈ S2 and therefore

S = S1 ⊎ S2. Hence |S| = j1 + j2 = j ≥ 2.

In the second case sat(v1, P⊎{x}, N, Cu, j1) is in the lfp but the fact sat(v1, P, N⊎
{x}, C, j2) is not and j = j1. By the induction hypothesis j1 ≥ 1. Furthermore the

sets S1 = S(v1, P ⊎ {x}, N, Cu) and S2 = S(v1, P, N ⊎ {x}, Cu) have cardinality

|S1| = j1 and |S2| = 0 respectively. By definition of S = S(v, P, N, Cu) it holds that

S1 ⊆ S. Let J ∈ S be an extension of (P,N) to Var(Tv). Then either J(x) = true

or J(x) = false. But then by definition of S, either J ∈ S1 or J ∈ S2. Since S2 = ∅,

S = S1 and |S| = j1 = j ≥ 1.

In the third case sat(v1, P, N⊎{x}, Cu, j1) is in the lfp but the predicate sat(v1, P⊎
{x}, N, Cu, j2) is not and j = j1. This case is treated analogously to the second one.

(2) Let v be a clause removal node with removal of clause c and let v1 denote the

child of v. Then the fact sat(v1, P, N, Cu ⊎ {c}, j) is also in the lfp. By the induction

hypothesis the set S1 = S(v1, P, N,Cu ⊎ {c}) has cardinality |S1| = j ≥ 1. Note that

(Cl(Tv1
) \ Cl(v1)) ∪ Cu ⊎ {c} = (Cl(Tv) \ Cl(v)) ∪ Cu and Cl(v1) \ (Cu ⊎ {c}) =

Cl(v) \ Cu. Hence by the definition of S = S(v, P, N, Cu) it holds that S1 = S and

therefore |S| = j ≥ 1.

(3) Let v be a variable introduction node with introduction of variable x and let v1 de-

note the child of v. We have to distinguish two cases depending on whether x ∈ P or

x ∈ N . In the first case P is of the form P ′ ⊎ {x} with a set P ′ ⊆ Var(v1) and in the

second case N is of the form N ′ ⊎{x} with a set N ′ ⊆ Var(v1). We only treat the first

18

case here. The second one is symmetrical. In the first case the atom true({x}, ∅, C ′, C)
with C = Cl(v) is also in the lfp. This means C ′ contains exactly those clauses

in Cl(v) where the variable x occurs in unnegated form. Additionally the following

mutually distinct facts are in the lfp: sat(v1, P
′, N, C1, j1), sat(v1, P

′, N, C2, j2), . . . ,
sat(v1, P

′, N, Cn, jn) with n ≥ 1. In particular, it holds that Ck 6= Cl for all k 6= l with

k, l ∈ {1, . . . , n}. Furthermore we have
∑n

k=1 jk = j and it holds that Ck ∪ C ′ = Cu

for k = 1, . . . , n. By the induction hypothesis the sets Sk = S(v1, P
′, N, Ck) have

cardinality |Sk| = jk ≥ 1. We define a function f that transforms a truth value

assignment J on Var(Tv1
) into a truth value assignment on Var(Tv) in the follow-

ing way: f(J)(y) = J(y) for all y ∈ Var(Tv1
) and f(J)(x) = true. Now let the

sets S′
k = {f(J) | J ∈ Sk}. Of course it holds that |Sk| = |S′

k|. By definition of

S = S(v, P, N, Cu) it is true that for all S′
k we have S′

k ⊆ S.

We claim that S′
k∩S′

l = ∅ for all k 6= l. To see this, let J ′ ∈ S′
k∩S′

l and k 6= l. This

means, there exists a truth value assignment J on Var(Tv1
) with J ′ = f(J). Therefore

it holds that J ∈ Sk ∩ Sl. But then, by the construction of Sk and Sl, we have that

Ck = Cl which implies that k = l and therefore is a contradiction to the assumption

that k 6= l.

Now let J ′ ∈ S be an extension of (P,N) to Var(Tv). We claim that there exists

a k for which J ′ ∈ S′
k. To see this, let J be the extension of (P ′, N) to Var(Tv1

) for

which J ′ = f(J). Now let Ck ⊆ Cl(v1) contain exactly those clauses c ∈ Cl(v1), for

which c is true in J . But then it holds that J ∈ Sk and therefore J ′ ∈ S′
k. Hence S has

the form S =
⊎n

k=1 S′
k with cardinality |S| = (

∑n

k=1 jk) = j ≥ n.

(4) Let v be a clause introduction node with introduction of clause c and let v1 denote

the child of v. Then the facts sat(v1, P, N,C1, j) and true(P,N, C2, {c}) with Cu =
C1 ∪ C2 are also in the lfp. The latter one means that C2 = {c} if c|Var(v) is true in

(P,N) and C2 = ∅ otherwise. Note that by the connectedness condition, c|Var(Tv) =
c|Var(v). Hence, the truth value of c|Var(Tv) in any extension of (P,N) to Var(Tv)
coincides with the truth value of c|Var(v) in (P,N). By the induction hypothesis the set

S1 = S(v1, P, N, C1) has cardinality |S1| = j ≥ 1.

We claim that S1 ⊆ S with S = S(v, P, N, Cu). To see this, first consider the case

that c|Var(v) is false in (P,N). Hence, C2 = ∅ and, therefore, Cu = C1. But then, by

the definition of S, it holds that S = S1. Now consider the case that c|Var(v) is true in

(P,N). Then, C2 = {c} and Cu is of the form C = C1 ∪ {c}. Again, by the definition

of S, we have S = S1. Hence S has cardinality |S| = j ≥ 1.

(5) Let v be a branch node and let v1 and v2 denote the children of v. Then the fol-

lowing mutually distinct pairs of atoms are also in the lfp: 〈sat(v1, P, N,C11, j11),
sat(v2, P, N,C12, j12)〉, . . . , 〈sat(v1, P, N,Cn1, jn1), sat(v2, P, N,Cn2, jn2)〉 with

n ≥ 1 and
∑n

k=1 jk1 ∗ jk2 = j and it holds that Ck1 ∪Ck2 = Cu for k = 1, . . . , n. By

the induction hypothesis the sets Sk1 = S(v1, P, N,Ck1) and Sk2 = S(v2, P, N,Ck2)
have cardinality |Sk1| = jk1 ≥ 1 and |Sk2| = jk2 ≥ 1 respectively. We define a func-

tion f that combines an extension J1 of (P,N) to Var(Tv1
) and an extension J2 of

(P,N) to Var(Tv2
) into an extension of (P,N) to Var(Tv) in the following way:

f(J1, J2)(x) =

(P,N)(x) if x ∈ Var(v)
J1(x) if x ∈ Var(Tv1

) \ Var(v)
J2(x) if x ∈ Var(Tv2

) \ Var(v)

19

Note that f(J1, J2) is proper defined for all x ∈ Var(Tv) since by the connectedness

condition Var(Tv1
) ∩ Var(Tv2

) = Var(v).
Now let Jk1 and Jk2 be two arbitrary elements of Sk1 and Sk2 respectively. We

claim that then f(Jk1, Jk2) ∈ S with S = S(v, P, N, Cu). To see this, note that for each

c ∈ (Cl(Tv) \Cl(v))∪Cu it holds either that c ∈ (Cl(Tv1
) \Cl(v1))∪Ck1 or that c ∈

(Cl(Tv2
)\Cl(v2))∪Ck2. Therefore c is true in f(Jk1, Jk2). On the other hand, for each

c ∈ Cl(v) \ Cu, the restriction c|Var(Tv1
) is false in Jk1 and the restriction c|Var(Tv2

)

is false in Jk2. Hence c|Var(Tv) is false in f(Jk1, Jk2). But then, by the definition of

S, it holds that f(Jk1, Jk2) ∈ S. Since there are jk1 possibilities to choose Jk1 and

jk2 possibilities to choose Jk2, there are jk1 ∗ jk2 different extensions f(Jk1, Jk2) of

(P,N) to Var(Tv) for each k = 1, . . . , n.

Let 〈Sk1, Sk2〉 and 〈Sl1, Sl2〉 be two arbitrary pairs with k, l ∈ {1, . . . , n} and

k 6= l. It is easy to see, that the extensions f(Jk1, Jk2) and f(Jl1, Jl2) of (P,N) to

Var(Tv) that can be constructed by combining arbitrary Jk1 ∈ Sk1, Jk2 ∈ Sk2 and

Jl1 ∈ Sl1, Jl2 ∈ Sl2 are indeed mutually distinct. Otherwise it holds that Jk1 = Jl1 and

Jk2 = Jl2. But by the definition of Sk1, Sk2, Sl1 and Sl2 this means that Sk1 = Sl1 and

Sk2 = Sl2. This implies that the corresponding pairs of facts 〈sat(v1, P, N,Ck1, jk1),
sat(v2, P, N,Ck2, jk2)〉 and 〈sat(v1, P, N,Cl1, jl1), sat(v2, P, N,Cl2, jl2)〉 are equal,

which in turn implies that k = l. Therefore we have a contradiction with our assumption

that k 6= l.
Finally let J ∈ S be an arbitrary extension of (P,N) to Var(Tv). Then there exists

an extension J1 of (P,N) to Var(Tv1
) and an extension J2 of (P,N) to Var(Tv2

),
s.t. J = f(J1, J2). Furthermore let C1 ⊆ Cu contain exactly those clauses c ∈ Cu

which are true in J1 and let C2 ⊆ Cu contain exactly those clauses c ∈ Cu which

are true in J2. Clearly we have C1 ∪ C2 = Cu. But then the lfp contains a pair of

facts 〈sat(v1, P, N,C1, j1), sat(v2, P, N,C2, j2)〉 and the truth value assignments J1

and J2 are contained in the corresponding sets S(v1, P, N, C1) and S(v2, P, N, C2)
respectively. Therefore and with the arguments above, we have that S has cardinality

|S| =
∑n

k=1 jk1 ∗ jk2 = j ≥ n.

“if”-direction. Let the cardinality of the set S = S(v, P, N, Cu) be |S| = j with j ≥ 0.

We have to show that the fact sat(v, P, N, Cu, j) is in the lfp of the program if j 6= 0
and that otherwise no fact of the form sat(v, P, N, Cu,) is in the lfp.

base case. Let v be a leaf node and let j ≥ 1. Since P and N form a partition of

Var(v), the only extension J ∈ S of (P,N) to Var(Tv) = Var(v) is (P,N) itself.

Therefore j = 1 and the fact partition(X, P, N) with X = Var(v) is in the lfp of the

program. By the definition of S, Cu contains exactly those clauses c ∈ Cl(v), for which

c|Var(v) is true in J = (P,N). Hence the atom true(P,N, Cu, C) with C = cl(v) is

in the lfp, which implies that also the fact sat(v, P, N, Cu, 1) is in the lfp.

On the other hand let j = 0. This means, Cu does not contain exactly those clauses

c ∈ Cl(v), for which c|Var(v) is true in (P,N). Therefore the atom true(P,N, Cu, C)
with C = cl(v) is not in the lfp. Hence no fact of the form sat(v, P, N, Cu,) can be

derived.

induction step. We distinguish again between the five different types of inner nodes

of T assuming that Property A holds for all child nodes.

(1) Let v be a variable removal node with removal of variable x and let v1 denote the

child of v. We define two subsets S1, S2 ⊆ S in the following way: S1 = {J ∈ S |
J(x) = true} and S2 = {J ∈ S | J(x) = false} with cardinality |S1| = j1 and |S2| =

20

j2. Clearly S1 ⊎ S2 = S and therefore j = j1 + j2. Note that by definition it holds that

S1 = S(v1, P ⊎ {x}, N, Cu) and S2 = S(v1, P, N ⊎ {x}, Cu). Thus by the induction

hypothesis, the facts sat(v1, P ⊎ {x}, N, Cu, j1) and sat(v1, P, N ⊎ {x}, Cu, j2) are

in the lfp of the program if j1 ≥ 1 and j2 ≥ 1 respectively. Otherwise no atoms of

the form sat(v1, P ⊎ {x}, N, Cu,) and sat(v1, P, N ⊎ {x}, Cu,) are in the lfp. Now

let j ≥ 1. We have to distinguish three cases depending on whether none or exactly

one of the two cardinalities j1 and j2 equals 0. It is easy to see, that in all those cases

the corresponding rule implies that sat(v, P, N, Cu, j) is in the lfp of the program. On

the other hand let j = 0. Since no atoms of the form sat(v1, P ⊎ {x}, N, Cu,) and

sat(v1, P, N ⊎ {x}, Cu,) are in the lfp, no fact of the form sat(v, P, N, Cu,) can be

derived.

(2) Let v be a clause removal node with removal of clause c and let v1 denote the child

of v. Note that (Cl(Tv) \ Cl(v)) ∪ Cu = (Cl(Tv1
) \ Cl(v1)) ∪ Cu ⊎ {c} and that

Cl(v)\Cu = Cl(v1)\(Cu⊎{c}). Therefore by definition S = S1 = S(v1, P, N,Cu⊎
{c}) with |S| = |S1| = j. Assume that j ≥ 1. Then by the induction hypothesis,

sat(v1, P, N,Cu ⊎{c}, j) is in the lfp of the program and therefore sat(v, P, N, Cu, j)
is also in the lfp. On the other hand, let j = 0. Then by the induction hypothesis, no fact

of the form sat(v1, P, N,Cu ⊎ {c},) is in the lfp and therefore no atom of the form

sat(v, P, N, Cu,) can be derived.

(3) Let v be a variable introduction node with introduction of variable x and let v1

denote the child of v. We have to distinguish two cases depending on whether x ∈ P
or x ∈ N . We only treat the first case here. The second one is symmetrical. We de-

fine a clause set C(J) for all assignments J ∈ S as follows: C(J) = {c ∈ Cu |
c|Var(Tv1

) is true in J |Var(Tv1
)}. Thereby J |Var(Tv1

) denotes the restriction of J to

Var(Tv1
). Assuming that j ≥ 1, we construct a partition {S1, . . . , Sn} of S with n ≥ 1,

s.t. for all J1, J2 ∈ Sk with k = 1, . . . , n it holds that C(J1) = C(J2) and that for all

J1 ∈ Sk and J2 ∈ Sl with k 6= l it holds that C(J1) 6= C(J2). This means we can

associate with each partition block Sk a clause set Ck = C(J) with J ∈ Sk. Let the

sets Sk have cardinality |Sk| = jk ≥ 1. Clearly we have j =
∑n

k=1 jk. Let P be of

the form P = P ′ ⊎ {x}. Then it is easy to see, that Sk = S(v1, P
′, N, Ck). Therefore

by the induction hypothesis, the fact sat(v1, P
′, N, Ck, jk) is in the lfp of the program.

Next let C ′ be defined as C ′ = {c ∈ Cl(v) : x occurs unnegated in c}. Then C ′ ⊆ Cu

since otherwise there would exist a clause c ∈ Cl(v) \ Cu with c|Var(Tv) being true

in each J ∈ S. Furthermore Cu = Ck ∪ C ′ holds for each k = 1, . . . , n. This is due

to the fact that all clauses in Cu are true in each J ∈ S. Hence, they are already true

in J |Var(Tv1
) or they become true in J because of an unnegated occurrence of x. Thus

the facts true({x}, ∅, C ′, C) with C = Cl(v) and Ck ∪ C ′ = Cu are in the lfp. This

implies that sat(v, P, N, Cu, j) is also in the lfp.

Now assume that S = ∅ and let C ′ be defined as above. We claim that for each

clause set Ck with Ck ∪C ′ = Cu we have that Sk = S(v1, P
′, N, Ck) = ∅. To see this,

we define an extension J ′ of (P,N) to Var(Tv) by extending J ∈ Sk by J ′(x) = true.

But then we have J ′ ∈ S which is a contradiction to our assumption. Therefore no

fact of the form sat(v1, P
′, N, Ck,) is in the lfp and hence also no atom of the form

sat(v, P, N, Cu,) is in the lfp of the program.

(4) Let v be a clause introduction node with introduction of clause c and let v1 denote

the child of v. Let C1 be defined as C1 = Cu \{c}. Then we have (Cl(Tv1
)\Cl(v1))∪

C1 = (Cl(Tv) \ Cl(v)) ∪ C1 ⊆ (Cl(Tv) \ Cl(v)) ∪ Cu and furthermore Cl(v1) \

21

C1 = Cl(v) \ (C1 ⊎ {c}) ⊆ Cl(v) \ Cu. Thus for every J ∈ S it holds that J ∈ S1

with S1 = (v1, P, N,C1) and hence S ⊆ S1. Let C2 be defined as C2 = {c} if

c|Var(v) is true in (P,N) and C2 = ∅ otherwise. Now assume that Cu = C1 ∪ C2,

i.e. c ∈ Cu iff c|Var(v) is true in (P,N). But then clearly for all J ∈ S1 it holds that

J ∈ S. Therefore and since S ⊆ S1, we have S = S1 and |S| = |S1| = j. By the

induction hypothesis, if j ≥ 1 the fact sat(v1, P, N,C1, j) is in the lfp of the program.

Additionally by our construction, the atoms true(P,N, C2, {c}) and C1 ∪ C2 = Cu

are also in the lfp. Therefore the fact sat(v, P, N, Cu, j) will be derived. On the other

hand, if j = 0 no fact of the form sat(v1, P, N,C1,) is in the lfp. Hence no fact of the

form sat(v, P, N, Cu,) can be derived.

The only case left, is the one where Cu 6= C1 ∪ C2, i.e. c ∈ Cu iff c|Var(v) is false

in (P,N). In this case by definition S = ∅, i.e. |S| = 0. But then the fact C1∪C2 = Cu

is not in the lfp of the program and therefore no atom of the form sat(v, P, N, Cu,)
can be derived.

(5) Let v be a branch node and let v1 and v2 denote the children of v. We define

the set Let C = {(C ′
1, C

′′
1), (C ′

2, C
′′
2), . . . , (C ′

n, C ′′
n)} of pairs of clause sets as fol-

lows: C = {(C ′, C ′′) | C ′ ∪ C ′′ = Cu, S(v1, P, N,C ′) 6= ∅, S(v2, P, N, C ′′) 6= ∅}.

For every α ∈ {1, . . . , n}, let S′
α = S(v1, P, N, C ′

α) and S′′
α = S(v2, P, N,C ′′

α).
Moreover, let j′α = |S′

α| and j′′α = |S′′
α|. By the induction hypothesis, for every

α ∈ {1, . . . , n}, there are pairs of facts in the lfp of the program, which have the

form
(

sat(v1, P, N,C ′
α, j′α), sat(v1, P, N,C ′′

α, j′′α)
)

. Moreover, the lfp does not con-

tain any other facts of this type, i.e., suppose that there exist clause sets C ′, C ′′ with

C ′ ∪ C ′′ = Cu and positive integers j′, j′′, s.t. the lfp of the program contains two

atoms sat(v1, P, N, C ′, j′) and sat(v1, P, N,C ′′, j′′), then there exists an index α ∈
{1, . . . , n} with (C ′, C ′′) = (C ′

α, C ′′
α) and (j′, j′′) = (j′α, j′′α). Thus, the rule for

branch nodes in the #SAT program produces the fact sat(v, P, N, Cu, k) with k =
∑n

α=1 j′α ∗ j′′α.

It remains to show that j = k, i.e., k indeed denotes the cardinality of the set S. Let

S′ be defined as

S′ = S′
1 × S′′

1 ∪ S′
2 × S′′

2 ∪ · · · ∪ S′
n × S′′

n.

Clearly, any two sets (S′
α × S′′

α) and (S′
β × S′′

β) with α 6= β are disjoint. This follows

immediately from the fact that any pair of interpretations (J ′
α×J ′′

α) ∈ (S′
α×S′′

α) makes

the clauses in (C ′
α ×C ′′

α) true while any pair of interpretations (J ′
β × J ′′

β) ∈ (S′
β ×S′′

β)

makes the clauses in (C ′
β × C ′′

β) true with (C ′
α × C ′′

α) 6= (C ′
β × C ′′

β). Thus, |S′| = k

holds and it suffices to show that there exists a bijection S′ ∼= S.

Let (J ′, J ′′) be an arbitrary pair of assignments in S′. Then we write J ′ ∪ J ′′ to

denote the assignment J on Var(Tv), s.t. J restricted to Var(Tv1
) is J ′ and J restricted

to Var(Tv2
) is J ′′. By the connectedness condition on tree decompositions and by the

fact that J ′ and J ′′ coincide on the variables in Var(v) = Var(v1) = Var(v2), this

assignment J is well-defined. We claim that the desired bijective function f : S′ → S is

obtained by defining f(J ′, J ′′) = J ′∪J ′′. Clearly, f is well-defined and f(J ′, J ′′) ∈ S
holds.

Moreover, f is surjective and injective for the following reasons: Let J be an ar-

bitrary assignment in S and let J |Var(Tv1
) (resp. J |Var(Tv2

)) denote the restriction of

J to the variables in Var(Tv1
) (resp. Var(Tv2

)). Then it clearly holds that we have

(J |Var(Tv1
), J |Var(Tv2

)) ∈ S′ and J = f(J |Var(Tv1
), J |Var(Tv2

)) is true. Hence, f is

indeed surjective. Now let (J ′
1, J

′′
1) and (J ′

2, J
′′
2) be two distinct pairs in S′. It remains

22

to show that then J ′
1 ∪ J ′′

1 and J ′
2 ∪ J ′′

2 are also distinct. Since (J ′
1, J

′′
1) 6= (J ′

2, J
′′
2), we

either have J ′
1 6= J ′

2 or J ′′
1 6= J ′′

2 . W.l.o.g., suppose that J ′
1 6= J ′

2. Hence, there exists

a variable x in Var(Tv1
) \ Var(v1) which has different truth values in J ′

1 and J ′
2. But

then x also has different truth values in J ′
1∪J ′′

1 and J ′
2∪J ′′

2 . Hence, J ′
1∪J ′′

1 6= J ′
2∪J ′′

2

indeed holds and, therefore, f is injective. ¤

B Auxiliary Predicates for the #CIRCUMSCRIPTION Program

A datalog implementation of the predicate reduce for the #CIRCUMSCRIPTION pro-

gram plus several auxiliary predicates is given in Figure 6. The idea of the predicate

reduce(v, P, N, i, i1, i2, j) is to map pairs of indices (i1, i2) to single indices i and, in

particular, to map “equal” (i.e., indistinguishable) pairs of indices (i1, i2) to the same

index i. For given values of v, P, N , two pairs (i1, i2) and (i′1, i
′
2) are “equal” iff two

facts of the form auxsat(v, i1, i2, P, N, C, j) and the form auxsat(v, i′1, i
′
2, P, N,C, j′)

are in the lfp of the program and it holds that auxunsat(v, i1, i2, P, N, P ′, N ′, C ′) is in

the lfp iff the lfp contains an atom auxunsat(v, i′1, i
′
2, P , N, P ′, N ′, C ′).

Program Auxiliary Predicates for #CIRCUMSCRIPTION

diff (v, P, N, i1, i2, i
′

1, i
′

2) ← auxunsat(v, i1, i2, P, N, P ′, N ′, C),

not auxunsat(v, i′1, i
′

2, P, N, P ′, N ′, C), 0 ≤ i′1, i
′

2 < K.

diff (v, P, N, i1, i2, i
′

1, i
′

2) ← diff (v, P, N, i′1, i
′

2, i1, i2).

equal(v, P, N, i1, i2, i
′

1, i
′

2) ← auxsat(v, i1, i2, P, N, C,), auxsat(v, i′1, i
′

2, P, N, C,),

not diff (v, P, N, i1, i2, i
′

1, i
′

2).

count reduced(v, P, N, i1, i2, SUM(j)) ← equal(v, P, N, i1, i2, i
′

1, i
′

2),

auxsat(v, i′1, i
′

2, P, N, , j).

less(i1, i2, i
′

1, i
′

2) ← i1 < i′1, 0 ≤ i1, i2, i
′

1, i
′

2 < K.

less(i, i2, i, i
′

2) ← i2 < i′2, 0 ≤ i1, i2, i
′

1, i
′

2 < K.

reduced smaller(v, P, N, i, i1, i2) ← less(i′1, i
′

2, i1, i2), reduce(v, P, N, i, i′1, i
′

2, j).

duplicate(v, P, N, i1, i2) ← less(i′1, i
′

2, i1, i2), equal(v, P, N, i1, i2, i
′

1, i
′

2).

open(v, P, N, i, i1, i2) ← i′ < i, not reduced smaller(v, P, N, i′, i1, i2), 0 ≤ i, i′ < K.

reduce(v, P, N, i, i1, i2, j) ← 0 ≤ i < K, count reduced(v, P, N, i1, i2, j),

not reduced smaller(v, P, N, i, i1, i2), not duplicate(v, P, N, i1, i2),

not open(v, P, N, i, i1, i2).

Fig. 6. reduce plus auxiliary predicates for #CIRCUMSCRIPTION.

In the body of the rule defining reduce(v, P, N, i, i1, i2, j), we have the condition

0 ≤ i < K, where K denotes the maximum number of non-equal pairs (i1, i2). This

K is a constant which depends solely on the treewidth w. A suitable value of K can

be obtained by the following considerations: For given values of v, P, N , let the bag

at v consist of the variables Var(v) and clauses Cl(v) with Var(v) ∩ Cl(v) = ∅ and

|Var(v) ∪ Cl(v)| ≤ w + 1. For any fact auxsat(v, i1, i2, P, N,C, j) we have C ⊆
Cl(v). Hence the values of C can be considered as bit vectors of length at most w +

23

1. Therefore there are at most 2w+1 different values for C. Furthermore for any fact

auxunsat(v, i1, i2, P, N, P ′, N ′, C ′) we have |P ′|+ |N ′| = |Var(v)| and C ′ ⊆ Cl(v).
Hence the values of (P ′, N ′, C ′) can also be considered as bit vectors of length at most

w + 1. This means for given v, P, N, C, there are at most 22w+1

different subsets of

facts of the form auxunsat(v, i1, i2, P, N, P ′, N ′, C ′). Putting it all together, we get

at most K = 2w+1 ∗ 22w+1

non-equal pairs (i1, i2). Thus the index i in the predicate

reduce(v, P, N, i, i1, i2, j) is in {0, . . . ,K − 1}.

The purpose of the predicate diff (v, P, N, i1, i2, i
′
1, i

′
2) is to check whether for given

values of v, P, N , the pairs (i1, i2) and (i′1, i
′
2) differ in their corresponding auxunsat

facts. Recall that it was one of the two requirements for equal pairs, that they do not

differ in these facts. Therefore we can use diff to define the predicate equal , where we

additionally assure the first requirement for equal pairs: they have to satisfy the same

clause set C, i.e. there have to be two facts of the form auxsat(v, i1, i2, P, N,C, j) and

auxsat(v, i′1, i
′
2, P, N,C, j′) in the lfp of the program.

Since we are going to group all equal index pairs, we have to update our counter j.

This is done by the predicate count reduced , which computes the sum over the counter

of the corresponding auxsat facts of all equal index pairs. The intended meaning of the

atom less(i1, i2, i
′
1, i

′
2) is that the pair (i1, i2) is lexicographically smaller than the pair

(i′1, i
′
2). The fact reduced smaller(v, P, N, i, i1, i2) denotes that there exists a pair of

indices which is smaller than (i1, i2) and which is already mapped onto the index i, i.e.

we have to prevent a mapping of (i1, i2) onto i.
The intended meaning of the atom duplicate(v, P, N, i1, i2) is to indicate that there

exists a smaller pair of indices which is equal to (i1, i2). By allowing the derivation of

a reduce fact only for the smallest of all equal pairs of indices, we can assure that there

exists only one such fact for each equivalence class. Finally the intended purpose of

the fact open(v, P, N, i, i1, i2) is to assure that we choose the smallest free index i for

our mapping, i.e. there exists no smaller index i′ which we have not yet used in such a

mapping.

C Correctness Proof of the #CIRCUMSCRIPTION Program

We are going to proof that the predicates sat and unsat indeed have the intended mean-

ing, i.e. Property B holds, by structural induction on the tree decomposition:

base case. Let v be a leaf node. Since (P,N) is a partition of Var(v) = Var(Tv),
the only truth value assignment extending (P,N) to Var(Tv) is (P,N) itself. Therefore

for each set S = S(v, P, N, Cu), the cardinality of S is either |S| = 0 or |S| = 1. This

implies that if S 6= ∅, then there is only one possible partition {S0} of S with S0 = S.

Clearly |S| = 1 iff the predicate true(P,N, Cu, C) with C = Cl(v) is in the lfp iff

sat(v, 0, P, N,Cu, 1) is contained in the lfp.

The implication that unsat(v, i, P, N, , , ,) is in the lfp only if also an atom

sat(v, i, P, N, ,) is contained in the lfp is trivially fulfilled, since the latter fact is part

of the body of the rule for deriving the first one.

Furthermore note that a fact unsat(v, i, P, N, P ′, N ′, C ′
u) is contained in the lfp ⇔

the three facts sat(v, i, P, N, Cu,), sat(v, , P ′, N ′, C ′
u,) and P ′ ⊂ P are in the lfp

of the program ⇔ there exists a J ∈ S(v, P, N, Cu) and a J ′ ∈ S(v, P ′, N ′, C ′
u) with

P ′ ⊂ P .

24

induction step. We distinguish between the five different types of inner nodes of T
assuming that Property B holds for all child nodes.

Let v be a variable removal node with removal of variable x and let v1 denote the

child of v. First we show that there exists an atom sat(v, , P, N,Cu,) in the lfp of

the program iff S(v, P, N, Cu) 6= ∅. Assuming that such a fact is in the lfp, a fact

of the form auxsat(v, , , P, N,Cu,) is also in the lfp. Therefore at least one of the

facts sat(v1, , P ⊎ {x}, N, Cu,) or sat(v1, , P, N ⊎ {x}, Cu,) is in the lfp. We

only treat the first case here, since the second one is symmetrical. By the induction

hypothesis, S(v1, P ⊎ {x}, N, Cu) 6= ∅. Note that by the construction of S it holds

that S(v1, P ⊎ {x}, N, Cu) ⊆ S(v, P, N, Cu) and therefore S(v, P, N, Cu) 6= ∅. Now

assume that S(v, P, N, Cu) 6= ∅. By the construction of S, at least one of the following

two statements hold: S(v1, P ⊎ {x}, N, Cu) 6= ∅ or S(v1, P, N ⊎ {x}, Cu) 6= ∅. Again

the two cases are symmetrical and we therfore only treat the first one. By the induction

hypothesis, a fact sat(v1, , P ⊎ {x}, N, Cu,) is in the lfp of the program. Therefore

also a fact auxsat(v, , , P, N,Cu,) and furthermore sat(v, , P, N, Cu,) is in the

lfp.

Next we show that if there exists an atom unsat(v, i, P, N, , , ,) in the lfp of the

program, then there is also an atom sat(v, i, P, N, ,) in the lfp. Assuming that such

an unsat fact exists in the lfp, a predicate reduce(v, P, N, i, i1, i2,) is also in the lfp.

By the definition of reduce, there is also an atom auxsat(v, i1, i2, P, N, ,) in the lfp.

This atom and the previous reduce predicate imply that sat(v, i, P, N, ,) exists in the

lfp.

Finally we have to show that if S(v, P, N, C) 6= ∅ then there exists a partition

of this set fulfilling the conditions 1 – 3 of Property B. Therefore assume that S =
S(v, P, N, C) 6= ∅ and let S′ = S(v1, P ⊎ {x}, N, Cu) and S′′ = S(v1, P, N ⊎
{x}, Cu). Note that by the construction of S it holds that S = S′ ∪ S′′ and S′ ∩
S′′ = ∅. Therefore at least one of the two sets S′ and S′′ is not empty. Furthermore by

the induction hypothesis, at least one of the following two partitions exists and fulfills

the conditions 1 – 3 of Property B: S′ = {Sk1
, . . . , Skn

} and S′′ = {Sl1 , . . . , Slm}.

Therefore we can define a partition of S as {Sk1
, . . . , Skn

, Sl1 , . . . , Slm}.

Now we show that a fact auxsat(v, i1, i2, P, N,Cu,) is contained in the lfp iff ei-

ther (i1, i2) ∈ {(k1, 0), . . . , (kn, 0)} or (i1, i2) ∈ {(l1, 1), . . . , (lm, 1)}. Assume that

auxsat(v, i1, i2, P, N,Cu,) is in the lfp. We have to distinguish two cases depend-

ing on whether i2 = 0 or i2 = 1. We only treat the first case here, since the sec-

ond one is symmetrical. In this case a fact sat(v1, i1, P ⊎ {x}, N, Cu,) has to be in

the lfp of the program. Therefore by the induction hypothesis, i1 ∈ {k1, . . . , kn} and

clearly (i1, i2) ∈ {(k1, 0), . . . , (kn, 0)}. For the other direction, assume that (i1, i2) ∈
{(k1, 0), . . . , (kn, 0)} or (i1, i2) ∈ {(l1, 1), . . . , (lm, 1)}. Again the two cases are simi-

lar, hence we only treat the first one here. In this case, by the construction of the partition

and the induction hypothesis, a fact sat(v1, i1, P ⊎{x}, N, Cu,) is in the lfp. But then

also a fact auxsat(v, i1, 0, P, N, Cu,) is in the lfp.

Next we show that the fact auxsat(v, i1, i2, P, N,Cu, j) is contained in the lfp iff

|Si1 | = j. Assume that auxsat(v, i1, i2, P, N,Cu, j) indeed exists in the lfp. Again we

only consider the case where i2 = 0. But then the fact sat(v1, i1, P ⊎ {x}, N, Cu, j)
is also in the lfp and by the induction hypothesis it holds that |Si1 | = j. For the other

direction assume that |Si1 | = j. Depending on the index i1 there are again two cases

to consider. We treat only the one where i1 ∈ {k1, . . . , kn}. By the induction hypoth-

25

esis, the atom sat(v1, i1, P ⊎ {x}, N, Cu, j) is in the lfp and therefore also the fact

auxsat(v, i1, 0, P, N, Cu, j).
Finally we show that condition 3 of Property B holds when we replace the predicate

unsat with auxunsat , i.e. we show that for every partition (P ′, N ′) of Var(v) and

every subset C ′
u ⊆ Cl(v), the following three statements are equivalent:

(i) The fact auxunsat(v, i1, i2, P, N, P ′, N ′, C ′
u) is contained in the lfp.

(ii) There exists a J ∈ Si1 and an assignment J ′ ⊂ J , s.t. J ′ ∈ S(v, P ′, N ′, C ′
u).

(iii) For all J ∈ Si1 there exists an assignment J ′ ⊂ J , s.t. J ′ ∈ S(v, P ′, N ′, C ′
u).

To facilitate the proof of these equivalences, let S′ = S(v, P ′, N ′, C ′
u) and S′

1 =
S(v1, P

′ ⊎ {x}, N ′, C ′
u). Note that by the construction of these sets, S′

1 ⊆ S′.

First we show that (i) ⇒ (ii). Assume that auxunsat(v, i1, i2, P, N, P ′, N ′, C ′
u)

is in the lfp. Again we only consider the case where i2 = 0. Then there is either

the fact unsat(v1, i1, P ⊎ {x}, N, P ′ ⊎ {x}, N ′, C ′
u) or the fact unsat(v1, i1, P ⊎

{x}, N, P ′, N ′ ⊎ {x}, C ′
u) in the lfp. These two cases are also symmetrical, hence we

only consider the first one. By the induction hypothesis, there exists a J ∈ Si1 and an

assignment J ′ ⊂ J , s.t. J ′ ∈ S′
1. Since S′

1 ⊆ S′, J ′ ∈ S′ and therefore (i) ⇒ (ii) holds.

Next we show that (ii) ⇒ (iii). Assume there exists a J ∈ Si1 and an assignment

J ′ ⊂ J , s.t. J ′ ∈ S′. There are four possible cases depending on the truth value of

J(x) and J ′(x). Since they are all symmetrical, we only treat the case where both

J(x) = true and J ′(x) = true. Due to the construction of our partition of S, we know

that i1 ∈ {k1, . . . , kn}. Furthermore it holds that J ′ ∈ S′
1. Therefore we can apply the

induction hypothesis and hence for all J ∈ Si1 there exists an assignment J ′ ⊂ J , s.t.

J ′ ∈ S′
1. Since S′

1 ⊆ S′, J ′ ∈ S′ and therefore (ii) ⇒ (iii).

Now we show that (iii) ⇒ (i). Assume that for all J ∈ Si1 there exists an as-

signment J ′ ⊂ J , s.t. J ′ ∈ S′. Note that for each J , the truth value of J ′(x) is the

same, depending only on the partition (P ′, N ′). Therefore there are also four possible

cases distinguishable by the truth value of each J(x) and each J ′(x). We only treat the

case where both J(x) = true and J ′(x) = true. Due to the construction of our parti-

tion of S, we know that i1 ∈ {k1, . . . , kn}. Since J ′(x) = true and by the definition

of S, it holds for each J ′ that J ′ ∈ S′
1. Hence by the induction hypothesis, the fact

unsat(v, i1, P ⊎ {x}, N, P ′ ⊎ {x}, N ′, C ′
u) is contained in the lfp. Therefore also the

predicate auxunsat(v, i1, 0, P, N, P ′, N ′, C ′
u) is in the lfp.

What we have done so far, was basically proving the conditions 1 – 3 of Property

B for the predicates auxsat and auxunsat . Note that by the definition of the predicate

reduce, the partition {Sk1
, . . . , Skn

, Sl1 , . . . , Slm} of S is transformed into the smallest

possible new partition {S1, . . . , Sn′} still satisfying the conditions 1 – 3 of Property B

by combining sets Si1 , Si2 , . . . to a new set Si with i ∈ {1, . . . , n′}. Therefore Property

B also holds for the predicates sat and unsat .

The proof of the induction step for the other node types works analogously and is

therefore omitted. ¤

D Auxiliary Predicates for the #HORN-ABDUCTION Program

A datalog implementation of the predicate reduce for the #HORN-ABDUCTION pro-

gram plus several auxiliary predicates is given in Figure 7. The idea of the predicate

reduce(v, S, i, i1, i2, j) is basically the same as for the corresponding predicate of the

26

#CIRCUMSCRIPTION program. We want to detect “equal” pairs of indices (i1, i2) and

map them to a new index i. For given values of v, S, two pairs (i1, i2) and (i′1, i
′
2)

are equal iff it holds that a fact aux (v, S, i1, i2, C
o, RC, ∆C, RO, j) is in the lfp iff

aux (v, S, i′1, i
′
2, C

o, RC, ∆C, RO, j′) is in the lfp.

Program Auxiliary Predicates for #HORN-ABDUCTION

diff (v, S, i1, i2, i
′

1, i
′

2) ← aux (v, S, i1, i2, C
o, RC, ∆C, RO,),

not aux (v, S, i′1, i
′

2, C
o, RC, ∆C, RO,), 0 ≤ i′1, i

′

2 < K.

diff (v, S, i1, i2, i
′

1, i
′

2) ← diff (v, S, i′1, i
′

2, i1, i2).

equal(v, S, i1, i2, i
′

1, i
′

2) ← aux (v, S, i1, i2, C
o, RC, ∆C, RO,),

aux (v, S, i′1, i
′

2, C
o, RC, ∆C, RO,), not diff (v, S, i1, i2, i

′

1, i
′

2).

count reduced(v, S, i1, i2, SUM(j)) ← equal(v, S, i1, i2, i
′

1, i
′

2),

aux (v, S, i′1, i
′

2, C
o

1 , , , , j), not aux (v, S, i′1, i
′

2, C
o

2 , , , ,). Co

2 < Co

1 ,

less(i1, i2, i
′

1, i
′

2) ← i1 < i′1, 0 ≤ i1, i2, i
′

1, i
′

2 < K.

less(i, i2, i, i
′

2) ← i2 < i′2, 0 ≤ i1, i2, i
′

1, i
′

2 < K.

reduced smaller(v, S, i, i1, i2) ← less(i′1, i
′

2, i1, i2), reduce(v, S, i, i′1, i
′

2, j).

duplicate(v, S, i1, i2) ← less(i′1, i
′

2, i1, i2), equal(v, S, i1, i2, i
′

1, i
′

2).

open(v, S, i, i1, i2) ← i′ < i, not reduced smaller(v, S, i′, i1, i2), 0 ≤ i, i′ < K.

reduce(v, S, i, i1, i2, j) ← 0 ≤ i < K, count reduced(v, S, i1, i2, j),

not reduced smaller(v, S, i, i1, i2), not duplicate(v, S, i1, i2),

not open(v, S, i, i1, i2).

Fig. 7. reduce plus auxiliary predicates for #HORN-ABDUCTION.

The intended meaning of the auxiliary predicates is the same as for the #CIRCUM-

SCRIPTION program except for the fact count reduced . Since it is possible that for

given values of v, S, i1, i2 the lfp contains multiple atoms aux (v, S, i1, i2, C
o, . . .) with

different Co, we have to ensure that we count only one of them. Therefore the summa-

tion is done over those facts with the smallest Co according to some lexicographical

ordering.

27

