
SHARP

A Smart Hypertree-Decomposition-based
Algorithm FRamework for Parameterized

Problems

STUDENT PROJECT DOCUMENTATION

Michael Morak
0627699

Institute for Information Systems E184
Database and Artificial Intelligence Group

Supervisor: Privatdoz. Dipl.-Ing. Dr.techn. Stefan Woltran

Vienna University of Technology
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Contents

Contents ii

I Introduction 1

1 Motivation 2
1.1 Parameterized Complexity Theory . 2
1.2 Generalized Approach . 2

II Framework Description 4

2 Parsing 5
2.1 Responsibilities of the Parser . 5
2.2 Provided Parameters . 5

3 Hypertree Decomposition 6
3.1 Hypergraph Representation . 6
3.2 Decomposition . 7
3.3 Normalization . 8

4 Algorithm 9
4.1 Walking the Tree . 9
4.2 The Algorithm Class . 9
4.3 Tuples and Possible Worlds . 10
4.4 Solution and SolutionContent classes 11
4.5 Skeleton Implementation . 12

5 Pulling it all together 14
5.1 The Problem Class . 14

ii

CONTENTS iii

IIIImplementation by Example 16

6 The dynASP Algorithm 17
6.1 Implementing the Problem Class . 17
6.2 Implementing the Parser . 18
6.3 Implementing the Algorithm . 18
6.4 Implementing the Instantiator . 19

IVAppendices 21

A Class List 22

Bibliography 24

Part I

Introduction

1

1 Motivation

1.1 Parameterized Complexity Theory
The field of parameterized complexity has seen lots of activity in recent years (a good
overview can be found in e.g. [10]). In order to find efficient algorithms for computa-
tionally hard problems in terms of the size of the input, one tries to find certain param-
eterized versions of the problem where an instance consists of the input (of size n) and
a parameter of some kind (usually an integer, say k). By doing this one hopes to find
algorithms that exhibit a runtime that can be upper bounded by the following expression:

O(f(k)· p(n))

where f(k) is a function depending only on the value of the parameter k and p(n) is
some polynomial of n. Courcelle’s theorem lays the foundations of this kind of approach
in [2].

When such an algorithm is found, one can easily see that, by considering the param-
eter as fixed and therefore constant, the upper bound for the overall runtime reduces to
O(p(n)) which makes the problem tractable. The parameterized problem is therefore
called “Fixed-Parameter Tractable” or, in short, FPT. As f(k) usually is a highly ex-
ponential function when considering computationally hard problems, the thus obtained
algorithm is only efficient as long as the parameter (that is, k) remains small. Many
such algorithms have recently been published (see e.g. [3], [5], [8], [9]).

1.2 Generalized Approach
Our motivation to develop SHARP essentially lies in the fact that to obtain algorithms
for problems in this way one usually follows a uniform approach:

1. From the input problem, obtain the parameterized representation of the problem.
2. Using the fixed-parameter algorithm, obtain the solution.

This can be narrowed down even further when considering only a specific param-
eterization: Hypertreewidth (or just treewidth for trees). The algorithm then basically
follows the following steps:

2

CHAPTER 1. MOTIVATION 3

1. From the input problem, obtain a hypertree decomposition with a specific hyper-
treewidth, representing the parameterized version of the problem.

2. On the thus obtained hypertree decomposition, do a traversal of the tree in order
to check for a solution.

3. Depending on what type solution is sought (e.g. enumeration of answer-sets of
an answer-set program), do a second traversal of the tree, generating only the
relevant solutions in the process.

SHARP provides a framework to easily implement algorithms of this type for var-
ious problems building on hypertree decompositions. For someone seeking to turn a
theoretical fixed-parameter algorithm based on treewidth into an actual runnable pro-
gram, the framework provides a set of base classes that provide the means to focus on
implementing the actual algorithm without having to deal with the problems of data
management, flow control or the like, which usually is a time-consuming and tedious
task.

Part II

Framework Description

4

2 Parsing

2.1 Responsibilities of the Parser
Parsing the input usually is the first thing that needs to be done. The framework allows
much freedom at this point as different problems usually tend to have different input for-
mats therefore not much common ground could be found to provide base functionality
out of the box.

The usual method (which is currently used in all existing algorithm implementation)
is to write a lexer and parser with lex1 and yacc2 set of tools.

Also, if possible one might run certain preprocessing and pre-optimization subrou-
tines at this point (e.g. redundancy reduction/elimination, consolidation, etc.).

2.2 Provided Parameters
The parser should be able to start work with two parameters: A stream which yields the
entire input when read and a pointer to the Problem class (see section 5.1).

In order to work with the framework, the parser has to store the input in such a way
that later on the hypergraph representation of the problem can be constructed from it.
This can either be in form of a hypergraph itself or in the form of an intermediate data
structure more suited for working with later on in the algorithm. Usually this is done
by implementing the necessary methods in the problem class and calling them from the
parser class, whereby all the input data is stored in the Problem class.

1http://dinosaur.compilertools.net/lex/index.html
2http://dinosaur.compilertools.net/yacc/index.html

5

http://dinosaur.compilertools.net/lex/index.html
http://dinosaur.compilertools.net/yacc/index.html

3 Hypertree Decomposition

Once the input is read, the goal is to obtain the parameterized version of the problem or,
in other words, to generate a hypertree decomposition of the hypergraph representation
of the input. This is done in three steps:

1. Obtain the hypergraph representation of the input.
2. Decompose the thus created hypergraph into a hypertree.
3. Normalize the hypertree for easier use later on in the algorithm.

Each of these steps is discussed in detail in the following sections.

3.1 Hypergraph Representation
In order to use the SHARP framework, it must be possible to represent the problem (or
at least certain aspects thereof) by a graph or hypergraph. This usually is the case when
the problem consists of entities and relations between entities. The following is a short
list of examples:

• Answer-set programs: Here, the incidence graph servers as a graph representation
of the problem (i.e. the vertices of the graph are the rules and variables in the
program and for each occurrence of a variable in a rule an edge between the two
is added to the graph).
• Argumentation problems: Here the vertices are the arguments and the attack rela-

tion directly corresponds to the edges in the graph.
• Multi-Cut problems: Here the input is already a graph and therefore can be di-

rectly used for the hypertree decomposition step.

The hypergraph representation in the framework is represented by the Hypergraph
class. This is a straight-forward approach as this class consists of two collections, one
for the vertices and one for the hyperedges. In order to fill the Hypergraph class so
that the framework can work with it, one has to instantiate the Node class for each ver-
tex and the Hyperedge class for each hyperedge between the two. The following is
an example, instantiating a graph that has two vertices and one edge that connects them.

6

CHAPTER 3. HYPERTREE DECOMPOSITION 7

Listing 3.1: Example of a graph with two nodes and one edge.
Hypergraph *hg = new Hypergraph();
Node *a = new Node(1, 1), *b = new Node(2, 2);
Hyperedge *e = new Hyperedge(1, 1);
e->insNode(a); e->insNode(b); a->insEdge(e); b->insEdge(e);
a->updateNeighbourhood(); b->updateNeighbourhood();
e->updateNeighbourhood();
hg->iMyMaxNrOfNodes = 2;
hg->iMyMaxNrOfEdges = 1;

However, in order to avoid having to implement the tedious subroutine of moving
vertices and edges into the Hypergraph class, the framework provides a ready-to-use
method doing exactly that for the case that the hypergraph representation of the problem
is indeed a graph (i.e. each edge connects exactly two vertices). This (static) method
can be found in the Problem class and has the following signature:

Listing 3.2: The createHypergraphFromSets method signature.
Hypergraph *Problem::createHypergraphFromSets

(VertexSet, EdgeSet);

The VertexSet and EdgeSet data types are defined as an STL set of integers
(i.e. std::set<int>) and an STL map from integers to integers (std::map<int,
int>) whereby each integer represents the internal number of the corresponding vertex
in the graph. This internal number should be defined during the parsing process as it is
the only way to map the labels in the hypertree decomposition back to the corresponding
vertices.

3.2 Decomposition
The hypertree decomposition step turns the hypergraph representation of the prob-
lem (as provided in the Hypergraph class) into a hypertree, trying to minimize the
treewidth in the process. As finding a hypertree decomposition with minimal width is
in itself an NP-hard problem, this is done by a heuristic to speed things up. Therefore
the generated hypertree will not necessarily have minimal width with a relative per-
formance guarantee of at most 2. The specific heuristics currently implemented can be
found in [4]. Standalone implementations can be obtained from http://www.dbai.
tuwien.ac.at/proj/hypertree/downloads.html.

The hypertree decomposition routine yields an instance of the Hypertree class
which represents one of the possible hypertrees corresponding to the given hypergraph.
Each of the nodes in this hypertree consists of a set of vertices of the hypergraph (also
called a “bag”). The treewidth of the thus obtained hypertree is then defined as the
maximum bag size in the hypertree, minus one.

http://www.dbai.tuwien.ac.at/proj/hypertree/downloads.html
http://www.dbai.tuwien.ac.at/proj/hypertree/downloads.html

CHAPTER 3. HYPERTREE DECOMPOSITION 8

u v w x y z

r1 r2 r3 r4 r5

y, r1, r5

r1, r5

z, r1, r5

z, r1

z, r1, r2

r1, r2

u, r1, r2

r1, r5

w, r1, r5

w, r1, r5

w, r5

w, x, r5

w, x

w, x, r4

w, r1, r5

w, r1

v, w, r1

v, w

v, w, r3

Figure 3.1: Tree decomposition of a graph.

A tree decomposition example can be seen in figure 3.1. It shows an already nor-
malized tree decomposition of a graph. A tree decomposition of a graph is a labeled
tree whose labels (bags) consist of the vertices of the graph and for which the following
conditions hold:

• Two vertices connected by an edge in the graph must occur together in at least
one bag.
• All the bags containing a specific vertex in the tree decomposition must be con-

nected.

Both these conditions are obviously satisfied in the tree in figure 3.1, therefore it
is a valid hypertree decomposition of the graph on the left. Observe that if a node in
the hypertree has two children, these children will have exactly the same bags as their
parent.

3.3 Normalization
In the normalization step the previously obtained Hypertree class is transformed into
an instance of the ExtendedHypertree class which provides additional methods
for easily accessing the bags in the hypertree. During this conversion the hypertree is
normalized. This means that the difference between each node in the hypertree and its
child is reduced to at most one by introducing intermediate nodes that each introduce or
remove exactly one vertex.

4 Algorithm

4.1 Walking the Tree
This is where the “action” takes place. The AbstractAlgorithm class represents a
hypertree-based algorithm. There are only four types of nodes in the hypertree decom-
position:

• Leaf nodes: These are the leafs of the hypertree decomposition.
• Branch nodes: Here, the hypertree splits, i.e. this node has two children. As

discussed earlier, the children of a branch node have exactly the same bag as the
branch node itself.
• Vertex introduction node: This node, when compared to its child, introduces an

additional vertex. Observe that, as the hypertree decomposition is normalized,
only exactly one vertex is introduced.
• Vertex removal node: This node, when compared to its child, removes one ver-

tex. Observe that, as the hypertree decomposition is normalized, only exactly one
vertex is removed.

4.2 The Algorithm Class
Therefore the algorithm has to specify actions taking place when each of these node
types is encountered. Listing 4.1 shows the declaration of the algorithm class as seen in
the corresponding C++ header file. In order to implement an algorithm in the SHARP
framework, one has to implement the five purely virtual (i.e. abstract) methods as seen
in the listing.

Listing 4.1: The AbstractAlgorithm class header.
class AbstractAlgorithm
{
public:

AbstractAlgorithm(Problem *problem);
virtual ~AbstractAlgorithm();

protected:

9

CHAPTER 4. ALGORITHM 10

Instantiator *instantiator;
Problem *problem;

public:
void setInstantiator(Instantiator *instantiator);
Solution *evaluate(const ExtendedHypertree *root);

protected:
virtual Solution *selectSolution(

TupleSet *tuples,
const ExtendedHypertree *root) = 0;

virtual TupleSet *evaluateLeafNode
(const ExtendedHypertree *node) = 0;

virtual TupleSet *evaluateBranchNode
(const ExtendedHypertree *node) = 0;

virtual TupleSet *evaluateIntroductionNode
(const ExtendedHypertree *node) = 0;

virtual TupleSet *evaluateRemovalNode
(const ExtendedHypertree *node) = 0;

TupleSet *evaluateNode
(const ExtendedHypertree *node);

};

The evaluate*Node methods represent the actions the algorithm takes when
encountering one of the four node types. The framework automatically calls the correct
method when the evaluateNode method is called for a node.

4.3 Tuples and Possible Worlds
In order to pass data calculated in one node on to the next one, the concept of tuples
is introduced: One Tuple instance represents a possible world for a particular node.
Basically a bottom-up hypertree-based algorithm calculates at each node all the possible
worlds for that node by applying incremental operations to all the possible worlds of its
child node(s). All “impossible” worlds are simply omitted or eliminated (note that this
results in a dynamic programming algorithm).

As the Tuple data structure varies strongly from algorithm to algorithm, one needs
to derive the Tuple class and define the data structures needed for each tuple (i.e. each
possible world). As an example, one might consider an algorithm for the SATISFIA-
BILITY problem. Here each tuple just contains the set of positive variables, the set of
negative variables and the set of clauses, as these three sets suffice to represent a pos-
sible world in a node (the bags of the nodes would then contain as vertices a subset of
the variables and a subset of the clauses of the original problem). Note that the set of

CHAPTER 4. ALGORITHM 11

negative variables could also be stored implicitly as the difference of the variables in the
Node and the positive variables.

Usually the information that is stored in the Tuple class is enough to calculate an
answer for the decision problem (i.e. answer “yes” or “no”). However, usually one also
wants to actually find one or more solutions to the problem (i.e. in case of the SATIS-
FIABILITY problem, one wants to not only know that the input formula is satisfiable,
but also what all the satisfying truth assignments look like). In order to do just that, the
concept of a Solution is introduced.

4.4 Solution and SolutionContent classes
Each Tuple in a node represents a possible world from which one ore more partial–
partial in the sense that one node only represents a part of the whole problem–solution
to the problem can be generated. However calculating all (partial) solutions during
the bottom-up traversal would ultimately lead to an exponential running time for hard
problems which is what we want to avoid. Also many of these partial solutions would
never be needed again as the corresponding Tuple may at some point be eliminated.
Therefore the SHARP framework provides the Solution and SolutionContent
classes. Again the structure of a solution to the problem depends on the problem, there-
fore one has to define the data structure for the solutions. This is done by deriving
the SolutionContent class. One instance of the SolutionContent class repre-
sents one or more partial solutions associated with a Tuple instance (i.e. with a possible
world).

The framework already provides ready-made derived SolutionContent classes
for some common solution types (namely Enumeration, Counting and Boolean solution
types). However, new derived SolutionContent classes may be implemented as
needed. Each SolutionContent must provide implementations for the three (idem-
potent) merging operations:

• Union: When by modifying the Tuple instances from a child node (i.e. in
an introduction or removal node) after modification two Tuple instances co-
incide, their associated SolutionContent instances are merged using the
calculateUnion method.
• CrossJoin: When in a branch node a Tuple instance of the left child and right

child are joined, their associated SolutionContent instances are merged us-
ing the calculateCrossJoin method.
• AddDifference: When in an introduction node a Tuple instance is modified by

incorporating the introduced vertex, its associated SolutionContent instance
incorporates the same vertex using the calculateAddDifference method.

CHAPTER 4. ALGORITHM 12

All these operations can be triggered by calling the appropriate method of the pro-
vided Instantiator class instance associated with the algorithm. This class han-
dles SolutionContent instantiation and also ensures lazy evaluation of solutions if
needed.

4.5 Skeleton Implementation
Once the Tuple class is derived from and the algorithm-specific Tuple is defined,
one can start implementing the respective node evaluation methods. For a bottom-up
traversal, the implementation usually takes the form of listing 4.2 (here the case of an
introduction node is taken as an example).

Listing 4.2: Generic skeleton for implementing the algorithm methods.
TupleSet *SomeAlgorithm::
evaluateIntroductionNode(const ExtendedHypertree *node)
{
// call this method first to do a bottom-up traversal
TupleSet *base = this->evaluateNode(node->firstChild());

// instantiate the new Tuple set for this node
TupleSet *ts = new TupleSet();

for(TupleSet::iterator it = base->begin();
it != base->end(); ++it)

{
SomeTuple &told = *(SomeTuple *)it->first;

// calculate the new Tuple based on the
// old one and the node type/difference
// NOTE: this is where the actual code goes
SomeTuple &tnew = modify(x, node);

// incorporate the change into the solution
// by calling the appropriate method of the
// Instantiator instance
// NOTE: This is only an example, your code
// may call other Instantiator methods
Solution *snew = this->instantiator->

addDifference(it->second,
node->getDifference());

// try to insert the new Tuple into the set
pair<TupleSet::iterator, bool> result =

ts->insert(TupleSet::value_type(
&tnew, snew));

CHAPTER 4. ALGORITHM 13

// if the very same Tuple is already contained
// in the Tuple set, merge the solutions using
// the Union operation, then insert it instead
// of the old one
if(!result.second)
{

Solution *sold = result.first->second;
ts->erase(result.first);
ts->insert(TupleSet::value_type(&tnew,

this->instantiator->combine
(Union, sold, snew)));

}
}

// free up some memory, old Tuples not needed anymore
delete base;

// return the new Tuple set
return ts;
}

After evaluating the last node (i.e. the root node of the decomposition), the method
selectSolutions is called. This method should simply check all TupleSets and re-
turn the Union (using the Instantiator) of all solutions that belong to valid tuples.

5 Pulling it all together

Now that we have all the principal components to run our algorithm, the only thing that
still lacks is a class that provides the necessary program flow control (i.e. that determines
when to do what and in which order). In order to do this, the framework provides the
Problem class:

5.1 The Problem Class
The Problem class is provided as a base class by the SHARP framework and handles
the earlier mentioned task of flow control. The Problem class also acts as the interface
to the “outside world” such that it provides simple methods to read a problem instance
and generate a solution for it.

For each new problem the framework should handle, the Problem class needs to
be derived from (i.e. one may have an AnswerSetProblem class for answer set pro-
grams and a SatisfiabilityProblem class for the SATISFIABILITY problem).
Each one of these derived classes then may use multiple different parsers (i.e. for dif-
ferent input formats of the same problem) and (in the future, this is not implemented
yet) different hypertree decomposition algorithms (i.e. special optimized versions if the
input is known to be a graph instead of a hypergraph etc.).

In order to implement a Problem class, one needs to implement three methods:

1. The parse method: This method should call the parser (if there is one) and store
the problem in an internal data format, which can be defined as needed (i.e. private
fields in the Problem class, etc.).

2. The preprocess method: This method should perform preprocessing tasks on
the problem stored in the internal data format.

3. The buildHypergraphRepresentationmethod: This method should con-
vert the internal representation of the problem to an instance of the Hypergraph
class, as discussed in section 3.1.

The Problem class must be instantiated by passing as a parameter in the construc-
tor an instance of the AbstractAlgorithm class that should be used to solve the
problem. Once this is done and the methods discussed above are implemented, the

14

CHAPTER 5. PULLING IT ALL TOGETHER 15

Problem class is ready for use and will use the specified algorithm to solve the prob-
lem read by the parse method. This is done by calling the calculateSolution
method of the Problem class. This method handles the program flow. Its (for the sake
of readability simplified) definition is provided in listing 5.1.

Listing 5.1: Definition of the parse method of the Problem class (simplified).
Solution *Problem::calculateSolution(Instantiator *inst)
{

this->parse();
this->preprocess();

Hypergraph *hg =
this->buildHypergraphRepresentation();

H_BucketElim be;
Hypertree *ht =

be.buildHypertree(hg, BE_MIW_ORDER);

ht = new ExtendedHypertree(ht);
((ExtendedHypertree *)ht)->normalize();

this->algorithm->setInstantiator(inst);
return this->algorithm->

evaluate((ExtendedHypertree *)ht);
}

Obviously this method does what is expected in order to run the whole algorithm
from parsing to solution generation. First, the parser is started, then, after preprocessing,
the hypergraph representation is built, which is then decomposed into a hypertree and
subsequently normalized, after which the actual algorithm is run using the provided
Instantiator instance.

As discussed in section 4.4, the Instantiator instance that is used by the al-
gorithm determines which SolutionContent class will get instantiated. Therefore,
by just calling the calculateSolution method of the Problem class with differ-
ent Instantiator instances, one can easily specify what the solution should look
like (i.e. a call with an Instantiator that creates boolean SolutionContent in-
stances, only a yes/no answer is provided, whereas when the Instantiator creates
CountingSolutionContent instances, the solution yields a number–counting for
example the number of answer sets).

Part III

Implementation by Example

16

6 The dynASP Algorithm

The “dynASP” algorithm is a dynamic programming-based algorithm for solving ground
answer-set programs (that is, determine the stable models of such a program). Based
on a tree decomposition of the incidence graph of the program, the algorithm does a
bottom-up traversal of said tree checking whether a solution to the program exists and
if it does, output either just “yes”, or count the number of stable models, or enumerate
the stable models. A first prototype of this implementation was presented at JELIA’10
(see [1]). Generally, answer-set problems are known to be hard (that is, Σ2

P -complete,
see e.g. [6]). However it is known to be FPT and a first FPT-algorithm was published
by Michael Jakl et. al. in [7] in 2009.

As an example, take the following program:
r1 = u← v, y; r2 = z ← u; r3 = v ← w;
r4 = w ← x; r5 = x← ¬y,¬z.

This program has an incidence graph equal to the one in figure 3.1, which means that
the tree decomposition in that figure is also a valid tree decomposition for the program.
The (simplified) implementation of the algorithm is described in the following sections.

6.1 Implementing the Problem Class

Listing 6.1: Definition of the DatalogProblem class (simplified).
typedef Vertex Rule;
typedef Vertex Variable;
typedef VertexSet RuleSet;
typedef VertexSet VariableSet;
typedef std::map<Rule, std::map<Variable, bool> > SignMap;
typedef std::vector<VariableSet> HeadMap;

class DatalogParser;
class DatalogProblem : public Problem
{
public:

DatalogProblem(std::istream *stream);
Rule addNewRule();
Variable addVariable(std::string name);
void addEdge(Rule rule, Variable variable,

17

CHAPTER 6. THE DYNASP ALGORITHM 18

bool positive, bool head);
protected: ... // declaration of parse, preprocess

// and buildHG methods
private:

SignMap signs;
HeadMap heads;
TypeMap types;
DatalogParser *parser;

};

Listing 6.1 shows the (simplified) declaration of the derived Problem class. The
main points are the following:

• Declaration of the internal data structures to store the answer-set problem. The
SignMap stores the rules in SAT representation and the HeadMap stores the
rule heads.
• Declaration of methods called by the parser (addNewRule, addVariable,
addEdge) when the respective event is encountered during parsing. These meth-
ods then store the data in the HeadMap and SignMap.
• Stream that supplies the input is used as parameter of the constructor and a pointer

to the parser instance (DatalogParser) is kept.

The implementation of the various functions is fairly self-explanatory so we omit
details here but only try to make the main points clear. The constructor of the Problem
class above simply initializes the corresponding parser class (i.e. creates an instance of
the DatalogParser) and passes a pointer to itself and the input stream to the parser.

6.2 Implementing the Parser
The parser in this particular program is written with the lex/yacc combination as already
discussed in chapter 2. The parser is written in such a way that it accepts as constructor
arguments the stream that yields the input and a pointer to the Problem class men-
tioned in section 6.1. Whenever the parser encounters a new rule during parsing, the
addRule method of the Problem class is called. Analogously, for each variable the
addVariable method is called and for each occurrence of a variable in a rule the
addEdge method is called, including information whether the variable occurs negated
or in the head of the rule.

6.3 Implementing the Algorithm
Implementing the algorithm is fairly straight-forward given the structure that is already
provided by the framework. Doing a bottom-up traversal of the tree using the method

CHAPTER 6. THE DYNASP ALGORITHM 19

described in section 4.2 and 4.5 immediately results in an easy way to implement the
algorithm in the framework. There are however a few points worth noting when looking
at the declarations in listing 6.2:

Listing 6.2: Definition of the AnswerSetAlgorithm class and corresponding tuple
(simplified).
class AnswerSetTuple : public Tuple
{
public:

set<Variable> variables;
set<Rule> rules;
set<Atom> guards;

};
class AnswerSetAlgorithm : public AbstractAlgorithm
{
public:

AnswerSetAlgorithm(Problem *problem);
protected:

virtual Solution *selectSolution
(TupleSet *tuples, const ExtendedHypertree *node);

virtual TupleSet *evaluateLeafNode
(const ExtendedHypertree *node);

... // declaration of all other evaluation methods
private:

DatalogProblem *problem;
};

• In the constructor a pointer to the Problem instance is taken. This is usually
needed, as all the information about the problem (i.e. in this case HeadMap,
SignMap) is stored in the Problem instance.
• For the sake of clarity, equality and less-than operators have been omitted in the
Tuple declaration. These operators are however needed in order to store Tuple
instances efficiently in sets.
• In the evaluateLeafNode method, the Solution instances are created us-

ing the Instantiator’s createLeafSolutions method for every parti-
tion of the variables in the node.

6.4 Implementing the Instantiator
No separate implementation for the Instantiator class is needed, as the frame-
work already provides a GenericInstantiator class which can be used for all
SolutionContent-derived classes, as long as they implement the same constructors
as the prototype. Also, default-implementations for enumerating solutions, counting

CHAPTER 6. THE DYNASP ALGORITHM 20

solutions and boolean solutions are provided by the framework. The Instantiator
instance can thus simply be obtained by using the code in listing 6.3.

Listing 6.3: Using the generic Instantiator class.
Instantiator *inst =

new GenericInstantiator<EnumerationSolution>(true);
// or...
inst =

new GenericInstantiator<CountingSolution>(false);

The parameter passed to the GenericInstantiator constructor is a boolean
determining whether to enable lazy evaluation or not. Enable this (i.e. call with “true”)
when exponential blowup is otherwise to be expected. For example when enumerating
stable models, at each step in the tree enumerating all partial solutions would be infea-
sible. Therefore in this case we enable lazy evaluation so that only the partial solutions
that actually contribute to the full solution are enumerated. On the other hand when
counting is the objective, we may (almost) safely disable lazy evaluation as in each step
only a number needs to be updated.

Part IV

Appendices

21

A Class List

• Problem-the class providing flow control and acting as the interface to the “out-
side world”

• AbstractAlgorithm-the algorithm skeleton for hypertree-based algorithms

• Tuple-skeleton class, represents the data the algorithm needs to represent one
possible world in a hypertree node

• SolutionContent-skeleton class, represents the solution data associated with
one possible world (i.e. Tuple)

• Solution-framework helper class that provides lazy solution evaluation support

• Instantiator-framework class for instantiating the Solution class and the
SolutionContent classes

• GenericInstantiator–framework class that provides a generic instantiator
supporting lazy evaluation and supports all derived SolutionContent classes
that implement the skeleton constructors of the SolutionContent class

• EnumerationSolutionContent–SolutionContent class that stores sets
of sets of vertices (i.e. multiple (partial) solutions per Tuplemay be possible here
as one solution is represented by a set of vertices)

• ConsistencySolutionContent–SolutionContent class that stores a
simple boolean value representing the answers “yes” or “no”

• CountingSolutionContent–SolutionContent class that stores an ar-
bitrarily large number for counting purposes

• Hypertree-represents a hypertree

• ExtendedHypertree-represents a hypertree with extended functionality (i.e.
vertex-aware, normalization capabilities, etc.) for easier use in the algorithm

• Hypergraph-represents a hypergraph

22

APPENDIX A. CLASS LIST 23

• Hyperedge-represents a hyperedge in a hypergraph

• Node-represents a vertex in a hypergraph

Bibliography

[1] M. Morak, R. Pichler, S. Rümmele, S. Woltran. A Dynamic-Programming Based ASP-
Solver. In Proc. JELIA’10, volume 6341 of LNCS, pages 369–372. Springer, 2010.

[2] B. Courcelle. Graph rewriting: An algebraic and logic approach. In Handbook of Theoret-
ical Computer Science, Volume B, pages 193–242. Elsevier Science Publishers, 1990.

[3] M. Denecker, J. Vennekens, S. Bond, M. Gebser, and M. Truszczynski. The second answer
set programming competition. In Proc. LPNMR’09, volume 5753 of LNCS, pages 637–
654. Springer, 2009.

[4] A. Dermaku, T. Ganzow, G. Gottlob, B. J. McMahan, N. Musliu, and M. Samer. Heuristic
methods for hypertree decomposition. In Proc. MICAI’08, volume 5317 of LNCS, pages
1–11. Springer, 2008.

[5] W. Dvořák, R. Pichler, and S. Woltran. Towards fixed-parameter tractable algorithms for
argumentation. In Proc. KR’10, pages 112–122. AAAI Press, 2010.

[6] T. Eiter and G. Gottlob. On the computational cost of disjunctive logic programming:
Propositional case. Annals of Mathematics and Artificial Intelligence, 15(3/4):289–323,
1995.

[7] M. Jakl, R. Pichler, and S. Woltran. Answer-set programming with bounded treewidth. In
Proc. IJCAI’09, pages 816–822. AAAI Press, 2009.

[8] R. Pichler, S. Rümmele, and S. Woltran. Belief revision with bounded treewidth. In Proc.
LPNMR’09, volume 5753 of LNCS, pages 250–263. Springer, 2009.

[9] R. Pichler, S. Rümmele, and S. Woltran. Multicut algorithms via tree decompositions. In
Proc. CIAC’10, volume 6078 of LNCS, pages 167–179. Springer, 2010.

[10] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Math-
emathics and its Applications, volume 31. Oxford University Press, 2006.

24

	Contents
	Introduction
	Motivation
	Parameterized Complexity Theory
	Generalized Approach

	Framework Description
	Parsing
	Responsibilities of the Parser
	Provided Parameters

	Hypertree Decomposition
	Hypergraph Representation
	Decomposition
	Normalization

	Algorithm
	Walking the Tree
	The Algorithm Class
	Tuples and Possible Worlds
	Solution and SolutionContent classes
	Skeleton Implementation

	Pulling it all together
	The Problem Class

	Implementation by Example
	The dynASP Algorithm
	Implementing the Problem Class
	Implementing the Parser
	Implementing the Algorithm
	Implementing the Instantiator

	Appendices
	Class List
	Bibliography

