
Tractable Answer-Set Programming with Weight

Constraints: Bounded Treewidth is not Enough ∗

REINHARD PICHLER†, STEFAN RÜMMELE†, STEFAN SZEIDER‡,

STEFAN WOLTRAN§

Vienna University of Technology, Austria
{pichler, ruemmele, woltran}@dbai.tuwien.ac.at, stefan@szeider.net

Abstract

Cardinality constraints or, more generally, weight constraints are well
recognized as an important extension of answer-set programming. Clearly,
all common algorithmic tasks related to programs with cardinality or
weight constraints – like checking the consistency of a program – are in-
tractable. Many intractable problems in the area of knowledge representa-
tion and reasoning have been shown to become linear time tractable if the
treewidth of the programs or formulas under consideration is bounded
by some constant. The goal of this paper is to apply the notion of
treewidth to programs with cardinality or weight constraints and to iden-
tify tractable fragments. It will turn out that the straightforward appli-
cation of treewidth to such class of programs does not suffice to obtain
tractability. However, by imposing further restrictions, tractability can
be achieved.

1 Introduction

Answer-set programming (ASP) has evolved as a paradigm that allows for very
elegant solutions to many combinatorial problems [14]. The basic idea is to
describe a problem by a logic program in such a way that the stable models cor-
respond to the solutions of the considered problem. By extending logic programs

∗This is a pre-print of an article published in Theory and Practice of Logic Programming:
14(2), 2014, pp. 141-164 by the authors. This version is free to view and download for per-
sonal use only. Not for re-distribution, re-sale or use in derivative works. The final version is
available at https://doi.org/10.1017/S1471068412000099. A preliminary version appeared
in the Proceedings of the Twelfth International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR 2010).
†Supported by the Austrian Science Fund (FWF): P20704-N18.
‡Supported by the European Research Council (ERC), project 239962.
§Supported by Vienna University of Technology special fund “Innovative Projekte

9006.09/008”.

1

https://doi.org/10.1017/S1471068412000099

with cardinality or, more generally, weight constraints, an even larger class of
problems is accessible to this method [16]. For instance, in the product config-
uration domain, we need to express cardinality, cost, and resource constraints,
which are very difficult to capture using logic programs without weights.

In this paper, we restrict ourselves to normal logic programs with cardi-
nality constraints (PCCs, for short) or weight constraints (PWCs, for short).
Clearly, all common algorithmic tasks related to PCCs and PWCs – like check-
ing the consistency of a program – are intractable, since intractability even holds
without such constraints. An interesting approach to dealing with intractable
problems comes from parameterized complexity theory and is based on the fol-
lowing observation: Many hard problems become tractable if some parameter
that represents a structural aspect of the problem instance is small. One impor-
tant parameter is treewidth, which measures the “tree-likeness” of a graph or,
more generally, of a structure. In the area of knowledge representation and rea-
soning (KR & R), many tractability results for instances of bounded treewidth
have been recently proven [8]. The goal of this work is to obtain tractability
results via bounded treewidth also for PCCs and PWCs. Hereby, the treewidth
of a PCC or PWC is defined in terms of its incidence graph (see Section 2). It
will turn out that the straightforward application of treewidth to PWCs does
not suffice to obtain tractability. However, by imposing further restrictions,
tractability can be achieved.

Main results of the paper.

• We show that the consistency problem of PWCs remains NP-complete
even if the treewidth of the considered programs is bounded by a constant
(actually, even if this constant is 1). Hence, we have to search for further
restrictions on the PWCs to ensure tractability.

• We thus consider the largest integer occurring in (lower or upper) bounds
of the constraints in the PWC, and call this parameter constraint-width. If also
the constraint-width is bounded by an arbitrary but fixed constant, then the
consistency problem of PWCs becomes linear time tractable (the bound on the
running time entails a constant factor that is exponential in constraint-width
and treewidth).

• For PCCs (i.e., PWCs where all weights are equal to 1) we obtain non-
uniform polynomial time tractability by designing a new dynamic programming
algorithm. Let w denote the treewidth of a PCC Π and let n denote the size
of Π. Then our algorithm works in time O(f(w) · n2w) for some function f
that only depends on the treewidth, but not on the size n of the program.
The term “non-uniform” refers to the factor n2w in the time bound, where the
size n of the program is raised to the power of an expression that depends
on the treewidth w. We shall also discuss further extensions of this dynamic
programming algorithm for PCCs. For example, it can be used to solve in non-
uniform polynomial time the consistency problem of PWCs if the weights are
given in unary representation.

2

• Of course, an algorithm for the PCC consistency problem that operates in
time O(f(w) · nO(1)) would be preferable, i.e., the parameter w does not occur
in the exponent of the program size n. A problem with such an algorithm is
called fixed-parameter tractable. Alas, we show that under common complexity
theoretical assumptions no such algorithm exists. Technically, we prove that the
consistency problem of PCCs parameterized by treewidth is hard for the param-
eterized complexity class W [1]. In other words, a non-uniform polynomial-time
running time of our dynamic programming algorithm is the best that one can
expect.

Structure of the paper. After recalling the necessary background in Sec-
tion 2, we prove in Section 3 the NP-completeness of the consistency problem
of PWCs in case of binary representation of the weights. In Section 4, we
show the linear fixed-parameter tractability of the problem if we consider the
treewidth plus the size of the bounds as parameter. In Section 5, the non-
uniform polynomial-time upper bound for the consistency problem of PCCs is
established by presenting a dynamic programming algorithm. Section 6 con-
tains the extensions of the dynamic programming algorithm. By giving a W [1]-
hardness proof in case of unary representation in Section 7, we show that it
is unlikely that this result can be significantly improved. Section 8 contains a
discussion and a conclusion is given in Section 9.

2 Background

Weight constraint programs. A program with weight constraints (PWC) is
a triple Π = (A, C,R), where A is a set of atoms, C is a set of weight constraints
(or constraints for short), and R is a set of rules. Each constraint c ∈ C is a
triple (S, l, u) where S is a set of weight literals over A representing a clause and
l ≤ u are nonnegative integers, the lower and upper bound. A weight literal
over A is a pair (a, j) or (¬a, j) for a ∈ A and 1 ≤ j ≤ u + 1, the weight of
the literal. Unless stated otherwise, we assume that the bounds and weights
are given in binary representation. For a constraint c = (S, l, u) ∈ C, we write
Cl(c) := S, l(c) := l, and u(c) := u. Moreover, we use a ∈ Cl(c) and ¬a ∈ Cl(c)
as an abbreviation for (a, j) ∈ Cl(c) respectively (¬a, j) ∈ Cl(c) for an arbitrary
j. A rule r ∈ R is a pair (h, b) where h ∈ C is the head and b ⊆ C is the body.
We write H(r) := h and B(r) := b. We denote by ‖Π‖ the size of a reasonable
encoding of program Π and call it the size of Π. Unless otherwise stated, weights
are assumed to be encoded in binary notation. For instance taking ‖Π‖ =
|A|+

∑
(S,l,u)∈C(1+log l+log u+

∑
(lit,j)∈S(1+log j))+

∑
(h,b)∈R(1+ |b|) would

do. Given a constraint c ∈ C and an interpretation I ⊆ A over atoms A, we
denote the weight of c in I by

W (c, I) =
∑

(a,j)∈Cl(c)
a∈I

j +
∑

(¬a,j)∈Cl(c)
a6∈I

j .

3

I is a model of c, denoted by I |= c, if l(c) ≤ W (c, I) ≤ u(c). For a set C ⊆ C,
I |= C if I |= c for all c ∈ C. Moreover, C is a model of a rule r ∈ R, denoted
by C |= r, if H(r) ∈ C or B(r) 6⊆ C. I is a model of program Π (denoted by
I |= Π) if {c ∈ C : I |= c} |= r for all r ∈ R. If the lower bound of a constraint
c ∈ C is missing, we assume l(c) = 0. If the upper bound is missing, I |= c if
l(c) ≤ W (c, I). A program with cardinality constraints (PCC) can be seen as a
special case of a PWC, where each literal has weight 1.

Stable model semantics. Given a PWC Π = (A, C,R) and an interpretation
I ⊆ A. Following [16], the reduct cI of a constraint c ∈ C w.r.t. I is obtained
by removing all negative literals and the upper bound from c, and replacing the
lower bound by

l′ = max(0, l(c)−
∑

(¬a,j)∈Cl(c)
a6∈I

j).

The reduct ΠI of program Π w.r.t. I can be obtained by first removing each rule
r ∈ R which contains a constraint c ∈ B(r) with W (c, I) > u(c). Afterwards,
each remaining rule r is replaced by the set of rules1 (h, b), where h ∈ I ∩
Cl(H(r)) and b = {cI : c ∈ B(r)}, i.e., the head of the new rules is an atom
instead of a constraint. Interpretation I is called a stable model (or answer set)
of Π if I is a model of Π and there exists no J ⊂ I such that J is a model of ΠI .
The set of all answer sets of Π is denoted by AS(Π). The consistency problem
for PWCs is to decide whether AS(Π) 6= ∅.

Tree decompositions and treewidth. A tree decomposition of a graph G =
(V,E) is a pair T = (T, χ), where T is a tree and χ maps each node n of T (we
use n ∈ T as a shorthand below) to a bag χ(n) ⊆ V such that

(1) for each v ∈ V , there is an n ∈ T with v ∈ χ(n);

(2) for each (v, w) ∈ E, there is an n ∈ T with v, w ∈ χ(n);

(3) for each n1, n2, n3 ∈ T such that n2 lies on the path from n1 to n3,
χ(n1) ∩ χ(n3) ⊆ χ(n2) holds.

A tree decomposition (T, χ) is called normalized (or nice) [11], if T is a
rooted tree and the following conditions hold: (1) each n ∈ T has ≤ 2 children;
(2) for each n ∈ T with two children n1, n2, χ(n) = χ(n1) = χ(n2); and (3) for
each n ∈ T with one child n′, χ(n) and χ(n′) differ in exactly one element.

The width of a tree decomposition is defined as the cardinality of its largest
bag χ(n) minus one. It is known that every tree decomposition can be normal-
ized in linear time without increasing the width [11]. The treewidth of a graph
G, denoted as tw(G), is the minimum width over all tree decompositions of G.
For arbitrary but fixed w ≥ 1, it is feasible in linear time to decide whether a

1With some abuse of notation, we sometimes write for an atom h, (h, b) as a shorthand for
the rule (({(h, 1)}, 1, 1), b).

4

graph has treewidth ≤ w and, if so, to compute a tree decomposition of width
w, see [1].

Treewidth and constraint-width of PWCs. To build tree decompositions
for programs, we use incidence graphs. For a PWC Π = (A, C,R), such a graph
has vertex set A∪C∪R. There is an edge between a ∈ A and c ∈ C if a ∈ Cl(c) or
¬a ∈ Cl(c), and there is an edge between c ∈ C and r ∈ R if c ∈ {H(r)}∪B(r).
The treewidth of Π, denoted by tw(Π), is the treewidth of its incidence graph.
The constraint-width of Π, denoted by cw(Π), is the largest (lower or upper)
bound occurring in the constraints of C (or 0 if there are no bounds).

Example 1 Consider the following system configuration problem, where one
has to choose among the given parts: p1 : 4000$, p2 : 2000$, and p3 : 1000$ such
that the total cost is ≤ 5000$. Thereby one of {p1, p2} has to be selected and p3

requires p2.
This scenario can be represented by the PWC

ΠEx = ({p1, p2, p3}, {c1, c2, c3, c4}, {r1, r2, r3})

with

c1 = ({(p1, 4), (p2, 2), (p3, 1)}, 0, 5) r1 = (c1, ∅)
c2 = ({(p1, 1), (p2, 1)}, 1, 2) r2 = (c2, ∅)
c3 = ({(p2, 1)}, 1, 1) r3 = (c3, {c4})
c4 = ({(p3, 1)}, 1, 1)

The incidence graph GEx of ΠEx as well as a normalized tree decomposition
TEx for ΠEx of width 2 are depicted in Figure 1.

3 NP-Completeness

Theorem 2 The consistency problem for PWCs is NP-complete already for
programs having treewidth 1.

Proof: Clearly the problem is in NP. To show NP-hardness we reduce from
the well-known NP-complete problem Partition. An instance of Partition is
a collection of positive integers X = {x1, . . . , xn} (encoded in binary); the ques-
tion is whether there exists a set I ⊆ {1, . . . , n} such that

∑
i∈I xi =

∑
i/∈I xi.

Given an instance X = {x1, . . . , xn}, we construct a PWC Π = (A, C,R) as
follows. Let S =

∑n
i=1 xi; we may assume that S is even since otherwise X

is a no-instance and can immediately be rejected. We put A = {a1, . . . , an},
C = {c} where c = ({(a1, x1), . . . , (an, xn)}, S/2, S/2), and R = {(c, ∅)}.

Claim 1: Π has treewidth 1. By construction the incidence graph of Π is a
tree, hence of treewidth 1.

5

c1

c2

c3

c4

p1

p2

p3

r1

r2

r3

GEx:
p2, c1, c3TEx:

p2, c1, c3

c1, c3

p3, c1, c3

p3, c3

p3, c3, c4

c3, c4

c3, c4, r3

p2, c1, c3

p2, c1

p2, c1, c2

c1, c2

c1, c2

p1, c1, c2

c1, c2

c1, c2

c1, c2, r1

c1, c2

c1, c2, r2

Figure 1: Incidence graph GEx and tree decomposition TEx of Example 1.

Claim 2: X is a yes-instance of Partition if and only if Π has a model.
This claim follows easily from the definitions.

Claim 3: All models of Π are stable. Let M be a model of Π. Since each
atom appears positively in a constraint at the head of a rule, and since all the
rules have an empty body, it follows that the reduct ΠM is the conjunction of all
the elements of M . Hence M is stable since no proper subset of M can satisfy
ΠM . We conclude that X is a yes-instance of Partition if and only if Π is
consistent.

It is evident that Π can be constructed from X in polynomial time. Hence,
by Claims 1–3 we have a polynomial-time reduction from Partition to the
consistency problem of PWCs of treewidth 1, and the theorem follows. �

Note that Partition is “weakly NP-hard” since its NP-hardness depends on
the binary encoding of the given integers. Accordingly, our reduction provides
only weak NP-hardness for the consistency of PWCs of bounded treewidth. In
fact, we shall prove in Section 6 that if we assume the weights to be given in
unary the consistency problem is feasible in (non-uniform) polynomial time for
PWCs of bounded treewidth.

4 Linear-Time Tractability

Theorem 3 The consistency problem for PWCs can be solved in linear time
for instances whose treewidth and constraint-width are bounded by constants.

To prove this result we shall take a logic approach and use Courcelle’s The-
orem [4], see also [6, 7]. To this aim we consider Monadic Second Order (MSO)
logic on labeled graphs in terms of their incidence structure whose universe con-
tains vertices and edges. We assume an infinite supply of individual variables
x, x1, x2, . . . and set variables X,X1, X2, . . . The atomic formulas are E(x) (“x

6

is an edge”), V (x) (“x is a vertex”), I(x, y) (“vertex x is incident with edge y”),
x = y (equality), and X(y) (“element y belongs to set X”). Further we assume
that a vertex or edge x can be labeled with an element a of some fixed finite
set, denoted by the atomic formula Pa(x). MSO formulas are built up from
atomic formulas using the usual Boolean connectives (¬,∧,∨), quantification
over individual variables (∀x, ∃x), and quantification over set variables (∀X,
∃X).

We write G |= ϕ to indicate that an MSO formula ϕ is true for the labeled
graph G. Courcelle’s Theorem states that G |= ϕ can be checked in linear time
for labeled graphs if a tree decomposition of constant width is provided as an
input. The latter is no restriction for proving Theorem 3, since by Bodlaender’s
Theorem [1], we can compute in linear time a tree decomposition of smallest
width for graphs whose treewidth is bounded by a constant.

Let k be a constant and consider a PWC Π = (A, C,R) of constraint-width
k. We encode all the information of Π by adding edge and vertex labels to
the incidence graph of Π. We use the edge labels +,− to indicate polarity of
literals and the labels h, b to distinguish between head and body of rules. That
is, an edge {a, c} for a ∈ A and c ∈ C has label + if a ∈ Cl(c), and label − if
¬a ∈ Cl(c); an edge {c, r} for c ∈ C and r ∈ R has label h if c = H(r) and
label b if c ∈ B(r). We use edge labels 1, . . . , k + 1 to encode weights of literals
(literals of weight 0 can be omitted, weights exceeding k + 1 can be replaced
by k + 1). That is, an edge {a, c} for a ∈ A and c ∈ C has label j if the
constraint c contains the weight literal (a, j) or (¬a, j). We use vertex labels
low[i] for i ∈ {0 . . . , k} and up[j] for j ∈ {0 . . . , k,∞} to encode the bounds
of constraints (we use low[0] and up[∞] in case the lower or upper bound is
missing, respectively). Finally we use vertex labels A, C,R to indicate whether
a vertex represents an atom, a clause or a rule, respectively.

Let G denote the incidence graph of the PWC Π with added labels as de-
scribed above. In the following we will explain how to construct an MSO formula
ϕ such that G |= ϕ if and only if Π has a stable model. For convenience we will
slightly abuse notation and use meta-language terms as shorthands for their ob-
vious definitions in the MSO language; for example we will write X ⊆ Y instead
of ∀x(X(x)→ Y (x)), and a ∈ A instead of V (a) ∧ PA(a).

Let X and Y be set variables and c an individual variable. For each integer
s ∈ {0, . . . , k + 1} we define an MSO formula Sums(X,Y, c) that is true for G
if and only if X and Y are interpreted as sets of atoms, c is interpreted as a
constraint, and we have

s =
∑

(a,j)∈Cl(c)
a∈X

j +
∑

(¬a,j)∈Cl(c)
a/∈Y

j.

We use the fact that it is always sufficient to choose at most k+1 literals from c
(say r positive and r′ negative literals) to witness that the above equality holds.

Sums(X,Y, c) ≡
X,Y ⊆ A ∧ c ∈ C (1)

7

∧
∨

1≤r+r′≤k, 1≤n1,...,nr+r′≤k+1, s=n1+···+nr+r′
∃e1, . . . , er+r′ (2)[∧r+r′

i=1 (Pni
(ei) ∧ I(c, ei) ∧ ∃a ∈ A, I(a, ei)) (3)

∧
∧

1≤i<i′≤r+r′ ei 6= ei′ (4)

∧∀e ∈ E (¬I(c, e) ∨ ∀a ∈ A,¬I(a, e) ∨
∨r+r′
i=1 e = ei) (5)

∧
∧r
i=1(P+(ei) ∧ ∃a ∈ X, I(a, ei)) (6)

∧
∧r′
i=r+1(P−(ei) ∧ ¬∃a ∈ Y, I(a, ei))

]
(7)

Some further explanation: Each of the r + r′ literals is represented by an edge
ei of weight ni. The disjunction in line (2) runs over all possible combinations
of weights n1, . . . , nr+r′ that give the sum s. Line (3) makes sure that each
edge ei has weight ni and runs between constraint c and some atom. Lines (4)
and (5) make sure that the edges are mutually different and that no other
edge runs between constraint c and an atom. Lines (6) and (7) make sure
that e1, . . . , er represent positive literals over atoms that belong to X, and
er+1, . . . , er+r′ represent negative literals over atoms that do not belong to Y .

The following formula is true if and only if X satisfies c.

Sat(X, c) ≡ SatL(X,X, c) ∧ SatU(X,X, c), where

SatL(X,Y, c) ≡ Plow[0] ∨
∨

i∈{1,...,k}

(Plow[i](c) ∧
∨

i≤s≤k+1

Sums(X,Y, c)), and

SatU(X,Y, c) ≡ Pup[∞] ∨
∨

j∈{0,...,k}

(Pup[j](c) ∧
∨

0≤s≤j

Sums(X,Y, c)).

The next formula is true if and only if Y is a model of Π.

Mod(Y) ≡ ∀r ∈ R ∃c ∈ C
[
(H(c, r) ∧ Sat(Y, c)) ∨ (B(c, r) ∧ ¬Sat(Y, c))

]
, where

H(c, r) ≡ ∃e ∈ E (I(c, e) ∧ I(r, e) ∧ Ph(e)), and

B(c, r) ≡ ∃e ∈ E (I(c, e) ∧ I(r, e) ∧ Pb(e)).

Finally, the formula SMod(Y) is true if and only if Y is a stable model of Π. We
make use of the formula Red(X,Y) that states that X satisfies the reduct ΠY .

SMod(Y) ≡ Mod(Y) ∧ ∀X ⊆ Y (X = Y ∨ ¬Red(X,Y)), where

Red(X,Y) ≡ ∀r ∈ R ∀a ∈ A [a ∈ X ∨ a /∈ Y ∨ ¬InH(a, r)

∨ ∃c (B(c, r) ∧ (¬SatU(Y, Y, c) ∨ ¬SatL(X,Y, c)))], and

InH(a, r) ≡ ∃c ∈ C ∃e, e′ ∈ E [I(a, e) ∧ I(c, e) ∧ P+(e)

∧ I(r, e′) ∧ I(c, e′) ∧ Ph(e′)],

that is, a is an atom that occurs as a positive literal in the constraint at the
head of rule r.

We summarize the correctness of the construction in the following lemma.

Lemma 4 Let ϕ = ∃Y SMod(Y). Then Π has a stable model if and only if
G |= ϕ.

Since the labeled graph G can be constructed in linear time, Theorem 3 now
follows directly by Courcelle’s Theorem.

8

5 Dynamic Programming Approach

Recently, [9] presented a dynamic programming algorithm for answer-set pro-
gramming that works for programs without cardinality or weight constraints,
but possibly with disjunction in the head of the rules. One way to obtain a
dynamic programming algorithm for PCCs is to try to extend that algorithm
of Jakl et al. by methods to handle the cardinality constraints. In principle,
this should be feasible. However, computationally, this approach has a seri-
ous drawback, namely: the aforementioned algorithm is tractable for bounded
treewidth, but it is double exponential w.r.t. the treewidth (basically this is due
to the handling of disjunctions). Our goal here is to present an algorithm that
is only single exponential w.r.t. the treewidth. In order to achieve this goal,
we have to manipulate a slightly more complicated data structure along the
bottom-up traversal of the tree decomposition. In particular, we have to deal
with orderings on the atoms in a model.

To this end, we need an alternative characterization of stable models. Slightly
rephrasing a result by [13] we can characterize answer sets of PCCs as follows:

Proposition 5 Given a PCC Π = (A, C,R), M ⊆ A is an answer set (stable
model) of Π if and only if the following conditions are jointly satisfied:

• M is a model of Π, i.e., M |= Π,

• there exists a strict linear order < over M , such that for each atom a ∈M ,
there exists a rule r ∈ R with
(R1) a ∈ Cl(H(r)),
(R2) M |= B(r),
(R3) for each c ∈ B(r), l(c) ≤ |{b ∈ Cl(c) : b < a} ∪ {¬b ∈ Cl(c) : b ∈ A \M}|.

Since the handling of linear orders is crucial for utilizing the above char-
acterization, we will fix some notation first. We denote by [x1, x2, . . . , xn] a
(strict) linear order x1 < x2 < . . . < xn on a set X = {x1, . . . , xn}. More-
over, [[X]] denotes the set of all possible linear orders over X. Two linear orders
[x1, . . . , xn] and [y1, . . . , ym] are called inconsistent, if there are xi, xj , yk, yl such
that xi < xj , yk < yl, xi = yl and xj = yk. Otherwise, we call them consistent.
Given two consistent linear orders [x1, . . . , xn] ∈ [[X]] and [y1, . . . , ym] ∈ [[Y]], we
denote by [x1, . . . , xn]+[y1, . . . , ym] = S the set of their possible combinations. S
contains those linear orders [z1, . . . , zp] ∈ [[X∪Y]] such that for every pair xi < xj
(respectively yi < yj), there exists zk < zl with zk = xi and zl = xj (respectively
zk = yi and zl = yj). Note that in general, there exists more than one possible
combination. Furthermore, we denote by [x1, . . . , xi−1, xi, xi+1, . . . , xn] − [xi]
the linear order [x1, . . . , xi−1, xi+1, . . . , xn].

Throughout the whole section, let T = (T, χ) be a normalized tree decompo-
sition of a PCC Π = (A, C,R). We present a dynamic programming algorithm,
traversing T in bottom-up direction in order to compute whether Π admits an
answer set. Ultimately, we will state properties about subtrees of T and in-
ductively add more and more nodes, until we get a statement about the whole

9

tree. To this end, the following notions become handy. Given a node n ∈ T , we
denote by Tn the subtree of T rooted at n. For a set S ⊆ A ∪ C ∪ R, n|S is a
shorthand for χ(n) ∩ S. Moreover, n↓S :=

⋃
m∈Tn

m|S and n⇓S := n↓S \ n|S .
Since the scope of a solution will always be limited to a subtree of the whole
tree decomposition, the notion of a model has to be refined with respect to a
universe U = n↓A. To this end, the cardinality of a constraint c ∈ C with respect
to an interpretation I ⊆ U is given by

Γ(c, I, U) = |{b ∈ Cl(c) : b ∈ I}|+ |{¬b ∈ Cl(c) : b ∈ U \ I}| .

Then I is a model of c under universe U (denoted by I |=U c) if l(c) ≤
Γ(c, I, U) ≤ u(c). Note that |=U and |= coincide for U = A. Similarly, for
a subset of constraints C′ ⊆ C, set C ⊆ C′ is a model of a rule r ∈ R under
restriction C′, denoted by C |=C′ r, if H(r) ∈ C or B(r) ∩ C′ 6⊆ C.

In order to facilitate the discussion below, we define the following sum for
constraint c ∈ C, interpretation I ⊆ U over a set of atoms U ⊆ A and linear
order L< containing at least I ∪ {c}:

Γ<(c, I, U, L<) = |{b ∈ Cl(c) : b ∈ I ∧ b < c}|+
|{¬b ∈ Cl(c) : b ∈ U \ I}| .

The following definition helps us to find partial answer sets, limited to the
scope of a subtree of T .

Definition 6 A partial solution (for node n ∈ T) is a tuple ϑ̂ = (n, M̂, Ĉ, R̂, L̂<, γ̂, γ̂<, ∆̂),
with interpretation M̂ ⊆ n↓A, satisfied constraints Ĉ ⊆ n↓C, satisfied rules
R̂ ⊆ n↓R, linear order L̂< ∈ [[M̂ ∪ Ĉ ∪ n↓R]], cardinality functions γ̂ : n↓C → N
and γ̂< : Ĉ → N, and derivation witness ∆̂ = (δ̂R, δ̂M , δ̂h, δ̂b, σ̂) with derivation

rules δ̂R ⊆ n↓R, derived atoms δ̂M ⊆ M̂ , derivation head constraints δ̂h ⊆ Ĉ,
derivation body constraints δ̂b ⊆ Ĉ, and check function σ̂ : δ̂h → {0, 1} such that
the following conditions are jointly satisfied:

1. Ĉ ∩ n⇓C = {c ∈ n⇓C : M̂ |=n↓A c}

2. R̂ = {r ∈ n↓R : Ĉ |=n↓C r} and n⇓R ⊆ R̂

3. γ̂(c) = Γ(c, M̂ , n↓A) for all c ∈ n↓C

4. γ̂<(c) = Γ<(c, M̂ , n↓A, L̂<) for all c ∈ Ĉ

5. δ̂M = {a ∈ M̂ : c ∈ δ̂h, a ∈ Cl(c), a > c} and M̂ ∩ n⇓A ⊆ δ̂M

6. δ̂b =
⋃
r∈δ̂R B(r) and δ̂b ⊆ Ĉ

7. c ∈ B(r)⇒ r > c for all c ∈ δ̂b and r ∈ δ̂R

8. l(c) ≤ γ̂<(c) for all c ∈ δ̂b ∩ n⇓C

9. σ̂(c) = 1⇔ ∃r ∈ δ̂R with H(r) = c and c > r

10

10. σ̂(c) = 1 for all c ∈ δ̂h ∩ n⇓C

The idea of this data structure is that, for some atom, clause, or rule that
is no longer “visible” in the current bag but was included in the subtree, the
containment in one of the sets of ϑ̂ is strictly what one would expect from an
answer set, while for elements that are still visible this containment does not
have to fulfill that many conditions and can be seen as some sort of “guess”. For
example, Ĉ ∩ n⇓C , the set of constraints in Ĉ that are no longer visible, indeed
contains exactly the constraints that are satisfied under interpretation M̂ , i.e.,
{c ∈ n⇓C : M̂ |=n↓A c}, while Ĉ ∩ n|C represents the guess of those constraints,
we still want to become true when we further traverse the tree towards the
root node. M̂, Ĉ, R̂, and γ̂ are used to ensure that the answer set is a model
of our program. L̂< is the strict linear order, whose existence is demanded in
the definition of answer sets. γ̂< will be used to check condition (R3) of stable
models, i.e., it will contain the cardinality on the left side of the equation in
(R3). The derivation of atoms a ∈ M̂ is represented by ∆̂. The definition of
answer sets requires for each a ∈ M̂ the existence of some rule r ∈ R satisfying
(R1)-(R3). The set of those rules will be represented by δ̂R. Sets δ̂h and δ̂b
contain the head, and respectively, body constraints of the rules in δ̂R. The
set δ̂M contains those atoms, for which we already found a head constraint to
derive it. σ̂ is a utility function, which ensures that each (guessed) constraint

in δ̂h is indeed the head of some rule in δ̂R. Thereby σ̂(c) = 1 marks that such
a rule was found.

Note that, w.l.o.g., we may assume that the root node of a normalized tree
decomposition has an empty bag. Indeed, this can always be achieved by in-
troducing at most tw(Π) + 1 additional nodes above the root of a given tree
decomposition. Then the following proposition shows the correspondence be-
tween answer sets and partial solutions for the root node of a given normalized
tree decomposition.

Proposition 7 Let nroot be the root node of T and let χ(nroot) = ∅. Then

AS(Π) 6= ∅ if and only if there exists a partial solution ϑ̂ = (nroot, M̂ , Ĉ, R̂, L̂<, γ̂, γ̂<, ∆̂)
for nroot.

Proof: (⇒) Given an answer setM ∈ AS(Π), we construct a partial solution ϑ̂

for nroot with derivation witness ∆̂ = (δ̂R, δ̂M , δ̂h, δ̂b, σ̂) as follows. Let M̂ := M ,
let Ĉ := {c ∈ C : M |= c} and let R̂ := R. Let L< := [a1, . . . , a|M |] ∈ [[M]]
be the linear order from Proposition 5 and let f : M → R be the function
that assigns each atom a ∈ M the rule r ∈ R that satisfies conditions (R1)–

(R3) of Proposition 5 for a. Furthermore, let δ̂R := {f(a) : a ∈ M}. In

order to create L̂<, we modify L< as follows. For every r ∈ δ̂R let ar be the
smallest atom in L< such that f(ar) = r. Atom ar is then replaced in L< by
the sequence c1, . . . , cj , r, cj+1, ar, where {c1, . . . , cj} = B(r) and cj+1 = H(r).

Note that by construction {c1, . . . , cj+1} ⊆ Ĉ. The remaining clauses from

Ĉ as well as the rules R \ R are arbitrarily appended at the end of L̂<. For

11

every constraint c ∈ C we set γ̂(c) := Γ(c,M,A). For every constraint c ∈ Ĉ
we set γ̂<(c) := Γ<(c,M,A, L̂<). Let δ̂M := M , let δ̂h := {H(r) : r ∈ δ̂R},
and let δ̂b :=

⋃
r∈δ̂R B(r). Finally, let σ̂(c) := 1 for all c ∈ δ̂h. We show now

that ϑ̂ is indeed a partial solution by checking conditions 1–10 of Definition 6.
Conditions 1–4, 6–7, and 9–10 are satisfied by construction. For each a ∈ M
let ca := H(f(a)). Then ca ∈ δ̂h, a ∈ Cl(ca), and ca < a. Therefore, δ̂M =

{a ∈ M̂ : c ∈ δ̂h, a ∈ Cl(c), a > c} which satisfies condition 5. Condition 8

is satisfied because of (R3) of Proposition 5. Hence ϑ̂ is a partial solution for
nroot.

(⇐) For the other direction, the requirement that χ(nroot) = ∅ ensures, that

the guessing part of a given partial solution ϑ̂ is nonexistent. Therefore, Ĉ =
{c ∈ C : M̂ |= c} and R̂ = {r ∈ R : Ĉ |= r} = R. This ensures that M̂ |= Π and
is therefore a model of Π. Let the linear order L< be the restriction of L̂< to the
set M̂ . Let a ∈ M̂ be an arbitrary atom. By condition 5 of Proposition 5 there
exists a constraint c ∈ δ̂h with a ∈ Cl(c) and a > c. Therefore, by condition

9 and 10 there exists a rule r ∈ δ̂R with H(r) = c and c > r. We now show
that rule r is the one fulfilling (R1)–(R3) of Proposition 5 for atom a. (R1) is
satisfied by construction. By condition 6, B(r) ⊆ Ĉ. Therefore, M̂ |= B(r),
satisfying (R2). Finally, (R3) is satisfied through condition 8. This shows that
M̂ is indeed an answer set of Π. �

An algorithm that computes all partial solutions at each node of the tree
decomposition is highly inefficient, since the size and the number of such so-
lutions can grow exponentially in the input size. Therefore we introduce bag
assignments, which is a data structure similar to partial solutions, but instead
of ranging over the whole subtree, their scope is restricted to a single bag of
the tree decomposition. But we are not interested in arbitrary bag assignments.
Instead we consider only those, which can be seen as the projection of a partial
solution for node n to the bag of node n. Formally this is stated as follows:

Definition 8 A bag assignment (for node n ∈ T) is a tuple ϑ = (n,M,C,R,L<, γ, γ<,∆),
with partial model M ⊆ n|A, satisfied constraints C ⊆ n|C, satisfied rules
R ⊆ n|R, linear order L< ∈ [[M ∪ C ∪ n|R]], cardinality functions γ : n|C → N
and γ< : C → N, and derivation witness ∆ = (δR, δM , δh, δb, σ) with derivation
rules δR ⊆ n|R, derived atoms δM ⊆ M , derivation head constraints δh ⊆ C,
derivation body constraints δb ⊆ C, and check function σ : δh → {0, 1}.

Definition 9 A bag assignment ϑ for node n with ϑ = (n,M,C,R,L<, γ, γ<,∆)
and ∆ = (δR, δM , δh, δb, σ) is called a bag model (for node n) if there exists a

partial solution ϑ̂ = (n, M̂, Ĉ, R̂, L̂<, γ̂, γ̂<, ∆̂), with ∆̂ = (δ̂R, δ̂M , δ̂h, δ̂b, σ̂) such
that

• M̂ ∩ χ(n) = M , Ĉ ∩ χ(n) = C, R̂ ∩ χ(n) = R,

• L̂< and L< are consistent,

• γ̂(c) = γ(c), γ̂<(c) = γ<(c) for all c ∈ n|C,

12

• δ̂R ∩ χ(n) = δR, δ̂M ∩ χ(n) = δM ,

• δ̂h ∩ χ(n) = δh, δ̂b ∩ χ(n) = δb,

• σ̂(c) = σ(c) for all c ∈ δh.

Indeed, it turns out that it is sufficient to maintain only bag models during the
tree traversal.

Proposition 10 Let nroot be the root node of T , and let χ(nroot) = ∅. Then
AS(Π) 6= ∅ if and only if ϑ = (nroot, ∅, ∅, ∅, [], ∅, ∅,∆) with ∆ = (∅, ∅, ∅, ∅, ∅) is
a bag model for nroot.

Proof: Since χ(nroot) = ∅, every partial solution for nroot is an extension of
ϑ according to the conditions of Definition 9. Therefore, this statement follows
from Proposition 7. �

By the same argument as for the root node, we may assume that χ(n) = ∅
for leaf nodes n. Now a dynamic programming algorithm can be achieved,
by creating the only possible bag model ϑ = (n, ∅, ∅, ∅, [], ∅, ∅,∆) with ∆ =
(∅, ∅, ∅, ∅, ∅) for each leaf n, and then propagating these bag models along the
paths to the root node. Thereby the bag models are altered according to rules,
which depend only on the bag of the current node. In order to sketch the
cornerstones of the dynamic programming algorithm more clearly, we distinguish
between eight types of nodes in the tree decomposition: leaf (L), branch (B),
atom introduction (AI), atom removal (AR), rule introduction (RI), rule removal
(RR), constraint introduction (CI), and constraint removal (CR) node. The last
six types will be often augmented with the element e (either an atom, a rule, or
a constraint) which is removed or added compared to the bag of the child node.

Next we define a relation ≺T between bag assignments, which will be used
to propagate bag models in a bottom-up direction along the tree decomposition
T . Afterwards we demonstrate the intuition of these rules with the help of a
small example.

Definition 11 Let ϑ = (n,M,C,R,L<, γ, γ<,∆) and ϑ′ = (n′,M ′, C ′, R′, L′<, γ
′, γ′<,∆

′)
with ∆ = (δR, δM , δh, δb, σ) and ∆′ = (δ′R, δ

′
M , δ

′
h, δ
′
b, σ
′) be bag assignments for

nodes n, n′ ∈ T . We relate ϑ′ ≺T ϑ if n has a single child n′ and the following
properties are satisfied, depending on the node type of n:

(r-RR): r ∈ R′ and

ϑ = (n,M ′, C ′, R′ \ {r}, L′< − [r], γ′, γ′<,∆), with

∆ = (δ′R \ {r}, δ′M , δ′h, δ′b, σ′).

(r-RI):

ϑ ∈ {(n,M ′, C ′, R∗, L∗<, γ′, γ′<,∆) : L∗< ∈ (L′< + [r])}, with

13

R∗ =

{
R′ ∪ {r} if C ′ |=n|C r

R′ otherwise

and one of the following two groups of properties has to be satisfied:

• “r is used”: H(r) ∈ n|C ⇒ (H(r) ∈ δ′h ∧ H(r) > r), for all b ∈
B(r) ∩ n|C : b ∈ C ′ ∧ b < r, and

∆ = (δ′R ∪ {r}, δ′M , δ′h, δ′b ∪ (B(r) ∩ n|C), σ∗), with

σ∗(c) =

{
1 if c = H(r)

σ′(c) otherwise.

• “r is not used”: ∆ = ∆′.

(a-AR): a ∈M ′ ⇒ a ∈ δ′M and

ϑ = (n,M ′ \ {a}, C ′, R′, L′< − [a], γ′, γ′<,∆), with

∆ = (δ′R, δ
′
M \ {a}, δ′h, δ′b, σ′).

(a-AI): One of the following two groups of properties has to be satisfied:

• “set a to false”:

ϑ = (n,M ′, C ′, R′, L′<, γ
∗, γ∗<,∆

′), with

γ∗(c) = γ′(c) + Γ(c,M ′, n|A)− Γ(c,M ′, n′|A), and
γ∗<(c) = γ′<(c) + Γ<(c,M ′, n|A, L′<)− Γ<(c,M ′, n′|A, L′<).

• “set a to true”:

ϑ ∈ {(n,M∗ = M ′ ∪ {a}, C ′, R′, L∗<, γ∗, γ∗<,∆) :

L∗< ∈ (L′< + [a])}, with

∆ = (δ′R, δ
′
M ∪ δ∗M , δ′h, δ′b, σ′), where

δ∗M =

{
{a} if ∃c ∈ δ′h, a ∈ Cl(c), a > c

∅ otherwise,

γ∗(c) = γ′(c) + Γ(c,M∗, n|A)− Γ(c,M ′, n′|A), and
γ∗<(c) = γ′<(c) + Γ<(c,M∗, n|A, L∗<)− Γ<(c,M ′, n′|A, L′<).

(c-CR): c ∈ C ′ ⇔ l(c) ≤ γ′(c) ≤ u(c), c ∈ δ′h ⇒ σ′(c) = 1, c ∈ δ′b ⇒ γ′<(c) ≥
l(c), and

ϑ = (n,M ′, C ′ \ {c}, R′, L′< − [c], γ′, γ′<,∆), with

∆ = (δ′R, δ
′
M , δ

′
h \ {c}, δ′b \ {c}, σ′).

(c-CI): One of the following two groups of properties has to be satisfied:

14

• “set c to false”: c 6∈ B(r) ∧ c 6= H(r) for all r ∈ δ′R, and

ϑ = (n,M ′, C ′, R′ ∪R∗, L′<, γ′ ∪ γ∗, γ′<,∆′), with

R∗ = {r ∈ n|R : C ′ |=n|C r}, and γ∗ = {(c,Γ(c,M ′, n|A)}.
• “set c to true”: (c ∈ B(r) ⇒ r > c) ∧ (c = H(r) ⇒ r < c) for all
r ∈ δ′R, and

ϑ ∈ {(n,M ′, C∗ = C ′ ∪ {c}, R′ ∪R∗, L∗<, γ∗, γ∗<,∆) :

L∗< ∈ (L′< + [c])}, with

∆ = (δ′R, δ
′
M ∪ δ∗M , δ′h ∪ δ∗h, δ′b ∪ δ∗b , σ∗), where

R∗ = {r ∈ n|R : C∗ |=n|C r}, γ∗ = γ′ ∪ {(c,Γ(c,M ′, n|A)},
γ∗< = γ′< ∪ {(c,Γ<(c,M ′, n|A, L∗<)},

δ∗b =

{
{c} if ∃r ∈ δ′R : c ∈ B(r)

∅ otherwise,

δ∗h ∈

{
{{c}} if ∃r ∈ δ′R : c = H(r)

{∅, {c}} otherwise,

δ∗M = {a ∈M ′ : a ∈ Cl(c), c ∈ δ∗h, a > c}, and
σ∗(c) = 1⇔ c ∈ δ∗h ∧ ∃r ∈ δR : H(r) = c.

For branch nodes, we extend (with slight abuse of notation) ≺T to a ternary
relation.

Definition 12 Let ϑ = (n,M,C,R,L<, γ, γ<,∆), ϑ′ = (n′,M ′, C ′, R′, L′<, γ
′, γ′<,∆

′),
and ϑ′′ = (n′′,M ′′, C ′′, R′′, L′′<, γ

′′, γ′′<,∆
′′) be bag assignments for nodes n, n′, n′′ ∈

T with ∆ = (δR, δM , δh, δb, σ), ∆′ = (δ′R, δ
′
M , δ

′
h, δ
′
b, σ
′), and ∆′′ = (δ′′R, δ

′′
M , δ

′′
h, δ
′′
b , σ

′′).
We relate (ϑ′, ϑ′′) ≺T ϑ if n has two children n′ and n′′ and the following con-
ditions are fulfilled.

• M = M ′ = M ′′ C = C ′ = C ′′

• R = R′ ∪R′′ L< = L′< = L′′<

• γ(c) = γ′(c) + γ′′(c)− Γ(c,M, n|A) for all c ∈ n|C

• γ<(c) = γ′<(c) + γ′′<(c)− Γ<(c,M, n|A, L<) for all c ∈ C

• δR = δ′R = δ′′R δM = δ′M ∪ δ′′M

• δh = δ′h = δ′′h δb = δ′b ∪ δ′′b

• σ(c) = max{σ′(c), σ′′(c)} for all c ∈ δh

15

What follows is a small example which demonstrates how this ≺T relation
is used to solve the consistency problem for PCCs. Thereby we start with the
only possible bag model ϑ = (n, ∅, ∅, ∅, [], ∅, ∅,∆) and ∆ = (∅, ∅, ∅, ∅, ∅) for each
leaf node. Now we traverse through the tree decomposition and calculate for
each node all the bag assignments according to the relation ≺T . Finally, we
check whether for the root node any such bag assignment could be generated.

Example 13 We are given a PCC Π = ({p1, p2}, {c1, c2}, {r1}) with c1 =
({(p1, 1)}, 1, 1), c2 = ({(¬p2, 1)}, 1, 1), and r1 = (c1, {c2}).

Its incidence graph as well as a normalized tree decomposition of width 1 are
depicted in Figure 2. What follows is a list of all the bag assignments that can be
computed according to the relation ≺T , starting from the trivial bag assignments
of the empty leaf nodes.

Node n1: (L)

ϑ1 = (n1, ∅, ∅, ∅, [], ∅, ∅, (∅, ∅, ∅, ∅, ∅))

Node n2: (p1-AI)

ϑ2,1 = (n2, ∅, ∅, ∅, [], ∅, ∅, (∅, ∅, ∅, ∅, ∅))
ϑ2,2 = (n2, {p1}, ∅, ∅, [p1], ∅, ∅, (∅, ∅, ∅, ∅, ∅))

Node n3: (c1-CI)

ϑ3,1 = (n3, ∅, ∅, ∅, [], {(c1, 0)}, ∅, (∅, ∅, ∅, ∅, ∅))
ϑ3,2 = (n3, ∅, {c1}, ∅, [c1], {(c1, 0)}, {(c1, 0)}, (∅, ∅, ∅, ∅, ∅))
ϑ3,3 = (n3, ∅, {c1}, ∅, [c1], {(c1, 0)}, {(c1, 0)}, (∅, ∅, {c1}, ∅, {(c1, 0)}))
ϑ3,4 = (n3, {p1}, ∅, ∅, [p1], {(c1, 1)}, ∅, (∅, ∅, ∅, ∅, ∅))
ϑ3,5 = (n3, {p1}, {c1}, ∅, [c1, p1], {(c1, 1)}, {(c1, 0)}, (∅, ∅, ∅, ∅, ∅))
ϑ3,6 = (n3, {p1}, {c1}, ∅, [c1, p1], {(c1, 1)}, {(c1, 0)}, (∅, {p1}, {c1}, ∅, {(c1, 0)}))
ϑ3,7 = (n3, {p1}, {c1}, ∅, [p1, c1], {(c1, 1)}, {(c1, 1)}, (∅, ∅, ∅, ∅, ∅))
ϑ3,8 = (n3, {p1}, {c1}, ∅, [p1, c1], {(c1, 1)}, {(c1, 1)}, (∅, ∅, {c1}, ∅, {(c1, 0)}))

Node n4: (p1-AR)

ϑ4,1 = (n4, ∅, ∅, ∅, [], {(c1, 0)}, ∅, (∅, ∅, ∅, ∅, ∅))
ϑ4,2 = (n4, ∅, {c1}, ∅, [c1], {(c1, 0)}, {(c1, 0)}, (∅, ∅, ∅, ∅, ∅))
ϑ4,3 = (n4, ∅, {c1}, ∅, [c1], {(c1, 0)}, {(c1, 0)}, (∅, ∅, {c1}, ∅, {(c1, 0)}))
ϑ4,4 = (n4, ∅, {c1}, ∅, [c1], {(c1, 1)}, {(c1, 0)}, (∅, ∅, {c1}, ∅, {(c1, 0)}))

16

c1

c2

p1

p2

r1

n14

r1n13

r1n6

c1, r1n5

c1n4

c1, p1n3

p1n2

n1

r1n12

c2, r1n11

c2n10

c2, p2n9

p2n8

n7

Figure 2: Incidence graph (left) and tree decomposition (right) of Example 13.

Node n5: (r1-RI)

ϑ5,1 = (n5, ∅, ∅, ∅, [r1], {(c1, 0)}, ∅, (∅, ∅, ∅, ∅, ∅))
ϑ5,2 = (n5, ∅, {c1}, {r1}, [r1, c1], {(c1, 0)}, {(c1, 0)}, (∅, ∅, ∅, ∅, ∅))
ϑ5,3 = (n5, ∅, {c1}, {r1}, [c1, r1], {(c1, 0)}, {(c1, 0)}, (∅, ∅, ∅, ∅, ∅))
ϑ5,4 = (n5, ∅, {c1}, {r1}, [r1, c1], {(c1, 0)}, {(c1, 0)}, ({r1}, ∅, {c1}, ∅, {(c1, 1)}))
ϑ5,5 = (n5, ∅, {c1}, {r1}, [r1, c1], {(c1, 0)}, {(c1, 0)}, (∅, ∅, {c1}, ∅, {(c1, 0)}))
ϑ5,6 = (n5, ∅, {c1}, {r1}, [c1, r1], {(c1, 0)}, {(c1, 0)}, (∅, ∅, {c1}, ∅, {(c1, 0)}))
ϑ5,7 = (n5, ∅, {c1}, {r1}, [r1, c1], {(c1, 1)}, {(c1, 0)}, ({r1}, ∅, {c1}, ∅, {(c1, 1)}))
ϑ5,8 = (n5, ∅, {c1}, {r1}, [r1, c1], {(c1, 1)}, {(c1, 0)}, (∅, ∅, {c1}, ∅, {(c1, 0)}))
ϑ5,9 = (n5, ∅, {c1}, {r1}, [c1, r1], {(c1, 1)}, {(c1, 0)}, (∅, ∅, {c1}, ∅, {(c1, 0)}))

Node n6: (c1-CR)

ϑ6,1 = (n6, ∅, ∅, ∅, [r1], ∅, ∅, (∅, ∅, ∅, ∅, ∅))
ϑ6,2 = (n6, ∅, ∅, {r1}, [r1], ∅, ∅, ({r1}, ∅, ∅, ∅, ∅))

The branch of nodes n7 till n12 is very similar to nodes n1 till n6. Therefore
we just present the bag assignments for n12.

Node n12: (c2-CR)

ϑ12,1 = (n12, ∅, ∅, ∅, [r1], ∅, ∅, (∅, ∅, ∅, ∅, ∅))
ϑ12,2 = (n12, ∅, ∅, ∅, [r1], ∅, ∅, ({r1}, ∅, ∅, ∅, ∅))

Node n13: (B)

ϑ13,1 = (n13, ∅, ∅, ∅, [r1], ∅, ∅, (∅, ∅, ∅, ∅, ∅))
ϑ13,2 = (n13, ∅, ∅, {r1}, [r1], ∅, ∅, ({r1}, ∅, ∅, ∅, ∅))

17

Node n14: (r1-RR)

ϑ14 = (n14, ∅, ∅, ∅, [], ∅, ∅, (∅, ∅, ∅, ∅, ∅))

Since ϑ14 could be derived, the example is a yes-instance of the consistency
problem. Indeed it has exactly one answer set {p1}. a

Let us look exemplarily at (CR) nodes in more detail. Consider nodes n
which remove a constraint c, i.e., χ(n) = χ(n′) \ {c}, where n′ is the child of
n (see, for instance, the node with bag {p3, c3} in the left branch of TEx in
Figure 1, which is a c4-removal node). Let ϑ′ = (n′,M ′, C ′, R′, L′<, γ

′, γ′<,∆
′)

with ∆′ = (δ′R, δ
′
M , δ

′
h, δ
′
b, σ
′) be a bag model for n′. We then create a bag model

for n as follows: First we have to check whether the conditions c ∈ C ′ ⇔ l(c) ≤
γ′(c) ≤ u(c), c ∈ δ′h ⇒ σ′(c) = 1, and c ∈ δ′b ⇒ γ′<(c) ≥ l(c) are satisfied. Note
that those checks correspond to the conditions 1, 10, and 8 of Definition 6. They
ensure that all guesses with respect to c are correct. In the case of an affirmative
answer, we remove c from all sets of ϑ′ in order to create the new bag model
ϑ = (n,M ′, C ′\{c}, R′, L′<−[c], γ′, γ′<,∆) with ∆ = (δ′R, δ

′
M , δ

′
h\{c}, δ′b\{c}, σ′).

The following two theorems state that the rules defined above indeed help
in finding bag models.

Theorem 14 (Soundness) Given a bag model ϑ′ (respectively bag models ϑ′

and ϑ′′). Then each bag assignment ϑ with ϑ′ ≺T ϑ (respectively (ϑ′, ϑ′′) ≺T ϑ)
is a bag model.

Proof: Let ϑ′ be a bag model for n′ ∈ T and let ϑ be a bag assignment for
node n ∈ T with ϑ′ ≺T ϑ. Then n′ is the single child of n, with n being of type
(RR), (RI), (AR), (AI), (CR), or (CI). Assume n is a (r-RR) node. According
to Definition 11, we have r ∈ R′ with ϑ and ϑ′ differing only in R = R′ \ {r},
L< = L′<− [r], and δR = δ′R \{r}. Since ϑ′ is a bag model, there exists a partial

solution ϑ̂ of n′, satisfying all the conditions of Definition 9.
Claim: ϑ̂ is also a partial solution of n.

To verify this claim, we have to check the conditions of Definition 6. Since
n′⇓C = n⇓C , n′↓C = n↓C , n′⇓A = n⇓A, n′↓A = n↓A, and n′↓R = n↓R, the
only non-trivial condition is number 2 where we have to check n⇓R ⊆ R̂. Since
r ∈ R′ and R′ = R̂ ∩ n′|R, we have r ∈ R̂. Hence, from n′⇓R ⊆ R̂ follows that
n⇓R = n′⇓R ∪ {r} ⊆ R̂.

Furthermore, the projection of ϑ̂ to the bag χ(n) is exactly ϑ, since ϑ′ and
ϑ differ only by the fact, that r is removed from every set in ϑ. Therefore ϑ is
a bag model. Analogously the theorem can be checked for the other five node
types above.

Now let ϑ′ and ϑ′′ be bag models for n′, n′′ ∈ T and let ϑ be a bag assignment
for node n ∈ T with (ϑ′, ϑ′′) ≺T ϑ. Then n has two children n′ and n′′ and all
the properties of Definition 12 are satisfied. Since ϑ′ and ϑ′′ are bag models,
there exist partial solutions ϑ̂′ of n′ and ϑ̂′′ of n′′. Using these two partial

18

solutions we construct ϑ̂ = (n, M̂ ′ ∪ M̂ ′′, Ĉ ′ ∪ Ĉ ′′, R̂′ ∪ R̂′′, L̂<, γ̂, γ̂<, ∆̂) with

∆̂ = (δ̂′R ∪ δ̂′′R, δ̂′M ∪ δ̂′′M , δ̂′h ∪ δ̂′′h, δ̂′b ∪ δ̂′′b , σ̂). Thereby L̂< ∈ (L̂′< + L̂′′<),

γ̂(c) =


γ̂′(c) c ∈ n′⇓C ,
γ̂′′(c) c ∈ n′′⇓C ,
γ̂′(c) + γ̂′′(c)− Γ(c, n|M̂ , n|A) otherwise,

γ̂<(c) =


γ̂′<(c) c ∈ n′⇓C ,
γ̂′′<(c) c ∈ n′′⇓C ,
γ̂′<(c) + γ̂′′<(c)− Γ<(c, n|M̂ , n|A, L̂<) otherwise,

σ̂(c) =


σ̂′(c) c ∈ δ̂′h \ δ̂′′h,
σ̂′′(c) c ∈ δ̂′′h \ δ̂′h,
max{σ̂′(c), σ̂′′(c)} otherwise.

One can now check the conditions of Definition 6 in order to verify that ϑ̂ is a
partial solution for n. Furthermore, our construction ensures that the projection
of ϑ̂ to the bag χ(n) is exactly ϑ, which is therefore a bag model. �

Theorem 15 (Completeness) Given a bag model ϑ for node n ∈ T . Then
either n is a leaf node, or there exists a bag model ϑ′ (respectively two bag models
ϑ′ and ϑ′′) with ϑ′ ≺T ϑ (respectively (ϑ′, ϑ′′) ≺T ϑ).

Proof: Again, we have to distinguish between the node type of n. For instance,
let n ∈ T be an (r-RR) node with child n′, let ϑ be a bag model for n. We
have to show that there exists a bag model ϑ′ for n′ with ϑ′ ≺T ϑ. Since ϑ is a
bag model, there exists a partial solution ϑ̂ of n, satisfying all the conditions of
Definition 9. From r ∈ n⇓R follows, that r ∈ R̂. Now consider the projection
of ϑ̂ onto the bag of n′. Then the result is a bag model ϑ′ of n′ satisfying the
conditions of Definition 9 and having r ∈ R′. But then it is easy to check, that
ϑ′ ≺T ϑ, which closes the proof for (RR) nodes. Analogously the theorem can
be checked for the other six node types. �

Theorem 14 and Theorem 15 show, that starting from the trivial bag models
for empty leafs, the dynamic programming algorithm creates all bag models for
the root node. According to Proposition 10, those bag models are all we need
to know. Thus, this dynamic programming algorithm solves the consistency
problem.

Theorem 16 The consistency problem for PCCs Π can be solved in time O(26ww!k4w·
‖Π‖) with w = tw(Π) and k = cw(Π).

Proof: We first show that the number of different bag models at each node
n ∈ T is bounded. The number of possible sets M,C,R is bounded by 2w, there
are at most w! different orderings L<, the number of cardinality functions γ, γ<

19

is bounded by k2w, the number of possible sets δR, δh as well as δM , δb is bounded
by 2w each, and finally the number of check functions σ is bounded by 2w. This
leads to at most 24ww!k2w many different bag models at node n. At each node
the effort to compute a single bag model is constant with the exception of branch
nodes, where one has to compare possible pairs of bag models of each child node.
Thereby only pairs are combined which have identical M,C,R,L<, δR, δh. This
means for each bag model of the first child node there are at most 22wk2w (the
number of possible functions/sets γ, γ<, δM , δb, σ) bag models at the second
child to consider. The time per node is therefore bounded by 26ww!k4w and
since the number of nodes in our tree decomposition is bounded by O(‖Π‖), the
total time of O(26ww!k4w · ‖Π‖) follows. �

6 Extensions

In this section, we discuss some extensions of our dynamic programming ap-
proach and of Theorem 16.

PWCs with unary weights. Our dynamic programming algorithm for the
consistency problem of PCCs can be easily extended to PWCs with unary repre-
sentation both, of the weights and of the constraint bounds (PWCs with unary
weights, for short).

Theorem 17 Given an arbitrary PWC Π. The consistency problem for PWCs
with unary weights can be solved in time O(26ww!k4w·‖Π‖) with w = max(3, tw(Π))
and k = cw(Π).

Proof: It suffices to show that every PWC Π with unary weights can be ef-
ficiently transformed into a PCC Π′ such that Π is only linearly bigger than
Π, the constraint-width remains the same, and the treewidth is max(3, tw(Π)).
The transformation from Π to Π′ processes each literal ` with weight j > 1 in
each constraint c of Π as follows: reduce the weight of ` to 1 and add j−1 fresh
atoms `2, . . . , `j (each of weight 1) to c. Moreover, we add, for α ∈ {2, . . . , j},
new constraints cα := ({(`, 1), (¬`α, 1)}, 1, 1) and new rules rα := (cα, ∅) to en-
sure that the fresh variables `2, . . . , `j have the same truth value as ` in every
model of Π.

It is easy to check that Π′ is only linearly bigger than Π (since j is given in unary
representation) and that the constraint-width and treewidth are not increased
(resp. changed from treewidth ≤ 2 to treewidth 3). �

Reasoning with PCCs and PWCs with unary weights. In non-monotonic
reasoning, two kinds of reasoning are usually considered, namely skeptical and
credulous reasoning. Recall that an atom a is skeptically implied by a program
Π if a is true (i.e., contained) in every stable model of Π. Likewise, an atom a is
credulously implied by Π if a is true in some stable model of Π. Our algorithm
for the consistency problem can be easily extended to an algorithm for skeptical

20

or credulous reasoning with PCCs and PWCs with unary weights. The above
upper bounds on the complexity thus carry over from the consistency problem
to the reasoning problems. We only work out the PCC-case below:

Theorem 18 Both the skeptical and the credulous reasoning problem for PCCs
Π can be solved in time O(26ww!k4w · ‖Π‖) with w = tw(Π) and k = cw(Π).

Proof: Suppose that we are given a PCC Π and an atom a. The dynamic
programming algorithm for the consistency problem has to be extended in such
a way that we additionally maintain two flags cr(ϑ) and sk(ϑ) for every bag
assignment ϑ. These flags may take one of the values {⊥,>} with the in-
tended meaning that cr(ϑ) = > (resp. sk(ϑ) = >) if and only if there exists

a partial solution ϑ̂ = (n, M̂, . . .), (resp. if and only if for all partial solutions

ϑ̂ = (n, M̂, . . .)) the atom a is true in M̂ . Otherwise this flag is set to ⊥. Then
a is credulously (resp. skeptically) implied by Π if and only if there exists a bag
model (resp. if and only if for all bag models) ϑ of the root node nroot of T ,
we have cr(ϑ) = > (resp. sk(ϑ) = >). Clearly, maintaining the two flags fits
within the desired complexity bound. �

Bounded treewidth and bounded constraint-width. Recall that we have
proved the fixed-parameter linearity of the consistency problem of PWCs when
treewidth and constraint-width are taken as parameter (see Theorem 3). This
fixed-parameter linearity result (as well as the analogous result for the skeptical
and credulous reasoning problem which can be easily seen to be expressible in
MSO logic) could also be obtained as a corollary of Theorem 17. Indeed, consider
a PWC Π whose treewidth w and constraint-width k are bounded by some fixed
constant. By previous considerations, we may thus assume that all weights
occurring in Π are bounded by a constant. Therefore, we can transform all
weights and bounds into unary representation such that the size of the resulting
PWC with unary weights differs from ‖Π‖ only by a constant factor (namely
2k). The upper bound on the complexity in Theorem 17 immediately yields
the desired fixed-parameter linearity result since f(w) · O(k2w) is bounded by a
constant that is independent of the size of Π.

7 W[1]-Hardness

In this section we will show that it is unlikely that one can improve the non-
uniform polynomial-time result of Theorem 16 to a fixed-parameter tractability
result (without bounding the constraint-width as in Theorem 3). We will de-
velop our hardness result within the framework of parameterized complexity.
Therefore we first outline some of the main concepts of the subject, for an
in-depth treatment we refer to other sources [6, 7, 15].

An instance of a parameterized problem is a pair (x, k), where x is the main
part and k (usually a non-negative integer) is the parameter. A parameter-
ized problem is fixed-parameter tractable if an instance (x, k) of size n can be

21

solved in time O(f(k)nc) where f is a computable function and c is a con-
stant independent of k. If c = 1 then we speak of linear-time fixed-parameter
tractability. FPT denotes the class of all fixed-parameter tractable decision
problems. Parameterized complexity theory offers a completeness theory sim-
ilar to the theory of NP-completeness. An fpt-reduction from a parameterized
decision problem P to a parameterized decision problem Q is a transformation
that maps an instance (x, k) of P of size n to an instance (x′, k′) of Q with
k′ ≤ g(k) in time O(f(k)nc) (f, g are arbitrary computable functions, c is a
constant) such that (x, k) is a yes-instance of P if and only if (x′, k′) is a yes-
instance of Q. A parameterized complexity class C is the class of parameterized
decision problems fpt-reducible to a certain parameterized decision problem Q.
A parameterized problem P is C-hard, if every problem in C is fpt-reducible to
P . Problem P is called C-complete, if it is additionally contained in C. Of par-
ticular interest is the class W [1] which is considered as the parameterized analog
to NP. For example, the Clique problem (given a graph G and an integer k,
decide whether G contains a complete subgraph on k vertices), parameterized
by k, is a well-known W [1]-complete problem. It is believed that FPT 6= W [1],
and there is strong theoretical evidence that supports this belief, for example,
FPT = W [1] would imply that the Exponential Time Hypothesis fails, see [7].

In the proof of Theorem 19 below we will devise an fpt-reduction from the
Minimum Maximum Outdegree problem (or MMO, for short). To state
this problem we need to introduce some concepts. A (positive integral) edge
weighting of a graph H = (V,E) is a mapping w that assigns to each edge
of H a positive integer. An orientation of H is a mapping Λ : E → V × V
with Λ({u, v}) ∈ {(u, v), (v, u)}. The weighted outdegree of a vertex v ∈ V with
respect to an edge weighting w and an orientation Λ is defined as

d+
H,w,Λ(v) =

∑
{v,u}∈E with Λ({v,u})=(v,u)

w({v, u}).

An instance of MMO consists of a graph H, an edge weighting w of H, and a
positive integer r; the question is whether there exists an orientation Λ of H
such that d+

H,w,Λ(v) ≤ r for each v ∈ V . The MMO problem with edge weights
(and therefore also r) given in unary is W [1]-hard when parameterized by the
treewidth of H [17].

Theorem 19 The consistency problem for PCCs is W [1]-hard when parame-
terized by treewidth.

Proof: Let (H,w, r) be an instance of MMO of treewidth t, H = (V,E). We
may assume that no edge is of weight larger than r since otherwise we can
reject the instance. Let ≺ be an arbitrary linear ordering of V . We form a
PWC Π = (A, C,R) with unary weights as follows: The set A contains an atom
auv = avu for each edge {u, v} ∈ E; C contains a constraint cv = (Sv, 0, r)
for each vertex v ∈ V where Sv = { (auv, w({v, u})) : {u, v} ∈ E, v ≺ u } ∪
{ (¬auv, w({v, u})) : {u, v} ∈ E, u ≺ v }; R contains a rule rv = (cv, ∅) for each
vertex v ∈ V .

22

Claim 1. tw(Π) ≤ max(2, t). Let (T, χ) be a tree decomposition of H of
width t. We extend (T, χ) to a tree decomposition of Π as follows. For each
edge {u, v} ∈ E we pick a node nuv of T with u, v ∈ χ(nuv) and for each vertex
v ∈ V we pick a node nv of T with v ∈ χ(nv) (such nodes exist by the definition
of a tree decomposition). We attach to nuv a new neighbor n′uv (of degree 1)
and put χ(n′uv) = {u, v, auv}, and we attach to nv a new neighbor n′v (of degree
1) and put χ(n′v) = {v, rv}. It is easy to verify that we obtain this way a tree
decomposition of Π of width max(t, 2), hence the claim follows. Note that in
fact we have tw(Π) ≥ tw(H) since H is a graph minor of the incidence graph
of Π.

Claim 2. H has an orientation Λ with maxv∈V d
+
H,w,Λ(v) ≤ r if and only if

Π has a model. We associate with an orientation Λ the subset AΛ = { auv ∈
AΛ : u ≺ v and Λ({u, v}) = (u, v) }. This gives a natural one-to-one correspon-
dence between orientations of H and subsets of A. We observe that for each
v ∈ V , the sum of weights of the literals in constraint cv satisfied by AΛ is
exactly the weighted outdegree of v with respect to Λ. Hence AΛ is a model of
Π if and only if d+

H,w,Λ(v) ≤ r for all v ∈ V .
Claim 3. All models of Π are stable. This claim follows by exactly the same

argument as in the proof of Theorem 2.
Π can certainly be obtained from (H,w, r) in polynomial time. We can even

encode the weights of literals in unary since we assumed that that the edge
weighting w is given in unary. Hence, by Claims 1–3 we have an fpt-reduction
from MMO to the consistency problem for PWCs with unary weights. Us-
ing the construction as described in the proof of Theorem 17, we can trans-
form Π in polynomial time into a decision-equivalent PCC Π′ by increasing
the treewidth at most by a small constant. In total we have an fpt-reduction
from MMO to the consistency problem for PCCs (both problems parameterized
by treewidth). The theorem now follows by the W [1]-hardness of MMO for
parameter treewidth. �

8 Discussion

In this work, we have proved several results for PWCs and PCCs of bounded
treewidth without addressing the problem of actually computing a tree decom-
position of appropriate width. As has been mentioned earlier, [1] showed that
deciding if a graph has treewidth ≤ w and, if this is the case, computing a tree
decomposition of width w is fixed-parameter linear for parameter w. Unfortu-
nately, this linear time algorithm is only of theoretical interest and the practical
usefulness is limited [12]. However, considerable progress has been recently made
in developing heuristic-based tree decomposition algorithms which can handle
graphs with moderate size of several hundreds of vertices [12, 2, 19, 3, 10].

Recently a meta-theorem for MSO problems on graphs with cardinality and
weight constraints was shown [18]. This meta-theorem allows one to handle
cardinality constraints with respect to sets that occur as free variables in the
corresponding MSO formula. It provides a polynomial time algorithm for check-

23

ing whether a PCC (or a PWC with weights in unary) of bounded treewidth
has a model. However, in order to check whether a PCC has a stable model,
one needs to handle cardinality constraints with respect to sets that occur as
quantified variables in the MSO formula, which is not possible with the above
mentioned meta-theorem.

We have already mentioned a dynamic programming algorithm for ASP [9].
This algorithm works for programs without cardinality or weight constraints,
but possibly with disjunction in the head of the rules. The data structure ma-
nipulated at each node for this ASP algorithm is conceptually much simpler
than the one used here: Potential models of the given program are represented
by so-called tree-models. A tree-model consists of a subset of the atoms in a
bag (the ones which are true in the models thus represented) and a subset of the
rules in a bag (the ones which are validated by the models thus represented).
However, to handle the minimality condition on stable models, it is not suffi-
cient to propagate potential models along the bottom-up traversal of the tree
decomposition. In addition, it is required, for each potential model M , to keep
track of all those models of the reduct w.r.t. M which would prevent M from
being minimal. Those models are represented by a set of tree-models accompa-
nying each tree-model. Hence, despite the simplicity of the data structure, the
time complexity of the algorithm from [9] is double exponential in the treewidth,
since it has to handle sets of subsets of the bag at each node. Therefore, rather
than extending that algorithm by mechanisms to handle weight or cardinality
constraints, we have presented here an algorithm based on a completely dif-
ferent data structure – in particular, keeping track of orderings of the atoms.
We have thus managed to obtain an algorithm whose time complexity is single
exponential in the treewidth.

9 Conclusion

In this paper we have shown how the notion of bounded treewidth can be used to
identify tractable fragments of answer-set programming with weight constraints.
However, by proving hardness results, we have also shown that a straightforward
application of treewidth is not sufficient to achieve the desired tractability.

The upper bounds on the time complexity of our dynamic programming
algorithms were obtained by very coarse estimates (see Theorems 16, 17, 18).
In particular, we assumed straightforward methods for storing and manipulating
bag assignments. For an actual implementation of our algorithm, we plan to
use the SHARP framework2, a C++ interface that enables rapid development
of algorithms which are based on tree or hypertree decompositions by providing
(hyper-)tree decomposition routines and algorithm interfaces. It thus allows the
designer to focus on the problem-specific part of the algorithm. SHARP itself
uses the htdecomp library3 which implements several heuristics for (hyper)tree
decompositions, see also [5]. Using sophisticated methods and data structures

2http://http://www.dbai.tuwien.ac.at/proj/sharp/
3http://www.dbai.tuwien.ac.at/proj/hypertree/downloads.html

24

http://http://www.dbai.tuwien.ac.at/proj/sharp/
http://www.dbai.tuwien.ac.at/proj/hypertree/downloads.html

in implementing the functionality of the different node types of our algorithm
should eventually result in a further improvement of the (theoretical) upper
bounds on the time complexity provided in this paper.

For future work, we plan to extend the parameterized complexity analysis
and the development of efficient algorithms to further problems where weights
or cardinalities play a role. Note that weights are a common feature in the
area of knowledge representation and reasoning, for instance, to express costs
or probabilities.

References

[1] Hans L. Bodlaender. A linear-time algorithm for finding tree-
decompositions of small treewidth. SIAM J. Comput., 25(6):1305–1317,
1996.

[2] Hans L. Bodlaender and Arie M. C. A. Koster. Safe separators for
treewidth. Discrete Mathematics, 306(3):337–350, 2006.

[3] Hans L. Bodlaender and Arie M. C. A. Koster. Combinatorial optimization
on graphs of bounded treewidth. Comput. J., 51(3):255–269, 2008.

[4] Bruno Courcelle. Recognizability and second-order definability for sets of
finite graphs. Technical Report I-8634, Université de Bordeaux, 1987.

[5] Artan Dermaku, Tobias Ganzow, Georg Gottlob, Benjamin J. McMahan,
Nysret Musliu, and Marko Samer. Heuristic methods for hypertree decom-
position. In Proc. MICAI, volume 5317 of LNCS, pages 1–11. Springer,
2008.

[6] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer
Verlag, 1999.

[7] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer
Verlag, 2006.

[8] Georg Gottlob, Reinhard Pichler, and Fang Wei. Bounded treewidth as a
key to tractability of knowledge representation and reasoning. Artif. Intell.,
174(1):105–132, 2010.

[9] Michael Jakl, Reinhard Pichler, and Stefan Woltran. Answer-set program-
ming with bounded treewidth. In Craig Boutilier, editor, Proc. IJCAI’09,
pages 816–822, 2009.

[10] Kalev Kask, Andrew Gelfand, Lars Otten, and Rina Dechter. Pushing
the power of stochastic greedy ordering schemes for inference in graphical
models. In Wolfram Burgard and Dan Roth, editors, Proc. AAAI’11, pages
54–60. AAAI Press, 2011.

25

[11] Ton Kloks. Treewidth, Computations and Approximations. Springer Verlag,
1994.

[12] Arie M. C. A. Koster, Hans L. Bodlaender, and Stan P. M. van Hoe-
sel. Treewidth: Computational experiments. Electronic Notes in Discrete
Mathematics, 8:54–57, 2001.

[13] Guohua Liu. Level mapping induced loop formulas for weight constraint
and aggregate programs. In Esra Erdem, Fangzhen Lin, and Torsten
Schaub, editors, Proc. LPNMR’09, volume 5753 of LNCS, pages 444–449.
Springer, 2009.

[14] Victor W. Marek and Miroslaw Truszczyński. Stable models and an al-
ternative logic programming paradigm. In Krzysztof R. Apt, Victor W.
Marek, Miroslaw Truszczyński, and David S. Warren, editors, The Logic
Programming Paradigm: A 25-Year Perspective, pages 375–398. Springer,
1999.

[15] Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Uni-
versity Press, 2006.

[16] Ilkka Niemelä, Patrik Simons, and Timo Soininen. Stable model semantics
of weight constraint rules. In Michael Gelfond, Nicola Leone, and Gerald
Pfeifer, editors, Proc. LPNMR’99, volume 1730 of LNCS, pages 317–331.
Springer, 1999.

[17] Stefan Szeider. Not so easy problems for tree decomposable graphs. In Ad-
vances in discrete mathematics and applications: Mysore, 2008, volume 13
of Ramanujan Math. Soc. Lect. Notes Ser., pages 179–190. Ramanujan
Math. Soc., Mysore, 2010.

[18] Stefan Szeider. Monadic second order logic on graphs with local cardinality
constraints. ACM Trans. Comput. Log., 12(2):Art. 12, 21, 2011.

[19] Frank van den Eijkhof, Hans L. Bodlaender, and Arie M. C. A. Koster.
Safe reduction rules for weighted treewidth. Algorithmica, 47(2):139–158,
2007.

26

	Introduction
	Background
	NP-Completeness
	Linear-Time Tractability
	Dynamic Programming Approach
	Extensions
	W[1]-Hardness
	Discussion
	Conclusion

