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Abstract. Answering conjunctive queries over Description Logic (DL) knowl-
edge bases is known to be 2ExpTime-hard for the DLs ALCI, SH, and their
extensions. In this technical note, we revisit these results to identify other equally
hard settings. In particular, we show that a simple adaptation of the proof for
SH proves that query answering is 2ExpTime-hard already for ALC if we con-
sider more expressive query languages such as positive existential queries and
(restricted classes of) conjunctive regular path queries.

1 Introduction

Ontology-based data access, and the related setting of query answering over Descrip-
tion Logic (DL) knowledge bases (KBs), has received considerable attention in the DL
community. Most work has been devoted to the so-called lightweight DLs of the DL-
Lite and EL families, but expressive DLs like ALC and its extentions have also been
considered, cf. [13] and its references. The first query answering algorithms for the lat-
ter kind of DLs had the common feature of requiring double exponential time [8,4,3],
and the question of whether this was worst-case optimal remained open for a while.
For all extensions of ALC that support inverse roles, this gap was closed by Lutz, who
proved 2EXPTIME-hardness of answering conjunctive queries (CQs) in ALCI [9]. An
orthogonal 2EXPTIME-hardness result was later shown for CQs over SH knowledge
bases [5], closing the gap for all DLs that support transitive roles and role hierarchies.
Recently, 2EXPTIME-hardness was also proved for DL-LiteHbool , a DL that does include
fullALC, but does support inverse roles and role hierarchies [2]. In contrast, answering
unions of CQs (UCQs) is feasible in single exponential time for ALCH and ALCHQ,
and even for SH if suitable restrictions on the occurrences of transitive roles in the
queries are imposed [12,9,6]. This shows that, for plain CQs and UCQs, the culprits for
2EXPTIME-hardness are indeed inverse roles, and transitive roles in combination with
role hierarchies.
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The aforementioned lower bounds are for plain CQs. However, recent works have
gone beyond CQs and unions thereof, by investigating more expressive query languages
like regular path queries and their extensions [4,3,11,1], or restricted classes of Datalog
queries [10]. To our knowledge, it had not been investigated whether for these more ex-
pressive query languages, 2EXPTIME-hardness holds already in the absence of inverse
roles, transitive roles, and role hierarchies. To tackle the issue, in this this technical note
we revisit the proof in [5] to show that 2EXPTIME-hardness holds already for ALC in
the following extensions of UCQs:

• positive existential queries (PQs),
• conjunctive regular path queries (CRPQs) without the Kleene star, and
• conjunctive 2-way regular path queries (C2RPQs) without the Kleene star and with

only 2 variables.

2 Query Languages

We assume familiarity with DLs, and in particular with ALC KBs. Their semantics is
given by interpretations I = 〈∆I , ·I〉. We call I tree-shaped if the graph with nodes
∆I and edges (d, e) for all (d, e) ∈ rI for a role name r, is a tree in the usual sense.

We focus here on Boolean queries of the form ∃x.ϕ(x), where x is a tuple of vari-
ables and ϕ(x) is a formula whose syntax depends on the considered query language.
In positive queries (PQs), ϕ(x) is built using ∧ and ∨ from atoms of the forms A(x)
and r(x, y), where A is a concept name, r a role name, and x, y are variables from x. A
conjunctive query (CQ) is a positive query built using only ∧, and a union of CQs is a
positive query that is in DNF, that is, it is a disjunction of conjunctions. Conjunctive reg-
ular path queries (CRPQs) are defined analogously to CQs, but atoms may additionally
take the form E(x, y), where E is a regular expression over the alphabet of role names.
Conjunctive 2-way regular path queries (C2RPQs) are similar, but regular expressions
are over the alphabet of role names r and their inverses r−. In this technical note we also
consider a restricted class of C(2)RPQs that we call (◦,∪)-queries, which only allow
for concatenation ◦ and union ∪ in complex roles, but disallows the Kleene star ∗. We
note that (◦,∪)-queries are closely related to PQs. Indeed, every (◦,∪)-query can be
rewritten as a PQ by using sequences of binary atoms in the place of ◦, and disjunction
in the place of ∪. However, this requires the use of additional variables and may result
in a larger query.

The semantics of queries is defined in terms of matches, which are mappings from
the variables in x to objects in∆I that make the query true; the latter notion is defined in
the natural way, see e.g.,[4]. Here we consider the query non-entailment problem, which
consists on deciding whether there exists a model of a given KBK that admits no match
for a given query q, in symbols K 6|= q. It is well known that every satisfiable ALC KB
Kwith only one ABox individual has a tree-shaped model, and that this extends to query
non-entailment: K 6|= q iff there is a tree-shaped model of K that admits no match for q
(cf. [5,9]). All complexity bounds mentioned here are for combined complexity, i.e., the
complexity measured in terms of the combined sizes of K and q.



3 2EXPTIME-hardness of CQs in SH revisited

We recall the proof of 2EXPTIME-hardness of answering CQs over SH KBs in [5].
It is done by a reduction from the word problem of an exponentially space bounded
Alternating Turing MachineM, that is, the problem of deciding for each input word w
toM, whether there is an accepting computation ofM on w that uses at most 2|w| tape
cells. The reduction builds a KB Kw and a query qw such thatM accepts w iff Kw 6|=
qw. Since a computation of an ATM is naturally represented as a tree of configurations,
the KB Kw is such that its tree-shaped models resemble accepting computations ofM
on w. We next recall the construction of Kw and qw from [5]. The construction uses a
very simple ABox of the form A(a), for a an individual and A a concept name, hence
we can restrict our attention to tree-shaped models. We relax slightly the construction
of Kw to be an ALC KB, by omitting the (sole) use of a transitive role to connect a
node and its child to a common successor, for some nodes of the tree-shaped models of
Kw. Hence our description of Kw uses a single role r.

Configuration nodes. Intuitively, the tree-shaped models Kw are trees of nodes repre-
senting configurations of M. For a configuration Kh in which M is in state q and
its head in position i reading a symbol a, there is a (q, a, i)-configuration node n that
represents Kh. The node n stores Kh, and as a technical trick, it additionally stores an-
other configuration Kp such thatM may move from Kp to Kh; that is, n contains both
the current configuration Kh and a possible previous configuration Kp. To properly
store the current and previous configurations Kh and Kp, each (q, a, p)-configuration
node n is in turn the root of a binary tree of depth |w| whose 2|w| leaves correspond
to the tape cell positions, and store their |w|-bit address using a set of concept names
B = {B1, . . . B|w|}. All arcs in this tree are r-arcs. Each leaf ` with address i, which
is called an i-cell (or just a cell if i is unimportant) has a child `h and a child `p that
store the symbol on tape position i in Kh and in Kp, respectively If i is the position of
the head ofM in Kh, then `h also stores the state q ofM, otherwise it stores a special
marker nil which intuitively means ‘the head is not on this position’. Similarly for Kp

and `p. For these labels we use concept names for alphabet symbols, states ofM, and
the special marker nil .
Kw contains axioms that ensure that the configurations Kh and Kp are described

correctly: e.g., there is exactly one symbol on each tape position, the head is at exactly
one position, andM is in exactly one state. There are also axioms in Kw to ensure that
Kh is the result of correctly applying from Kp a transition ofM.

Computation trees. A tree-shaped model Ic of Kw is called a computation tree and it
is a tree of configuration nodes connected via the role r. Its root n0 has an r-successor
that is a (q0, a0, 0)-configuration node describing (as current configuration) the initial
configuration ofM. Each (q, a, p)-configuration node n with q an existential state has
a 2-step r-successor n′ that is a (q′, a′, p + M)-configuration node, for some tran-
sition (q, a, q′, a′,M) of M (here the transition is read as follows: M is in state q
and reading a, it writes a, moves to state q′, and the head moves in direction M ∈
{−1, 0, 1}). Similarly, each (q, a, p)-configuration node n with q a universal state, has
a 2-step r-successor n′ that is a (q′, a′, p +M)-configuration node for each transition
(q, a, q′, a′,M) of M. The axioms of Kw also ensure that every configuration node
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with no successors is in an accepting state. Figure 1 illustrates a fragment of a compu-
tation tree with four configuration trees. A configuration tree with a magnified i-cell is
illustrated in Figure 2.
Proper computation trees. To have a one to one correspondence between the tree-shaped
models Ic of Kw and the accepting computations c ofM on input w, it suffices to en-
sure that for each pair n, n′ of successive configuration nodes, the current configuration
of n coincides with the previous configuration of n′. This is captured by the notion of
properness, which states that for every counter i value up to 2|w|, the node `h of the
i-cell of n and the node `p of the i-cell of n′ satisfy exactly the same concepts corre-
sponding to head position, written symbol, and state ofM. Properness is not guaranteed
by the axioms of Kw alone, and a tree-shaped model Ic of Kw (i.e., a computation tree)
may be proper or not. Here where the query comes into play, by testing a computation
tree is proper. More precisely, qw should have a match in a computation tree Ic iff Ic is
not proper. In this way each computation tree with no match corresponds to an accept-



ing computation ofM on w, and we obtain that there is a tree-shaped model Ic of Kw

where there is no match for qw iff there is an accepting computation ofM on w. This
(together with the tree-model property of ALC) suffices to ensure that Kw 6|= q iffM
accepts w as desired.

By using suitable auxiliary nodes and labels, properness can be characterized in
such a way that it can easily tested by the query. We use a set Z of concept names Za,q

for a an alphabet symbol and q either a state M or the special marker nil . We have
said that every i-cell ` has two children `p and `h, which respectively correspond to the
i-th tape position in the previous and in the current configuration. By adding auxiliary
r-children `′f to `f and `′′f to `′f for f ∈ {h, p}, and labeling all `f and `′f with suitable
values for the concepts B ∪ Z (exactly as done in [5]), one can obtain the following
characterization. Two cells ` and m are called A-conspicuous, where A is a concept
name, if (c1) A is true at the `h-node of n and the mp-node of n′, or (c2) A is true
at the `′h-node of n and the m′p-node of n′. In Proposition 4 of [5] it is proved that a
computation tree is not proper iff the following property (∗) holds:
(∗) There exits a cell ` in a configuration tree, and a cellm in a successive configuration
tree, such that ` and m are A-conspicuous for all A ∈ B ∪ Z.

To test (∗) with the query, we ensure that each `′′f satisfies a special concept Gf , but
we relax condition (c) in Definition 1 of [5], which requires that `′′f is also a child of
`f , and that the arcs from `f to `′′f and from `′f to `′′f are t-arcs for a transitive role t.
Instead, we only require `′′f to be an r-child of `′f . The queries testing for (∗) are similar
to those in [5], but differ slightly according to the query language being considered.

Positive Queries. We can define the query qw that tests (∗) as a PQ as follows. As
in [5], we obtain qw by taking the conjunction of a CQ q(A, u, v) for each A ∈ B ∪ Z,
where the variables u, v are shared by all q(A, u, v), and the remaining variables are
disjoint. That is, qw = ∃u, v.

∧
A∈B∪Z q(A, u, v), where q(A, u, v) is as follows:

q(A, u, v) = ∃xA1 , xA2 , xA3 , yA0 , . . . yA|w|+1, z
A
0 , . . . z

A
|w|+3 .

r(xA1 , y
A
0 ) ∧ r(xA1 , zA0 ) ∧

r(yA0 , y
A
1 ) ∧ · · · ∧ r(yA|w|, y

A
|w|+1) ∧A(y

A
|w|+1) ∧

r(zA0 , z
A
1 ) ∧ · · · ∧ r(zA|w|+2, z

A
|w|+3) ∧A(z

A
|w|+3) ∧(

r(yA|w|+1, u) ∨
(
r(yA|w|+1, x

A
2 ) ∧ r(xA2 , u)

))
∧Gh(u) ∧(

r(zA|w|+3, v) ∨
(
r(zA|w|+3, x

A
3 ) ∧ r(xA3 , v)

))
∧Gp(v)

The basic query q(A, u, v) is illustrated in the left-hand-side of Figure 3, and the full
query qw on the right-hand-side. For readability, most labels have been omitted in the
depiction of qw. Each arc represents an atom of the form r(x, y). The double dashed
arcs between yA|w|+1 and u, and between zA|w|+3 and v, represent a disjunction. The only
difference between this q(A, u, v) and the one in [5] is that the disjunction of atoms
r(yA|w|+1, u)∨

(
r(yA|w|+1, x

A
2 )∧ r(xA2 , u)

)
replaces the atom t(yA|w|+1, u), and similarly

r(zA|w|+3, v) ∨
(
r(zA|w|+3, x

A
3 ) ∧ r(xA3 , v)

)
replaces t(zA|w|+3, v).

Intuitively, q(A, u, v) deals with A-conspicuousness, and qw tests (∗) by taking the
conjunction for all A ∈ B∪Z. Note that the shared variables u, v are needed to ensure
that all the components q(A, u, v) speak about the same pair of cells `, m.
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Fig. 3. The basic query q(A, u, v) and the full query qw.

To see that qw has a match iff (∗) holds, let `, m be cells of two successive con-
figurations that are A-conspicuous for all A ∈ B ∪ Z. We can find a match for qw as
follows. First we match u on the `′′h node of `, which satisfiesGh, and v on them′′p node
of m, which satisfies Gp. Consider an arbitrary A ∈ B ∪ Z. We distinguish two cases:

– If (c1) applies, we match yA|w|+1 on the `h node of `, xA2 on the `′h node of `, zA|w|+3

on mp node of m, and xA3 on m′p node of m.
– Otherwise, if (c2) applies, we match yA|w|+1 on the `′h node of ` and zA|w|+3 on m′p

node of m. In this case, the matches for xA2 and xA3 become irrelevant.
The matches of all other variables are then uniquely determined by conjunctions of
atoms r(z, z′), in such a way that xA1 will be matched to the root of the configuration
node of ` in the latter case, and to its parent in the former. As the zAi chains are exactly
two r-arcs longer than the yAi chains, m must be a leaf in a configuration node that
follows that of `. We can argue analogously that every match for qw, the variables u
and v are respectively matched to the nodes `′′h and m′′p of a pair `, m of cells of two
successive configurations that are A-conspicuous for all A ∈ B ∪ Z.

In this way we obtain that, for every computation tree Ic, we have Ic is proper iff
Ic |= qw. This ends the reduction to PQ entailment in ALC.

Note that converting qw into a union of CQs (i.e., into DNF) results in an exponen-
tially larger formula. This blow-up may be unavoidable. In fact, for CQs, it has been



shown that query entailment is feasible in EXPTIME for ALCH and ALCHQ, and
even for SH if suitable restrictions on the occurrences of transitive roles in the queries
are imposed [12,9,6]. It follows from these results that there is no CQ whose size is
polynomial in w andM that can test for properness of computation trees.

(◦,∪)-Queries. Defining the query qw as a (◦,∪)-query is straightforward. We only
need to replace in q(A, u, v) the disjunction r(yA|w|+1, u) ∨

(
r(yA|w|+1, x

A
2 ) ∧ r(xA2 , u)

)
by the atom

(
r∪(r◦r)

)
(yA|w|+1, u), and the disjunction r(zA|w|+3, v)∨

(
r(zA|w|+3, x

A
3 )∧

r(xA3 , v)
)

by the atom
(
r ∪ (r ◦ r)

)
(zA|w|+3, v) (and we can drop the variables xA2 and

xA2 ). Then we can define qw as above, as the conjunction of the (modified) q(A, u, v)
for all A ∈ B ∪ Z. A match for this modified qw in a computation tree is a match for
the positive query above, and vice versa.

An alternative (◦,∪)-query for testing properness is obtained by replacing in each
q(A, u, v) the sequence of atoms r(xA1 , y

A
0 ) ∧ r(yA0 , yA1 ) ∧ · · · ∧ r(yA|w|, y

A
|w|+1) by a

single atom r ◦ · · · ◦ r(xA1 , yA|w|+1) for a chain r ◦ · · · ◦ r of length |w| + 2, and the
sequence r(xA1 , z

A
0 ) ∧ r(zA0 , zA1 ) ∧ · · · ∧ r(zA|w|, z

A
|w|+3) by r ◦ · · · ◦ r(xA1 , zA|w|+3) for

a chain of length |w| + 4; note that we can get rid of all but one variable yAi , and all
but one zAi . Using the test constructor A? for a name A sometimes allowed in CRPQs
(with semantics A?I = {e, e | e ∈ AI}) we can even replace in q(A, u, v) the whole
sequence of atoms from xA1 to u by a single atom, and the whole sequence from xA1 to
v by another atom, using only one variable xA additionally to u and v. However, the
number of variables in the resulting qw still depends linearly on |w| andM.

Using the inverse roles allowed in C2RPQs, we can even go one step further and
write the whole query q′(A, u, v) as one single atom with variables u and v:

q′(A, u, v) = Gh?◦(r−∪r−◦r−)◦A?◦r− ◦ · · · ◦ r−︸ ︷︷ ︸
|w|+2 times

◦ r ◦ · · · ◦ r︸ ︷︷ ︸
|w|+4 times

◦A?◦
(
r∪(r◦r)

)
(u, v)

The conjunction of these queries also gives a query qw that correctly tests properness,
but using only two variables. We note that in C2RPQs the tests A? add no expressive
power, as they can be simulated by adding a axiom A v ∃rA to the KB for a fresh role
rA, and replacing A? by rA ◦ r−A . Summing up, we obtain:

Theorem 1. Query entailment in ALC is 2EXPTIME-hard for:

1. positive queries,
2. any extension of CQs that allows for atoms of the form

(
r ∪ (r ◦ r)

)
(z, z′) for a

role name r and variables z, z′,
3. the class of ∗-free CRPQs, and
4. the class of ∗-free C2RPQs with only two variables.

We note that for PQs and CRPQs (with no inverses), it is not clear whether the re-
duction can be done using a bounded number of variables. The same holds for the lower
bounds forALCI and SH [9,5]. In contrast, CQ entailment in SHI is 2EXPTIME-hard
already for queries with only two variables [7], similarly to C2RPQs in ALC.



4 Conclusions

We have seen that query answering in ALC and its extensions becomes 2EXPTIME-
hard even for rather restricted settings. However, once this 2EXPTIME-hard boundary
has been crossed, one can significantly extend both the DL and the query language
without an additional increase in complexity. Query entailment remains in 2EXPTIME
even for positive 2-way regular path queries, which extend all the query languages men-
tioned above, and for ZIQ, ZOQ ad ZOI, which respectively extend the well known
SHIQ, SHOQ and SHOI [4,3].

In this paper we have focused on identifying query languages for which query en-
tailment inALC is 2EXPTIME-hard. It would also be interesting to study which are the
minimal DL constructs needed to show 2EXPTIME-hardness, similarly as done in [2],
but trying to avoid the combined use of role hierarchies and inverse roles. In line with
aforementioned paper, it is worth remarking that the presence of disjunction is crucial.
Indeed, even C2RPQs in (disjunction-free) Horn-SHOIQ can be answered in single
exponential time [11]. For a more detailed discussion of the topic, and references to
other related results, the reader may refer to [13].
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