
Extending ALCQIO with Trees
Tomer Kotek, Mantas Šimkus, Helmut Veith and Florian Zuleger

TU Vienna
Vienna, Austria

Email: {kotek,veith,zuleger}@forsyte.at, simkus@dbai.tuwien.ac.at

Abstract—We study the description logic ALCQIO, which
extends the standard description logic ALC with nominals,
inverses and counting quantifiers. ALCQIO is a fragment of
first order logic and thus cannot define trees. We consider the
satisfiability problem of ALCQIO over finite structures in which
k relations are interpreted as forests of directed trees with
unbounded outdegrees.

We show that the finite satisfiability problem of ALCQIO
with forests is polynomial-time reducible to finite satisfiability of
ALCQIO. As a consequence, we get that finite satisfiability is
NEXPTIME-complete. Description logics with transitive closure
constructors or fixed points have been studied before, but we
give the first decidability result of the finite satisfiability problem
for a description logic that contains nominals, inverse roles, and
counting quantifiers and can define trees.

I. INTRODUCTION

Description Logics are a well established family of logics
for Knowledge Representation and Reasoning [3]. They model
the domain of interest in terms of concepts (classes of objects)
and roles (binary relations between objects). These features
make description logics very useful to formally describe and
reason about graph-structured information. The usefulness
of description logics is witnessed e.g. by the W3C choosing
description logics to provide the logical foundations to the
standard Web Ontology Language (OWL) [22]. Another appli-
cation of description logics is formalization and static analysis
of UML class diagrams and ER diagrams, which are basic
modeling artifacts in object-oriented software development [4]
and database design [2]. In these settings, standard reasoning
services provided by description logics can be used to verify,
e.g., the consistency of a diagram.

Description logics extended with various forms of reacha-
bility have been studied in the literature, though the focus
has been mostly on arbitrary rather than finite structures.
No extensions of ALCQIO with reachability or transitive
closure are known to be decidable on finite structures. Finite
satisfiability in µALCQIO, the extension of ALCQIO with
fixed points, is known to be undecidable [6]. The description
logic µALCQO without nominals is EXPTIME-complete [5].
Close correspondences between description logics extended
with fixpoints and variants of the µ-calculus have also been

This is an author’s version of the article: T. Kotek, M. imkus, H. Veith and
F. Zuleger, ”Extending ALCQIO with Trees,” 2015 30th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS 2015), Kyoto, 2015, pp.
511-522. doi: 10.1109/LICS.2015.54 The final version of this paper is available
at https://ieeexplore.ieee.org/document/7174908/. c©IEEE

identified [11], [28]. The description logic ALCreg , which
allows regular expressions on roles but does not have counting
quantifiers, nominals or inverses, is decidable and is a variant of
propositional dynamic logic (PDL), a logic for reasoning about
program behavior (see [27]). Based on the results from [5],
[8] proved the decidability of ZOI, ZOQ and ZIQ, logics
extending ALCreg with any combination of two constructs
among counting quantifiers, nominals and inverses, as well
as self and Boolean role operations, but left the case of all
three constructs ZOIQ open. [12] proved decidability over
arbitrary structures for a description logic extending ALCQIO
which has both transitive closure and counting quantifiers,
under syntactical restrictions which guarantee that the counting
quantifiers and the transitive closure do not interact. Description
logics with complex interactions of transitive roles (but no
transitive closure) and counting quantifiers were studied e.g.
in [15], [29].

A. Motivation

Our main motivation for studying the finite satisfiability
problem of ALCQIO is to use ALCQIO as the underlying
logic of a new type of analysis of programs with dynamic data
structures. While model checking has been very successful for
the verification of programs in the last few decades, programs
with dynamic data structures still pose a considerable challenge.
Since the memory of programs with dynamic data structures
is essentially a directed finite graph of unbounded size, special
decidable logics need to be tailored for the task. The verification
community has devoted considerable attention to developing
logics and analyses of the graph-theoretic structure of the
data structures induced by the pointers in the memory (e.g.
singly- or doubly-linked lists, or trees). However, the content
of these data structures has been largely ignored1. This is at
odds with the fact that the goal of having data structures in the
memory is to stored data, manipulate it, and react to it. State
of the art verification techniques are successful at handling
low level errors which have to do with memory safety or the
implementation of data structures. However, any analysis of
programs which ignores the data in the data structures cannot be
used to verify functional correctness of programs, i.e. to verify
that programs operate correctly with respect to the requirements
on the relationships between entities handled by the program.

1A special case which has received attention is arithmetic data.

Employees

Projects

Fig. I.1. The employee list and the project list are built using next pointers
(solid arrows). The worksFor and managedBy pointers (dashed respectively
dotted arrows) relate the employees and projects.

Consider for example the information system of a company.
This program stores data for employees, projects, departments
and other entities, and relationships between them, such as
which employee works for which project or who manages each
project. High level requirements on the system may include
e.g. that each employee works for at most one project, or that
a project may only be managed by an employee who works
for that project. Fig. I.1 depicts a partial memory snapshot
where the employees and projects are stored in lists. The next
pointer is a shape pointer, which is used to implement the data
structure; the worksFor and managedBy pointers are content
pointers, which encode data.

The example program uses the heap to store database-like
information, i.e., information that is naturally understood in
terms of entity-relationship diagrams. In such programs, the
data structures play the role of an in-memory database. Since
description logics have been used extensively to reason about
entity-relationships and on databases, they are a natural choice
of a family of logics on which to base an analysis of the
heap. The difference between the pure database setting and
the program analysis setting is the twofold use of pointers as
shape pointers and as content pointers. While the description
logics in the literature are good at handling content pointers,
they are not well-suited to reason about structures such as
lists where reachability is inherent. Understanding to which
description logics trees can be added without major decidability
issues is a necessary stepping stone toward achieving concrete
powerful tools which use description logics in a verification
setting. In [9] we have shown that a description logic closely
related to ALCQIO can naturally represent the content of
data structures in the above example. We developed there a
verification method for content analysis based on a description
logic. However, the description logic of [9] was not suitable
to describe shape. Therefore we used a separation logic as a
logic for shapes and the two-variable fragment of first order
logic with counting and trees as a superlogic to tie the previous
logics together. The extension of ALCQIO with trees in the
current paper simplifies the rather cumbersome method of [9]
considerably. Moreover, unlike [9], this extension allows to
analyze programs with an arbitrary number of memory-sharing
data structures.

The current paper is part of a larger effort by our group
to adapt Description Logics for program analysis. We intend
to use suitable description logics as assertion logics for new
forms of program analysis. Since these program analyses focus
on the content rather than the combinatorial structure of the

data, we call this analysis content analysis. [9] describes this
approach in depth.

B. Our contribution

We develop decision procedures for the satisfiability problem
of ALCQIO terminologies over finite structures with built-in
forests. That is, we study satisfiability over finite structures in
which an a priori unbounded number of relations are guaranteed
to be interpreted as forests. The number of children of any
vertex in such a forest is unbounded. The forests can be further
restricted using appropriate ALCQIO axioms to be trees,
binary trees, or successor relations.

The main result of this paper are algorithms which decide
the finite satisfiability problem of ALCQIO over finite
structures with built-in forests. The algorithms are reductions
to finite satisfiability in ALCQIO without built-in forests. The
algorithms run in NEXPTIME, which is optimal since finite
satisfiability of ALCQIO is already NEXPTIME-hard. We
note that our complexity results hold even when the numbers
in the counting quantifiers are encoded in binary. We extend
our results to Boolean terminologies, or in other words, to the
logic ALCQIOb obtained by closing the set of ALCQIO
axioms under the Boolean connectives. Note that ALCQIO
does not have the tree model property which accounts for lower
complexity in sublogics of ALCQIO, see Corollary 5.21 and
the ensuing discussion in [31].

A short abstract based on an earlier formulation of this result
was presented at the Description Logic workshop 2014 [18].

C. The two-variable fragment and ALCQIO

ALCQIO is contained in the extension of the two-variable
fragment of first order logic with counting quantifiers C2.
ALCQIO and the two-variable fragment of first order logic
FO2 (without counting) are incomparable. ALCQIO contains
ALC, which is a syntactic variant of the multimodal logic K.
All quantifiers in ALCQIO are guarded by binary relations
symbols (atomic roles). To aid the reader not familiar with
description logics, we give an alternative presentation of
ALCQIO in Section II-C directly as a fragment of first order
logic.

The satisfiability and finite satisfiability problems of the two-
variable fragment FO2 of first order logic and its extensions
have received considerable attention. The finite satisfiability
problem of the guarded two-variable fragment with counting
but without constant symbols, which contains ALCQI but
not ALCQIO, was shown to be EXPTIME-complete in
[25]. Satisfiability and finite satisfiability of C2 formulae
are NEXPTIME-complete [24] (see also [14], [23]). Finite
satisfiability of C2 with two forests was shown in [10] to
be NEXPTIME-complete. Satisfiability and finite satisfiability
of C2 with a single equivalence relation was shown to be
NEXPTIME-complete, while C2 with two equivalence relations
is undecidable [26]. Decidability of extensions of FO2 with
successor relations, order relations, and equivalence relations
without counting were studied [13], [16], [17], [20], [21], [30].

2

Although our results are similar in spirit to the results of
the breakthrough paper [10], the results in our paper and in
[10] are incomparable:

(i) C2 contains ALCQIO.
(ii) [10] allows two forests, whereas we allow an unbounded

number of forests. The decidability of C2 with three
successor relations is not known, while ALCQIO with
three successor relations is covered by our results.

(iii) We allow the vertices in our forests to have unboundedly
many children, while [10] deals only with forests with
bounded out-degrees.

(iv) Our proof is compositional in the sense that we give a
reduction to finite satisfiability of ALCQIO, whereas [10]
gives a direct proof of decidability.

II. THE FORMALISM AND EXAMPLES

A. The description logic ALCQIO
From the point of view of finite model theory, ALCQIO

is a syntactic variant of a fragment of first order logic. In
description logic terminology, binary relation symbols are called
atomic roles and unary relation symbols are called atomic
concepts. Let NR and NC denote the countable infinite sets
of atomic roles and atomic concepts respectively. Concepts
and roles are built inductively using constructors. Atomic
concepts and atomic roles are respectively concepts and roles.
The various constructors available to build concept and roles
determine the particular description logics, giving rise to a wide
family of logics with varying expressivity, and decidability and
complexity of reasoning. We have an additional countable
infinite set of symbols Ni called individuals. The members of
Ni will be used to construct special concepts called nominals.

The semantics of concepts and roles is given in terms
of structures, where atomic concepts and atomic roles are
interpreted as unary and binary relations in a structure,
respectively.

Inclusion axioms play the role of the formulae of ALCQIO,
and terminologies play the role of theories of ALCQIO
formulae. Their semantics is given again in terms of structures
and is based on the semantics of concepts and roles. An
inclusion axiom C v D asserts that the interpretation of the
concept C is contained in the interpretation of the concept D.
A terminology is a set of inclusion axioms. A terminology Φ
asserts that all the inclusion axioms in Φ hold.

Definition 1 (Syntax of ALCQIO). The set of roles and
concepts of ALCQIO are defined inductively:

• Atomic concepts A ∈ NC are concepts;
• Atomic roles r ∈ NR are roles;
• Individuals o ∈ Ni are concepts (called nominals) 2

• If r is a role, then r− is a role;
• If r is a role, C,D are concepts and n is a positive integer,

then C uD, C tD, ¬C, ∃r.C and ∃≤n r.C are concepts.

2For simplicity, we deviate slightly from standard description logic notation
here. For every o ∈ Ni, we use the notation o rather than {o} for the
corresponding nominal.

For any concepts C,D, C v D is an inclusion axiom. Any
finite set of inclusion axioms is a terminology.

We will denote terminologies by lowercase and uppercase
greek letters.

A structure (or interpretation) is a tupleM = (M, ·), where
M is a finite set (the universe), and · is an interpretation
function, which assigns to each atomic concept C ∈ NC a
unary relation CM ⊆M , to each atomic role R ∈ NR a binary
relation RM over M , and to each nominal o ∈ Ni an unary
relation oM ⊆M of size |oM| = 1.

In this paper, all structures are finite. Satisfiability and
implication always refer to finite structures only.

Definition 2 (Semantics of ALCQIO). The semantics of con-
cepts, roles, inclusion axioms and terminologies in ALCQIO
is given in terms of structures. The function ·M is extended to
the remaining concepts and roles inductively below.

(C uD)M = CM ∩DM
(C tD)M = CM ∪DM
(¬C)M = M \ CM
(r−)M = {(e, e′) | (e′, e) ∈ rM)}
(∃r.C)M = {e | ∃e′ : (e, e′) ∈ rM, e′ ∈ CM}
(∃≤nr.C)M = {e | ∃≤ne′ : (e, e′) ∈ rM, e′ ∈ CM}
We say M satisfies an inclusion axiom C v D and write

M |= C v D if CM ⊆ DM. We say M satisfies a
terminology Φ and writeM |= Φ ifM |= ϕ for every inclusion
axiom ϕ ∈ Φ. If M |= Φ, then M is a model of Φ. We say
Φ1 implies Φ2 and write Φ1 |= Φ2 if every model of Φ1 is
also a model of Φ2.

We will use the following abbreviations.
– > = Ct¬C, where C is an arbitrary concept and ⊥ = ¬>;
– C ≡ D for the two inclusion axioms C v D and D v C;
– ∃=nr.C for the concept ∃≤nr.C u ¬∃≤n−1r.C;
– ∃≥nr.C for the concept ¬∃≤n−1r.C;
– func(f) for the inclusion axiom > v ∃≤1f.>.
– ∃r for the concept ∃r.>; similarly for ∃≤nr, ∃≥nr, ∃=nr;

Note that >M = M and ⊥M = ∅ for any structureM with
universe M . For a terminology Φ, we denote by |Φ| the length
of Φ as a string.

Throughout the paper will be use the notation [k] =
{1, . . . , k}, for a k ∈ N, to denote the interval of numbers
from 1 to k.

B. ALCQIO with forests

Definition 3 (Class F(s1, . . . , sk)). Let s1, . . . , sk be roles in
NR. The class F(s1, . . . , sk) is the class of finite structures M
where, for each i ∈ [k], the predicate si is interpreted as a
forest (that is, a directed acyclic graph such that the indegree
of each non-root node is 1).

When k is clear from the context, we write F instead of
F(s1, . . . , sk).

We study the satisfiability problem of ALCQIO in the
class F(s1, . . . , sk), i.e. the problem of whether, for a given
terminology Φ, there exists a structure M ∈ F(s1, . . . , sk)
such that M |= Φ.

3

Example 1 (Trees). Given a structure M ∈ F(s1, . . . , sk)
with universe M , consider the graph DMi =

〈
M, sMi

〉
. It

is guaranteed that sMi is a forest. There is a ALCQIO
terminology Φtree

i which axiomatizes that DMi is a tree. Φtree
i

uses a nominal oi for the root of DMi :

Φtree
i = {∃s−i ≡ ¬oi}

Since an element e ∈M has an incoming si edge iff e is not
a root in the forest DMi , Φtree

i guarantees that DMi is a tree
by guaranteeing that there is exactly one root in DMi , namely
oMi .

Example 2 (Successor relations). Given a structure M ∈
F(s1, . . . , sk) with universe M , consider the graph DMi =〈
M, sMi

〉
. A successor relation is a tree in which every vertex

has outdegree at most 1. Hence, the following terminology
axiomatizes that DMi is a successor relation:

Φsucc
i = {∃s−i ≡ ¬oi, > v ∃

≤1si}

Example 3 (Binary trees and d-ary trees). We show how to
axiomatize a binary tree using si and new concepts Li and
Ri. We extend Φtree

i with the three axioms

α1
i = Li tRi ≡ ¬oi
α2
i = Li uRi ≡ ⊥
α3
i = > v

(
∃≤1si.Li

)
u
(
∃≤1si.Ri

)
Intuitively, LMi and RMi encode the elements of M which are
left respectively right children in DMi . α1

i and α2
i guarantee

that LMi and RMi partition M\{oMi }. α3
i guarantees that

every node has at most one child in LMi and at most one child
in RMi .

We can now use si, Li, and Ri as a binary tree. For example,
the inclusion axiom ∃si.Li v ∃si.Ri expresses that every node
that has a left child also has a right child.

The case of d-ary trees proceeds similarly using d new
concepts which partition M\oMi .

Example 4 (Multiple successor relations). Since each termi-
nology Φsucc

i guarantees that si is interpreted as a successor
relation over the structures of F, the terminology

ψ =

k⋃
i=1

Φsucc
i

guarantees simultaneously for all i ∈ [k] that si is interpreted
as a successor relation. Hence, we can axiomatize an a
priori unbounded number of successor relations over the same
universe. Similarly, we can axiomatize an unbounded number
of trees or binary trees.

C. ALCQIO and first order logic

ALCQIO has a fairly standard reduction to the two-variable
fragment of first order logic with counting C2 (see e.g. [7]).
In this section we give an equivalent definition of ALCQIO
directly as a fragment L of C2. This section appears for clarity

of exposition only and is not required for the remainder of the
paper.

It is convenient to abuse notation slightly in this section
as follows. Unlike the convention in description logics that
nominals are concepts whose interpretation is of size 1, which
we used to define the semantics of ALCQIO, in this section
only we treat individuals o ∈ Ni as constant symbols. Let τ
be the vocabulary τ = NR ∪ NC ∪ Ni, where each r ∈ NR is
a binary relation symbol, each C ∈ NC is a unary relation
symbol, and each o ∈ Ni is a constant symbol.

Definition 4 (L). First we define two sets of formulae Lz ,
z ∈ {x, y}, such that Lz contains only formulae with one free
variable z. Let z̄ ∈ {x, y} such that z 6= z̄.

• For every C ∈ NC, C(z) belongs to Lz;
• For every o ∈ Ni, z ≈ o belongs to Lz;
• For every ϕz, ψz ∈ Lz , ¬ϕz, ϕz ∧ ψz, ϕz ∨ ψz belong to
Lz;

• For every ϕz̄ ∈ Lz̄ , r ∈ NR, and n ∈ N,

∃z̄.r(z, z̄) ∧ ϕz̄, ∃≤nz̄.r(z, z̄) ∧ ϕz̄
∃z̄.r(z̄, z) ∧ ϕz̄, ∃≤nz̄.r(z̄, z) ∧ ϕz̄

belong to Lz .

L is the set of sentences ∀x(ϕx → ψx) where ϕx, ψx ∈ Lx.

Note that for every ϕz ∈ Lz , the formula obtained by
switching between x and y in ϕz belongs to Lz̄ .

Lemma 1. There are functions T : ALCQIO → L and
S : L → ALCQIO such that:

(i) For every ALCQIO inclusion ϕ, ϕ and T(ϕ) agree on
the truth value of all τ -structures.

(ii) For every ϕ ∈ L, ϕ and S(ϕ) agree on the truth value
of all τ -structures.

(iii) T and S are inverse functions.

Below we give the translation functions T and S.

Definition 5 (T). We define T : ALCQIO → L as follows:
For z ∈ {x, y}, we set

Tz(C) = C(z)
Tz(o) = z ≈ o
Tz(C uD) = Tz(C) ∧ Tz(D)
Tz(C tD) = Tz(C) ∨ Tz(D)
Tz(¬C) = ¬Tz(C)
Tz(∃r.C) = ∃z̄.r(z, z̄) ∧ Tz̄(C)
Tz(∃r−.C) = ∃z̄.r(z̄, z) ∧ Tz̄(C)
Tz(∃≤nr.C) = ∃≤nz̄.r(z, z̄) ∧ Tz̄(C)
Tz(∃≤nr−.C) = ∃≤nz̄.r(z̄, z) ∧ Tz̄(C)

and define

T(C v D) = ∀x.Tx(C)→ Tx(D).

Definition 6 (S). We define S : L → ALCQIO as follows:

4

For z ∈ {x, y}, we set

S(C(z)) = C
S(z ≈ o) = o
S(ϕz ∧ ψz) = S(ϕz) uS(ψz)
S(ϕz ∨ ψz) = S(ϕz) tS(ψz)
S(¬ϕz) = ¬S(ϕz)
S(∃z̄.r(z, z̄) ∧ ϕz̄) = ∃r.S(ϕz̄)
S(∃≤nz̄.r(z, z̄) ∧ ϕz̄) = ∃≤nr.S(ϕz̄)
S(∃z̄.r(z̄, z) ∧ ϕz̄) = ∃r−.S(ϕz̄)
S(∃≤nz̄.r(z̄, z) ∧ ϕz̄) = ∃≤nr.S(ϕz̄)

and define

S(∀x(ϕx → ψx)) = S(ϕx) v S(ψx).

III. DECISION PROCEDURES FOR ALCQIO WITH FORESTS

In this section we prove the existence a NEXPTIME decision
procedure for finite satisfiability of ALCQIO terminologies
with forests:

Theorem 1. Finite satisfiability of ALCQIO terminologies
over F(s1, . . . , sk) is NEXPTIME-complete.

We first outline the proof of Theorem 1. The proof proceeds
by reduction from finite satisfiability of ALCQIO terminolo-
gies over F to finite satisfiability of ALCQIO terminologies
over arbitrary finite structures.

Let Φ be a ALCQIO terminology for which we want to
compute whether it is satisfiable by a structure in F. We will
compute a ALCQIO terminology Ψ such that Ψ is satisfiable
by a finite structure iff Φ is satisfiable by a structure in F.
We call a finite model M of Φ standard, if M ∈ F, and
non-standard, otherwise. A naive approach would be to set
Ψ to be the union of Φ and a new terminology ΨF such that
ΨF is satisfied by all the structures of F(s1, . . . , sk), and is
not satisfied by any other finite structure. However, being a
forest is not expressible in ALCQIO, so there is no such
terminology ΨF in ALCQIO. Instead, we will augment Φ to
a terminology Ψ = ΨΦ such that (1) Φ and Ψ agree on all the
structures of F, and (2) whenever a non-standard model of Ψ
exists, so does a standard model.

We use the following definition: A structure is quasi-
standard, if every element of the universe has at most one
incoming si-edge, for every i ∈ [k]. Quasi-standardness almost
expresses that a relation si is a forest, except that elements
might be reachable from a si-cycle instead of a si-root. We
show that being quasi-standard is expressible in ALCQIO.

Under certain conditions, it is possible to repeatedly apply
an operation B, which turns non-standard but quasi-standard
models into standard models, by eliminating the said cycles.
The existence of a non-standard but quasi-standard model
then implies the existence of a standard model. A sufficient
condition under which quasi-standard models can be turned
to standard models using B is that the existence of so-called
useful labelings. Useful labelings mimic an order relation on
the types of the elements in the universe and guarantee that
applying the operation B makes progress towards a standard

model. We show that having useful labelings is expressible in
ALCQIO.

As a result we get a decision procedure for satisfiability
of Φ, which amounts to adding to Φ the requirements that
models are quasi-standard and have useful labelings. The
resulting ALCQIO terminology Ψ is finitely satisfiable iff Φ
is satisfiable over F(s1, . . . , sk). A decision procedure which
is tight in terms of complexity is given in Section III-D. In
Section III-C we give a simpler but complexity-wise suboptimal
decision procedure. The decision procedure in Section III-D
follows the same plan, and differs only in the construction
and size of the terminology expressing the existence of useful
labelings.

A. Types and the operation B

Let Φ be a terminology. We write C ∈ Φ if there exists
an inclusion axiom ϕ ∈ Φ such that C appears in ϕ as a
sub-concept.

Definition 7 (B). Let r ∈ NR, let b0, b1 ∈ M , and t =
(b0, b1, r). Let MtB be the structure such that M and MtB

have the same universe M and the same interpretations of
every atomic concept, nominal and atomic role except for r,
and rMtB = rM \ {(a, bi) | (a, bi) ∈ r and i ∈ {0, 1}}∪
{(a, b1−i) | (a, bi) ∈ r and i ∈ {0, 1}}.

For the main property of B we need the notion of types:

Definition 8 (Types). We define TYPESΦ = 2{C|C∈Φ} as the
powerset over the set of concepts appearing in Φ. Let M be a
structure M and u ∈M . We denote by tpΦ

M(u) ∈ TYPESΦ

the set of concepts C ∈ Φ such that u ∈ CM. We call tpΦ
M(u)

the type of u. We sometimes omit the subscript M when it is
clear from the context.

We note that the size of TYPESΦ is at most 2|Φ|.

Lemma 2. Let M1 and M2 be two structures with the same
universe M . If for all u ∈ M we have tpΦ

M1
(u) = tp

Φ
M2

(u),
then M1 and M2 agree on Φ.

Proof: Since Φ is a set of inclusion axioms, it suffices to
showM1 |= C v D iffM2 |= C v D for all of the inclusion
assertions C v D ∈ Φ. Let C v D be such an inclusion
assertion. For u ∈M , u ∈ CM1 iff u ∈ CM2 , and u ∈ DM1

iff u ∈ DM2 . Hence, CM1 = CM2 and DM1 = DM2 ,
implying M1 |= C v D iff M2 |= C v D.

The crucial property of B is that M and MtB agree on Φ
if b0 and b1 have the same type:

Lemma 3. Let r ∈ NR, let b0, b1 ∈ M such that tpΦ
M(b0) =

tp
Φ
M(b1), and t = (b0, b1, r).

(1) CM = CMtB for all C ∈ Φ.
Consequently:
(2) For every u ∈M , tpΦ

M(u) = tp
Φ
MtB

(u).

Proof:
The proof of (1) proceeds by induction on the construction

of the concepts, showing that CM = CMtB for all C ∈ Φ.
For ease of notation we write M1 =M and M2 =MtB.

5

1) If A ∈ NC, then AM1 = AM2 since none of the atomic
concepts change between M1 and M2.

2) If o ∈ Ni, then similarly, there is no change.
3) If C1 and C2 are concepts satisfying the induction hypoth-

esis, then C1uC2, C1tC2 and ¬C1 also satisfy the claim,
e.g., (C1 u C2)M1 = CM1

1 ∩ CM1
2 = CM2

1 ∩ CM2
2 =

(C1 u C2)M2 .
4) For a role t, a concept C and a non-negative integer

n, we consider the concepts ∃t.C, ∃≤nt.C, ∃t−.C and
∃≤nt−.C:

a) If t 6= r, then
(
∃t.CM1

)
= (∃t.C)

M2 since tM1 =
tM2 and by induction CM1 = CM2 . Similarly, this
holds for ∃≤nt.C, ∃t−.C and ∃≤nt−.C.

b) If t = r:

The concepts ∃r−.C and ∃≤nr−.C: For every u ∈M ,
i = 1, 2, we define

Qi(u) =
{
v | (v, u) ∈ rMi and v ∈ CMi

}
We fix some u ∈ M \ {b0, b1}. We have v ∈
Q1(u) iff v ∈ Q2(u) using that (v, u) ∈ (r)

M1 iff
(v, u) ∈ (r)

M2 and that by induction CM1 = CM2 .
Thus, Q1(u) = Q2(u). Therefore, u ∈ (∃r−.C)M1

iff u ∈ (∃r−.C)M2 and u ∈ (∃≤nr−.C)M1 iff
u ∈ (∃≤nr−.C)M2 .
We now consider u ∈ {b0, b1}: We have v ∈ Q1(bi)
iff v ∈ Q2(b1−i) using that (v, bi) ∈ (r)

M1 iff
(v, b1−i) ∈ (r)

M2 and that by induction CM1 = CM2 .
Thus, Q1(bi) = Q2(b1−i) for i ∈ {0, 1}. Because
of tpΦ

M1
(b0) = tp

Φ
M1

(b1) we get bi ∈ (∃r−.C)M1

iff bi ∈ (∃r−.C)M2 and bi ∈ (∃≤nr−.C)M1 iff
bi ∈ (∃≤nr−.C)M2 for i ∈ {0, 1}.
In summary, (∃r−.C)M1 = (∃r−.C)M2 and
(∃≤nr−.C)M1 = (∃≤nr−.C)M2 .

The concepts ∃r.C and ∃≤nr.C: For every u ∈ M ,
i = 1, 2, we define

Qi(u) =
{
v | (u, v) ∈ rMi and v ∈ CMi

}
We fix some u ∈M . For every v /∈ {b0, b1} we have
v ∈ Q1(u) iff v ∈ Q2(u), using that (u, v) ∈ (r)

M1

iff (u, v) ∈ (r)
M2 and that by induction CM1 = CM2 .

We now consider v ∈ {b0, b1}: We have bi ∈ Q1(u)
iff (u, bi) ∈ rM1 and bi ∈ CM1 iff (u, bi) ∈ rM1

and b1−i ∈ CM1 (because tpΦ
M1

(b0) = tp
Φ
M1

(b1)) iff
(u, b1−i) ∈ rM2 and b1−i ∈ CM1 (by the definition
of the operation B) iff (u, b1−i) ∈ rM2 and b1−i ∈
CM2 (by induction assumption) iff b1−i ∈ Q2(u). In
summary, |Q1(u)| = |Q2(u)| for all u ∈ M . Thus,
(∃r.C)M1 = (∃r.C)M2 and ∃≤nr.C)M1 = u ∈
(∃≤nr.C)M2 .

As a direct conclusion from (1), we get (2).

B. Quasi-standard structures and useful labelings
Here we define quasi-standard structures and useful labelings

precisely and prove that they capture satisfiability in F
(Lemma 5).

Definition 9 (i-Quasi-standard structure). Let i ∈ [k] and let
M be a structure with universe M . We define the directed
graph DMi =

〈
M, sMi

〉
. We say M is i-quasi-standard if

every element u ∈ M has at most one incoming edge in
DMi . Moreover, we define the set of roots RMi = {u ∈ M |
u has no incoming edge in DMi }.

For an i-quasi-standard structure M, DMi is the disjoint
union of trees and tree-like cycles. A tree-like cycle is a directed
graph which can be obtained from a directed cycle by attaching
directed trees to the cycle’s vertices by the trees’ roots. Figure
III.1 shows an example of DMi for an i-quasi-standard structure.
It is the disjoint union of a tree and a tree-like cycle. The vertex
filled with north east lines is the root of the tree. The gray
vertices are the vertices of the unique cycle in the tree-like
cycle. Whether a structure is i-quasi-standard is independent
of the interpretation of any symbol other than si.

Fig. III.1.

Observe that if M is i-quasi-standard, then DMi is a forest
iff M satisfies additionally that every u ∈ M is reachable
from RMi .

Definition 10 (Quasi-standard structure). A structure M is
quasi-standard if it is i-quasi-standard for every i ∈ [k].

The i-useful labelings we define next mimic linear orderings
on the types of the elements in M that can be obtained from a
Depth-First Search (DFS) run on DMi starting from elements
in RMi .

Definition 11 (Useful Labeling). Let M be a structure with
universe M . Let 1 ≤ i ≤ k. A function fi : M → [|TYPESΦ|]
is an i-useful labeling for M if the following two conditions
hold:
(a) fi(u) = fi(v) implies tpΦ

M(u) = tp
Φ
M(v) for all u, v ∈M ,

and
(b) for every element u ∈M , either u ∈ RMi , or there exist

elements v, w ∈M such that fi(u) = fi(v), fi(w) < fi(v)
and the graph DMi has an edge (w, v).

Lemma 4. Let M∈ F(s1, . . . , sk) be a structure. Then, there
are i-useful labelings fi for M, for every i ∈ [k].

Proof: DMi is a forest for every i ∈ [k] because of M∈
F(s1, . . . , sk). We fix some i ∈ [k]. We explain how to build
an i-useful labeling for M by executing a Depth-First Search
(DFS) from the elements in RMi . If an element u is visited
during the DFS, u is assigned a number according to its type

6

tp
Φ
M(u). If the type tpΦ

M(u) has not appeared during the DFS
yet, u is assigned the smallest number in [|TYPESΦ|] that has
not been used so far; if the type has already appeared, u is
assigned the number associated with this type. Let fi be the
labeling resulting from this process. We show that fi is an
i-useful labeling for M.

By construction fi is a function from M to [|TYPESΦ|].
Moreover, for all u, v ∈ M is holds that fi(u) = fi(v) iff
tp

Φ
M(u) = tp

Φ
M(v) (*). It remains to show that for every

element u ∈ M , either u ∈ RMi , or there exist elements
v, w ∈ M such that fi(u) = fi(v), fi(w) < fi(v) and the
graph DMi has an edge (w, v): Let u ∈M \RMi . We proceed
by a case distinction: (1) The type tpΦ

M(u) of u has not been
seen during the DFS before u is visited. Because of u 6∈ RMi
there is a predecessor w ∈M of u in DMi through which u
has been reached during the DFS. Because w has been reached
before u and because u is assigned the smallest number in
[|TYPESΦ|] that has not been used so far, we have fi(w) <

fi(u). (2) The type tpΦ
M(u) of u has already been seen during

the DFS before u is visited. Let v ∈M be the first node with
type tpΦ

M(v) = tp
Φ
M(u) to be visited during the DFS. By case

(1) there is a predecessor w of v in DMi with fi(w) < fi(v).
By (*) we have fi(u) = fi(v). Thus, the claim follows.

This gives direction ⇒ of the following lemma:

Lemma 5. Let Φ be a terminology. Φ is satisfiable over
F(s1, . . . , sk) iff there is a quasi-standard structure M with
M |= Φ and there are i-useful labelings for every i ∈ [k].

Next, we introduce definitions that will be needed for the
proof of direction ⇐.

Let D = (V,E) be a directed graph. ReachD(X) = Y
denotes the set Y ⊆ V of elements that are reachable from
X ⊆ V in D.

Definition 12 (Base and Values). Let f be an i-useful
labeling for M. We call a set X ⊆ M a base for DMi if
ReachDM

i
(X) = M . We call a member x of a base X a base

element. We define the value

valf (X) =
∑

x∈X\RM
i

f(x)

of a base X to be the sum over the label values of the base
elements of X that are not in RMi . We define the value

valf (DMi) = min{valf (X) | X is a base for DMi }

of the graph DMi to be the minimum of the values of its bases.
We omit the subscript f in val(X) and val(DMi) when f is
clear from the context.

Intuitively, values valf (DMi) capture how close the graph
DMi is to being a forest:

Lemma 6. Let f be an i-useful labeling forM. valf (DMi) =
0 iff DMi is a forest.

Proof: Assume DMi is a forest. Then RMi is a base for
DMi . Thus val(RMi) = 0, which implies val(DMi) = 0.

Conversely assume val(DMi) = 0. Then there is a base
X for DMi with val(X) = 0. Because f maps all nodes to
positive values, we must have X ⊆ RMi . Thus, every node in
DMi is reachable from RMi .

Lemma 7. Let f be an i-useful labeling for M. If X is a
base, then RMi ⊆ X .

Proof: If v is a root, then it has no incoming edge in DMi .
Hence, for v to be reachable from X , v must belong to X .

The following lemma states a property of bases in quasi-
standard structures:

Lemma 8. Let M be a structure that is i-quasi-standard. Let
f be an i-useful labeling for M. Let X be a base for DMi
with valf (X) = valf (DMi). Then every base element x ∈ X
either belongs to RMi or to a cycle of DMi .

Proof: We fix some base element x ∈ X . Let us assume
that x does not belong to RMi . Let x0 be the predecessor of x
in DMi . There exists y ∈ X such that x0 is reachable from y
in DMi . Hence, x is reachable from y. Assume x 6= y. Then,
X ′ = X\{x} would be a base of DMi with val(X ′) < val(X),
contradiction. Thus, x = y and x and x0 are reachable from
each other in DMi , i.e. x belongs to a cycle.

The next lemma, Lemma 9, shows that B can be applied to
DMi for some i ∈ [k] with valfi(D

M
i) > 0 such that val(DMi)

decreases.

Lemma 9. LetM be a quasi-standard structure withM |= Φ
such that there are `-useful labelings for every ` ∈ [k]. Let
i ∈ [k]. If valfi(D

M
i) > 0, then there is a tuple t = (b0, b1, si)

such that

1) For all ` 6= i, DM` = DMtB

` .
2) For all u ∈M , tpΦ

M(u) = tp
Φ
MtB

(u).
3) MtB |= Φ.
4) valfi(D

M
i) > valfi(D

MtB
i).

5) valf`(D
M
`) = valf`(D

MtB

`) for all ` 6= i.
6) MtB is quasi-standard.
7) f` is an `-useful labeling for MtB for all ` ∈ [k].

First we give an intuition on the proof of Lemma 9. The
full proof appears below. We fix some base X for DMi with
val(X) = val(DMi) > 0. We choose a base element b1 ∈
X \RMi . Because fi is an i-useful labeling for M there are
a0, b0 ∈ M such that fi(b0) = fi(b1), fi(a0) < fi(b0) and
the graph DMi has an edge (a0, b0). By Lemma 8, b1 belongs
to a cycle in DMi . Let a1 denote the predecessor of b1 on
this cycle. a0 and b1 cannot belong to the same cycle in DMi
by the minimality of X . Figure III.2 shows the result (II)
of applying B on (I). The black vertex belongs to the base
X , dotted arrows denote paths in DMi , and solid arrows are
edges in DMi . Applying B increases the reachability of the
structure: all vertices in (II) are now reachable from the black
vertex. However, in the special case where the black vertex
and b1 coincide, a new cycle has been created. In both cases
we have that X ′ = X \ {b1} ∪ {a0} is a base for DMtB

i with
val(X ′) < val(X) and that DMtB

i remains quasi-standard.

7

Fig. III.2.

a0

b0

a1

b1

(I)

a0

b0

a1

b1

(II)

Proof of Lemma 9: We assume val(DMi) > 0. Let X
be a base for DMi such that val(X) = val(DMi). Because of
val(DMi) > 0, there is a base element b1 ∈ X with b1 6∈ RMi .
By the i-usefulness of fi, there are a0, b0 ∈ M such that
fi(b0) = fi(b1), fi(a0) < fi(b0) and the graph DMi has an
edge (a0, b0). We set t = (b0, b1, si). For all ` ∈ [k] we define
the shorthand DB

` = DMtB

` .
By Lemma 8 b1 belongs to some cycle C in DMi . We

denote the predecessor of b1 in C by a1. C contains a path
πb1,a1 in DMi from b1 to a1 that does not go through (a1, b1).
We note that πb1,a1 does not contain b0; otherwise X ′ =
X \ {b1} ∪ {a0} would be a basis for DMi with val(DMi) =
val(X) > val(X ′), contradiction. Hence πb1,a1 does not go
through (a0, b0). Consequently, πb1,a1 exists in DB

i .
1) We have DM` = DB

` for all ` 6= i because only the
relation si is changed by the operation B applied with
t = (b0, b1, si).

2) By Lemma 3, tpΦ
M(u) = tp

Φ
MtB

(u) for all u ∈M .
3) By 2) and Lemma 2 M and MtB agree on Φ.
4) We show that X ′ = X \ {b1} ∪ {a0} is a base for

DB
i . We have val(X) > val(X ′) by fi(b0) = fi(b1)

and fi(a0) < fi(b0). This is sufficient to establish
val(DMi) = val(X) > val(X ′) ≥ val(DB

i).
We consider some node v ∈ DMi . Because X is a basis,
v is reachable in DMi from some u ∈ X by some path
π. We will prove that v is reachable in DB

i from some
u′ ∈ X ′. We introduce Z = {a0, b0, a1, b1} as a shorthand
and proceed by a case distinction.
Case 1: π does not contain any node from Z (in particular
u 6= b1). Then, π also witnesses that v is reachable from
u ∈ X ′ by π in DB

i .
Case 2: π contains a node from Z. Then there is a
decomposition of π into two paths π1 and π2, i.e.,
π = π1π2, such that π2 starts with a node z ∈ Z but
otherwise does not visit Z. We construct a path π0 from a0

to z using a suitable combination of the edge (a0, b1), the
path πb1,a1 and the edge (a1, b0). Then the composition
π′ = π0π2 witnesses that v is reachable from a0 ∈ X ′ by
π′ in DB

i .
5) Follows directly from 1) and 2).
6) Follows directly from 1) for every ` ∈ [k] with i 6= `. For

i = ` this follows because by the definition of MtB all
nodes in DMi and DB

i have the same number of incoming
si edges.

7) Follows directly from 1) and 2) for every ` ∈ [k] with
i 6= `. Because fi is an i-useful labeling for DMi we

have that (a) fi(u) = fi(v) implies tpΦ
M(u) = tp

Φ
M(v)

for all u, v ∈M and (b) for every element u ∈M , either
u ∈ RMi , or there exist elements v, w ∈ M such that
fi(u) = fi(v), fi(w) < fi(v) and the graph DMi has an
edge (w, v). We have that tpM(u) = tp

Φ
MtB

(u) for all
u ∈ M by 2). Because the operation B changed only
the edges (a0, b0) and (a1, b1) this almost shows that
fi is an i-useful labeling for DB

i . It remains to argue
that for every element u with fi(u) = fi(b0) (= fi(b1))
there exist elements v, w ∈ M such that fi(u) = fi(v),
fi(w) < fi(v) and the graph DB

i has an edge (w, v). This
fact is witnessed by the edge (a0, b1).

Finally, we show that the repeated application of B on a
quasi-standard structure with useful labelings leads eventually
to a structure satisfying Φ:

Proof of Lemma 5: By Lemma 4, M ∈ F(s1, . . . , sk)
implies that there are i-useful labelings fi for M, for every
i ∈ [k].

For the other direction, there is a quasi-standard structureM
with i-useful labelings for every i ∈ [k]. There is a sequence
M =M1, . . . ,Mp =M′ of structures such that each Mj+1

is obtained from Mj by one application of B and such that
val(DM

′

i) = 0 for all i. There is such a sequence because

1) the premise of Lemma 9 holds for M,
2) for all j, if the premise of Lemma 9 holds for Mj and

φ, then the premise of Lemma 9 holds for Mj+1, and
3) the tuple (val(DM1), · · · , val(DMk)) is decreasing with

regard to the component-wise ordering of k-tuples over
N, so eventually (0, . . . , 0) must be reached.

By Lemma 6, DM
′

i is a forest, for all i.

C. From satisfiability over F to plain satisfiability

Here we show how to express the propert of being quasi-
standard and the existence of useful labelings in ALCQIO
and prove that ALCQIO over F is decidable. Expressing that
a structure is quasi-standard is easy:

Lemma 10. There exists a ALCQIO-terminology quasi such
that M |= quasi iff M is quasi-standard.

Proof: Let

quasi = {func(s−i) : i ∈ [k]} .

The axiom func(s−i) says that s−i is a partial function, i.e.
that |{e′ : (e′, e) ∈ sMi }| ≤ 1 for every e ∈ M . Hence, the
terminology quasi defines the property of being quasi-standard.

Next we define a set of structures ORDexp(Φ) that represent
models of Φ and at the same time also contain useful labelings.
After this definition we will show that ORDexp(Φ) can be
defined inside the logic ALCQIO.

Definition 13. Let Φ be a ALCQIO terminology. Let q =
|TYPESΦ|.

8

Let f1, . . . , fk, ord be fresh atomic roles, M be a fresh
atomic concept, and o1, . . . , oq be fresh nominals. Let N be a
structure with universe N .

We denote the substructure of N with universe MN by M.
We denote the set N \MN by ON . The structure N belongs
to ORDexp(Φ) if the following conditions hold:

1) M satisfies Φ.
2) N is partitioned into MN and ON = {oN1 , . . . , oNq }.
3) We have that (oNj1 , o

N
j2

) ∈ ordN iff j1 < j2.
4) fNi is a function from MN to ON , for every i ∈ [k].
5) fNi is an i-useful labeling for M, using ON for the

natural numbers [q] and ord for the order on the natural
numbers in Definition 11, for every i ∈ [k].

Lemma 11. ORDexp(Φ) is non-empty iff there is a modelM
of Φ with i-useful labelings for M for every i ∈ [k].

Proof: Let M be a model of Φ with i-useful labelings fi
for every i ∈ [k]. We define a model N whose universe N is
the disjoint union of the universe of M and [q] by
• MN is the universe of M,
• oNj := j,
• ordN = {(j1, j2) | 1 ≤ j1 < j2 ≤ q},
• fNi := fi, and
• CN = CM for all C ∈ Φ.

Clearly, N satisfies properties 1,2, 3, 4 and 5 of Definition 13.
Let N ∈ ORDexp(Φ). LetM be the substructure of N with

universe MN . By property 1, M satisfies Φ. By property 2,
ON = {oN1 , . . . , oNq }. By property 3, (oNj1 , o

N
j2

) ∈ ordN iff
j1 < j2. Thus (ON , ordN) is isomorphic to ([q],≤). By
property 4, fNi is a function from MN to ON , for every
i ∈ [k]. By property 5, fNi is an i-useful labeling forM, using
ON for the natural numbers [q] and ordN for the order on the
natural numbers in Definition 11, for every i ∈ [k]. Because
(ON , ordN) is isomorphic to ([q],≤), the last property implies
that fNi is isomorphic to an i-useful labeling, for every i ∈ [k].

Lemma 12. For every ALCQIO terminology Φ there exists
a terminology ext(Φ) such that ext(Φ) defines ORDexp(Φ).

Proof: We set ext(Φ) = Θ1 ∪Θ2 ∪Θ3 ∪Θ4 ∪Θ5. ΘX

defines the property X in Definition 13. Θ5 is the union of
Θ5a and Θ5b following (a) and (b) in Definition 11.
• For every atomic concept A, let g(A) = A u M . For

every concept C, g(C) is obtained by replacing its sub-
concepts with their g image and intersecting with M (e.g.,
g(C1tC2) = (g(C1)tg(C2))uM). Let g(Φ) be obtained
from Φ by replacing every inclusion axiom C v D ∈ Φ
by g(C) v g(D). Let M be the substructure of N with
universe MN by M. We have M |= Φ iff N |= g(Φ)
(this holds because we have CM = g(C)N for all C ∈ Φ).
Let Θ1 = g(Φ).

• Let
Θ2 = {¬M ≡ (o1 t · · · t oq)} .

Θ2 says that the universe of N \MN = {oN1 , . . . , oNq } =
ON .

• Let Θ3 be the terminology containing

oj1 v ∃ord .oj2 , if j1 < j2,

and
oj1 v ¬∃ord .oj2 , if j1 ≥ j2,

for 1 ≤ j1, j2 ≤ q. Θ3 says that

oNj1 ∈ {u | (u, o
N
j2) ∈ ordN }, if j1 < j2,

and

oNj1 6∈ {u | (u, o
N
j2) ∈ ordN }, if j1 ≥ j2,

i.e., (oNj1 , o
N
j2

) ∈ ordN iff j1 < j2.
• Let Θ4 be the terminology containing

func(fi), (∃fi ≡M) ,
(
∃f−i v ¬M

)
for i ∈ [k]. Θ4 says that fNi is a function from MN to
N \MN = ON .

• Let Θ5a be the terminology containing(
∃f−i .C

)
u
(
∃f−i .¬C

)
≡ ⊥

for all i ∈ [k] and C ∈ Φ. Θ5a says that if u, v ∈ MN
point to the same nominal (i.e., fNi (u) = fNi (v)), then
they must agree on every concept C ∈ Φ (i.e., u ∈ CN
iff v ∈ CN), thus tpΦ

M(u) = tp
Φ
M(v).

• Let Θ5b be the terminology containing

o` u ∃f−i ∃s
−
i v ∃ord

−.∃f−i .∃si.∃fi.o`
for all 1 ≤ ` ≤ q and i ∈ [k]. Θ5b says that if there is a
non-root element u ∈MN pointing to some nominal oN`
with fNi , then there is `′ < ` and w ∈ MN pointing to
oN`′ with fNi that has an si-successor v ∈MN pointing
to oN` with fNi .

Theorem 2. Let Φ be a terminology. There is a ALCQIO ter-
minology Ψ such that Φ is finitely satisfiable over F(s1, . . . , sk)
iff Ψ is finitely satisfiable.

Proof: The lemma follows from Lemmas 5, 10, 11, and
12 by setting Ψ = ext(Φ ∪ quasi).

D. A NEXPTIME decision procedure

The algorithm in Theorem 2 produces, for a terminology
Φ, a terminology whose size is exponential in the size of Φ.
Most of the constructions along the proof introduce only a
polynomial growth, except for the nominals in Definition 13
and the concepts that use them. We discuss here how to
effectively compute an ALCQIO-terminology of polynomial
size in Φ, which introduces the required linear ordering
of exponential length without use of the nominals. Since
satisfiability in ALCQIO is NEXPTIME-complete [19], [24],
so is satisfiability over F. We sketch the idea first.

In Section III-C a structure N ∈ ORDexp(Φ) with universe
N represents a model M of Φ with universe M and at the
same time also contains useful labelings for M. Here, we
define a set of structures ORDpoly(Φ) in a different though

9

similar way. Let y = |{C | C ∈ Φ}|. We introduce new
concepts P1, . . . , Py and use them to require that O := N\M
is of size 2y and that succ is interpreted as a successor relation
on O. We think of the reflexive-transitive closure of succN

as ordN from Definition 13, but we will not compute ordN

explicitly. For every binary word by · · · b1, there will be exactly
one element of O in

⋂
j:bj=1 P

N
j ∩

⋂
j:bj=0 ¬PNj . I.e., PMj

represents elements whose corresponding binary word has
bj = 1. succN will be induced by the usual successor relation
on binary words of length y: an element u ∈ O is the successor
of v ∈ O in succN iff there is ` such that (1) u and v agree on
PNj , for all j > `, (2) u ∈ PN` and v /∈ PN` and (3) v ∈ PNj
and u /∈ PNj , for all j < `. Similarly as in Definition 13,
the functions fNi need to be useful labelings, using O for the
numbers [2y] and (succN)∗ for the linear order on natural
numbers in Definition 11. Importantly, we do not define the
transitive closure

(
succN

)∗
explicitly. Instead, we exploit the

fact that by · · · b1 is less than dy · · · d1 iff there exists an index
j such that by · · · bj+1 = dy · · · dj+1, bj = 0 and dj = 1.

Definition 14. Let Φ be a ALCQIO terminology. Let y =
|{C | C ∈ Φ}|. Let succ, f1, . . . , fk be fresh atomic roles,
M,P1, . . . , Py, be fresh atomic concepts, ostart be a fresh
nominal.

Let N be a structure with universe N . We denote the
substructure of N with universe MN byM. We denote the set
N \MN by ON . We denote by eval : ON → [2y] the function
that maps an element u ∈ ON to eval(u) = 1+

∑
j:u∈PN

j
2j−1.

We denote by
(
succN

)∗
the reflexive-transitive closure of

succN . The structure N belongs to ORDpoly(Φ) if the
following conditions hold:

1) M satisfies Φ.
2) We have ON = {oNstart} ∪

⋃
1≤j≤y P

N
j .

3) eval is a bijective function, eval(oNstart) = 1, and
succ(u) = v iff eval(u) + 1 = eval(v) for all u, v ∈ ON .

4) fNi is a function from MN to ON , for every i ∈ [k].
5) fNi is an i-useful labeling for M, using ON for the

natural numbers [2y] and
(
succN

)∗
for the order on the

natural numbers in Definition 11, for every i ∈ [k].

Lemma 13. ORDpoly(Φ) is non-empty iff there is a model
M of Φ with i-useful labelings for M for every i ∈ [k].

The proof of the above lemma is similar to the proof of
Lemma 11.

Lemma 14. For every ALCQIO-terminology Φ there exists
ALCQIO-terminology ext(Φ), of size polynomial in y with
y = |{C | C ∈ Φ}|, such that ext(Φ) defines ORDpoly(Φ).

Proof: We set ext(Φ) = Θ1 ∪Θ2 ∪Θ3 ∪Θ4 ∪Θ5. ΘX

defines the property X in Definition 14. Θ5 is the union of
Θ5a and Θ5b following (a) and (b) in Definition 11.

For the sake of readability we introduce some additional
fresh concepts of the form Cj , C<j , C>j , and Ei,j beyond
the statement of the theorem. These concepts can be either
added as fresh concepts or used as abbreviations; the resulting
terminology ext(Φ) will be of polynomial size in both cases.

The terminologies Θ1, Θ4 and Θ5a are the same as in the
proof of Lemma 12.

Let
Θ2 = {¬M ≡ ostart t

⊔
1≤j≤y

Pj} .

Θ2 says that ON = N \MN = {oNstart} ∪
⋃

1≤j≤y P
N
j .

Let Θ3 = ζconsec∪ζfunc∪ζfirst∪ζlast. ζconsec axiomatizes
that the successor relation mimics the binary words: two words
by · · · b1 and dy · · · d1 are consecutive in succ iff there exists
an index j such that bj · · · b1 = 01j−1, dj · · · d1 = 10j−1, and
by · · · bj+1 = dy · · · dj+1. We introduce concepts of the form
Cj , C<j , C>j :

Cj ≡ ¬Pj u ∃succ.Pj
C<j ≡ ⊔

j0<j

(Pj0 u ∃succ.¬Pj0)

C>j ≡ ⊔
j<j0≤y

(Pj0 u ∃succ.Pj0t

¬Pj0 u ∃succ.¬Pj0)

ζconsec =
{
¬M u ¬ (P1 u · · · u Py) v⊔
1≤j≤y

C<j u Cj u C>j
}

The terminologies

ζfunc = {func(succ)}
ζfirst =

{
ostart ≡ (¬P1 u · · · u ¬Py)}

ζlast =
{
∃succ ≡ ¬M u ¬ (P1 u · · · u Py)

}
specify that succ is a (partial) function, that
(¬P1 u · · · u ¬Py)

N contains exactly the single element
oNstart , and that exactly the elements in ON \ (P1 u · · · uPy)N

have a successor. The above stated facts imply that for every
binary word by · · · b1 ∈ {0, 1}y there is exactly one element
of ON in (⊔j:bj=1

Pj u⊔j:bj=0
¬Pj)N .

We do not define the transitive closure
(
succN

)∗
explicitly.

Instead, we exploit the fact that by · · · b1 is less than dy · · · d1

iff there exists an index j such that by · · · bj+1 = dy · · · dj+1,
bj = 0 and dj = 1. We introduce concepts ENi,j , for every
i ∈ [k] and j ∈ [y], which will contain all of the elements
u ∈ M such that the types of u and (s−i)N (u) agree on
membership in PNy , . . . , PNj+1, u ∈ PNj and (s−i)N (u) /∈ PNj :

Ei,j ≡ (∃fi.Pj) u
(
∃s−i .∃fi.¬Pj

)
u

⊔
j+1≤j0≤y

(
(∃fi.Pj0) u

(
∃s−i .∃fi.Pj0

)
t

(∃fi.¬Pj0) u
(
∃s−i .∃fi.¬Pj0

))
In other words, ENi,j is the set of elements u ∈ M such that
the value of u is strictly larger than the value of (s−i)N (u).
Θ5b consists of the axioms

∃s−i v ∃fi.∃f
−
i .

 ⊔
j∈[y]

Ei,j

10

for every i ∈ [k]. These axioms guarantee that every non
root u element has an element v of the same type whose
si-predecessor has a strictly smaller type.

Theorem 1. (1) Let Φ be a terminology. There is a polynomial
time computable ALCQIO terminology Ψ such that Φ
is finitely satisfiable over F(s1, . . . , sk) iff Ψ is finitely
satisfiable.

(2) Finite satisfiability of ALCQIO terminologies over F is
NEXPTIME-complete.

Proof: (1) follows from Lemmas 5, 10, 13 and 14 by
setting Ψ = ext(Φ ∪ quasi).

Due to [24] and the fact that ALCQIO is a fragment of C2,
satisfiability of ALCQIO over arbitrary finite structures is in
NEXPTIME. Due to (1) we get that finite satisfiability over F
is also in NEXPTIME. Since finite satisfiability in ALCQIO
is NEXPTIME-hard [19, Theorem 5], and finite satisfiability
of ALCQIO is reducible to satisfiability over F (by setting
k = 0) and we get (2).

Note that the complexity result holds even under binary
encoding of numbers in counting quantifiers, since this is true
for the upper bound in [24].

IV. BOOLEAN TERMINOLOGIES

Theorem 1 extends to Boolean combinations of axioms. Let
ALCQIOb be the set of formulae obtained from ALCQIO
by applying the connectives ∨,∧,¬ any finite number of times.
The semantics of ALCQIO extends naturally to ALCQIOb.
Finite satisfiability in ALCQIOb can be reduced to finite
satisfiability in ALCQIO: 3

Lemma 15. Let Φ be a ALCQIOb formula. There exists a
ALCQIO terminology Ψ such that Φ is satisfiable iff Ψ is
satisfiable, and the size of Ψ is linear in the size of Φ. More
precisely:

1) If M is a structure satisfying Φ, then there exists a
structure N such that N |= Ψ, N has the same universe
as M, and N and agrees with M on the interpretation
of the symbols which occur in Φ.

2) If N is a structure satisfying Ψ, then N satisfies Φ.

Proof: We prove the claim by induction on the construction
of formulae in ALCQIOb. The claim we prove is slightly
augmented as follows:
• We assume without loss of generality that Φ is given in

negation normal form (NNF).
• We may assume without loss of generality that if Φ is

satisfiable, then it is satisfiable by a structure of size
strictly larger than 1.

Base.
– If Φ = C v D, then C v D is an ALCQIO inclusion.
– If Φ = ¬(C v D), then let o be a fresh nominal, and let

Ψ = {o v C, D v ¬o}. Ψ is a ALCQIO terminology.

3Note that the Scott normal form used in [24] for C2 can be used to reduce
ALCQIO terminologies to a conjunction of C2 formulae with quantifier
depth 2 in prenex normal form, but those conjuncts are not equivalent to
ALCQIO axioms.

Closure. Let Φ1,Φ2 ∈ ALCQIOb in NNF. Let Ψ1,Ψ2 be
the ALCQIO terminologies guaranteed for Φ1,Φ2.

1) Φ = Φ1 ∧ Φ2: Let Ψ = Ψ1 ∪Ψ2.
2) Φ = Φ1 ∨Φ2. Let r be a fresh role and o1, o2, oX , oY be

fresh nominals. Let Ψprep be the terminology

{(oX v ¬oY), (o1 v ¬o2), (oX t oY ≡ o1 t o2),
(∃r.oX ≡ >), (∃r.oY ≡ ⊥)} .

For a structure M with universe M , M |= Ψprep iff
a) oMX 6= oMY
b) oM1 6= oM2
c) Either oM1 = oMX and oM2 = oMY ,

or oM1 = oMY and oM2 = oMX .
d) Either (∃r.o1)M = M and (∃r.o2)M = ∅,

or (∃r.o1)M = ∅ and (∃r.o2)M = M .
For i ∈ {1, 2}, let Θi be the terminology obtained from
Ψi by replacing every axiom C v D with C u ∃r.oi v
Du∃r.oi. Let Ψ = Ψprep∪Θ1∪Θ2. The desired property
follows directly from the claim:
Claim 1. Let N be a structure such that N |= Ψprep.

a) If (∃r.o1)N = M , then N |= Ψ iff N |= Ψ1.
b) If (∃r.o1)N = ∅, then N |= Ψ iff N |= Ψ2.

Proof:
a) Assume (∃r.o1)N = M . Then (∃r.o2)N = ∅. For every

axiom C v D in Ψ1, (C u ∃r.o1)N = CN ∩M =
CN and (D u ∃r.o1)N = DN ∩M = DN . Hence,
N |= C v D iff N |= C u ∃r.o1 v D u ∃r.o1. Thus,
M |= Ψ1 iff N |= Θ1.
For every axiom C v D in Ψ2, (C u ∃r.o2)N =
CN ∩∅ = ∅ and (D u∃r.o2)N = DN ∩∅ = ∅. Hence,
N |= C u ∃r.o2 v D u ∃r.o2. Since Θ2 is a negation
free Boolean combination of axioms, N |= Θ2.

b) Assume (∃r.o1)N = ∅. Then (∃r.o2)N = M . This case
is symmetric to the previous case.

From Lemma 15 and Theorem 1 we get:

Theorem 3. Finite satisfiability of ALCQIOb formulae over
F(s1, . . . , sk) is NEXPTIME-complete.

Using the above we can characterize the complexity of finite
implication of ALCQIO terminologies over F. Let Φ1 and
Φ2 be ALCQIO terminologies. The ALCQIOb formula

Γimp =
∧
α∈Φ1

α ∧
∨
α∈Φ2

¬α

is satisfied by a structure M iff M |= Φ1 and M 6|= Φ2.
Hence, Γimp is not satisfiable over F iff Φ1 implies Φ2 over F.
This gives the coNEXPTIME upper bound for the implication
problem. For the lower bound note that the satisfiability problem
can be reduced to the implication problem: Φ is satisfiable iff
Φ does not imply the unsatisfiable terminology {o v ¬o}.

Theorem 4. Finite implication of ALCQIOb formulae over
F(s1, . . . , sk) is coNEXPTIME-complete.

11

V. CONCLUSION

The main result of this paper is an algorithm for the finite
satisfiability problem of the description logic ALCQIO with
an arbitrary number of relations which are guaranteed to be
interpreted as forests. ALCQIO with built-in forests is well-
suited for analysis of content of dynamic data structures in
programs [9]: forests and inverses are used for axiomatizing
data structures such as lists and binary trees, nominals are
used for program variables, counting quantifiers are used to
obtain the functionality of pointers, and Boolean terminologies
are needed for writing verification conditions. The weakest
precondition from [9], used to reason over program behaviour,
applies to ALCQIO with a small change eliminating Boolean
operations on roles (which can be done using the fact that
pointers are functions). A related verification problem of
whether constraints on graph databases expressed in description
logics are preserved under data evolution was studied in [1].

Since the memory of a program is finite, we were mainly
interested in the finite satisfiability problem. The proofs in this
paper do not immediately extend to the satisfiability problem
over arbitrary (i.e. not necessary finite) structures. Technically,
this is because it is no longer guaranteed that any quasi-standard
model can be transformed into a standard model in Lemma 5
by a finite number of applications of the operation B. This is
an interesting phenomenon, since it is often the case that the
satisfiability problem of logics is easier to approach and has a
more elegant solution than the finite satisfiability problem.

Content analysis requires expressive decidable logics whose
structures contain both binary relations which are restricted to
be tree-like and binary relations which are arbitrary. The logics
should be able to express rather strong properties of the tree-
like relations such as reachability. At the same time, since the
structures contain binary relations which might not be tree-like,
the expressivity of these logics on the whole structure should
be restricted in order to ensure decidability. We believe such
logics may have other applications, e.g. for modeling networks.
Developing such logics the result of the current paper is an
important open problem.

ACKNOWLEDGMENT

Tomer Kotek, Helmut Veith and Florian Zuleger were
supported by the Austrian National Research Network S11403-
N23 (RiSE) of the Austrian Science Fund (FWF) and by the
Vienna Science and Technology Fund (WWTF) through grants
PROSEED and ICT12-059. Mantas Šimkus was supported by
the FWF project P25518 and the WWTF project ICT12-15.

REFERENCES

[1] Shqiponja Ahmetaj, Diego Calvanese, Magdalena Ortiz, and Mantas
Šimkus. Managing change in graph-structured data using description
logics. In Proc. of AAAI 2014, pages 966–973. AAAI Press, 2014.

[2] Alessandro Artale, Diego Calvanese, Roman Kontchakov, Vladislav
Ryzhikov, and Michael Zakharyaschev. Reasoning over extended ER
models. In Proc. of ER 2007, volume 4801, pages 277–292, 2007.

[3] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F.
Patel-Schneider, editors. The Description Logic handbook: theory,
implementation, and applications. Cambridge University Press, 2003.

[4] Daniela Berardi, Diego Calvanese, and Giuseppe De Giacomo. Reasoning
on UML class diagrams. Artif. Intell., 168(1-2):70–118, 2005.

[5] Piero A. Bonatti, Carsten Lutz, Aniello Murano, and Moshe Y. Vardi.
The complexity of enriched µ-calculi. In Proc. of ICALP 2006, volume
4052 of LNCS, pages 540–551. Springer, 2006.

[6] Piero A. Bonatti and Adriano Peron. On the undecidability of logics
with converse, nominals, recursion and counting. Artificial Intelligence,
158(1):75–96, 2004.

[7] Alex Borgida. On the relative expressiveness of description logics and
predicate logics. Artif. Intell., 82(1-2):353–367, 1996.

[8] Diego Calvanese, Thomas Eiter, and Magdalena Ortiz. Regular path
queries in expressive description logics with nominals. In Proc. of IJCAI
2009, pages 714–720, 2009.

[9] Diego Calvanese, Tomer Kotek, Mantas Šimkus, Helmut Veith, and
Florian Zuleger. Shape and content - A database-theoretic perspective on
the analysis of data structures. In Proc. of iFM 2014, pages 3–17, 2014.

[10] Witold Charatonik and Piotr Witkowski. Two-variable logic with counting
and trees. In Proc. of LICS 2013, pages 73–82, 2013.

[11] Giuseppe De Giacomo and Maurizio Lenzerini. Concept language with
number restrictions and fixpoints, and its relationship with mu-calculus.
In Proc. of ECAI 1994, pages 411–415, 1994.

[12] Chan Le Duc, Myriam Lamolle, and Olivier Curé. A decision procedure
for SHOIQ with transitive closure of roles. In Proc. of ISWC 2013, pages
264–279, 2013.

[13] Diego Figueira. Satisfiability for two-variable logic with two successor
relations on finite linear orders. arXiv preprint arXiv:1204.2495, 2012.

[14] Erich Grädel, Martin Otto, and Eric Rosen. Two-variable logic with
counting is decidable. In Proc. of LICS 1997, pages 306–317. IEEE,
1997.

[15] Yevgeny Kazakov, Ulrike Sattler, and Evgeny Zolin. How many legs do
I have? Non-simple roles in number restrictions revisited. In Proc. of
LPAR 2007, pages 303–317. Springer, 2007.

[16] Emanuel Kieronski. Decidability issues for two-variable logics with
several linear orders. In Proc. of CSL 2011, pages 337–351. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2011.

[17] Emanuel Kieronski and Lidia Tendera. On finite satisfiability of two-
variable first-order logic with equivalence relations. In Proc. of LICS
2009, pages 123–132. IEEE, 2009.

[18] Tomer Kotek, Mantas Simkus, Helmut Veith, and Florian Zuleger.
Towards a description logic for program analysis: Extending ALCQIO
with reachability. In Informal Proceedings of the 27th International
Workshop on Description Logics, Vienna, Austria, July 17-20, 2014.,
pages 591–594, 2014.

[19] Carsten Lutz. An improved NExpTime-hardness result for
description logic ALC extended with inverse roles, nominals,
and counting. LTCS-Report 04-07, Chair for Automata Theory,
Institute for Theoretical Computer Science, Dresden University
of Technology, Dresden, Germany, 2005. Available online at
http://www.cs.man.ac.uk/ ezolin/dl/bib/Improved NExpTime hardness for ALCFIO (LTCS 04-
07).ps.zip.

[20] Amaldev Manuel. Two variables and two successors. In Proc. of MFCS
2010, pages 513–524. Springer, 2010.

[21] Martin Otto. Two variable first-order logic over ordered domains. The
Journal of Symbolic Logic, 66(02):685–702, 2001.

[22] W3C OWL Working Group. OWL 2 Web Ontology Language: Doc-
ument Overview. W3C Recommendation, 27.10.09. Available at
http://www.w3.org/TR/owl2-overview/.

[23] Leszek Pacholski, Wieslaw Szwast, and Lidia Tendera. Complexity of
two-variable logic with counting. In Proc. of LICS 1997, pages 318–327.
IEEE, 1997.

[24] Ian Pratt-Hartmann. Complexity of the two-variable fragment with
counting quantifiers. Journal of Logic, Language and Information,
14(3):369–395, 2005.

[25] Ian Pratt-Hartmann. Complexity of the guarded two-variable fragment
with counting quantifiers. Journal of Logic Computation, 17:133–155,
2007.

[26] Ian Pratt-Hartmann. Logics with counting and equivalence. In Proc. of
CSL-LICS 2014, pages 76:1–76:10. ACM, 2014.

[27] Klaus Schild. A correspondence theory for terminological logics:
Preliminary report. In Proc. of IJCAI 1991, pages 466–471, 1991.

[28] Klaus Schild. Terminological cycles and the propositional µ-calculus.
In Proc. of KR 1994, pages 509–520. Morgan Kaufmann, 1994.

12

[29] Lutz Schröder and Dirk Pattinson. How many toes do I have? Parthood
and number restrictions in description logics. In Proc. of KR 2008, pages
307–317, 2008.

[30] Thomas Schwentick and Thomas Zeume. Two-variable logic with two
order relations. Logical Methods in Computer Science, 8(1), 2012.

[31] Stephan Tobias. Complexity Results and Practical Algorithms for Logics
in Knowledge Representation. PhD thesis, RWTH Aachen, Germany,
2001.

13

