
17 3 20 2016



Expressiveness of Guarded Existential Rule Languages

Georg Gottlob
Department of Computer
Science and Oxford Man

Institute
University of Oxford, UK

georg.gottlob@cs.ox.ac.uk

Sebastian Rudolph
Institute of Artificial

Intelligence
Technische Universität

Dresden, Germany
sebastian.rudolph@tu-

dresden.de

Mantas Šimkus
Institute of Information

Systems
Vienna University of
Technology, Austria

simkus@dbai.tuwien.ac.at

ABSTRACT
The so-called existential rules have recently gained atten-
tion, mainly due to their adequate expressiveness for onto-
logical query answering. Several decidable fragments of such
rules have been introduced, employing restrictions such as
various forms of guardedness to ensure decidability. Some
of the more well-known languages in this arena are (weakly)
guarded and (weakly) frontier-guarded fragments of existen-
tial rules. In this paper, we explore their relative and abso-
lute expressiveness. In particular, we provide a new proof
that queries expressed via frontier-guarded and guarded rules
can be translated into plain Datalog queries. Since the con-
verse translations are impossible, we develop generalizations
of frontier-guarded and guarded rules to nearly frontier-
guarded and nearly guarded rules, respectively, which have
exactly the expressive power of Datalog. We further show
that weakly frontier-guarded rules can be translated into
weakly guarded rules, and thus, weakly frontier-guarded and
weakly guarded rules have exactly the same expressive power.
Such rules cannot be expressed in Datalog since their query
answering problem is ExpTime-complete in data complex-
ity. We strengthen this completeness result by proving that
on ordered databases with input negation available, weakly
guarded rules capture all queries computable in exponential
time. We then show that weakly guarded rules extended
with stratified negation are expressive enough to capture all
database queries decidable in exponential time, without any
assumptions on the input databases. Finally, we note that
the translations of this paper are, in general, exponential
in size, but lead to worst-case optimal algorithms for query
answering with the considered languages.

1. INTRODUCTION
Rule-based logical formalisms play a pivotal role in data-

bases and knowledge representation. They are used in data-
bases as expressive constraint and query languages, and in
knowledge representation for declarative problem solving via
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various forms of logic programming, and, more recently, to
represent and reason about ontological information.

Consequently, rule languages can be employed in at least
two different ways: as ontology languages and as query lan-
guages. In the ontological setting, a set of facts and rules
may be used to specify domain knowledge, in this way form-
ing a knowledge base. In this setting, we are interested in
answering user queries over a knowledge base, where queries
may be expressed in a standard query language such as con-
junctive queries. Alternatively, the rule part can be under-
stood as part of the specification of a query that is executed
over a plain database (such queries are sometimes called
ontology-mediated queries[12]).

Given the plethora of different rule (and thus querying)
languages, it is of utmost importance to understand and
determine their expressivity. Facing with the problem of
picking an adequate query language for some scenario, one
has to have a clear picture of which information needs the
languages at hand can express, which other query languages
they subsume and also if they allow to express all possible
queries whose answers can be computed at a certain cost.

To support this crucial considerations, database theory
has come up with appropriate notions to compare and char-
acterize query languages: relative and absolute expressive-
ness. Relative expressiveness considers if, given two query
languages, every query formulated in the first language can
be expressed by means of the second (and vice versa). Note
that two languages might be equally expressive and still dif-
fer significantly in terms of the size of expressions needed to
express the same query. Such succinctness differences im-
pact the combined complexity of the corresponding entail-
ment problem, whereas the data complexity (where only the
database is assumed to vary while the query is fixed) of two
equally expressive query languages must be the same. On
the other hand, two query languages with coinciding data
complexity do not necessarily have the same expressivity.
Hence it makes sense to identify the query languages with a
certain data complexity that have the maximal expressive-
ness. This leads us to absolute expressiveness, where expres-
sive power is measured in terms of complexity classes using
descriptive complexity theory [21]. A query language is said
to capture a complexity class C if it can express any query
that can be answered by a computation in C. Such a lan-
guage is guaranteed to semantically subsume all other query
languages with the same data complexity, and can therefore
be considered as the best value-for-money (i.e. expressiveness
for computation cost) choice in class C.



This paper provides an expressivity analysis for impor-
tant query languages based on the so-called existential rules,
which support value invention. They allow to reason about
objects whose identity is unknown yet whose existence is im-
plied by the specified knowledge. This basic form of infer-
ence with incomplete information also lies at the core of rea-
soning in ontology languages such as description logics [5].

Existential rules are first-order logic sentences of the form
∀~x∀~yα(~x, ~y) → ∃~zβ(~y, ~z), where α, β are conjunctions of
atoms over constants and variables. Such rules occur in
many scenarios and are widely known under different names
such as tuple-generating dependencies or Datalog with value
invention in databases [2, 19], Datalog± in ontological knowl-
edge representation (see [14] and references there in), and
conceptual graph rules in diagrammatic reasoning [26].

The typical reasoning problem considered in the context
of existential rules is whether a ground atom is logically en-
tailed by a collection of ground atoms and existential rules.

Example 1. As a running example we use the set Σp of
rules, which describe (a part of) a publication database:

σ1 = Publication(x)→ ∃k1, k2.Keywords(x, k1, k2),

σ2 = Keywords(x, k1, k2)→ hasTopic(x, k1),

σ3 = hasTopic(x, z), hasAuthor(x, u), hasAuthor(y, u),
hasTopic(y, z′), Scientific(z′), citedIn(y, x)→Scientific(z).

In particular, the above rules state that every publication
must have at least two keywords, where the first keyword
describes the (main) topic of the publication at hand. The
last rule provides a recipe to infer scientific topics: a topic
is scientific if it is a topic of a paper that cites a scientific
paper and shares with it a coauthor.

Suppose we are interested in persons who have authored
scientific publications. This can be expressed using the fol-
lowing rule, which we add to Σp:

σ4 = hasAuthor(x, y), hasTopic(x, z), Scientific(z)→ Q(y)

We consider the following atom set D = {Publication(p1),
Publication(p2), citedIn(p1, p2), hasAuthor(p1, a1),
hasAuthor(p2, a1), hasAuthor(p2, a2), hasTopic(p1, t1),
Scientific(t1)}. Intuitively, Σp and D together entail Q(a1)
and Q(a2), thus a1 and a2 are answers to our query.

Entailment checking over existential rules is nontrivial, be-
cause in the general case there is no bound on the number
of unnamed objects that need to be considered for infer-
ring the relevant information. In fact, theories of existential
rules are undecidable already in very restricted cases [6]. To
circumvent this, several syntactic and semantic conditions
defining decidable fragments of existential rules have been
introduced, inspired by positive decidability results in modal
and description logics.

For many widely known existential rule languages, decid-
ability is guaranteed by means of various versions of guarded-
ness. Among the most expressive such fragments are guarded
and weakly guarded rules [14] as well as frontier-guarded
and weakly frontier-guarded rules [6]. In a nutshell, a rule
is guarded (resp., frontier-guarded) if it has a body atom
that contains (i.e.,“guards”) all the universally quantified
variables of the rule (resp., of the rule head). The weakly
guarded and the weakly frontier-guarded fragments are ob-
tained by restricting guarding to only “dangerous” variables,
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Figure 1: Semantic relations between the consid-
ered languages. An arrow from a fragment L to a
fragment L′ indicates that L′ can be expressed in L.
Here ’*’ indicates syntactic membership.

i.e. the ones that may be forced to be instantiated with un-
named objects. Our paper focuses on the above formalisms,
plain Datalog, as well as the nearly guarded and nearly
frontier-guarded rules that we introduce in this paper.

While there are several results on the combined and the
data complexity of these fragments, little is known about
their relative and absolute expressiveness. A notable excep-
tion is the sketch in [7] and the thorough proof in [8] that
frontier-guarded rules are expressible in Datalog. Impor-
tantly, such rules can be translated into a small fragment of
Datalog, where e.g. FO-rewritability is decidable [8, 10].

In this paper we close significant gaps concerning relative
and absolute expressiveness and more practicable transla-
tions between the mentioned fragments. Our main contri-
butions are as follows (Figure 1 summarizes the relationships
between the considered formalisms):

• We show that all considered query languages with PTime
data complexity have the same expressive power as Datalog.
This is a crucial insight as it shows that query answering in
those languages can be realized via appropriate translations
and subsequent execution on one of the existing optimized
Datalog engines.

• In particular, noting that weakly (frontier-)guarded rules
have ExpTime data complexity and thus unfortunately can-
not be expressed in Datalog, we introduce nearly guarded
and nearly frontier-guarded rules, which retain as much ex-
pressivity of weakly (frontier-)guarded rules (such as syn-
tactically containing plain Datalog) as possible while still
being in PTime and thus expressible in Datalog.

• To show our claims, we propose several translations be-
tween rule fragments. These do not depend on an input
database and preserve entailment of ground atoms as well
as answers to conjunctive queries. Moreover, compared to
previously presented translations [7, 8], ours are modular,
demonstrably worst-case optimal, much more goal-directed,
and hence well-suited for an effective implementation.

(i) We provide a translation from frontier-guarded into near-
ly guarded rules (Theorem 1). The translation capitalizes
on a suitable characterization of the relevant models of a
frontier-guarded theory in terms of tree-shaped structures.

(ii) The above translation can be lifted to translate nearly
frontier-guarded rules into nearly guarded rules (Proposi-



tion 4) and weakly frontier-guarded rules into weakly guar-
ded rules (Theorem 2).

(iii) We show that nearly guarded rules can be translated
into plain Datalog. This result is established by first provid-
ing a resolution based translation from fully guarded rules
to plain Datalog (Theorem 3). We then show certain mod-
ularity properties that allow to extend the translation to
cover nearly guarded rules as well (Proposition 6).

• Our results also show that answering conjunctive queries
in knowledge bases where a database is enriched with nearly
frontier-guarded rules, can be reduced to answering a Dat-
alog query over the same database.

• Although the presented translations are not polynomial
in general, they yield worst-case optimal algorithms for the
considered problems. These findings allow to conclude that
in most cases, the exponential blow-ups are unavoidable.

• We take a closer look at weakly guarded and weakly frontier-
guarded rules, which are known to have ExpTime-complete
data complexity. We strengthen this result by showing that
on ordered databases with input negation available, weakly
guarded rules in fact capture all queries computable in ex-
ponential time. This result is reminiscent of the fact that
semipositive Datalog on ordered databases captures exactly
queries computable in polynomial time [31, 28] (see [1] for
an overview of this fundamental result).

• We show that weakly guarded rules extended with strat-
ified negation are expressive enough to capture ExpTime,
without any assumptions on the input databases. Conse-
quently, despite being a rather plain query language, weakly
guarded rules endowed with a mild form of negation sub-
sume all languages with ExpTime data complexity. This
supplements Cabibbo’s proof that existential rules equipped
with stratified negation capture all computable queries [13],
and also exposes the expressive power of TriQ, a recent RDF
query language based on stratified weakly guarded rules [3].

In summary, we show that (a) all considered notions of
guardedness for which the data complexity is in PTime can
be expressed in plain Datalog and that (b) the variants with
ExpTime data complexity, endowed with a very moderate
form of negation, actually capture this complexity class,
that is, they are able to express all other ExpTime query
languages including formalisms as powerful as second-order
logic extended with a least fixed point operator.

The paper is organized as follows. After introducing the
considered fragments of existential rules and recalling the
standard notion of database chase, we show in Section 4
that the chase of a frontier-guarded rule set can be seen as
a specially constructed tree. In Section 5, we exploit this
property to provide translations from frontier-guarded and
nearly frontier-guarded rules to nearly guarded rules, and
a translation from weakly frontier-guarded rules to weakly
guarded rules. In Section 6 we specially tailored inference
rules to translate guarded rules into Datalog rules. We then
lift this translation to nearly guarded rules. By compos-
ing the introduced transformations, we obtain the desired
translations. In Section 7 we discuss how our results ap-
ply to the problem of answering conjunctive queries over
databases enriched with existential rules. In Section 8 we
present the capturing result, and then discuss some related
work and conclude in Sections 9 and 10.

2. PRELIMINARIES
Existential Rules Let ∆c,∆n and ∆v be infinite mutu-
ally disjoint sets of constants, labeled nulls, and variables,
respectively. Elements in ∆c ∪∆n ∪∆v are terms. An atom
α is an expression of the form R(t1, . . . , tn), where R is a
relation name with arity n, and t1, . . . , tn are terms. We
let terms(α) = {t1, . . . , tn} and vars(α) = terms(α) ∩∆v. If
terms(α) ⊆ ∆c, then α is ground. For a set Γ of atoms, we
let terms(Γ) =

⋃
α∈Γ terms(α) and vars(Γ) = terms(Γ) ∩∆v.

An (existential) rule σ is an expression of the form

B1 ∧ . . . ∧Bn → ∃y1, . . . , yk.H1 ∧ . . . ∧Hm, (1)

where B1, . . . , Bn, with n ≥ 0, and H1, . . . , Hm, with m ≥ 1,
are atoms with terms from ∆c∪∆v only. We let body(σ) :=
{B1, . . . , Bn} and head(σ) := {H1, . . . , Hm}. Let terms(σ) =
terms(body(σ)) ∪ terms(head(σ)) and vars(σ) = terms(σ) ∩
∆v. Moreover, we let uvars(σ) = vars(body(σ)), and let
evars(σ) = {y1, . . . , yk}. The sets uvars(σ) and evars(σ) con-
tain the universal and existential variables of σ, respectively.
The set fvars(σ) = vars(head(σ))\evars(σ) is called the fron-
tier of σ. We assume that all rules are safe, i.e. fvars(σ) ⊆
vars(body(σ)). If evars(σ) = ∅, then σ is a Datalog rule.

A set Σ of rules is called a theory. A Datalog program is
a theory consisting of Datalog rules only.

Databases A database D is any set of atoms with terms
from ∆c ∪∆n.1 Given a set of atoms Γ and a database D,
a homomorphism from Γ into D is a mapping h : ∆c ∪∆n ∪
∆v → ∆c ∪∆n such that

(i) h(c) = c for each c ∈ ∆c;
(ii) if R(t1, . . . , tn) ∈ Γ, then R(h(t1), . . . , h(tn)) ∈ D.

A database D satisfies a rule σ if for any homomorphism h
from body(σ) into D, there exists a homomorphism h′ from
head(σ) into D such that h′(x) = h(x) for all x ∈ uvars(σ).
A database D satisfies a theory Σ if D satisfies each σ ∈ Σ.
Given a database D and a theory Σ, a solution to (Σ, D) is
a database D′ such that D ⊆ D′ and D′ satisfies Σ. Given
a ground atom α, we write Σ, D |= α if α ∈ D′ for every
solution D′ to (Σ, D).

Queries A query is a pair (Σ, Q), where Σ is a theory and
Q is a relation symbol. Given a query (Σ, Q) and a database
D, we let ans((Σ, Q), D) = {~c ∈ (∆c)

n | Σ, D |= Q(~c)},
where n is the arity of Q. We call Q the output relation of
(Σ, Q) and ans((Σ, Q), D) the answer to (Σ, Q) over D.

Chase We recall the notion of (oblivious) chase [24, 11].
Assume a database D, a rule σ and a homomorphism h from
body(σ) into D. A set of atoms Γ is called a consequence
of σ w.r.t.D and h if Γ can be obtained from head(σ) by
replacing each universal variable x by h(x) and each exis-
tential variable by a fresh null c ∈ ∆n not occurring in D.
A chase of a database D w.r.t. a theory Σ is a potentially
infinite sequence D0, D1, . . . of databases such that:
(a) D0 = D;
(b) for each i > 0, Di is a consequence of some σ ∈ Σ w.r.t.

D0 ∪ . . . ∪Di−1 and some h;
(c) if there is some σ ∈ Σ, i ≥ 0, and a homomorphism h

from body(σ) into D0 ∪ . . . ∪ Di, then there is j ≥ 0
s.t.Dj has a consequence of σ w.r.t.D0∪ . . .∪Di and h.

Let chase(Σ, D) =
⋃
i≥0 Di. We remind the reader that

chase(Σ, D) is unique up to homomorphic equivalence. It

1Whenever a database D is part of an input in a computa-
tional problem, D is assumed to be finite.



is also well known that chase(Σ, D) is a universal solution
to (Σ, D), i.e. chase(Σ, D) is a solution to (Σ, D), and there
is a homomorphism from chase(Σ, D) into any solution D′

to (Σ, D) (see [14]). Observe that due to the universality
of the chase, Σ, D |= α iff α ∈ chase(Σ, D), for any ground
atom α. This also implies that, given an n-ary relation sym-
bol Q, ans((Σ, Q), D) equals the set constant tuples ~c with
Q(~c) ∈ chase(Σ, D). With a slight abuse of notation, we will
later write chase(Σ, D) ⊆ chase(Σ′, D′) if there is a homo-
morphism from chase(Σ, D) to chase(Σ′, D′). If chase(Σ, D)
and chase(Σ′, D′) are homomorphically equivalent, then we
simply write chase(Σ, D) = chase(Σ′, D′).

Relation name annotations It will sometimes be useful
to encode some information as part of relation names. To
this end, we will consider annotated relation names that
have the form R[~t], where ~t is a tuple of terms. A theory
Σ is safely annotated if the following is true for every rule
σ ∈ Σ:

(i) If R[~t](~v) is an atom in σ, then none of the variables
of ~t occurs as an argument in an atom of σ.

(ii) If x ∈ ∆v occurs in the annotation of an atom in
head(σ), then x also occurs in the annotation of some
atom in body(σ).

Further Notions We assume a unary active constant do-
main relation ACDom whose extension is fixed: for any
database D, ACDom(c) ∈ D iff c occurs in some atom R(~v) ∈
D with R 6= ACDom. This assumption will help presenta-
tion, but won’t affect generality. We also prohibit ACDom
from rule heads.

For a possibly partial function f , let dom(f) and ran(f)
denote the domain and the range of f , respectively. For a
set of variables X, ~X is the tuple obtained by enumerating
X. The enumeration of variable sets is globally fixed, i.e.
for two sets X,Y of variables, X = Y implies ~X = ~Y .

3. VARIATIONS OF GUARDED RULES
We remind that syntactic restriction on existential rules

are required to ensure decidability of the basic reasoning
tasks such as query answering. In this section we recall
the so-called guarded, frontier-guarded, weakly guarded and
weakly frontier-guarded rules. We also define nearly guarded
and nearly frontier-guarded rules.

Definition 1. ((Frontier-)Guarded rules) We say a rule
σ is guarded (resp., frontier-guarded) if there exists an atom
α ∈ body(σ) such that uvars(σ) ⊆ vars(α) (resp., such that
fvars(σ) ⊆ vars(α)). A theory is guarded (resp., frontier-
guarded) if all its rules are guarded (resp., frontier-guarded).
For a frontier-guarded rule σ, let fg(σ) be an arbitrary but
fixed frontier-guard α in σ, i.e. an atom containing all the
variables of fvars(σ).

Example 2. It is easy to see that Σp as defined in Ex-
ample 1 is frontier-guarded. In Figure 2 we present the
corresponding chase(Σp, D), witnessing Σp, D |= Q(a1) and
Σp, D |= Q(a2).

Guarded and frontier-guarded theories cannot express all
Datalog queries. To see this, assume a query (Σ, Q), where
Σ is a frontier-guarded theory with no constants. It can be
easily seen that for any tuple ~c ∈ ans((Σ, Q), D), where D
is a database, all constants from ~c must occur together in
some database fact R(~t) ∈ D. In other words, Σ cannot
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Figure 2: Illustration of chase(Σp, D) for Σp and D
from Ex. 1. The solid ellipses indicate the atoms of
D and dashed ones indicate the inferred atoms.

relate constants that are not explicitly related in the input
database (allowing for constants in Σ does not solve the issue
in general). This property rules out using frontier-guarded
rules to query e.g. the transitive closure of a binary relation,
which is a classic task for Datalog.

The above expressiveness limitations can be resolved by
employing weakly (frontier-)guarded theories, obtained by
relaxing (frontier-)guardedness.

Definition 2. (Weakly (frontier-)guarded rules) Given a
variable x and a set of atoms Γ, let pos(Γ, x) be the set
of pairs (R, i) such that Γ has an atom R(t1, . . . , tn) with
ti = x, i.e. Γ has an atom where x occurs in position i. We
collect the affected positions in relations of a theory Σ. Let
ap(Σ) be the smallest set such that:

i) pos(head(σ), x) ⊆ ap(Σ) for all σ ∈ Σ and x ∈ evars(σ),
i.e. all positions where existential variables occur are
affected; and

ii) if σ ∈ Σ and x ∈ uvars(σ) is such that pos(body(σ), x) ⊆
ap(Σ), then pos(head(σ), x) ⊆ ap(Σ), i.e. if all posi-
tions where x occurs in the body are affected, then all
positions where x occurs in the head are affected as well.

Assume a theory Σ. We say a variable x of a rule σ is unsafe
w.r.t. Σ if pos(body(σ), x) ⊆ ap(Σ). We use unsafe(σ,Σ) to
denote the variables of σ that are unsafe w.r.t. Σ. We say
a rule σ is weakly guarded (resp., weakly frontier-guarded)
in Σ if it has a body atom B that contains all the variables
of uvars(σ) ∩ unsafe(σ,Σ) (resp., of fvars(σ) ∩ unsafe(σ,Σ)).
Then Σ is weakly guarded (resp.,weakly frontier-guarded)
if each rule of Σ is weakly-guarded (resp., weakly frontier-
guarded) w.r.t. Σ.

Weakly guarded and weakly frontier-guarded theories are
significantly more expressive than plain Datalog. This is
due to the fact that query answering in these languages is
ExpTime-hard in data complexity [14]. Since query answer-
ing in plain Datalog is PTime-complete in data complexity
(see e.g. [16]), one generally cannot convert a query (Σ, Q),
where Σ is weakly guarded or weakly frontier-guarded, into
a Datalog query while preserving the query answers.

We introduce next nearly guarded and nearly frontier-
guarded rules, which strictly extend guarded and frontier-
guarded rules, yet less expressive than weakly guarded and



weakly-frontier guarded theories, respectively. We will see
later that they have exactly the expressive power of Datalog.

Definition 3. (Nearly (frontier-)guarded rules) We say
a rule σ is nearly guarded (resp., nearly frontier-guarded)
in a theory Σ if

(i) σ is guarded (resp., frontier-guarded), or

(ii) unsafe(σ,Σ) = evars(σ) = ∅.

Then Σ is nearly guarded (resp., nearly frontier-guarded)
if each rule of Σ is nearly guarded (resp., nearly frontier-
guarded) w.r.t. Σ.

Intuitively, every non-guarded rule of a nearly guarded
theory only“operates”on constants from the input database.
This is similar in spirit to the definition of description logics
extended with DL-safe rules [25].

Normalization To make presentation easier, we will ma-
nipulate structurally simplified theories, defined as follows:

Definition 4. (Normalized theories) A theory Σ is in
normal form (or, is normal)if the following are satisfied:

(i) For every σ ∈ Σ, we have |head(σ)| = 1.

(ii) Every σ ∈ Σ with evars(σ) 6= ∅ is guarded. In other
words, if σ is not guarded, then it is a Datalog rule.

(iii) If σ ∈ Σ has an occurrence of a constant, then σ is of
the form → R(c).

Proposition 1. Every query (Σ, Q) can be transformed
in logarithmic space into a query (Σ′, Q′) such that

(a) Σ′ is normal;

(b) ans((Σ, Q), D) = ans((Σ′, Q′), D) for any database D;

(c) if Σ is weakly frontier-guarded (resp., weakly guarded,
nearly frontier-guarded, nearly guarded), then Σ′ is weakly
frontier-guarded (resp., weakly guarded, nearly frontier-
guarded, nearly guarded);

4. CHASE TREE
The translations of this paper build on the fact the chase

of a database w.r.t. a frontier-guarded theory has the shape
of a tree. It is a known fact that chase(Σ, D), where Σ is
weakly-guarded, has treewidth that is polynomial in the size
of Σ and D [14]. We will (indirectly) make use of this prop-
erty. We show that the chase of a frontier-guarded theory
can be seen as the construction of a tree (the chase tree),
whose root stores the atoms over the original constants of
the input database, while the non-root nodes store atoms
with labeled nulls. This representation turns out to be more
informative than the existing representations in terms of tree
decompositions. In particular, we exploit the fact that the
structure of non-leaf nodes is only dependent on the theory
and is independent from the database.

Definition 5. (Minimal nodes) Assume a tree T whose
nodes are sets of atoms. Given a set C of terms, a node d in
T is called C-minimal if C ⊆ terms(d) and d has no parent
d′ with C ⊆ terms(d′).

We are ready to the define the notion of chase tree.

Definition 6. (Chase tree) Assume a database D, a nor-
mal frontier-guarded theory Σ, and suppose

D, {R1(~t1)}, {R2(~t2)} . . .

is a chase of D w.r.t. Σ. Suppose each {Ri(~ti)} is a conse-
quence of σi ∈ Σ w.r.t.D∪{R1(~t1)}∪ . . .∪{Ri−1(~ti−1)} and
a homomorphism hi. Then a chase tree T of D w.r.t. Σ is a
tree built as follows. Initially, T consists of the single node

d0 = D ∪ {R(c) |→ R(c) ∈ Σ}.

Subsequently each Ri(~ti) from R1(~t1), R2(~t2), . . . is added to
T in the given order as follows:

(C1) if T has a node d with ~ti ⊆ terms(d), then add Ri(~ti)
to a ~ti-minimal node in T ;

(C2) otherwise, create a new node {Ri(~ti)} and set it as a
child of some {h(x0), . . . , h(xn)}-minimal node of T ,
where {x0, . . . , xn} = fvars(σi).

Proposition 2. Assume a database D, a normal frontier-
guarded theory Σ, and let T be a chase tree of D w.r.t. Σ.
Let m be the highest relation arity over all relations in Σ,
and let k be the number of constants occurring in rules of
Σ (recall that due to normalization such rules have the form
→ R(c)). Then the following hold:

(P1) |terms(d0)| ≤ |terms(D)|+ k for the root d0 of T ,

(P2) |terms(d)| ≤ m for all non-root nodes d of T .

(P3) For any set C of terms, there is at most one C-minimal
node in T .

The above proposition also shows the small tree-width of
chase(Σ, D) for frontier-guarded rules. Take the chase tree
T of D w.r.t. Σ and take the function L that maps each
node d in T to terms(d). As easily seen, (T,L) is a tree
decomposition of (the hypergraph of) chase(Σ, D) of width
max(|D|+k,m) with m the highest relation arity in Σ and k
the number of constants in Σ. We only note that the satisfac-
tion of the connectedness condition for (T,L) is guaranteed
by the uniqueness of C-minimal nodes in T (the property
(P3)). Indeed, if T had a term t that would induce sev-
eral disconnected trees in T , then there would exist several
{t}-minimal nodes in T .

5. FROM FRONTIER-GUARDEDNESS TO
GUARDEDNESS

We start by providing a translation from frontier-guarded
rules to nearly guarded rules. We then extend it to also cover
nearly frontier-guarded and weakly frontier-guarded rules.

5.1 From Frontier-guarded to Nearly
Guarded Rules

We show how a normal frontier-guarded theory Σ can be
rewritten into a nearly guarded theory rew(Σ) such that
Σ, D |= α iff rew(Σ), D |= α for any databaseD and a ground
atom α = R(~t), where R is a relation from Σ. Note that this
implies ans((Σ, Q), D) = ans((rew(Σ), Q), D) for any query
(Σ, Q) and database D, where Σ is frontier-guarded. The
translation exploits the fact that frontier-guarded theories
enjoy universal solutions that can be represented as trees
(see Proposition 2).



Clearly, the difficult part is that body(σ) of a frontier-
guarded rule σ can be seen as a complex (possibly cyclic)
structure whose variables may have to be mapped rather
arbitrarily into labeled nulls during the construction of the
chase. This is in contrast to weakly and nearly guarded
theories, where the possibly “cyclic part” of a body of a each
rule only maps to original constants. Nevertheless, due to
Proposition 2, the chase of a frontier-guarded theory is tree-
like, and hence the relevant homomorphisms from body(σ)
are only the ones that map into tree-like structures, given
by partially constructed chase trees. In our translation we
capture the set such homomorphisms for σ by a (potentially
exponential) set of nearly guarded rules.

We first define the notion of selection in a rule. Intuitively,
we select a set variables and obtain a group of at most k
variables, where k is the maximal arity over all relations
appearing in Σ.

Definition 7. (Selection) Let Σ be a normal frontier-
guarded theory and assume σ ∈ Σ. A selection for σ is a par-
tial function µ from uvars(σ) to uvars(σ) such that |ran(µ)| ≤
k with k the maximal arity over all relations appearing in Σ.
Given a set Γ of atoms, we use µ(Γ) to denote the result of
replacing in Γ each variable x ∈ dom(µ) by µ(x).

We collect the rule atoms that are covered by a selection:

Definition 8. (Covered atoms) Assume a normal
frontier-guarded theory Σ, σ ∈ Σ, and a selection µ for σ.
We define the following:

cov(σ, µ) = {B ∈ body(σ) | vars(B) ⊆ dom(µ)}.

We will use two kinds of transformations. Intuitively,
given a rule σ and a selection µ, the first transformation
will pull out from σ all the atoms that are covered by µ.
The second one will instead pull out of σ all the atoms that
are not covered by µ. The removed atoms will be moved to
a fresh rule. To preserve soundness, we must keep track of
variables that occur both in the range of the selection and in
a body atom not covered by the selection. The same holds
for variables that occur in the head of σ.

Definition 9 (Variables to keep). Assume a nor-
mal frontier-guarded theory Σ, σ ∈ Σ, and a selection µ
for σ. We let keep(σ, µ) be the set of all µ(x) such that
x ∈ dom(µ) and x occurs in body(σ) \ cov(σ, µ) or head(σ).

We are now ready to define the two rewriting steps that
we use. In both cases, a frontier-guarded rule σ is split into
a pair σ′, σ′′ of rules, where one of them becomes guarded,
while the other one is frontier-guarded but structurally less
complex than σ. In the rewriting we employ annotated re-
lation names, but they will only become relevant in next
section for dealing with weakly frontier-guarded rules.

Definition 10. (Remove-covered (rc)) Assume a non-
guarded Datalog rule σ in a normal frontier-guarded theory
Σ, and a selection µ for σ. An rc-rewriting of σ w.r.t.µ is
any pair of σ′, σ′′ of rules obtained as follows:

(i) σ′ = R(~x) ∧ µ(cov(σ, µ))→ H(~y), where

(a) (guarding) R is an arbitrary relation from Σ, and
~x contains each variable of σ′,

(b) (variable projection) µ(cov(σ, µ)) has a variable z
such that z 6∈ ~y, and

(c) (fresh atom) H is a fresh relation name and ~y =
keep(σ, µ). H has the annotation of head(σ).

(ii) σ′′ = H(~y) ∧ µ(body(σ) \ cov(σ, µ))→ µ(head(σ)).

Example 3. Consider the rule σ = R(x0, x1), R(x1, x2),
R(x2, x3), R(x3, x4), R(x4, x1) → P (x1). Clearly, σ is not
guarded, but is frontier-guarded. Take the partial function
µ = {x4 → x2, x2 → x2, x3 → x3}. Then cov(σ, µ) =
{R(x2, x3), R(x3, x4)} and keep(σ, µ) = {x2}. An rc-rewriting
σ′, σ′′ of σ w.r.t.µ can be obtained as follows. Let

σ′′ = R(x0, x1), R(x1, x2), R(x2, x1), A(x2)→ P (x1),

where A is a fresh relation name. In case, Q is a relation
in Σ of arity 3, we can let

σ′ = R(x2, x3), R(x3, x2), Q(x2, x3, y)→ A(x2).

Observe that σ′ is guarded, while σ′′ is not guarded but
frontier-guarded with the variables x4, x3 vanished.

Example 4. Recall the rule σ4 from Example 1. Take
the function µ = {x → x, z → z}. Then cov(σ4, µ) =
{hasTopic(x, z), Scientific(z)} and keep(σ4, µ) = {x}. Then
the following pair is an rc-rewriting of σ4 w.r.t. µ:

hasAuthor(x, y),Aux(x)→ Q(y),
Keywords(x, z, u), hasTopic(x, z), Scientific(z)→ Aux(x),

where Aux(y) is a fresh relation name. In this example, we
use Keywords(y, z, u) as a guard in the second rule. Observe
that the two resulting rules are guarded.

Definition 11. (Remove-non-covered (rnc)) Assume a
non-guarded Datalog rule σ in a normal frontier-guarded
theory Σ, and a selection µ for σ. An rnc-rewriting of σ
w.r.t.µ is any pair of σ′, σ′′ of rules obtained as follows:

(i) σ′ = R(~x) ∧ µ(body(σ) \ cov(σ, µ))→ H(~y), where

(a) (frontier-guarding) R is a relation from Σ and ~x
contains each variable in ~y;

(b) (variable projection) ~x has a variable z such z 6∈ ~y
and z occurs in µ(body(σ) \ cov(σ, µ));

(c) (fresh atom) H is a fresh relation name and ~y =
keep(σ, µ); H has the annotation of head(σ);

(ii) σ′′ = P (~z) ∧H(~y) ∧ µ(cov(σ, µ))→ µ(head(σ)), where

- (guarding) P is a relation from Σ and ~z contains
each variable of σ′′.

Example 5. Assume the rule σ = R(x1, x2), R(x2, x3),
R(x3, x4), R(x4, x1), R(x4, x5)→ P (x1, x2). Again, σ is not
guarded, but is frontier-guarded. Take the partial function
µ = {x1 → x1, x2 → x2, x3 → x3}. Then cov(σ, µ) =
{R(x1, x2), R(x2, x3)} and keep(σ, µ) = {x1, x3}. An rnc-
rewriting σ′, σ′′ of σ w.r.t.µ can be obtained as follows. Let
σ′ be the next rule:

W (x1, x3, x4), R(x3, x4), R(x4, x1), R(x4, x5)→ A(x1, x3),

where A is a fresh relation name and W is a ternary relation
in Σ. In case Q is a relation in Σ of arity 3, we can let σ′′

be as follows:

Q(x1, x3, x2), A(x1, x3), R(x1, x2), R(x2, x3)→ P (x1, x2).

We have that σ′′ is guarded, while σ′ is frontier-guarded.



Example 6. Recall the rule σ3 from Example 1. As in
the previous example, take the function µ = {x → x, z →
z}. Then cov(σ3, µ) = {hasTopic(x, z), Scientific(z)} and
keep(σ3, µ) = {x}. Then the following pair of rules is an
rnc-rewriting of σ3 w.r.t. µ:

hasAuthor(x, u), hasAuthor(y, u),
hasTopic(y, z′), Scientific(z′), citedIn(y, x) → Aux(x)
Keywords(x, z, u), hasTopic(x, z),Aux′(x) → Scientific(z),

where Aux′(y) is a fresh relation. The atom Keywords(y, z, u)
is used as a guard in the second rule. Observe that the first
rule is frontier-guarded and second rule is fully guarded.

An expansion of a frontier-guarded theory is obtained by
closing it under rc-rewritings and rnc-rewritings.

Definition 12. (Expansion) An expansion ex(Σ) of a
normal frontier-guarded theory Σ is obtained by exhaustively
adding rules to Σ as follows: for each Datalog rule σ ∈ Σ
and each selection µ for σ, add to Σ all the rc-rewritings and
rnc-rewritings of σ w.r.t.µ.

Note that applying an rc-rewriting or an rnc-rewriting on
a non-guarded rule leads to a guarded rule and a frontier-
guarded rule that has, due to variable projection, strictly
less variables that do not occur in a frontier guard. Thus
the expansion can be computed in exponential time in the
size of the input theory.

We can now finalize our transformation from frontier-
guarded rules to nearly guarded rules. To this end, we sim-
ply add atoms of the form ACDom(x) to bodies of rules in
ex(Σ) to ensure near guardedness of the resulting theory.

Definition 13. (Rewriting) The rewriting rew(Σ) of a
normal frontier-guarded theory Σ is obtained from ex(Σ)
by adding to each non-guarded rule σ ∈ ex(Σ) the atom
ACDom(x) for each universal variable x of σ.

The translation above leads to a nearly guarded theory.

Proposition 3. Let Σ be a normal frontier-guarded the-
ory. Then rew(Σ) is nearly guarded.

We are ready to state the main result of this section.

Theorem 1. Let Σ be a normal frontier-guarded theory.
Then Σ, D |= α iff rew(Σ), D |= α for any database D and
ground atom α over Σ.

Proof Sketch. To prove the claim, it suffices to show
that α ∈ chase(Σ, D) iff α ∈ chase(rew(Σ), D). For the “if”
direction, one can show that, considering only atoms over
the signature of Σ, each inference of an atom made in the
construction of chase(rew(Σ), D) can also be made by em-
ploying rules of Σ. For the “only if” direction, we can em-
ploy Proposition 2. Assume a non-guarded rule σ ∈ Σ and
suppose body(σ) has a homomorphism h into the (partially
constructed) chase(Σ, D) that maps m variables to labeled
nulls. By Proposition 2, chase(Σ, D) can be decomposed into
a tree of atom sets such that each non-leaf node is over at
most k constants, where k is the maximal arity of relations in
Σ. Take a node d such that d has an atom from h(body(σ))
and no descendant of d has an atom from h(body(σ)). In
case h(fg(σ)) 6∈ d (resp., h(fg(σ)) ∈ d), one can pick a se-
lection µ and define an rc-rewriting (resp., rnc-rewriting) of
σ′, σ′′ of σ together with respective homomorphisms that

give the same consequence as σ. Importantly, if the rewrit-
ing produces a non-guarded rule, then its body homomor-
phism employs strictly less than d labeled nulls. In this way
one shows that every ground α ∈ chase(Σ, D) can be derived
by rules in ex(Σ) that are either guarded or don’t employ
labeled nulls in body homomorphisms.

For the class of frontier-guarded theories with singleton
heads, our translation into nearly guarded rules does not in-
crease the maximal arity of relations. Entailment of ground
atoms in frontier-guarded theories with singleton heads is 2-
ExpTime-hard even in case relation arities are bounded by
a constant [7]. On the other hard, the same problem under
bounded arities is ExpTime-complete for weakly-guarded
rules [14]. Thus the existence of polynomial arity-preserving
translation would imply 2-ExpTime = ExpTime.

It is not difficult to extend the previous translation to
cover nearly frontier-guarded rules. Assume a nearly frontier-
guarded theory Σ. If a rule σ ∈ Σ is not frontier guarded,
then by definition of near frontier-guardedness, σ has no
unsafe variable and thus during chasing its body is never
mapped to labeled nulls. Such rules simply need no rewrit-
ing, which we see more formally as follows.

Definition 14. Assume a nearly frontier-guarded theory
Σ. Let Σf denote the frontier-guarded rules in Σ and let
Σd = Σ \ Σf (note that unsafe(σ,Σ) = evars(σ) = ∅ for all
σ ∈ Σd ). We define rew(Σ) = rew(Σf ) ∪ Σd.

Proposition 4. Assume a query (Σ, Q) with Σ a nor-
mal nearly frontier-guarded theory. We have that rew(Σ) is
nearly guarded and ans((Σ, Q), D) = ans((rew(Σ), Q), D) for
any database D.

Axiomatizing the Relation ACDom Due to Definition 13,
the theory rew(Σ) resulting from a theory Σ may contain
atoms of the form ACDom(x). Such atoms can be eliminated
from rew(Σ) while preserving ground atomic consequences,
modulus renaming of relation names.

Definition 15. Assume a nearly guarded theory Σ. For
every relation R of Σ, let R∗ be a fresh relation of the
same arity as R. Note that this includes the fresh relation
ACDom∗ in case ACDom occurs in Σ. Let Σ∗ be the theory
obtained from Σ by replacing every atom R(~t) by R∗(~t) and
adding the following rules:

(a) R(x1, . . . , xn)→ R∗(x1, . . . , xn) for every n-ary R of Σ,

(b) R(x1, . . . , xn) → ACDom∗(xi) for every n-ary relation
R of Σ and i ∈ {1, . . . , n}, and

(c) → ACDom∗(c) for every constant c of Σ.

The following is not difficult to check:

Proposition 5. Assume a query (Σ, Q) with Σ nearly
guarded. Then (Σ∗, Q∗) is a query such that

i) Σ∗ is a nearly guarded theory with no occurrences of the
built-in relation ACDom, and

ii) ans((Σ, Q), D) = ans((Σ∗, Q∗), D), for any database D.



5.2 Translating Weakly Frontier-guarded Rules
We have seen above a translation from frontier-guarded

and nearly frontier-guarded rules to nearly guarded rules.
We show next that it can be extended to also cover weakly
frontier-guarded rules. Such rules are treated in three steps:

(a) converting them into frontier-guarded rules by removing
the terms occurring in non-affected positions from atoms
and storing them in relation annotations,

(b) converting the resulting frontier-guarded theory into a
nearly guarded theory using the translation of the pre-
vious section, and

(c) reconstructing original atoms from relation annotations,
thus obtaining a weakly guarded theory.

We make this more precise next.
To simplify presentation, we will use a convent ordering

of positions in relations of a weakly frontier-guarded theory.

Definition 16. (Proper theories) We say a weakly
frontier-guarded theory Σ is proper if the following holds:
(R, i) 6∈ ap(Σ) with i ≥ 1 implies (R, i+ 1) 6∈ ap(Σ).

In other words, if Σ is proper, then each atom R(~t) in Σ
has an initial sequence of terms in affected positions, fol-
lowed by terms that appear in non-affected positions only.
For the rest of the section, we w.l.o.g. assume only proper
theories. Any theory can be transformed in logarithmic
space into a proper theory by reordering arguments in atoms.

We next define how atoms with terms in non-affected po-
sitions are converted into atoms where such terms are moved
into a relation’s annotation.

Definition 17. Assume a weakly frontier-guarded theory
Σ. We let aΣ(R(t1, . . . , tn)) = R[ti+1, . . . , tn](t1, . . . , ti),
where i is the last affected position in R. Given a database
D, we let aΣ(D) = {aΣ(A) | A ∈ D}. Finally, we let a(Σ)
denote the theory obtained from Σ by replacing each atom A
of Σ with aΣ(A).

As easily seen, if Σ is weakly frontier-guarded, then a(Σ)
is frontier-guarded. We are ready to finalize the translation
from weakly frontier-guarded theories:

Definition 18. For a frontier-guarded theory Σ with a
safe annotation, we use a−(Σ) to denote the theory obtained
from Σ by replacing each atom R[~v](~t) by R(~t, ~v).

For a normal weakly frontier-guarded theory Σ, we let
rew(Σ) = a−(rew(a(Σ))).

We are ready to state the main result of this section.

Theorem 2. Take a query (Σ, Q) with Σ a normal weakly
frontier-guarded theory. Then rew(Σ) is weakly guarded and
ans((Σ, Q), D) = ans((rew(Σ), Q), D) for any database D.

Proof Sketch. For the second part of the claim, assume
(Σ, Q) as above and let D be a database. For a theory
Σ′, let pg(Σ, D) denote the theory that can be obtained
from Σ′ by all possible substitutions of safe variables by
constants in D. Let Σpg = pg(Σ, D). It can be verified that
ans((Σ, Q), D) = ans((Σpg, Q), D) and

ans((rew(Σ), Q), D) = ans((pg(rew(Σ), D), Q), D).

Thus due to Theorem 1, to prove the claim it suffices to
show that rew(a(Σpg)) and a(pg(rew(Σ), D)) have the same
ground consequences from aΣ(D). This true because the two
theories are equal modulo renaming of variables and auxil-
iary relation symbols introduced during the rewritings.

α→ β ∧A
α→ A

A has no existential variables

α→ β γ1 ∧ γ2 → δ

α ∧ h(γ1)→ β ∧ h(δ)

γ1 ∧ γ2 → δ is a Datalog rule,
h is a homomorphism from
γ2 to β with vars(h(γ1)) ⊆
vars(α).

α→ β

g(α)→ g(β)
g : vars(α)→ vars(α)

Figure 3: Inference Rules

6. FROM NEARLY GUARDED RULES TO
DATALOG

In this section, we give a translation from nearly guarded
rules to Datalog. In line with the previous sections, the
translation preserves answers to ground atomic queries. We
first translate fully guarded theories in Datalog. The trans-
lation is based on specially tailored inference rules, which
we use to saturate the input set of guarded rules. The de-
sired Datalog program is obtained by dropping all existen-
tial rules. We then show that this methods easily extends
to translate nearly guarded rules into Datalog.

Definition 19. For a guarded theory Σ, let Ξ(Σ) be the
closure of Σ under the inference rules in Figure 3. Let
dat(Σ) be the set of Datalog rules obtained from Ξ(Σ) by
dropping all rules containing existential variables in the head.

We note that applying any of the inference rules to guarded
rules, only guarded rules will be produced. Consequently
Ξ(Σ) (and thus dat(Σ)) is guarded whenever Σ is.

Theorem 3. Let Σ be a guarded theory. Then Σ, D |= α
iff dat(Σ), D |= α, for any ground atom α and database D.

Example 7. We provide an illustrative example. Let our
rule set Σ contain the rules

- σ1 = A(x)→ ∃y.R(x, y),

- σ2 = R(x, y)→ S(y, y),

- σ3 = S(x, y)→ ∃z.T(x, y, z),

- σ4 = T(x, x, y)→ B(x),

- σ5 = C(x),R(x, y),B(y)→ D(x).

Let our database D consist of A(c) and C(c), and let our
query α be D(c). The following chase confirms the query:
{A(c),C(c)}
=⇒{R(c, n1)} apply σ1 with x 7→ c
=⇒{S(n1, n1)} apply σ2 with y 7→ n1

=⇒{T(n1, n1, n2)} apply σ3 with x 7→ n1, y 7→ n1

=⇒{B(n1)} apply σ4 with x 7→ n1, y 7→ n2

=⇒{D(c)} apply σ5 with x 7→ c, y 7→ n1.
We now show how this query can be answered using only

the datalog program dat(Σ). To this end, we first provide
derivations of new rules from Σ



- σ6 = S(y, y)→ ∃z.T(y, y, z)
(from σ3 via third rule with g = {x 7→ y, y 7→ y, z 7→ z}),

- σ7 = S(y, y)→ ∃z.T(y, y, z) ∧B(y)
(from σ6 and σ4 via second rule, γ1=∅, h = {x7→y, y 7→z}),

- σ8 = S(y, y)→ B(y) (from σ7 via first rule),

- σ9 = A(x)→ ∃y.R(x, y) ∧ S(y, y)
(from σ1 and σ2 via second rule, γ1 = ∅, h = id),

- σ10 = A(x)→ ∃y.R(x, y) ∧ S(y, y) ∧ B(y)
(from σ9 and σ8 via second rule, γ1 = ∅, h = id),

- σ11 = A(x) ∧ C(x)→ ∃y.R(x, y) ∧ S(y, y) ∧ B(y) ∧ D(x)
(from σ10 and σ5 via second rule, γ1 = C(x), h = id),

- σ12 = A(x) ∧ C(x)→ D(x), (from σ11 via first rule).

Clearly, σ12 is contained in dat(Σ) as it is a plain Datalog
rule. Now it is straightforward to see that D(c) can be derived
from {A(c),C(c)} by one application of σ12.

We saw how a (fully) guarded theory can be converted into
a Datalog program while preserving atomic consequences.
We show here that the method can also be applied to nearly
guarded theories.

Proposition 6. Let Σ be a nearly guarded theory, α a
ground atom, and D a database. Let Σg denote the guarded
rules in Σ and let Σd = Σ\Σg. Then Σ, D |= α iff dat(Σg)∪
Σd, D |= α.

In other words, a nearly guarded theory Σ is translated
into the Datalog program dat(Σg) ∪ Σd while preserving
ground atomic consequences of Σ.

The above translation leads to a Datalog program that is
of size double exponential in the size of the input guarded or
nearly-guarded theory. To see this, assume a nearly guarded
theory Σ. Let Σg denote the guarded rules in Σ and let Σd =
Σ\Σg. Let v be the maximal number of variables per rule in
Σ, and let p be the maximal arity of relations in Σ, and let c
be the number of constants in Σ. Observe that the rewriting
of Σg into the datalog program dat(Σg) does not introduce
new variables, new constants or new relation symbols into
the constructed rules, but may introduce new atoms in rule
bodies and heads (see the second rule in Figure 3). Assuming
the number of relation symbols in Σ is m, the number of
possible rules is bounded by 2(v+c)pm. In case the arity of the
relations in Σ is bounded by a constant, the number of rules
resulting from the translation in 19 is single exponential in
the size of Σ.

The above translation does not increase the number of
variables per rule. If we place this as a requirement, which is
reasonable for practical purposes, then the double exponen-
tial blow-up in the size of the input theory Σ is unavoidable.
This follows from the 2-ExpTime-hardness of query answer-
ing in guarded theories [14]. Indeed, a (singly) exponentially
sized Datalog program could be evaluated in single expo-
nential time because the grounding of the program would
remain of single exponential size. The double exponential
blowup, under the common assumptions in complexity the-
ory, is unavoidable even if we relax the requirement a bit:
instead of preserving the number of variables per rule, we
require the maximal predicate arity to be preserved. In this

case, querying the resulting program would be feasible in
NExpTime to due the fact that query answering in Datalog
under bounded predicate arities is in NP [17].

7. CONJUNCTIVE QUERY ANSWERING
We look next at conjunctive queries over databases en-

riched with existential rules (see e.g. [9, 14] for similar results
and motivation), which are fully supported in our setting.
A knowledge base query is of the form (Σ∪{α→ Q(~x)}, Q),
where Σ is a weakly frontier-guarded theory and Q does
not occur in Σ. Note that α → Q(~x) need not be weakly
frontier-guarded in Σ ∪ {α → Q(~x)}. However, by employ-
ing the built-in relation ACDom, the rule α → Q(~x) can be
converted into a weakly frontier-guarded rule. Indeed, (Σ ∪
{α→ Q(~x)}, Q) and the weakly frontier-guarded query (Σ∪
{α ∧ ACDom(x1) ∧ . . . ∧ ACDom(xn) → Q(x1, . . . , xn)}, Q)
output the same for any databaseD, where 〈x1, . . . , xn〉 = ~x.

We recall that checking Σ, D |= α, where Σ is weakly
frontier-guarded, is 2-ExpTime-complete in combined com-
plexity [30]. It is not difficult to see that the translations
of this paper provide an alternative proof for the double ex-
ponential time upper bound. The high-level procedure to
check Σ, D |= α is as follows:

1. Compute the weakly guarded theory rew(Σ).

2. Compute the partial grounding Σ1 of rew(Σ) w.r.t.D.
That is, Σ1 is the set of rules that can be obtained from
rew(Σ) by instantiating variables in non-affected posi-
tions with constants fromD. The resulting Σ1 is guarded,
is of exponential size in the size of Σ and D, but has lin-
early many variables per rule.

3. Translate Σ1 into Datalog with the translation of the pre-
vious section, obtaining Σ2 = dat(Σ1). The resulting Σ2

is of double exponential size in the size of Σ and D, but
has linearly many variables per rule.

4. Ground Σ2 with the constants of D, obtaining a ground
theory Σ3 with doubly exponentially many rules.

5. If Σ3, D |= α, then Σ, D |= α. Otherwise, Σ, D 6|= α.

8. CAPTURING QUERIES COMPUTABLE
IN EXPONENTIAL TIME

We have seen that many of the query languages investi-
gated here can be expressed by plain Datalog queries. How-
ever, queries based on weakly frontier-guarded or weakly
guarded rules cannot be expressed in Datalog due to the
increase in data complexity from completeness for PTime
to ExpTime [14]. We next explore settings in which these
formalisms capture all queries computable in exponential
time.

We first show that all exponential time computable queries
posed over string databases can be expressed by weakly
guarded theories. We later show that weakly guarded the-
ories extended with stratified negation are in fact expres-
sive enough to capture all queries computable in exponential
time, without any assumptions about input databases.

Definition 20. (String databases and queries) Assume
an integer k and a set Ω of k-ary relation symbols. As-
sume also k-ary relations Firstk, Lastk, and a 2k-ary rela-
tion Next2k. A database D is called a string database (of
degree k) if it has the following properties:



- Let Dom be the set of constants in D. Then for all k-tuples
~v ∈ Domk, there is exactly one σ ∈ Ω such that σ(~v) ∈ D.

- The relation {(~v1, ~v2) | Next2k(~v1, ~v2) ∈ D,~v1, ~v2 ∈ Domk}
is a successor relation from some total < order on Domk.
Moreover, Firstk(~v1) and Lastk(~v2) are true exactly for the
minimal and the maximal element in <, respectively.

We let w(D) ∈ Ω∗ denote the word such that, for each 1 ≤
i ≤ |Domk|, the ith symbol of w(D) is exactly the symbol σ ∈
Ω such that σ(~v) ∈ D, where ~v is the ith smallest element in
<. In other words, w(D) extracts the string encoded in D.

A string query is a triple (k,Ω, T ), where k and Ω are as
above, and T is a set of string databases of degree k such that
T is closed under isomorphic databases. We say (k,Ω, T ) is
decidable in exponential time if there is deterministic Turing
machine M with alphabet Ω that accepts exactly the language
{w(D) ∈ Ω∗ | D ∈ T}, and M operates in time that is
bounded by an exponential in the size D.

Theorem 4. Any string query (k,Ω, T ) decidable in ex-
ponential time can be expressed as a query (Σ, Q) where Σ
is weakly guarded.

Proof Sketch. One shows that from a Turing machine
M to decide (k,Ω, T ) one can build a query (ΣM , Q), where
ΣM is weakly guarded and Q is 0-ary (i.e. a propositional
variable), such that D ∈ T iff ΣM , D |= Q. In particu-
lar, one can write a theory ΣM to implement an alternating
polynomial space algorithm for checking whether M accepts
w(D).

Weakly guarded rules do not capture all database queries
decidable in exponential (or, even polynomial) time. E.g. due
to monotonicity of query answers with plain existential rules,
it is impossible to express a query that checks whether the
number of constants occurring in a database is even. This
already hints that we need to add some non-monotonicity to
the formalism in order to also cover non-monotonic queries.
But first, we define our goal more formally.

Definition 21. A (generic) Boolean database query is
a tuple (A,BQ), where is A is a set of relation names (a
signature), and BQ is a set of databases over A such that
BQ is closed under isomorphic databases. We assume a
coding C that encodes databases over A into words, such that
a database D with d constants is encoded as a string of length
dk over a fixed alphabet Ω, where k is a sufficiently large yet
fixed constant k.2 We say BQ is decidable in exponential
time if there is an exponential time bounded deterministic
Turing machine M that decides, for any database D over A,
whether C(D) ∈ {C(D′) | D′ ∈ BQ} holds.

Assume (A,BQ) as above. Observe that there is only one
problem that needs to be resolved before we can employ the
previous result for string databases to show that (A,BQ) can
also be captured. We need a set of rules to implement an
encoding C. In particular, it suffices to define a theory Σcode

to transform an input database D into a string database Ds
of level k, for some fixed k, with C(D) being the string
written in Ds, i.e. with w(Ds) = C(D).

Implementing Σcode is straightforward, assuming each in-
put database provides via relations Succ, Min and Max a

2Note that this is possible due to the fixed signature. We
assume that D has at least two constants.

total order over its constants, and we have means to infer
the absence of tuples in the input database. We sketch such
an encoding for the case A has only one n-ary relation R.
We employ a standard semipositive Datalog program, which
we in fact also introduce formally later. Let Ω consist of
n-ary relations Zero and One. The first step is to define re-
lations Firstn, Next2n and Lastn to store a lexicographically
ordered sequence of n-tuples of constants from D, which can
be done using plain Datalog rules [16]. We then can simply
use the rules R(~x) → One(~x) and ¬R(~x) ∧ ACDom(x1) ∧
. . . ∧ ACDom(xn) → Zero(~x) to represent the characteris-
tic function of R in D, where 〈x1, . . . , xn〉 = ~x. Thus we
can infer that weakly guarded rules extended with negation
on input relations capture all exponential time computable
queries over ordered databases.

We next show that the desired total order (represented
by Succ, Min and Max) can be generated by weakly guarded
rules with stratified negation, which generalizes negation on
input relations. Thus weakly guarded rules with stratified
negation capture all exponential time computable queries,
without any assumptions on the input databases.

Definition 22. (Stratified theories – syntax) An existen-
tial rule with negation is an expression of the form

B1 ∧ . . . ∧Bn → H1 ∧ . . . ∧Hm, (2)

where B1, . . . , Bn can be atoms R(~t) or negated atoms ¬R(~t).
Negated atoms are called negative; the remaining atoms are
called positive. We consider safe theories where every vari-
able of a negative body atom also occurs in some positive body
atom. A theory Σ is called stratified if it can be partitioned
into mutually disjoint Σ1, . . . ,Σn such that:

- if Σi has a body atom A(~t), then there is no rule in Σi+1∪
. . . ∪ Σn with A in the head;

- if Σi has a body atom ¬A(~t), then there is no rule in Σi ∪
. . . ∪ Σn with A in the head.

If n = 1, then Σ is semipositive.

The semantics of such theories is given by an iterative
chasing following the stratification, which we recall here [15].

Definition 23. (Stratified theories – semantics) Let Σ be
a stratified theory and D a database. For every ¬A(~t) in Σ
we introduce a predicate name Ā of the same arity as A.
We also define p(Σ) to be the theory obtained by uniformly
replacing each atom ¬A(~t) in Σ by the atom Ā(~t).

The semantics is defined inductively. Assume a database
D and Σ with stratification Σ1, . . . ,Σn. We define the fol-
lowing databases:

- S0 = D, and

- For each 1 ≤ i ≤ n, the database Si is obtained by restrict-
ing chase(p(Σi), S

′
i−1) to the original symbols of Σ, where

S′i−1 = Si−1 ∪ {Ā(~t) | A(~t) 6∈ Si−1}.

We let chase(Σ, D) = Sn.

Introducing negation requires to revisit the notion of weak
guardedness. Assume a stratified theory Σ and let Σ′ be the
theory obtained from Σ by dropping all negative atoms. We
say Σ is weakly guarded if every rule σ ∈ Σ has a body atom
that contains all the variables of unsafe(σ,Σ′) ∩ uvars(σ).



It has been shown in [3] that query answering in stratified
weakly guarded theories is ExpTime-complete in data com-
plexity, i.e. stratified negation does not increase the com-
plexity of reasoning with weakly guarded rules.

Theorem 5. Any Boolean database query (A,BQ) decid-
able in exponential time can be expressed as a query (Σ, Q)
where Σ is a stratified, weakly guarded theory.

Proof Sketch. We only define using a stratified theory
(a variant of) the relations Succ, Min and Max to store a
total order over the constants of the input database. To
this end, we write a program Σsucc that creates an infinite
forest such that each possible total ordering of constants of
an input database is represented by a prefix of a branch. At
the end, each different total ordering will be represented by a
distinct null value, and all relevant facts regarding a specific
ordering will be indexed by the null value corresponding to
that ordering.

In particular, we use the following relations:
- Min(a, u) means that a constant a is the smallest element

of the ordering identified by u.
- Max(a, u) means that a constant a is the greatest element

of the ordering identified by u.
- Lt(a, b, u) means that a precedes b in the ordering identi-

fied by u.
- Succ(a, b, u) means that b is the immediate successor of a

in the ordering identified by u.
- Good(u) means that u effectively represents a linear order-

ing over the set of constants in the input database.
- Repetition(u) means that u does not represent a linear or-

dering due to a cycle in the Succ relation.
- Omission(u) means that u does not represent a linear or-

dering due to a missing element.
- New(a, u) means that a is the new element introduced for

a candidate ordering u.
- Old(a, u) means that a is an element already treated in the

construction of the current ordering.
We will employ the active constant domain relation ACDom,

which can be axiomatized as discussed previously. The the-
ory Σsucc has the following rules:

(1) ACDom(x)→ ∃u.Min(x, u) ∧ New(x, u).

(2) New(x, u),ACDom(y)→ ∃v.Succ(x, y, u, v) ∧ New(y, v).

(3) New(x, u)→ Old(x, u).

(4) Succ(x, y, u, v),Old(x′, u)→ Old(x′, v).

(5) Succ(x, y, u, v),Min(x′, u)→ Min(x′, v).

(6) Succ(x, y, u, v), Succ(x′, y′, u)→ Succ(x′, y′, v).

(7) Succ(x, y, u)→ Lt(x, y, u)

(8) Lt(x, y, u), Lt(y, z, u)→ Lt(x, z, u).

(9) Lt(x, x, u)→ Repetition(u).

(10) Old(y, u),ACDom(x),¬Old(x, u)→ Omission(u).

(11) Old(x, u),¬Repetition(u),¬Omission(u)→ Good(u).

(12) New(x, u),Good(u)→ Max(x, u).

For each u for which Good(u) holds, the relations Min(·, u),
Max(·, u), and Succ(·, ·, u) jointly constitute a (u-”labeled”)
linear order on the constants of an input database. Vice-
versa, for each such linear order, some u exists such that
Good(u) holds and the order is represented by the relations
Min(·, u), Max(·, u), and Succ(·, ·, u).

We remark that the above capturing result cannot be ob-
tained for semipositive weakly guarded theories. This is be-
cause queries (Σ, Q), where Σ is semipositive, are monotonic
on full databases (where all relations have all possible tu-
ples). For this reason, it is impossible to express e.g. the
query to check whether the input database is full and its
domain has an odd number of constants.

9. RELATED WORK
There exists prior work on translations from frontier-guar-

ded rules to Datalog [7, 8]. Exploiting a boundedness prop-
erty, these earlier approaches essentially enumerate all (i.e.,
best-case exponentially many) possible queries with a cer-
tain number of variables. Contrarily, our approach was de-
signed to be much more selective. In fact, methods which
are close in spirit (i.e., inspired by knowledge compilation
and consequence-driven reasoning) have been successfully
implemented and evaluated for related but easier logics (cf.
[4, 20, 18, 22]) As another difference, we give an intermedi-
ate translation into nearly guarded rules, which takes only
single exponential time and generalizes nicely to a transla-
tion from weakly frontier-guarded to weakly-guarded rules.
These results, which are based on new ideas and a new class
of rules, and are proven from first principles, are of their own
interest; they provide interesting insights and do not follow
from previous work.

Recently, Bienvenu et al. have investigated the expressive-
ness of queries formulated by coupling a standard query lan-
guage (e.g. conjunctive queries) and various description log-
ics, and also richer logics such as extensions of the guarded
fragment [12]. The authors show that such queries can be ex-
pressed in various fragments of disjunctive Datalog and also
provide descriptive complexity results by establishing a tight
connection with constraint satisfaction problems. We note
that the query rewriting technique of [12] does not easily
apply in our non-disjunctive setting, as it intrinsically relies
on disjunctive rules to, intuitively speaking, compute the
possible consistent completions of the database with ground
atoms. Several further data-independent reformulations of
query answering in description logics in terms of Datalog
have been developed previously, e.g. for instance queries [20,
29, 27] and conjunctive queries [18]. All query languages
above are not harder than NP in data complexity, and thus
are subsumed by stratified weakly guarded existential rules.

Translations between existential rule fragments have been
used to provide expressiveness and complexity results: in
particular, there is a polynomial translation from weakly
(frontier-)guarded into (frontier-)guarded rules [7] to show
that they have the same combined complexity, however, this
translation is not data-independent. Translations into Dat-
alog exist for other existential rule fragments, e.g., for those
based on notions of acyclicity [23].

The calculus from Definition 19 is inspired by results in
description logics, where similar procedures have been de-
veloped for EL [4] and Horn-SHIQ [22].

10. CONCLUSION
In this paper, we have explored the relative and absolute

expressiveness of diverse database query languages based on
existential rules with various forms of guardedness.

We have seen that the considered languages with polyno-
mial time data complexity (all up to nearly frontier-guarded



theories) can in fact be expressed in plain Datalog. To this
end, we have provided translations which are worst-case op-
timal in terms of the incurred blow-up of the query size.

For the discussed languages with exponential time data
complexity (i.e. weakly guarded and weakly frontier-guarded
rules), we showed that, extended with negation on input
facts, they capture all exponential time computable queries
over ordered databases. For arbitrary databases, an exten-
sion with stratified negation is required in order to fully cap-
ture ExpTime. This result has far-reaching implications—it
shows that queries with stratified weakly guarded rules can
express an overwhelming range of query formalisms: first-
order and second-order logic (even extended via least fixed
point operators), any of the known concrete decidable frag-
ments of existential rules or formalisms based on descriptions
logics (to the best of our knowledge, no such formalisms with
data complexity beyond ExpTime have been proposed).

Exploring existential rules under more fine grained notions
of expressiveness such as modular expressive power [3] is a
natural next step for future work.
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