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ABSTRACT
Hypertree decompositions, as well as the more powerful gener-
alized hypertree decompositions (GHDs), and the yet more gen-
eral fractional hypertree decompositions (FHD) are hypergraph
decomposition methods successfully used for answering conjunc-
tive queries and for solving constraint satisfaction problems. Every
hypergraph H has a width relative to each of these methods: its hy-
pertree width hw(H ), its generalized hypertree width ghw(H ), and
its fractional hypertree width fhw(H ), respectively. It is known that
hw(H ) ≤ k can be checked in polynomial time for fixed k , while
checking ghw(H ) ≤ k is NP-complete for k ≥ 3. The complexity of
checking fhw(H ) ≤ k for a fixed k has been open for over a decade.

We settle this open problem by showing that checking fhw(H ) ≤

k is NP-complete, even for k = 2. The same construction allows
us to prove also the NP-completeness of checking ghw(H ) ≤ k for
k = 2. After that, we identify meaningful restrictions for which
checking for bounded ghw or fhw becomes tractable.
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1 INTRODUCTION AND BACKGROUND
Research Challenges Tackled. In this work we tackle computa-
tional problems on hypergraph decompositions, which play a promi-
nent role for answering Conjunctive Queries (CQs) and solving
Constraint Satisfaction Problems (CSPs), which we discuss below.

Many NP-hard graph-based problems become tractable for in-
stanceswhose corresponding graphs have bounded treewidth. There
are, however, many problems for which the structure of an instance
is better described by a hypergraph than by a graph, for exam-
ple, the above mentioned CQs and CSPs. Given that treewidth
does not generalize hypergraph acyclicity1, proper hypergraph
decomposition methods have been developed, in particular, hy-
pertree decompositions (HDs) [26], the more general generalized
hypertree decompositions (GHDs) [26], and the yet more general

1We here refer to the standard notion of hypergraph acyclicity, as used in [48] and
[20], where it is called α -acyclicity. This notion is more general than other types of
acyclicity that have been introduced in the literature.
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fractional hypertree decompositions (FHDs) [30], and corresponding
notions of width of a hypergraph H have been defined: the hy-

pertree width hw(H ), the generalized hypertree width ghw(H ), and
the fractional hypertree width fhw(H ), where for every hypergraph
H , fhw(H ) ≤ ghw(H ) ≤ hw(H ) holds. Definitions are given in
Section 2. A number of highly relevant hypergraph-based prob-
lems such as CQ-evaluation and CSP-solving become tractable for
classes of instances of bounded hw, ghw, or, fhw. For each of the
mentioned types of decompositions it would thus be useful to be
able to recognize for each constant k whether a given hypergraph
H has corresponding width at most k , and if so, to compute such
a decomposition. More formally, for decomposition ∈ {HD, GHD,
FHD} and k > 0, we consider the following family of problems:

Check(decomposition,k)
input hypergraph H = (V ,E);
output decomposition of H of width ≤ k if it exists and

answer ‘no’ otherwise.
As shown in [26], Check(HD,k) is in Ptime. However, little is

known about Check(FHD,k). In fact, this has been an open problem
since the 2006 paper [29], where Grohe and Marx state: “It remains
an important open question whether there is a polynomial-time al-
gorithm that determines (or approximates) the fractional hypertree
width and constructs a corresponding decomposition.” The 2014
journal version still mentions this as open and it is conjectured that
the problemmight beNP-hard. The open problem is restated in [46],
where further evidence for the hardness of the problem is given
by showing that “it is not expressible in monadic second-order
logic whether a hypergraph has bounded (fractional, generalized)
hypertree width”. We will tackle this open problem here:
Research Challenge 1: Is Check(FHD,k) tractable?
Let us now turn to generalized hypertree decompositions. In [26]

the complexity of Check(GHD,k) was stated as an open problem.
In [27], it was shown that Check(GHD,k) is NP-complete for k ≥ 3.
For k = 1 the problem is trivially tractable because ghw(H ) = 1 just
meansH is acyclic. However the case k = 2 has been left open. This
case is quite interesting, because it was observed that the majority
of practical queries from various benchmarks that are not acyclic
have ghw = 2 [10, 22], and that a decomposition in such cases can
be very helpful. Our second research goal is to finally settle the
complexity of Check(GHD,k) completely.
Research Challenge 2: Is Check(GHD, 2) tractable?
For those problems which are known to be intractable, for exam-

ple,Check(GHD,k) for k ≥ 3, and for those others that will turn out
to be intractable, we would like to find large islands of tractability
that correspond to meaningful restrictions of the input hypergraph
instances. Ideally, such restrictions should fulfill two main criteria:
(i) they need to be realistic in the sense that they apply to a large
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number of CQs and/or CSPs in real-life applications, and (ii) they
need to be non-trivial in the sense that the restriction itself does not
already imply bounded hw, ghw, or fhw. Trivial restrictions would
be, for example, acyclicity or bounded treewidth. Hence, our third
research problem is as follows:

Research Challenge 3: Find realistic, non-trivial restrictions
on hypergraphs which entail the tractability of the
Check(decomp,k) problem for decomp ∈ {GHD, FHD}.

Where we do not achieve Ptime algorithms for the precise com-
putation of a decomposition of optimal width, we would like to
find tractable methods for achieving good approximations. Note
that for GHDs, the problem of approximations is solved, since
ghw(H ) ≤ 3 · hw(H ) + 1 holds for every hypergraph H [4]. In con-
trast, for FHDs, the best known polynomial-time approximation
is cubic. More precisely, in [38], a polynomial-time algorithm is
presented which, given a hypergraph H with fhw(H ) = k , com-
putes an FHD of width O(k3). We would like to find meaningful
restrictions that guarantee significantly tighter approximations in
polynomial time. This leads to the fourth research problem:

Research Challenge 4: Find realistic, non-trivial restrictions
on hypergraphs which allow us to compute in Ptime good
approximations of fhw(k).

Background andApplications.Hypergraph decompositions have
meanwhile found their way into commercial database systems such
as LogicBlox [6, 9, 35, 36, 42] and advanced research prototypes
such as EmptyHeaded [1, 2, 45]. Moreover, since CQs and CSPs of
bounded hypertree width fall into the highly parallelizable com-
plexity class LogCFL, hypergraph decompositions have also been
discovered as a useful tool for parallel query processingwithMapRe-
duce [5]. Hypergraph decompositions, in particular, HDs and GHDs
have been used in many other contexts, e.g., in combinatorial auc-
tions [25] and automated selection of Web services based on recom-
mendations from social networks [34]. There exist exact algorithms
for computing the generalized or fractional hypertree width [41];
clearly, they require exponential time even if the optimal width is
bounded by some fixed k .

CQs are the most basic and arguably the most important class
of queries in the database world. Likewise, CSPs constitute one of
the most fundamental classes of problems in Artificial Intelligence.
Formally, CQs and CSPs are the same problem and correspond to
first-order formulae using {∃,∧} but disallowing {∀,∨,¬} as con-
nectives, that need to be evaluated over a set of finite relations: the
database relations for CQs, and the constraint relations for CSPs. In
practice, CQs have often fewer conjuncts (query atoms) and larger
relations, while CSPs have more conjuncts but smaller relations. Un-
fortunately, these problems are well-known to be NP-complete [12].
Consequently, there has been an intensive search for tractable frag-
ments of CQs and/or CSPs over the past decades. For our work, the
approaches based on decomposing the structure of a given CQ or
CSP are most relevant, see e.g. [8, 13–17, 24, 26, 28, 30–33, 37, 39, 40].
The underlying structure of both is nicely captured by hypergraphs.
The hypergraph H = (V (H ),E(H )) underlying a CQ (or a CSP) Q
has as vertex setV (H ) the set of variables occurring inQ ; moreover,
for every atom in Q , E(H ) contains a hyperedge consisting of all
variables occurring in this atom. From now on, we shall mainly talk

about hypergraphs with the understanding that all our results are
equally applicable to CQs and CSPs.

Main Results. First of all, we have investigated the above men-
tioned open problem concerning the recognizability of fhw ≤ k
for fixed k . Our initial hope was to find a simple adaptation of
the NP-hardness proof in [27] for recognizing ghw(H ) ≤ k , for
k ≥ 3. Unfortunately, this proof dramatically fails for the fractional
case. In fact, the hypergraph-gadgets in that proof are such that
both “yes” and “no” instances may yield the same fhw. However,
via crucial modifications, including the introduction of novel gad-
gets, we succeed to construct a reduction from 3SAT that allows
us to control the fhw of the resulting hypergraphs such that those
hypergraphs arising from “yes” 3SAT instances have fhw(H ) = 2
and those arising from “no” instances have fhw(H ) > 2. Surpris-
ingly, thanks to our new gadgets, the resulting proof is actually
significantly simpler than the NP-hardness proof for recognizing
ghw(H ) ≤ k in [27]. We thus obtain the following result solving a
long standing open problem:
Main Result 1: Deciding fhw(H ) ≤ 2 for hypergraphs H is
NP-complete, and Check(FHD,k) is intractable even for k = 2.

This result can be extended to the NP-hardness of recognizing
fhw(H ) ≤ k for arbitrarily large k ≥ 2. Moreover, the same con-
struction can be used to prove that recognizing ghw ≤ 2 is also
NP-hard, thus killing two birds with one stone.
Main Result 2: Deciding ghw(H ) ≤ 2 for hypergraphs H is
NP-complete, and Check(GHD, 2) is intractable even for k = 2.
The Main Results 1 and 2 are presented in Section 3. These

results close some smoldering open problems with bad news. We
thus further concentrate on Research Challenges 3 and 4 in order
to obtain some positive results for restricted hypergraph classes.

We first study GHDs, where we succeed to identify very general,
realistic, and non-trivial restrictions that make the Check(GHD,k)
problem tractable. These results are based on new insights about
the differences of GHDs and HDs and the introduction of a novel
technique for expanding a hypergraph H to an edge-augmented
hypergraph H ′ s.t. the width k GHDs of H correspond to the width
k HDs of H ′. The crux here is to find restrictions under which only
a polynomial number of edges needs to be added to H to obtain H ′.
The HDs of H ′ can then be computed in polynomial time.

In particular, we concentrate on the bounded edge intersection

property (BIP), which, for a class C of hypergraphs requires that
for some constant i , for each pair of distinct edges e1 and e2 of each
hypergraphH ∈ C , |e1∩e2 | ≤ i , and its generalization, the bounded
multi-intersection property (BMIP), which, informally, requires that
for some constant c any intersection of c distinct hyperedges of
H has at most i elements for some constant i . In [22] we report
tests on a large number of known CQ and CSP benchmarks and
it turns out that a very large number of instances coming from
real-life applications enjoy the BIP and a yet more overwhelming
number enjoys the BMIP for very low constants c and i . We obtain
the following good news, which are presented in Section 4.
Main Result 3: For classes of hypergraphs fulfilling the BIP
or BMIP, for every constant k , the problem Check(GHD,k) is
tractable. Tractability holds even for classes C of hypergraphs
where for some constant c all intersections of c distinct edges



of every H ∈ C of size n have O(logn) elements. Our com-
plexity analysis reveals that the problem Check(GHD,k) is
fixed-parameter tractable w.r.t. parameter i of the BIP.

The tractability proofs for BIP and BMIP do not directly carry
over to the fractional case. However, by adding a further restriction
to the BIP, we also manage to identify an interesting tractable
fragment for recognizing fhw(H ) ≤ k . To this end, we consider the
degree d of a hypergraph H = (V (H ),E(H )), which is defined as
the maximum number of hyperedges in which a vertex occurs, i.e.,
d = maxv ∈V (H ) |{e ∈ E(H ) | v ∈ E(H )}|. We say that a class C of
hypergraphs has bounded degree, if there exists d ≥ 1, such that
every hypergraph H ∈ C has degree ≤ d . We obtain the following
result, which is presented in Section 5.

Main Result 4: For classes of hypergraphs fulfilling the BIP
and having bounded degree, for every constant k , the problem
Check(FHD,k) is tractable.

To get yet bigger tractable classes, we also consider approxi-
mations of an optimal FHD. Towards this goal, we establish an
interesting connection between the BIP and BMIP on the one hand
and the Vapnik–Chervonenkis dimension (VC-dimension) of a hy-
pergraph on the other hand. Our research, presented in Section 6
is summarized as follows.

Main Result 5: For rather general, realistic, and non-trivial
hypergraph restrictions, there exist Ptime algorithms that, for
hypergraphsH with fhw(H ) = k , wherek is a constant, produce
FHDs whose widths are significantly smaller than the best
previously known approximation. In particular, the BIP, the
BMIP, or bounded VC-dimension allow us to compute an FHD
whose width is O(k logk).

An online version of this paper [21] contains full proofs and a short
summary of [22].

2 PRELIMINARIES
2.1 Hypergraphs
A hypergraph is a pair H = (V (H ),E(H )), consisting of a set V (H )

of vertices and a set E(H ) of hyperedges (or, simply edges), which
are non-empty subsets of V (H ). We assume that hypergraphs do
not have isolated vertices, i.e. for each v ∈ V (H ), there is at least
one edge e ∈ E(H ), s.t. v ∈ e . For a set C ⊆ V (H ), we define
edges(C) = {e ∈ E(H ) | e ∩ C , ∅} and for a set E ⊆ E(H ), we
define V (E) = {v ∈ e | e ∈ E}.

For a hypergraph H and a set V ⊆ V (H ), we say that a pair of
vertices v1,v2 ∈ V (H ) is [V ]-adjacent if there exists an edge e ∈

E(H ) such that {v1,v2} ⊆ (e \V ). A [V ]-path π fromv tov ′ consists
of a sequence v = v0, . . . ,vh = v ′ of vertices and a sequence of
edges e0, . . . , eh−1 (h ≥ 0) such that {vi ,vi+1} ⊆ (ei \V ), for each
i ∈ [0 . . .h − 1]. We denote by V (π ) the set of vertices occurring in
the sequence v0, . . . ,vh . Likewise, we denote by edges(π ) the set
of edges occurring in the sequence e0, . . . , eh−1. A setW ⊆ V (H )

of vertices is [V ]-connected if ∀v,v ′ ∈W there is a [V ]-path from
v to v ′. A [V ]-component is a maximal [V ]-connected, non-empty
set of verticesW ⊆ V (H ) \V .

2.2 (Fractional) Edge Covers
Let H = (V (H ),E(H )) be a hypergraph and consider functions
λ : E(H ) → {0, 1} and γ : E(H ) → [0, 1]. Then, we denote by B(θ )
the set of all vertices covered by θ :

B(θ ) =

v ∈ V (H ) |
∑

e ∈E(H ),v ∈e

θ (e) ≥ 1
 ,

where θ ∈ {λ,γ }. The weight of function θ is defined as

weight(θ ) =
∑

e ∈E(H )

θ (e).

Following [26], we will sometimes consider λ as a set with λ ⊆

E(H ) (i.e., the set of edges e with λ(e) = 1) and the weight as
the cardinality of such a set. However, for the sake of a uniform
treatment with function γ , we shall prefer to treat λ as a function.

Definition 2.1. An edge cover (EC) of a hypergraph H is a func-

tion λ : E(H ) → {0, 1} such that V (H ) = B(λ). The edge cover
number ρ(H )is the minimum weight of all edge covers of H .

Note that the edge cover number can be calculated by the fol-
lowing integer linear program (ILP).

minimize:
∑

e ∈E(H )

λ(e)

subject to:
∑

e ∈E(H ),v ∈e

λ(e) ≥ 1, for all v ∈ V (H )

λ(e) ∈ {0, 1} for all e ∈ E(H )

By substitung all λ(e) by γ (e) and by relaxing the last condition of
the ILP above, we arrive at the linear program (LP) for computing
the fractional edge cover number. Actually, we substitute the last
condition by γ (e) ≥ 0. Note that even though our weight function
is defined to take values between 0 and 1, we do not need to add
γ (e) ≤ 1 as a constraint, because implicitly by the minimization
itself the weight on an edge for an edge cover is never greater than
1. Also note that now the program above is an LP, which can be
solved in Ptime, whereas finding an edge cover of weight ≤ k is
NP-complete if k is not fixed.

Definition 2.2. A fractional edge cover (FEC) of a hypergraph
H = (V (H ),E(H )) is a function γ : E(H ) → [0, 1] such that V (H ) =

B(γ ). The fractional edge cover number ρ∗(H ) of H is the minimum

weight of all fractional edge covers of H . We write supp(γ ) to denote
the support of γ , i.e., supp(γ ) := {e ∈ E(H ) | γ (e) > 0}.

Clearly, we have ρ∗(H ) ≤ ρ(H ) for every hypergraph H , and
ρ∗(H ) can be much smaller than ρ(H ). However, below we give
an example, which is important for our proof of Theorem 3.1 and
where ρ∗(H ) and ρ(H ) coincide.

Lemma 2.1. Let K2n be a clique of size 2n. Then the equalities

ρ(K2n ) = ρ∗(K2n ) = n hold.

Proof. Since we have to cover each vertex with weight ≥ 1, the
total weight on the vertices of the graph is ≥ 2n. As the weight of
each edge adds to the weight of at most 2 vertices, we need at least
weight n on the edges to achieve ≥ 2n weight on the vertices. On
the other hand, we can use n edges each with weight 1 to cover 2n
vertices. Hence, in total, we get n ≤ ρ∗(K2n ) ≤ ρ(K2n ) ≤ n. �



2.3 HDs, GHDs, and FHDs
We now define three types of hypergraph decompositions:

Definition 2.3. A generalized hypertree decomposition (GHD)

of a hypergraph H = (V (H ),E(H )) is a tuple

〈
T , (Bu )u ∈N (T ),

(λ)u ∈N (T )
〉
, such that T = ⟨N (T ),E(T )⟩ is a rooted tree and the

following conditions hold:

(1) for each e ∈ E(H ), there is a node u ∈ N (T ) with e ⊆ Bu ;
(2) for each v ∈ V (H ), the set {u ∈ N (T ) | v ∈ Bu } is connected

in T ;
(3) for each u ∈ N (T ), λu is a function λu : E(H ) → {0, 1} with

Bu ⊆ B(λu ).

Let us clarify some notational conventions used throughout
this paper. To avoid confusion, we will consequently refer to the
elements inV (H ) as vertices (of the hypergraph) and to the elements
in N (T ) as the nodes of T (of the decomposition). For a node u in T ,
we writeTu to denote the subtree ofT rooted atu. By slight abuse of
notation, we will often write u ′ ∈ Tu to denote that u ′ is a node in
the subtreeTu ofT . Further, we defineV (Tu ) :=

⋃
u′∈Tu Bu′ and, for

a set V ′ ⊆ V (H ), we define nodes(V ′,F ) = {u ∈ T | Bu ∩V ′ , ∅}.
Definition 2.4. A hypertree decomposition (HD) of a hyper-

graph H = (V (H ),E(H )) is a GHD, which in addition also satisfies

the following condition:

(4) for each u ∈ N (T ), V (Tu ) ∩ B(λu ) ⊆ Bu

Definition 2.5. A fractional hypertree decomposition (FHD)

[30] of a hypergraph H = (V (H ),E(H )) is a tuple
〈
T , (Bu )u ∈N (T ),

(γ )u ∈N (T )
〉
, where conditions (1) and (2) of Definition 2.3 plus condi-

tion (3’) hold:

(3’) for each u ∈ N (T ), γu is a function γu : E(H ) → [0, 1] with
Bu ⊆ B(γu ).

The width of a GHD, HD, or FHD is the maximum weight of
the functions λu or γu , resp., over all nodes u in T . Moreover, the
generalized hypertree width, hypertree width, and fractional hyper-
tree width of H (denoted ghw(H ), hw(H ), fhw(H )) is the minimum
width over all GHDs, HDs, and FHDs of H , resp. Condition (2) is
called the “connectedness condition”, and condition (4) is referred
to as “special condition” [26]. The set Bu is often referred to as the
“bag” at node u. Note that, strictly speaking, only HDs require that
the underlying treeT be rooted. For the sake of a uniform treatment
we assume that also the tree underlying a GHD or an FHD is rooted
(with the understanding that the root is arbitrarily chosen).

We now recall two fundamental properties of the various notions
of decompositions and width.

Lemma 2.2. Let H be a hypergraph and let H ′
be a vertex induced

subhypergraph of H , then hw(H ′) ≤ hw(H ), ghw(H ′) ≤ ghw(H ),

and fhw(H ′) ≤ fhw(H ) hold.

Lemma 2.3. Let H be a hypergraph. If H has a subhypergraph H ′

such that H ′
is a clique, then every HD, GHD, or FHD of H has a node

u such that V (H ′) ⊆ Bu .

Strictly speaking, Lemma 2.3 is a well-known property of tree
decompositions – independently of the λ- or γ -label.
Last, we define the notion of full nodes. Intuitively, a nodeu is called
full in a decomposition if it is not possible to add to the bag Bu a
new vertex v without increasing the width of the decomposition.

a1

a2

b1

b2

c1

c2

d1

d2

M1

M2

M1

M2

M1

M2

Figure 1: Basic structure of H0 in Lemma 3.1

Definition 2.6. Let F = ⟨T , (Bu )u ∈T , (γu )u ∈T ⟩ be an FHD of H
of width ≤ k , then a node u inT is said to be full in F (or simply full,
if F is understood from the context), if for any vertex v ∈ V (H ) \ Bu
it is the case that ρ∗(B(γu ) ∪v) > k .

3 NP-HARDNESS
The main result in this section is the NP-hardness of
Check(decomp,k) with decomp ∈ {GHD, FHD} and k = 2. At
the core of the NP-hardness proof is the construction of a hyper-
graph H with certain properties. The gadget in Figure 1 will play
an integral part of this construction.

Lemma 3.1. Let M1, M2 be disjoint sets and M = M1 ∪ M2. Let
H = (V (H ),E(H )) be a hypergraph and H0 = (V0,EA ∪ EB ∪ EC ) a
subhypergraph of H with V0 = {a1,a2,b1,b2, c1, c2,d1,d2} ∪M and

EA = {{a1,b1} ∪M1, {a2,b2} ∪M2, {a1,b2}, {a2,b1}, {a1,a2}}

EB = {{b1, c1} ∪M1, {b2, c2} ∪M2,

{b1, c2}, {b2, c1}, {b1,b2}, {c1, c2}}

EC = {{c1,d1} ∪M1, {c2,d2} ∪M2, {c1,d2}, {c2,d1}, {d1,d2}}

where no element from the set R = {a2,b1,b2, c1, c2,d1,d2} occurs
in any edge of E(H ) \ (EA ∪ EB ∪ EC ). Then, every FHD F =

⟨T , (Bu )u ∈T , (γu )u ∈T ⟩ of width ≤ 2 of H has nodes uA,uB ,uC s.t.:

• {a1,a2,b1,b2} ⊆ BuA ,
• {b1,b2, c1, c2} ∪M ⊆ BuB ,
• {c1, c2,d1,d2} ⊆ BuC , and
• uB is on the path from uA to uC .

Proof Idea. The hypergraph H0 is depicted in Figure 1. Note
that H0 contains 3 cliques of size 4, namely {a1,a2,b1,b2}, {b1,b2,
c1, c2}, and {c1, c2,d1,d2}. The lemma makes heavy use of the con-
nectedness condition and of the fact that a clique of size 4 can only
be covered by a fractional edge cover of weight ≥ 2. �

Theorem 3.1. The Check(decomp,k) problem is NP-complete for

decomp ∈ {GHD, FHD} and k = 2.

Proof Sketch. The problem is clearly in NP: guess a tree de-
composition and check in polynomial time for each nodeu whether
ρ(Bu ) ≤ 2 or ρ∗(Bu ) ≤ 2, respectively, holds. The NP-hardness is
proved by a reduction from 3SAT. Before presenting this reduction,
we first introduce some useful notation.

Notation. For i, j ≥ 1, we denote {1, . . . , i} × {1, . . . , j} by [i; j].
For each p ∈ [i; j], we denote by p ⊕ 1 (p ⊖ 1) the successor (prede-
cessor) of p in the usual lexicographic order on pairs, that is, the
order (1, 1), . . . , (1, j), (2, 1), . . . , (i, 1), . . . , (i, j). We refer to the first
element (1, 1) asmin and to the last element (i, j) asmax. We denote
by [i; j]− the set [i; j] \ {max}, i.e. [i; j] without the last element.



Now let φ =
∧m
j=1(L

1
j ∨L2j ∨L3j ) be an arbitrary instance of 3SAT

withm clauses and variables x1, . . . ,xn . From this we will construct
a hypergraph H = (V (H ),E(H )), which consists of two copies
H0,H ′

0 of the (sub-)hypergraph H0 of Lemma 3.1 plus additional
edges connecting H0 and H ′

0. We use the sets Y = {y1, . . . ,yn } and
Y ′ = {y′1, . . . ,y

′
n } to encode the truth values of the variables of φ.

We denote byYl (Y ′
l ) the setY \{yl } (Y

′\{y′l }). Furthermore, we use
the sets A = {ap | p ∈ [2n + 3;m]} and A′ = {a′p | p ∈ [2n + 3;m]},
and we define the following subsets of A and A′, respectively:

Ap = {amin, . . . ,ap } Ap = {ap , . . . ,amax}

A′
p = {a′min, . . . ,a

′
p } A′

p = {a′p , . . . ,a
′
max}

In addition, we will use another set S of elements, that controls
and restricts the ways in which edges are combined in a possible
FHD. Such an FHD will have, implied by Lemma 3.1, two nodes uB
and u ′B such that S ⊆ BuB and S ⊆ Bu′

B
. From this, we will reason

on the path connecting uB and u ′B .
The concrete set S used in our construction of H is obtained as

follows. LetQ = [2n + 3;m] ∪ {(0, 1), (0, 0), (1, 0)}, henceQ is an ex-
tension of the set [2n+3;m]with special elements (0, 1), (0, 0), (1, 0).
We define S as follows:

S = Q × {1, 2, 3} × {0, 1}.

An element in this set will be denoted by (q | k,τ ), thereby we split
the 3 items into 2 groups. Recall that the valuesq ∈ Q are themselves
pairs of integers (i, j). Intuitively, q indicates the position of a node
on the “long” path π in the desired FHD or GHD. The integerk refers
to a literal in the j-th clause while the values 0 and 1 of τ will be used
to indicate “complementary” edges of hypergraphH in a sense to be
made precise later (see Definition 3.1). We will write the wildcard
∗ to indicate that a component in some element of S can take an
arbitrary value. If both k and τ may take arbitrary values, then we
will use the single symbol ~ as a shorthand for ∗, ∗. For example,
(min | ~) denotes the set of tuples (q | k,τ ) where q = min = (1, 1)
and the pair (k,τ ) can take an arbitrary value in {1, 2, 3} × {0, 1}.
We will denote by Sp the set (p | ~). For instance, (min | ~) will
be denoted as Smin. Further, for p ∈ [2n + 3;m], k ∈ {1, 2, 3}, and
τ ∈ {0, 1}, we define singleton sets Sk,τp = {(p | k,τ )}.

Problem reduction. Let φ =
∧m
j=1(L

1
j ∨ L2j ∨ L3j ) be an arbitrary

instance of 3SAT withm clauses and variables x1, . . . ,xn . From this
we construct a hypergraph H = (V (H ),E(H )) i.e., an instance of
Check(decomp,k) with decomp ∈ {GHD, FHD} and k = 2.

We start by defining the vertex set V (H ):

V (H ) = S ∪ A ∪ A′ ∪ Y ∪ Y ′ ∪ {z1, z2} ∪

{a1,a2,b1,b2, c1, c2,d1,d2,a
′
1,a

′
2,b

′
1,b

′
2, c

′
1, c

′
2,d

′
1,d

′
2}.

The edges of H are defined in 3 steps. First, we take two copies
of the subhypergraph H0 used in Lemma 3.1:
• Let H0 = (V0,E0) be the hypergraph of Lemma 3.1 with V0 =
{a1,a2,b1,b2, c1, c2,d1,d2} ∪M1 ∪M2 and E0 = EA ∪EB ∪EC ,
where we setM1 = S \ S(0,1) ∪ {z1} andM2 = Y ∪ S(0,1) ∪ {z2}.

• Let H ′
0 = (V ′

0 ,E
′
0) be the corresponding hypergraph, with V ′

0 =
{a′1,a

′
2,b

′
1, b

′
2, c

′
1, c

′
2,d

′
1,d

′
2} ∪M ′

1 ∪M ′
2 and E

′
A,E

′
B ,E

′
C are the

primed versions of the egde sets M ′
1 = S \ S(1,0) ∪ {z1} and

M ′
2 = Y

′ ∪ S(1,0) ∪ {z2}.

In the second step, we define the edges which (as we will see)
enforce the existence of a “long” path π between the nodes covering
H0 and the nodes covering H ′

0 in any GHD or FHD.
• ep = A′

p ∪Ap , for p ∈ [2n + 3;m]−,
• eyi = {yi ,y

′
i }, for 1 ≤ i ≤ n,

• For p = (i, j) ∈ [2n + 3;m]− and k ∈ {1, 2, 3}:

ek,0p =

{
Ap ∪ (S \ Sk,1p ) ∪ Y ∪ {z1} if Lkj = xl

Ap ∪ (S \ Sk,1p ) ∪ Yl ∪ {z1} if Lkj = ¬xl ,

ek,1p =

{
A′
p ∪ Sk,1p ∪ Y ′

l ∪ {z2} if Lkj = xl

A′
p ∪ Sk,1p ∪ Y ′ ∪ {z2} if Lkj = ¬xl .

Finally, we need edges that connect H0 and H ′
0 with the above

edges covered by the nodes of the “long” path π in a GHD or FHD:
• e0

(0,0) = {a1} ∪A ∪ S \ S(0,0) ∪ Y ∪ {z1}

• e1
(0,0) = S(0,0) ∪ Y ′ ∪ {z2}

• e0max = S \ Smax ∪ Y ∪ {z1}
• e1max = {a′1} ∪A′ ∪ Smax ∪ Y ′ ∪ {z2}

This concludes the construction of the hypergraph H . In Appen-
dix A, we provide Example A.1, which will help to illustrate the
intuition underlying this construction.

To prove the correctness of our problem reduction, we have to
show the two equivalences: first, that ghw(H ) ≤ 2 if and only if φ is
satisfiable and second, that fhw(H ) ≤ 2 if and only if φ is satisfiable.
We prove the two directions of these equivalences separately.

Proof of the “if”-direction. We will first assume that φ is sat-
isfiable. It suffices to show that then H has a GHD of width ≤ 2,
because fhw(H ) ≤ ghw(H ) holds. Let σ be a satisfying truth as-
signment. Let us fix for each j ≤ m, some kj ∈ {1, 2, 3} such that
σ (L

kj
j ) = 1. By lj , we denote the index of the variable in the lit-

eral Lkjj , that is, Lkjj = xlj or L
kj
j = ¬xlj . For p = (i, j), let kp

refer to kj and let Lkpp refer to L
kj
j . Finally, we let Z be the set

{yi | σ (xi ) = 1} ∪ {y′i | σ (xi ) = 0}.
A GHD G = ⟨T , (Bu )u ∈T , (λu )u ∈T ⟩ of width 2 for H is con-

structed as follows. T is a path uC , uB , uA, umin ⊖1, umin,. . . , umax,
u ′A, u

′
B , u

′
C . The construction is illustrated in Figure 2. The precise

definition of Bu and λu is given in Table 1. Clearly, the GHD has
width ≤ 2. We now show that G is indeed a GHD of H :

(1) For each edge e ∈ E, there is a node u ∈ T , such that e ⊆ Bu :
• ∀e ∈ EX : e ⊆ BuX for all X ∈ {A,B,C},
• ∀e ′ ∈ E ′X : e ′ ⊆ Bu′

X
for all X ∈ {A,B,C},

• ep ⊆ Bup for p ∈ [2n + 3;m]−,
• eyi ⊆ Bumin ⊖1 or eyi ⊆ Bumax depending on Z ,
• ek,0p ⊆ Bumin ⊖1 for p ∈ [2n + 3;m]−,
• ek,1p ⊆ Bumax for p ∈ [2n + 3;m]−,
• e0

(0,0) ⊆ Bumin ⊖1 , e1(0,0) ⊆ Bumax ,
• e0max ⊆ Bumin ⊖1 and e1max ⊆ Bumax .

All of the above inclusions can be verified in Table 1.
(2) For each vertex v ∈ V , the set {u ∈ T | v ∈ Bu } induces a

connected subtree of T , which is easy to verify in Table 1.
(3) For each u ∈ T , Bu ⊆ B(λu ): The only inclusion which

cannot be easily verified in Table 1 is Bup ⊆ B(λup ). In fact,



u ∈ T Bu λu
uC {d1,d2, c1, c2} ∪ Y ∪ S ∪ {z1, z2} {c1,d1} ∪M1, {c2,d2} ∪M2
uB {c1, c2,b1,b2} ∪ Y ∪ S ∪ {z1, z2} {b1, c1} ∪M1, {b2, c2} ∪M2
uA {b1,b2,a1,a2} ∪ Y ∪ S ∪ {z1, z2} {a1,b1} ∪M1, {a2,b2} ∪M2

umin ⊖1 {a1} ∪A ∪ Y ∪ S ∪ Z ∪ {z1, z2} e0
(0,0), e

1
(0,0)

up∈[2n+3;m]− A′
p ∪Ap ∪ S ∪ Z ∪ {z1, z2} e

kp,0
p , e

kp,1
p

umax {a′1} ∪A′ ∪ Y ′ ∪ S ∪ Z ∪ {z1, z2} e0max, e
1
max

u ′A {a′1,a
′
2,b

′
1,b

′
2} ∪ Y ′ ∪ S ∪ {z1, z2} {a′1,b

′
1} ∪M ′

1, {a
′
2,b

′
2} ∪M ′

2
u ′B {b ′1,b

′
2, c

′
1, c

′
2} ∪ Y ′ ∪ S ∪ {z1, z2} {b ′1, c

′
1} ∪M ′

1, {b
′
2, c

′
2} ∪M ′

2
u ′C {c ′1, c

′
2,d

′
1,d

′
2} ∪ Y ′ ∪ S ∪ {z1, z2} {c ′1,d

′
1} ∪M ′

1, {c
′
2,d

′
2} ∪M ′

2

Table 1: Definition of Bu and λu for GHD of H .

umin⊖1

{a1} ∪ A ∪ Y ∪

S ∪ Z ∪ {z1, z2}

u(1,1)

A′
min ∪ Amin∪

S ∪ Z ∪ {z1, z2}

up

A′
p ∪ Ap∪

S ∪ Z ∪ {z1, z2}

u(2n+3,m−1)

A′
(2n+3,m−1) ∪ A(2n+3,m−1)∪

S ∪ Z ∪ {z1, z2}

umax

{a′
1} ∪ A′ ∪ Y ′∪

S ∪ Z ∪ {z1, z2}

uA

{a1, a2, b1, b2} ∪ Y ∪

S ∪ {z1, z2}

uB

{b1, b2, c1, c2} ∪ Y ∪

S ∪ {z1, z2}

uC

{c1, c2, d1, d2} ∪ Y ∪

S ∪ {z1, z2}

u′
A

{a′
1, a

′
2, b

′
1, b

′
2}∪Y ′∪

S ∪ {z1, z2}

u′
B

{b′1, b
′
2, c

′
1, c

′
2}∪Y ′∪

S ∪ {z1, z2}

u′
C

{c′1, c
′
2, d

′
1, d

′
2}∪Y ′∪

S ∪ {z1, z2}

Figure 2: Intended path of the FHD of hypergraph H in the proof of Theorem 3.1

this is the only place in the proof where we make use of
the assumption that φ is satisfiable. First, notice that the set
A′
p ∪Ap ∪S∪{z1, z2} is clearly a subset of B(λup ). It remains

to show that Z ⊆ B(λup ). Assume that Lkpp = xlj , for some
p ∈ [2n + 3;m]−. Thus, σ (xlj ) = 1 and therefore y′lj < Z . But,

by definition of ekp,0p and ekp,1p , vertexy′lj is the only element
of Y ∪ Y ′ not contained in B(λup ). Since Z ⊆ (Y ∪ Y ′) and
y′lj
< Z , we have that Z ⊆ B(λup ). It remains to consider the

case Lkpp = ¬xlj , for some p ∈ [2n + 3;m]−. Thus, σ (xlj ) = 0

and againylj < Z . But, by definition of e
kp,0
p and ekp,1p , vertex

ylj is the only element of Y ∪ Y ′ not contained in B(λup ).
Since Z ⊆ (Y ∪ Y ′) and ylj < Z , we have that Z ⊆ B(λup ).

Two crucial lemmas. Before we give a proof sketch of the “only
if’-direction, we define the notion of complementary edges and
state two important lemmas related to this notion.

Definition 3.1. Let e and e ′ be two edges from the hypergraph

H as defined before. We say e ′ is the complementary edge of e (or,
simply, e, e ′ are complementary edges) whenever

• e ∩ S = S \ S ′ for some S ′ ⊆ S and

• e ′ ∩ S = S ′.

Observe that for every edge in our construction that covers S \S ′
for some S ′ ⊆ S there is a complementary edge that covers S ′, for
example ek,0p and ek,1p , e0

(0,0) and e
1
(0,0), and so on. In particular there

is no edge that covers S completely. Moreover, consider arbitrary
subsets S1, S2 of S , s.t. (syntactically) S \ Si is part of the definition
of ei for some ei ∈ E(H ) with i ∈ {1, 2}. Then S1 and S2 are disjoint.

We now give two lemmas needed for the “only if”-direction.

Lemma 3.2. Let F = ⟨T , (Bu )u ∈T , (γu )u ∈T ⟩ be an FHD of width

≤ 2 of the hypergraph H constructed above. For every node u with

S ∪ {z1, z2} ⊆ Bu and every pair e, e ′ of complementary edges, it

holds that γu (e) = γu (e
′).

Proof Sketch. First, we try to cover z1 and z2 with weight 2.
To do this, we split the set of edges into disjoint sets E0 = {e ∈

E(H ) | z1 ∈ e} to cover z1 and E1 = {e ∈ E(H ) | z2 ∈ e} to cover
z2 (no edge contains both z1 and z2). Then Σe ∈E0γu (e) = 1 and
Σe ∈E1γu (e) = 1 must hold. An inspection of E0 and E1 shows that,
in order to also cover S while not exceeding the weight of 2, every
pair e, e ′ of complementary edges must satisfy γu (e) = γu (e ′). �

Lemma 3.3. Let F = ⟨T , (Bu )u ∈T , (γu )u ∈T ⟩ be an FHD of width

≤ 2 of the hypergraph H constructed above and let p ∈ [2n + 3;m]−.

For every node u with S ∪ A′
p ∪ Ap ∪ {z1, z2} ⊆ Bu , the condition

γu (e) = 0 holds for all edges e in E(H ) except for ek,0p and ek,1p with

k ∈ {1, 2, 3}, i.e. the only way to cover S ∪A′
p ∪Ap ∪ {z1, z2} with

weight ≤ 2 is by using only edges ek,0p and ek,1p with k ∈ {1, 2, 3}.

Proof Sketch. Now, in addition to the vertices to be covered
in Lemma 3.2, also A′

p and Ap have to be covered. Similar as in the
proof of Lemma 3.2, we identify sets of edges E1p and E0p able to



cover A′
p and Ap , respectively. Now, by Lemma 3.2, the only way

to also cover S ∪ {z1, z2} is by using complementary edges, which
in those sets are only the edges ek,0p and ek,1p with k ∈ {1, 2, 3}. �

Proof of the “only if”-direction. It remains to show that φ is
satisfiable ifH has a GHD (FHD) of width ≤ 2. Due to the inequality
fhw(H ) ≤ ghw(H ), it suffices to show that φ is satisfiable if H has
an FHD of width ≤ 2. For this, we let F = ⟨T , (Bu )u ∈T , (γu )u ∈T ⟩
be such an FHD. LetuA,uB ,uC andu ′A,u

′
B ,u

′
C be the nodes that are

guaranteed by Lemma 3.1 withMi ,M
′
i as defined above. Recall that

in the proof of Lemma 3.1 we observed that the nodes uA,uB ,uC
and u ′A,u

′
B ,u

′
C are full. We state several properties of the path

connecting uA and u ′A. The proofs of these claims can be found
in Appendix B. They rely on Lemmas 3.2 and 3.3. Particularly, the
proofs of Claims E, H and I use the fact that the same weight has to
be put on complementary edges (Lemma 3.2) and that a total weight
of 1 has to be put on the edges ek,0p and ek,1p with k = {1, 2, 3}.

Claim A. The nodes u ′A,u
′
B ,u

′
C (resp. uA,uB ,uC ) are not on the

path from uA to uC (resp. u ′A to u ′C ).

Claim B. The following equality holds:

nodes(A ∪A′,F ) ∩ {uA,uB ,uC ,u
′
A,u

′
B ,u

′
C } = ∅.

We are now interested in the sequence of nodes ûi that cover the
edges e0

(0,0), emin, emin ⊕1, . . . . Before we formulate Claim C, it is
convenient to introduce the following notation. To be able to refer
to the edges e0

(0,0), emin, emin ⊕1, . . . , emax ⊖1, e1max in a uniform way,
we use emin ⊖1 as synonym of e0

(0,0) and emax as synonym of e1max.
We thus get the natural order emin ⊖1 < emin < emin ⊕1 < · · · <

emax ⊖1 < emax on these edges.
Claim C. The FHD F has a path containing nodes û1, . . . , ûN

for some N , such that the edges emin ⊖1, emin, emin ⊕1, . . . , emax ⊖1,
emax are covered in this order. More formally, there is a mapping

f : {min ⊖1, . . . ,max} → {1, . . . ,N }, s.t.

• ûf (p) covers ep and

• if p < p′ then f (p) ≤ f (p′).

By a path containing nodes û1, . . . , ûN we mean that û1 and ûN are

nodes in F , such that the nodes û2, . . . , ûN−1 lie (in this order) on

the path from û1 to ûN . Of course, the path from û1 to ûN may also

contain further nodes, but we are not interested in whether they cover

any of the edges ep .

So far we have shown, that there are three disjoint paths from uA
to uC , from u ′A to u ′C and from û1 to ûN , resp. It is easy to see, that
uA is closer to the path û1, . . . , ûN than uB and uC , since otherwise
uB and uC would have to cover a1 as well, which is impossible
since they are full. The same also holds for u ′A. In the next claims
we will argue that the path from uA to u ′A goes through some û
of the path from û1 to ûN . For this we introduce the short-hand
notation π (û1, ûN ) for the path from û1 to ûN . Next, we state some
important properties of π (û1, ûN ) and the path from uA to u ′A.

Claim D. In the FHD F of H of width ≤ 2 the path from uA to

u ′A has non-empty intersection with π (û1, ûN ).

Claim E. In the FHD F of H of width ≤ 2 there are two distin-
guished nodes û and û ′ in the intersection of the path from uA to u ′A
with π (û1, ûN ), s.t. û is the node closer to uA than to u ′A. Then, û is

closer to û1 than to ûN .

Claim F. In the FHD F of H of width ≤ 2 the path π (û1, ûN ) has

at least 3 nodes ûi , i.e., N ≥ 3.
ClaimG. In the FHDF ofH of width ≤ 2 all the nodes û2, . . . , ûN−1

are on the path from uA to u ′A.

By Claim C, the decomposition F contains a path û1 · · · ûN that
covers the edges emin ⊖1, emin, emin ⊕1, . . . , emax ⊖1, emax in this
order. We next strengthen this property by showing that every
node ûi covers exactly one edge ep .

Claim H. Each of the nodes û1, . . . , ûN covers exactly one of the

edges emin ⊖1, emin, emin ⊕1, . . . , emax ⊖1, emax.

We can now associate with each ûi with 1 ≤ i ≤ N the correspond-
ing edge ep and write up to denote the node that covers the edge
ep . By Claim G, we know that all of the nodes umin . . . ,umax ⊖1 are
on the path from uA to u ′A. Hence, by the connectedness condition,
all these nodes cover S ∪ {z1, z2}.
We are now ready to construct a satisfying truth assignment σ
of φ. For each i ≤ 2n + 3, let Xi be the set Bu(i,1) ∩ (Y ∪ Y ′). As
Y ⊆ BuA and Y ′ ⊆ Bu′

A
, the sequence X1 ∩ Y , . . . ,X2n+3 ∩ Y is

non-increasing and the sequence X1 ∩ Y ′, . . . ,X2n+3 ∩ Y ′ is non-
decreasing. Furthermore, as all edges eyi = {yi ,y

′
i }must be covered

by some node in F , we conclude that for each i and j, yj ∈ Xi or
y′j ∈ Xi . Then, there is some s ≤ 2n + 2 such that Xs = Xs+1.
Furthermore, all nodes between u(s,1) and u(s+1,1) cover Xs . We
derive a truth assignment for x1, . . . ,xn from Xs as follows. For
each l ≤ n, we set σ (xl ) = 1 if yl ∈ Xs and otherwise σ (xl ) = 0.
Note that in the latter case y′l ∈ Xs .

Claim I. The constructed truth assignment σ is a model of φ.

Claim I completes the proof of Theorem 3.1. �

We conclude this section by mentioning that the above reduction
is easily extended to k + ℓ for arbitrary ℓ ≥ 1: for integer values ℓ,
simply add a clique of 2ℓ fresh verticesv1, . . . ,v2ℓ toH and connect
each vi with each “old” vertex in H . To achieve a rational bound
k + ℓ/q with ℓ > q, we add ℓ fresh vertices and add hyperedges
{vi ,vi⊕1, . . . ,vi⊕(q−1)} with i ∈ {1, . . . , ℓ} to H , where a ⊕ b de-
notes a + b modulo ℓ. Again, we connect each vi with each “old”
vertex inH . With this construction we can give NP-hardness proofs
for any (fractional) k ≥ 3. For all fractional k < 3 (except for k = 2)
different gadgets and ideas might be needed to prove NP-hardness
of Check(FHD,k), which we leave for future work.

4 EFFICIENT COMPUTATION OF GHDS
As discussed in Section 1 we are interested in finding a realistic and
non-trivial criterion on hypergraphs that makes the Check(GHD,k)
problem tractable for fixed k . We thus propose here such a simple
property, namely the bounded intersection of two or more edges.

Definition 4.1. The intersection width iwidth(H ) of a hyper-

graph H is the maximum cardinality of any intersection e1 ∩ e2 of
two distinct edges e1 and e2 of H . We say that a hypergraph H has

the i-bounded intersection property (i-BIP) if iwidth(H ) ≤ i holds.
Let C be a class of hypergraphs. We say that C has the bounded

intersection property (BIP) if there exists some integer constant i
such that every hypergraph H in C has the i-BIP. Class C has the

logarithmically-bounded intersection property (LogBIP) if for each



of its elements H , iwidth(H ) is O(logn), where n denotes the size of

the hypergraph H .

The BIP criterion is indeed non-trivial, as several well-known
classes of unbounded ghw enjoy the 1-BIP, such as cliques and grids.
Moreover, our empirical study [22] (summarized in [21]) suggests
that the overwhelming number of CQs enjoys the 2-BIP (i.e., one
hardly joins two relations over more than 2 attributes). To allow for
a yet bigger class of hypergraphs, the BIP can be relaxed as follows.

Definition 4.2. The c-multi-intersection width c-miwidth(H )

of a hypergraph H is the maximum cardinality of any intersection

e1 ∩ · · · ∩ ec of c distinct edges e1, . . . , ec of H . We say that a hyper-

graph H has the i-bounded c-multi-intersection property (ic-BMIP)
if c-miwidth(H ) ≤ i holds.

Let C be a class of hypergraphs. We say that C has the bounded
multi-intersection property (BMIP) if there exist constants c and

i such that every hypergraph H in C has the ic-BMIP. Class C of

hypergraphs has the logarithmically-bounded multi-intersection
property (LogBMIP) if there is a constant c such that for the hyper-

graphs H ∈ C , c-miwidth(H ) is O(logn), where n denotes the size of

the hypergraph H .

The LogBMIP is the most liberal restriction on classes of hyper-
graphs introduced in Definitions 4.1 and 4.2. The main result in
this section will be that the Check(GHD,k) problem with fixed k is
tractable for any class of hypergraphs satisfying this criterion.

Towards this result, first recall that the difference betwen HDs
and GHDs lies in the “special condition” required by HDs. As-
sume a hypergraph H = (V (H ),E(H )) and an arbitrary GHDH =

⟨T , (Bu )u ∈T , (λu )u ∈T ⟩ ofH . ThenH is not necessarily an HD, since
it may contain a special condition violation (SCV), i.e.: there can
exist a node u, an edge e ∈ λu and a vertex v ∈ V , s.t. v ∈ e (and,
hence, v ∈ B(λu )), v < Bu and v ∈ V (Tu ). Clearly, if we could be
sure that E(H ) also contains the edge e ′ = e ∩ Bu , then we would
simply replace e in λu by e ′ and would thus get rid of this SCV.

Now our goal is to define a polynomial-time computable func-
tion f which, to each hypergraph H and integer k , associates a
set f (H ,k) of additional hyperedges such that ghw(H ) = k iff
hw(H ′) = k with H = (V (H ),E(H )) and H ′ = (V (H ),E(H ) ∪

f (H ,k)). From this it follows immediately that ghw(H ) is com-
putable in polynomial time. Moreover, a GHD of the same width
can be easily obtained from any HD of H ′. The function f is de-
fined in such a way that f (H ,k) only contains subsets of hyper-
edges of H , thus f is a subedge function as described in [27]. It
is easy to see and well-known [27] that for each subedge func-
tion f , and each H and k , ghw(H ) ≤ hw(H ∪ f (H ,k)) ≤ hw(H ).
Moreover, for the “limit” subedge function f + where f +(H ,k) con-
sists of all possible non-empty subsets of edges of H , we have that
hw(H ∪ f +(H ,k)) = ghw(H ) [3, 27]. Of course, in general, f + con-
tains an exponential number of edges. The important point is that
our function f will achieve the same, while generating a polynomial
and Ptime-computable set of edges only.

We start by introducing a usefuly property of GHDs, which we
will call bag-maximality. LetH = ⟨T , (Bu )u ∈T , (λu )u ∈T ⟩ be a GHD
of some hypergraph H = (V (H ),E(H )). For each node u in T , we
have Bu ⊆ B(λu ) by definition of GHDs and, in general, B(λu ) \ Bu
may be non-empty. We observe that it is sometimes possible to
take some vertices from B(λu ) \ Bu and add them to Bu without

violating the connectedness condition. Of course, such an addition
of vertices to Bu does not violate any of the other conditions of
GHDs. Morevoer, it does not increase the width. We call a GHD bag-

maximal, if for every node u inT , adding a vertexv ∈ B(λu ) \Bu to
Bu would violate the connectedness condition. It is easy to verify
that if H has a GHD of width ≤ k , then it also has a bag-maximal
GHD of width ≤ k . Indeed, just take an arbitrary GHD H of width
≤ k and, if H is not bag-maximal, add vertices from B(λu ) to Bu
for every node u ∈ T where this is possible. So from now on, we
will restrict ourselves w.l.o.g. to bag-maximal GHDs.

Before we prove a crucial lemma, we introduce some useful
notation: in a GHD H = ⟨T , (Bu )u ∈T , (λu )u ∈T ⟩ of a hypergraph
H = (V (H ),E(H )), let u ∈ T , e ∈ λu , and e \ Bu , ∅. Let u∗ be
the node closest to u with e ⊆ Bu and let π = (u0,u1, . . . ,uℓ) with
u0 = u and uℓ = u∗ denote the path of nodes connecting u and u∗.
We shall refer to π as the critical path of (u, e).

Lemma 4.1. Let H = ⟨T , (Bu )u ∈T , (λu )u ∈T ⟩ be a bag-maximal

GHD of a hypergraph H = (V (H ),E(H )), let u ∈ T , e ∈ λu , and
e \ Bu , ∅. Let π = (u0,u1, . . . ,uℓ) with u0 = u be the critical path

of (u, e). Then the following equality holds.

e ∩ Bu = e ∩

ℓ⋂
i=1

B(λui )

Proof. “⊆”: Given that e ⊆ Buℓ and by the connectedness con-
dition, e ∩ Bu must be a subset of Bui for every i ∈ {1, . . . , ℓ}.
Therefore, e ∩ Bu ⊆ e ∩

⋂l
i=1 B(λui ) holds.

“⊇”: Assume to the contrary that there exists some vertex v ∈ e

with v < Bu but v ∈
⋂ℓ
i=1 B(λui ). By e ∈ Buℓ , we have v ∈ Buℓ .

By the connectedness condition, along the path u0, . . . ,uℓ with
u0 = u, there exists α ∈ {0, . . . , ℓ − 1}, s.t. v < Buα and v ∈ Buα+1 .
However, by the assumption, v ∈

⋂ℓ
i=1 B(λui ) holds. In particular,

v ∈ B(λuα ). Hence, we could safely add v to Buα without violating
the connectedness condition nor any other GHD condition. This
contradicts the bag-maximality ofH . �

We are now ready to prove the main result of this section.

Theorem 4.1. For every hypergraph class C that enjoys the LogB-

MIP, and for every constant k ≥ 1, the Check(GHD,k) problem is

tractable, i.e., given a hypergraph H , it is feasible in polynomial time

to check ghw(H ) ≤ k and, if so, to compute a GHD of width k of H .

Sketch. LetH = ⟨T , (Bu )u ∈T , (λu )u ∈T ⟩ be a bag-maximal GHD
of a hypergraphH = (V (H ),E(H )), letu ∈ T , e ∈ λu , and e \Bu , ∅.
Let π = (u0,u1, . . . ,uℓ) with u0 = u be the critical path of (u, e).
By Lemma 4.1, the equality e ∩ Bu = e ∩

⋂ℓ
i=1 B(λui ) holds.

For i ∈ {1, . . . , ℓ}, let λui = {ei1, . . . , ei ji } with ji ≤ k . Then
e ∩

⋂ℓ
i=1 B(λui ) and, therefore, also e ∩ Bu , is of the form

e ∩ (e11 ∪ · · · ∪ e1j1 ) ∩ · · · ∩ (eℓ1 ∪ · · · ∪ eℓjℓ ).

Weaim at a stepwise transformation of this intersection of unions
into a union of intersections via distributivity of ∪ and ∩. For
i ∈ {0, . . . , ℓ}, let Ii = e∩

⋂i
α=1 B(λuα ) = e∩

⋂i
α=1(eα1∪· · ·∪eα jα ).

In order to compute the sets I0, . . . , Iℓ as unions of intersections, the
Algorithm Union-of-Intersections-Tree in Figure 3 constructs
the “

⋃⋂
-tree”. In a loop over all i ∈ {1, . . . , ℓ}, we thus compute

trees Ti such that each node p in Ti is labelled by a set label(p) of



edges. By int(p) we denote the intersection of the edges in label(p).
The parent-child relationship between a node p and its child nodes
p1, . . . ,pγ corresponds to a splitting step, where the intersection
int(p) is replaced by the union (int(p) ∩ eα1) ∪ · · · ∪ (int(p) ∩ eα jα ).
It can be verified that, in the tree Ti , the union of int(p) over all leaf
nodes of Ti yields precisely the union-of-intersections representa-
tion of Ii .

We observe that, in the tree Tℓ , each node has at most k child
nodes. Nevertheless, Tℓ can become exponentially big since we have
no appropriate bound on the length ℓ of the critical path. Recall that
we are assuming the LogBMIP, i.e., there exists a constant c > 1,
s.t. any intersection of ≥ c edges of H has at most a logn elements,
where a is a constant and n denotes the size ofH . Now let T ∗ be the
reduced

⋃⋂
-tree, which is obtained from Tℓ by cutting off all nodes

of depth greater than c − 1. Clearly, T ∗ has at most kc−1 leaf nodes
and the total number of nodes in T ∗ is bounded by (c − 1)kc−1.

The set f (H ,k) of subedges that we add to H will consist in all
possible sets Iℓ that we can obtain from all possible critical paths
π = (u0,u1, . . . ,uℓ) in all possible bag-maximal GHDs H of width
≤ k of H . We only discuss the polynomial bound on the number
of possible sets Iℓ . The polynomial-time computability of this set
of sets is then easy to see. The set of all possible sets Iℓ is obtained
by first considering all possible reduced

⋃⋂
-trees T ∗ and then

considering all sets Iℓ that correspond to some extension Tℓ of T ∗.
The number of possible reduced

⋃⋂
-trees T ∗ for given H and

k is bounded bym ∗m(c−1)kc−1 , wherem denotes the number of
edges in E(H ). It remains to determine the number of possible sets
Iℓ that one can get from possible extensions Tℓ of T ∗. Clearly, if
a leaf node in T ∗ is at depth < c − 1, then no descendants at all
of this node have been cut off. In contrast, a leaf node p in T ∗

at depth c − 1 may be the root of a whole subtree in Tℓ . Let U (p)
denote the union of the intersections represented by all leaf nodes
below p. By construction of Tℓ , U (p) ⊆ int(p) holds. Moreover, by
the LogBMIP, |int(p)| ≤ a logn for some constant a. Hence, U (p)

takes one out of at most 2a logn = na possible values. In total, the
number of possible sets Iℓ (and, hence, | f (H ,k)|) is bounded by
m ∗m(c−1)kc−1 ∗ na(c−1)k

c−1 for some constant a. �

We have defined in Section 1 the degree d of a hypergraph H .
A class C of hypergraphs has bounded degree if there exists some
integer constant d s.t. every hypergraph H in C has degree ≤ d .

The class of hypergraphs of bounded degree is an interesting
special case of the class of hypergraphs enjoying the BMIP. Indeed,
suppose that each vertex in a hypergraph H occurs in at most d
edges for some constantd . Then the intersection ofd+1 hyperedges
is always empty. The following corollary is thus immediate.

Corollary 4.1. For every class C of hypergraphs of bounded

degree, for each constant k , the problem Check(GHD,k) is tractable.

The upper bound | f (H ,k)| in the proof sketch of Theorem 4.1,
improves tomk+1 · 2k ·i for the important special case of the BIP.
We thus get the following parameterized complexity result.

Theorem 4.2. For each constant k , the Check(GHD,k) problem
is fixed-parameter tractable w.r.t. the parameter i for hypergraphs
enjoying the BIP, i.e., in this case, Check(GHD,k) can be solved in time

O(h(i)·poly(n)), whereh(i) is a function depending on the intersection

ALGORITHM Union-of-Intersections-Tree

Input: GHD H of H , edge e , critical path π
Output:

⋃⋂
-tree Tℓ

begin
// Initialization: compute (N , E) for T0

Let π = (u0, . . . , uℓ );
N := {e };
E := ∅;
T := (N , E);

// Compute Ti from Ti−1 in a loop over i
For i := 1 To ℓ Do

For Each leaf node p of T Do
If label(p) ∩ λui = ∅ Then

Let λui = {ei1, . . . , ei ji };
Create new nodes {p1, . . . , pji };
For α := 1 To ji Do label(pα ) := label(pα ) ∪ {eiα };
N := N ∪ {p1, . . . , pji };
E := E ∪ {(p, p1), . . . , (p, pji )};

T := (N , E);
Return T ;

end

Figure 3: Algorithm to compute the
⋃⋂

-tree

width i only and poly(n) is a function that depends polynomially on

the size n of a given hypergraph H .

5 EFFICIENT COMPUTATION OF FHDS
In Section 4, we have shown that under certain conditions (with
the BIP as most specific and the LogBMIP as most general condi-
tion) the problem of computing a GHD of width k can be reduced
to the problem of computing an HD of width k . The key to this
problem reduction was to repair the special condition violations in
the given GHD. When trying to carry over these ideas from GHDs
to FHDs, we encounter two major challenges: Can we repair special
condition violations in an FHD by ideas similar to GHDs? Does the
special condition in case of FHDs allow us to carry the hypertree
decomposition algorithm from [26] over to FHDs?

As for the first challenge, it turns out that FHDs behave sub-
stantially differently from GHDs. Suppose that there is a special
condition violation (SCV) in some node u of an FHD. Then there
must be some hyperedge e ∈ E(H ), such that γu (e) > 0 and B(γu )
contains some vertex v with v ∈ e \ Bu . Moreover, e is covered
by some descendant node u0 of u. For GHDs, we exploit the BIP
essentially by distinguishing two cases: either λu′(e) = 1 for every
node u ′ on the path π from u to u0 or there exists a node u ′ on path
π with λu′(e) = 0. In the former case, we simply add all vertices
v ∈ e \Bu to Bu (in the proof of Theorem 4.1 this is taken care of by
assuming bag-maximality). In the latter case, we can apply the BIP
to the edges ej with λu′(ej ) = 1 since we now know that they are
all distinct from e . In case of FHDs, this argument does not work
anymore, since it may well happen that γu′(e) > 0 holds for every
node u ′ on the path π but, nevertheless, we are not allowed to add
all vertices of e to every bag Bu′ . The simple reason for this is that
γu′(e) > 0 does not imply e ⊆ B(γu′) in the fractional case.

As for the second challenge, it turns out that even if we restrict
to FHDs satisfying the special condition, there remains another



obstacle compared to the HD algorithm from [26]: a crucial step of
the top-down construction of an HD is to “guess” the k edges with
λu (e) = 1 for the next node u in the HD. However, for a fractional
cover γu , we do not have such a bound on the number of edges with
non-zero weight. In fact, it is easy to exhibit a family (Hn )n∈N of
hypergraphs where it is advantageous to have unbounded supp(Hn )

even if (Hn )n∈N enjoys the BIP, as the example illustrates:

Example 5.1. Consider the family (Hn )n∈N of hypergraphs with
Hn = (Vn ,En ) defined as follows:

Vn = {v0,v1, . . . ,vn }
En = {{v0,vi } | 1 ≤ i ≤ n} ∪ {{v1, . . . ,vn }}

Clearly iwidth(Hn ) = 1, but an optimal fractional edge cover of Hn
is obtained by the following mapping γ with supp(γ ) = En :

γ ({v0,vi }) = 1/n for each i ∈ {1, . . . ,n} and
γ ({v1, . . . ,vn }) = 1 − (1/n)

where weight(γ ) = 2 − (1/n), which is optimal in this case. �

Nevertheless, in this section, we use the ingredients from our
tractability results for theCheck(GHD,k) problem to prove a similar
(slightly weaker though) tractability result for the Check(FHD,k)
problem. More specifically, we shall show below that the
Check(FHD,k) problem becomes tractable for fixed k , if we impose
the two restrictions BIP and bounded degree on the hypergraphs
under investigation. Thus, the main result of this section is:

Theorem 5.1. For every hypergraph class C that enjoys the BIP

and has bounded degree, and for every constant k ≥ 1, the
Check(FHD,k) problem is tractable, i.e., given a hypergraph H ∈ C ,

it is feasible in polynomial time to check fhw(H ) ≤ k and, if this

holds, to compute an FHD of width k of H .

We now develop the necessary machinery to finally give a proof
sketch of Theorem 5.1. The crucial concept, which we introduce
next, will be that of a c-bounded fractional part. Intuitively, FHDs
with c-bounded fractional part are FHDs, where the fractional edge
cover γu in every node u is “close to an edge cover” – with the
possible exception of up to c vertices in the bag Bu . For the special
case c = 0, an FHD with c-bounded fractional part is simply a GHD.

It is convenient to first introduce the following notation: let γ :
E(H ) → [0, 1] and let S ⊆ supp(γ ). We write γ |S for the restriction
of γ to S , i.e., γ |S (e) = γ (e) if e ∈ S and γ |S (e) = 0 otherwise.

Definition 5.1. Let F = ⟨T , (Bu )u ∈T , (γu )u ∈T ⟩ be an FHD of

some hypergraph H and let c ≥ 0. We say that F has c-bounded
fractional part if in every node u ∈ T , the following property holds:

Let S = {e ∈ E(H ) | γu (e) = 1} and Bu = B1 ∪ B2 with B1 =
Bu ∩ B(γu |S ) and B2 = Bu \ B1. Then |B2 | ≤ c .

We next generalize the special condition (i.e., (4) of Defintion 2.4)
to FHDs. Hence, we define the weak special condition. It requires
that the special condition must be satisfied by the integral part of
each fractional edge cover. For the special case c = 0, an FHD with
c-bounded fractional part satisfying the weak special condition is
thus simply a GHD satisfying the special condition, i.e., a HD.

Definition 5.2. Let F = ⟨T , (Bu )u ∈T , (γu )u ∈T ⟩ be an FHD of

some hypergraph H . We say that F satisfies the weak special con-
dition if in every node u ∈ T , the following property holds: for

S = {e ∈ E(H ) | γu (e) = 1}, we have B(γu |S ) ∩V (Tu ) ⊆ Bu .

Wenowpresent the two key lemmas for classes C of hypergraphs
with the BIP and bounded degree, namely: (1) if a hypergraphH ∈ C

has an FHD of width ≤ k , then it also has an FHD of width ≤ k
with c-bounded fractional part (where c only depends on k , d , and
the bound i on the intersection width, but not on the size of H ) and
(2) we can extend H to a hypergraph H ′ by adding polynomially
many edges, such thatH ′ has an FHD of width ≤ k with c-bounded
fractional part satisfying the weak special condition.

Lemma 5.1. Let C be a hypergraph class that enjoys the BIP and

has bounded degree and let k ≥ 1. For every hypergraph H ∈ C , the

following property holds:

If H has an FHD of width ≤ k , then H also has an FHD of width

≤ k with c-bounded fractional part, where c only depends on width k ,
degree d , and intersection width i (but not on the size of H ).

Proof Sketch. Consider an arbitrary node u in an FHD F =

⟨T , (Bu )u ∈T , (γu )u ∈T ⟩ ofH and letγu be an optimal fractional cover
of Bu . Let B2 ⊆ Bu be the fractional part of Bu , i.e., for S = {e ∈

E(H ) | γu (e) = 1}, we have B1 = Bu ∩ B(γu |S ) and B2 = Bu \ B1.
By the bound d on the degree and bound k on the weight of γu ,

there exists a subset R ⊆ supp(γu ) with |R | ≤ k · d , s.t. B2 ⊆ V (R),
i.e., every vertex x ∈ B2 is contained in at least one edge e ∈ R.

One can then show that only “constantly” many edges (where
this constantm depends on k , d , and i) are needed so that every
vertex x ∈ B2 is contained in at least two edges in supp(γu ). Let this
set of edges be denoted by R∗ with |R∗ | ≤ m. Then every vertex x ∈

B2 is contained in some ej plus one more edge in R∗ \ {ej }. Hence,
by the BIP, we have |ej | ≤ m · i and, therefore, by B2 ⊆ e1∪ · · · ∪en ,
we have |B2 | ≤ n ·m · i ≤ k · d ·m · i . �

Lemma 5.2. Let c ≥ 0, i ≥ 0, and k ≥ 1. There exists a polynomial-

time computable function f(c,i,k) which takes as input a hypergraph

H with iwidth(H ) ≤ i and yields as output a set of subedges of E(H )

with the following property: If H has an FHD of width ≤ k with

c-bounded fractional part then H ′
has an FHD of width ≤ k with

c-bounded fractional part satisfying the weak special condition, where
H ′ = (V (H ),E(H ) ∪ f(c,i,k )(H )).

Proof Sketch. Let i denote the bound on the intersection width
of the hypergraphs in C . Analogously to the proof of Theorem 4.1,
it suffices to add those edges to E(H )which are obtained as a subset
of the intersection of an edge e ∈ E(H ) with some bag Bu in the
FHD. The bag Bu in turn is contained in the union of at most k
edges different from e (namely the edges ej with γu (ej ) = 1) plus at
most c additional vertices. The intersection of an edge e with up to
k further edges has at most k · i elements. In total, we thus just need
to add all subedges e ′ of e with |e ′ | ≤ k · i + c for every e ∈ E(H ).
Clearly, this set of subedges is polynomially bounded (since we
are considering k , i , and c as constants) and can be computed in
polynomial time. �

We are now ready to give a proof sketch of Theorem 5.1.

Proof Sketch of Theorem 5.1. The tractability of
Check(FHD,k) is shown by adapting the alternating logspace algo-
rithm from [26]. The key steps in that algorithm are (A) to guess a
set S of ℓ edges with ℓ ≤ k (i.e., the edge cover λs of a node s in the



ALTERNATING ALGORITHM k-frac-decomp

Input: hypergraph H , integer c ≥ 0.
Output: “Accept”, if H has an FHD of width ≤ k

with c-bounded fractional part
and weak special condition;

“Reject”, otherwise.

Procedure k-fdecomp (Cr ,Wr : Vertex-Set, R: Edge-Set)
begin
// Step (A) – Guess & Check

1) Guess:
1.a) Guess a set S ⊆ E(H ) with |S | = ℓ, s.t. ℓ ≤ k ;
1.b) Guess a setWs ⊆ (V (R) ∪Cr ) with |Ws | ≤ c ;

2) Check:
2.a)Ws ∩V (s) = ∅;
2.b) ∃γ withWs ⊆ B(γ ) and weight(γ ) ≤ k − ℓ;
2.c) ∀e ∈ edges(CR ) : e ∩ (V (R) ∪Wr ) ⊆ (V (S ) ∪Ws );
2.d) (V (S ) ∪Ws ) ∩Cr , ∅;

// Step (B) – Decompose
3) If one of these checks fails Then Halt and Reject;

Else
Let C := {C ⊆ V (H ) | C is a [V (S ) ∪Ws ]-component

and C ⊆ Cr };
4) If for each C ∈ C : k-fdecomp (C,Ws , S )

Then Accept
Else Reject

end

begin (* Main *)
Accept if k-fdecomp (V (H ), ∅, ∅)

end

Figure 4: Alternating algorithm to decide if fhw ≤ k

construction of the HD) and (B) to compute all [Bs ]-components to
recursively continue the top-down construction of the HD.

We now show how this algorithm can be adapted to compute an
FHD of width k . The adapted algorithm is given in Figure 4.

In step (A) – Guess & Check – we now have to guess a set S of
ℓ edges plus a setWs of up to c vertices from outsideV (S). Morever,
it is important to verify in Ptime (by linear programming) thatWs
indeed has a fractional cover of width k − ℓ.

For step (B) – Decompose – the crucial property used in the al-
gorithm of [26] is that, if we construct an HD (i.e., a GHD satisfying
the special condition), then the [Bs ]-components and the [B(λs )]-
components coincide. Analogously, we can show that if an FHD
with c-bounded fractional part satisfies the weak special condition,
then the [B1 ∪ B2]-components and the [B(γs |S ) ∪ B2]-components
coincide, where B1 = Bs ∩ B(γs |S ) and B2 = Bs \ B1. Hence, analo-
gously to the algorithm of [26], the components to be considered
in the recursion of this algorithm are fully determined by S andWs ,
where both |S | and |Ws | are bounded by a constant. �

We conclude this section by exhibiting a simple further class
of hypergraphs with tractable Check(FHD,k) problem, namely
the class C of hypergraphs with bounded rank, i.e., there exists a
constant r , such that for every H ∈ C and every e ∈ E(H ), we have
|E | ≤ r . Note that in this case, a fractional edge cover of weight k
can cover at most c = k · r vertices. Hence, every FHD of such a

hypergraph trivially has c-bounded fractional part. Moreover, in
step (1) of the algorithm sketched in the proof of Theorem 5.1, we
may simply skip the guess of set S (i.e, we do not need the weak
special condition) and just guess a setW of vertices with |W | ≤ c .
The following corollary is thus immediate.

Corollary 5.1. For every hypergraph class with bounded rank

and every constant k ≥ 1, the Check(FHD,k) problem is tractable.

6 EFFICIENT APPROXIMATION OF FHW
In the previous section, we have seen that the computation of FHDs
poses additional challenges compared with the computation of
GHDs. Consequently, we needed a stronger restriction (combining
BIP and bounded degree) on the hypergraphs under consideration
to achieve tractability. We have to leave it as an open question for
future research if the BIP alone or bounded degree alone suffice to
ensure tractability of the Check(FHD,k) problem for fixed k ≥ 1.

In this section, we turn our attention to approximations of the
fhw. We know from [38] that a tractable cubic approximation of
the fhw always exists, i.e.: for k ≥ 1, there exists a polynomial-time
algorithm that, given a hypergraph H with fhw(H ) ≤ k , finds an
FHD of H of width O(k3). In this section, we search for conditions
which guarantee a better approximation of the fhw and which are
again realistic.

A natural first candidate for restricting hypergraphs are the BIP
and, more generally, the BMIP from the previous section. Indeed,
by combining some classical results on the Vapnik-Chervonenkis
(VC) dimension with some novel observations, we will show that
the BMIP yields a better approximation of the fhw. To this end, we
first recall the definition of the VC-dimension of hypergraphs.

Definition 6.1 ([43, 47]). LetH = (V (H ),E(H )) be a hypergraph,

and X ⊆ V a set of vertices. Denote by E(H )|X = {X ∩ e | e ∈ E(H )}.

X is called shattered if E(H )|X = 2X . The Vapnik-Chervonenkis
dimension (VC dimension) vc(H ) of H is the maximum cardinality

of a shattered subset of V .

We now provide a link between the VC-dimension and our first
approximation result for the fhw.

Definition 6.2. LetH = (V (H ),E(H )) be a hypergraph. A transver-
sal (also known as hitting set) of H is a subset S ⊆ V (H ) that has

a non-empty intersection with every edge of H . The transversality
τ (H ) of H is the minimum cardinality of all transversals of H .

Clearly, τ (H ) corresponds to the minimum of the following integer

linear program: find a mapping w : V → R≥0 which minimizes

Σv ∈V (H )w(v) under the condition that Σv ∈ew(v) ≥ 1 holds for each
hyperedge e ∈ E.

The fractional transversality τ ∗ of H is defined as the minimum

of the above linear program when dropping the integrality condition.

Finally, the transversal integrality gap tigap(H ) of H is the ratio

τ (H )/τ ∗(H ).

Recall that computing the mapping λu for some node u in a
GHD can be seen as searching for a minimal edge cover ρ of the
vertex set Bu , whereas computing γu in an FHD corresponds to the
search for a minimal fractional edge cover ρ∗ [30]. Again, these
problems can be cast as linear programs where the first problem
has the integrality condition and the second one has not. Further,



we can define the cover integrality gap cigap(H ) of H as the ratio
ρ(H )/ρ∗(H ). With this we state a first approximation result for fhw.

Theorem 6.1. Let C be a class of hypergraphs with

VC-dimension bounded by some constant d and let k ≥ 1. Then
there exists a polynomial-time algorithm that, given a hypergraph

H ∈ C with fhw(H ) ≤ k , finds an FHD of H of width O(k · logk).

Proof. The proof proceeds in several steps.
Reduced hypergraphs. We are interested in hypergraphs that are
essential in the following sense: let H = (V ,E) be a hypergraph
and let v ∈ V . Then the edge-type of v is defined as etype(v) =
{e ∈ E | v ∈ e}. We call H essential if there exists no pair (v,v ′) of
distinct vertices with the same edge-type. Every hypergraph H can
be transformed into an essential hypergraphH ′ by exhaustively ap-
plying the following rule: if there are two vertices v,v ′ with v , v ′

and etype(v) = etype(v ′), then delete v ′. It is easy to verify that
hw(H ) = hw(H ′), ghw(H ) = ghw(H ′), and fhw(H ′) = fhw(H ′)

hold for any hypergraph H with corresponding essential hyper-
graph H ′. Hence, w.l.o.g., we only consider essential hypergraphs.
Dual hypergraphs. Given a hypergraph H = {V ,E), the dual hyper-
graph Hd = (W , F ) is defined asW = E and F = {{e ∈ E | v ∈

e} | v ∈ V }. We are assuming that H is essential. Then (Hd )d = H
clearly holds. Moreover, the following relationships between H and
Hd are well-known and easy to verify (see, e.g., [19]):

(1) The edge coverings of H and the transversals of Hd coincide.
(2) The fractional edge coverings ofH and the fractional transver-

sals of Hd coincide.
(3) ρ(H ) = τ (Hd ), ρ∗(H ) = τ ∗(Hd ), and cigap(H ) = tigap(Hd ).

VC-dimension. By a classical result (see [11, 18]), for every hyper-
graph H = (V (H ),E(H )), we have

tigap(H ) = τ (H )/τ ∗(H ) ≤ 2vc(H ) log(11τ ∗(H ))/τ ∗(H ).

Moreover, in [7], it is shown that vc(Hd ) < 2vc(H )+1 always holds.
In total, we thus get

cigap(H ) = tigap(Hd ) ≤ 2vc(Hd ) log(11τ ∗(Hd ))/τ ∗(Hd )

< 2vc(H )+2 log(11ρ∗(H ))/ρ∗(H ).

Approximation of fhw by ghw. Suppose that H has an FHD〈
T , (Bu )u ∈V (T ), (λ)u ∈V (T )

〉
of width k . Then there exists a GHD

of H of width O(k · logk). Indeed, we can find such a GHD by
leaving the tree structure T and the bags Bu for every node u in T
unchanged and replacing each fractional edge cover γu of Bu by an
optimal integral edge cover λu of Bu . By the above inequality, we
thus increase the weight at each node u only by a factor O(logk).
Moreover, we know from [4] that computing an HD instead of a
GHD increases the width only by the constant factor 3. �

One drawback of the VC-dimension is that deciding if a hyper-
graph has VC-dimension ≤ v is intractable [44]. However, Lemma 6.1
establishes a relationship between BMIP and VC-dimension. To-
gether with Theorem 6.1, Corollary 6.1 is immediate.

Lemma 6.1. If a class C of hypergraphs has the BMIP then it has

bounded VC-dimension. However, there exist classes C of hypergraphs

with bounded VC-dimension that do not have the BMIP.

Corollary 6.1. Let C be a class of hypergraphs enjoying the

BMIP and let k ≥ 1. Then there exists a polynomial-time algorithm

that, given H ∈ C with fhw(H ) ≤ k , finds an FHD (actually, even a

GHD) of H of width O(k · logk).

We would like to identify classes of hypergraphs that allow for
a yet better approximation of the fhw. Below we show that the
hypergraphs of bounded degree indeed allow us to approximate
the fhw by a constant factor in polynomial time. We proceed in
two steps. First, in Lemma 6.2, we establish a relationship between
fhw and ghw via the degree. Then we make use of Corollary 4.1
from the previous section on the computation of a GHD to get the
desired approximation of fhw in Corollary 6.2.

Lemma 6.2. Let H be an arbitrary hypergraph and let d denote

the degree of H . Then the following holds: ghw(H ) ≤ d · fhw(H ).

Corollary 6.2. Let C be a class of hypergraphs whose degree is

bounded by some constant d ≥ 1 and let k ≥ 1. Then there exists a

polynomial-time algorithm that, given a hypergraph H ∈ C with

fhw(H ) ≤ k , finds an FHD (actually, a GHD) of H of width ≤ d · k .

7 CONCLUSION AND FUTUREWORK
In this paper we have settled the complexity of deciding fhw(H ) ≤ k
for fixed constant k ≥ 2 and ghw(H ) ≤ k for k = 2 by proving the
NP-completeness of both problems. This gives negative answers to
two open problems. On the positive side, we have identified rather
mild restrictions such as the BIP, LogBIP, BMIP, and LogBMIP,
which give rise to a Ptime algorithm for the Check(GHD,k) prob-
lem. Moreover, we have shown that the combined restriction of BIP
and bounded degree ensures tractability also of the Check(FHD,k)
problem. As our empirical analyses reported in [22] show, these
restrictions are very well-suited for instances of CSPs and, even
more so, of CQs. We believe that they deserve further attention.

Our work does not finish here. We plan to explore several fur-
ther issues regarding the computation and approximation of the
fractional hypertree width. We find the following questions partic-
ularly appealing: (i) Does the special condition defined by Grohe
and Marx [30] lead to tractable recognizability also for FHDs, i.e.,
in case we define “sfhw(H )” as the smallest width an FHD of H
satisfying the special condition, can sfhw(H ) ≤ k be recognized effi-
ciently? (ii) Our tractability result in Section 5 for theCheck(FHD,k)
problem is weaker than for Check(GHD,k), in that we need the
combined restriction of the BIP and bounded degree. Actually, very
recently [23], we could show that bounded degree alone suffices
to ensure tractability of Check(FHD,k). It is open if the BIP alone
(or, more generally, the BMIP) also suffices. (iii) In case that the
BIP (or BMIP) does not guarantee tractability of Check(FHD,k), it
is interesting to investigate if the BIP (or BMIP) at least ensures a
polynomial-time approximation of fhw(H ) up to a constant factor.
Or can non-approximability results be obtained under reasonable
complexity-theoretic assumptions?

ACKNOWLEDGMENTS
This work was supported by the Engineering and Physical Sciences
Research Council (EPSRC), Programme Grant EP/M025268/ VADA:
Value Added Data Systems — Principles and Architecture as well as
by the Austrian Science Fund (FWF):P25518-N23 and P30930-N35.



REFERENCES
[1] Christopher R. Aberger, Susan Tu, Kunle Olukotun, and Christopher Ré. 2016.

EmptyHeaded: A Relational Engine for Graph Processing. In Proceedings of SIG-

MOD 2016. ACM, 431–446.
[2] Christopher R. Aberger, Susan Tu, Kunle Olukotun, and Christopher Ré. 2016.

Old Techniques for New Join Algorithms: A Case Study in RDF Processing. CoRR
abs/1602.03557 (2016). http://arxiv.org/abs/1602.03557

[3] Isolde Adler. 2004. Marshals, monotone marshals, and hypertree-width. Journal
of Graph Theory 47, 4 (2004), 275–296.

[4] Isolde Adler, Georg Gottlob, and Martin Grohe. 2007. Hypertree width and related
hypergraph invariants. Eur. J. Comb. 28, 8 (2007), 2167–2181.

[5] Foto N. Afrati, Manas Joglekar, Christopher Ré, Semih Salihoglu, and Jeffrey D.
Ullman. 2014. GYM: A Multiround Join Algorithm In MapReduce. CoRR

abs/1410.4156 (2014).
[6] Molham Aref, Balder ten Cate, Todd J. Green, Benny Kimelfeld, Dan Olteanu,

Emir Pasalic, Todd L. Veldhuizen, and Geoffrey Washburn. 2015. Design and
Implementation of the LogicBlox System. In Proceedings of SIGMOD 2015. ACM,
1371–1382.

[7] Patrick Assouad. 1983. Densité et dimension. Annales de l’Institut Fourier 33, 3
(1983), 233–282.

[8] Albert Atserias, Martin Grohe, and Dániel Marx. 2013. Size Bounds and Query
Plans for Relational Joins. SIAM J. Comput. 42, 4 (2013), 1737–1767.

[9] Nurzhan Bakibayev, Tomás Kociský, Dan Olteanu, and Jakub Závodný. 2013.
Aggregation and Ordering in Factorised Databases. PVLDB 6, 14 (2013), 1990–
2001.

[10] Angela Bonifati, Wim Martens, and Thomas Timm. 2017. An Analytical Study of
Large SPARQL Query Logs. PVLDB 11, 2 (2017), 149–161. http://www.vldb.org/
pvldb/vol11/p149-bonifati.pdf

[11] H. Brönnimann and M. T. Goodrich. 1995. Almost optimal set covers in finite
VC-dimension. Discrete & Computational Geometry 14, 4 (01 Dec 1995), 463–479.
https://doi.org/10.1007/BF02570718

[12] Ashok K. Chandra and Philip M. Merlin. 1977. Optimal Implementation of
Conjunctive Queries in Relational Data Bases. In Proceedings of STOC 1977. ACM,
77–90.

[13] Chandra Chekuri and Anand Rajaraman. 2000. Conjunctive query containment
revisited. Theor. Comput. Sci. 239, 2 (2000), 211–229.

[14] Hubie Chen and Víctor Dalmau. 2005. Beyond Hypertree Width: Decomposition
Methods Without Decompositions. In Proceedings of CP 2005 (Lecture Notes in

Computer Science), Vol. 3709. Springer, 167–181.
[15] David A. Cohen, Peter Jeavons, and Marc Gyssens. 2008. A unified theory of

structural tractability for constraint satisfaction problems. J. Comput. Syst. Sci.

74, 5 (2008), 721–743. https://doi.org/10.1016/j.jcss.2007.08.001
[16] Víctor Dalmau, Phokion G. Kolaitis, and Moshe Y. Vardi. 2002. Constraint Sat-

isfaction, Bounded Treewidth, and Finite-Variable Logics. In Proceedings of CP

2002 (Lecture Notes in Computer Science), Vol. 2470. Springer, 310–326.
[17] Rina Dechter and Judea Pearl. 1989. Tree Clustering for Constraint Networks.

Artif. Intell. 38, 3 (1989), 353–366.
[18] Guo-Li Ding, Paul Seymour, and Peter Winkler. 1994. Bounding the vertex cover

number of a hypergraph. Combinatorica 14, 1 (1994), 23–34.
[19] Pierre Duchet. 1996. Hypergraphs. In Handbook of combinatorics (vol. 1). MIT

Press, 381–432.
[20] Ronald Fagin. 1983. Degrees of acyclicity for hypergraphs and relational database

schemes. J. ACM 30, 3 (1983), 514–550.
[21] Wolfgang Fischl, Georg Gottlob, and Reinhard Pichler. 2016. General and Frac-

tional Hypertree Decompositions: Hard and Easy Cases. CoRR abs/1611.01090
(2016). http://arxiv.org/abs/1611.01090

[22] Woflgang Fischl, Georg Gottlob, and Reinhard Pichler. 2016. Generalized and
Fractional Hypertree Decompositions: Empirical Results. forthcoming report.
(2016).

[23] Wolfgang Fischl, Georg Gottlob, and Reinhard Pichler. 2017. Tractable Cases for
Recognizing Low Fractional Hypertree Width. viXra.org e-prints viXra:1708.0373
(2017). http://vixra.org/abs/1708.0373

[24] Eugene C. Freuder. 1990. Complexity of K-Tree Structured Constraint Satisfaction
Problems. In Proceedings of AAAI 1990. AAAI Press / The MIT Press, 4–9.

[25] Georg Gottlob and Gianluigi Greco. 2013. Decomposing combinatorial auctions
and set packing problems. J. ACM 60, 4 (2013), 24.

[26] Georg Gottlob, Nicola Leone, and Francesco Scarcello. 2002. Hypertree De-
compositions and Tractable Queries. J. Comput. Syst. Sci. 64, 3 (2002), 579–627.
https://doi.org/10.1006/jcss.2001.1809

[27] Georg Gottlob, Zoltán Miklós, and Thomas Schwentick. 2009. Generalized Hyper-
tree Decompositions: NP-hardness and Tractable Variants. J. ACM 56, 6, Article
30 (Sept. 2009), 32 pages. https://doi.org/10.1145/1568318.1568320

[28] Martin Grohe. 2007. The complexity of homomorphism and constraint satisfac-
tion problems seen from the other side. J. ACM 54, 1 (2007).

[29] Martin Grohe and Dániel Marx. 2006. Constraint solving via fractional edge
covers. In Proceedings of SODA 2006. ACM Press, 289–298.

[30] Martin Grohe and Dániel Marx. 2014. Constraint Solving via Fractional Edge
Covers. ACM Trans. Algorithms 11, 1 (2014), 4:1–4:20.

[31] Martin Grohe, Thomas Schwentick, and Luc Segoufin. 2001. When is the eval-
uation of conjunctive queries tractable?. In Proceedings of STOC 2001. ACM,
657–666.

[32] Marc Gyssens, Peter Jeavons, and David A. Cohen. 1994. Decomposing Constraint
Satisfaction Problems Using Database Techniques. Artif. Intell. 66, 1 (1994), 57–89.

[33] Marc Gyssens and Jan Paredaens. 1984. A Decomposition Methodology for Cyclic
Databases. In Advances in Data Base Theory: Volume 2. Springer, 85–122.

[34] Khayyam Hashmi, Zaki Malik, Erfan Najmi, and Abdelmounaam Rezgui. 2016.
SNRNeg: A social network enabled negotiation service. Information Sciences 349
(2016), 248–262.

[35] Mahmoud Abo Khamis, Hung Q. Ngo, Christopher Ré, and Atri Rudra. 2015.
Joins via Geometric Resolutions: Worst-case and Beyond. In Proceedings of PODS

2015. 213–228.
[36] Mahmoud Abo Khamis, Hung Q. Ngo, and Atri Rudra. 2016. FAQ: Questions

Asked Frequently. In Proceedings of PODS 2016. 13–28.
[37] Phokion G. Kolaitis and Moshe Y. Vardi. 2000. Conjunctive-Query Containment

and Constraint Satisfaction. J. Comput. Syst. Sci. 61, 2 (2000), 302–332.
[38] Dániel Marx. 2010. Approximating Fractional Hypertree Width. ACM Trans.

Algorithms 6, 2, Article 29 (2010), 17 pages. https://doi.org/10.1145/1721837.
1721845

[39] Dániel Marx. 2011. Tractable Structures for Constraint Satisfaction with Truth
Tables. Theory Comput. Syst. 48, 3 (2011), 444–464.

[40] Dániel Marx. 2013. Tractable Hypergraph Properties for Constraint Satisfaction
and Conjunctive Queries. J. ACM 60, 6 (2013), 42.

[41] Lukas Moll, Siamak Tazari, and Marc Thurley. 2012. Computing hypergraph
width measures exactly. Inf. Process. Lett. 112, 6 (2012), 238–242. https://doi.org/
10.1016/j.ipl.2011.12.002
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A NP-HARDNESS: EXAMPLE
Example A.1. Suppose that an instance of 3SAT is given by the

propositional formula φ = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3),
i.e.: we have n = 3 variables and m = 2 clauses. From this we
construct a hypergraph H = (V (H ),E(H )). First, we instantiate the
sets Q,A,A′, S,Y , and Y ′ from our problem reduction.

A = {a(1,1),a(1,2),a(2,1),a(2,2), . . . ,a(9,1),a(9,2)},

A′ = {a′
(1,1),a

′
(1,2),a

′
(2,1),a

′
(2,2), . . . ,a

′
(9,1),a

′
(9,2)},

Q = {(1, 1), (1, 2), (2, 1), (2, 2), . . . , (9, 1), (9, 2)} ∪
{(0, 1), (0, 0), (1, 0)}

S = Q × {1, 2, 3} × {0, 1},
Y = {y1,y2,y3}, and Y ′ = {y′1,y

′
2,y

′
3}.

According to our problem reduction, the set V (H ) of vertices of H
is

V (H ) = S ∪ A ∪ A′ ∪ Y ∪ Y ′ ∪ {z1, z2} ∪

{a1,a2,b1,b2, c1, c2,d1,d2} ∪

{a′1,a
′
2,b

′
1,b

′
2, c

′
1, c

′
2,d

′
1,d

′
2}.
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The set E(H ) of edges ofH is defined in several steps. First, the edges
in H0 and H ′

0 are defined: We thus have the subsets EA,EB ,EC ,E ′A,
E ′B ,E

′
C ⊆ E(H ), whose definition is based on the sets M1 = S \

S(0,1) ∪ {z1}, M2 = Y ∪ S(0,1) ∪ {z2}, M ′
1 = S \ S(1,0) ∪ {z1}, and

M ′
2 = Y

′ ∪ S(1,0) ∪ {z2}. The definition of the edges

ep = A′
p ∪Ap for p ∈ {(1, 1), (1, 2), . . . (8, 1), (8, 2), (9, 1)},

eyi = {yi ,y
′
i } for 1 ≤ i ≤ 3,

e0
(0,0) = {a1} ∪A ∪ S \ S(0,0) ∪ Y ∪ {z1},

e1
(0,0) = S(0,0) ∪ {z2},

e0
(9,2) = S \ S(9,2) ∪ {z1}, and

e1
(9,2) = {a′1} ∪A′ ∪ S(9,2) ∪ Y ′ ∪ {z2}

is straightforward. We concentrate on the edges ek,0p and ek,1p for
p ∈ {(1, 1), (1, 2), . . . (8, 1), (8, 2), (9, 1)} and k ∈ {1, 2, 3}. These
edges play the key role for covering the bags of the nodes along the
“long” path π in any FHD or GHD of H . Recall that this path can be
thought of as being structured in 9 blocks. Consider an arbitrary
i ∈ {1, . . . , 9}. Then ek,0

(i,1) and ek,1
(i,1) encode the k-th literal of the

first clause and ek,0
(i,2) and e

k,1
(i,2) encode the k-th literal of the second

clause (the latter is only defined for i ≤ 8). These edges are defined
as follows: the edges e1,0

(i,1) and e
1,1
(i,1) encode the first literal of the

first clause, i.e., the positive literal x1. We thus have

e1,0
(i,1) = A(i,1) ∪ (S \ S1,1

(i,1)) ∪ {y1,y2,y3} ∪ {z1} and

e1,1
(i,1) = A′

(i,1) ∪ S1,1
(i,1) ∪ {y′2,y

′
3} ∪ {z2}

The edges e2,0
(i,1) and e

2,1
(i,1) encode the second literal of the first clause,

i.e., the negative literal ¬x2. Likewise, e3,0(i,1) and e3,1
(i,1) encode the

third literal of the first clause, i.e., the positive literal x3. Hence,

e2,0
(i,1) = A(i,1) ∪ (S \ S2,1

(i,1)) ∪ {y1,y3} ∪ {z1},

e2,1
(i,1) = A′

(i,1) ∪ S2,1
(i,1) ∪ {y′1,y

′
2,y

′
3} ∪ {z2}

e3,0
(i,1) = A(i,1) ∪ (S \ S3,1

(i,1)) ∪ {y1,y2,y3} ∪ {z1}, and

e3,1
(i,1) = A′

(i,1) ∪ S3,1
(i,1) ∪ {y′1,y

′
2} ∪ {z2}

Analogously, the edges e1,0
(i,2) and e

1,1
(i,2) (encoding the first literal of

the second clause, i.e., ¬x1), the edges e2,0(i,2) and e
2,1
(i,2) (encoding the

second literal of the second clause, i.e., x2), and the edges e3,0
(i,2) and

e3,1
(i,2) (encoding the third literal of the second clause, i.e., ¬x3) are
defined as follows:

e1,0
(i,2) = A(i,2) ∪ (S \ S1,1

(i,2)) ∪ {y2,y3} ∪ {z1},

e1,1
(i,2) = A′

(i,2) ∪ S1,1
(i,2) ∪ {y′1,y

′
2,y

′
3} ∪ {z2},

e2,0
(i,2) = A(i,2) ∪ (S \ S2,1

(i,2)) ∪ {y1,y2,y3} ∪ {z1},

e2,1
(i,2) = A′

(i,2) ∪ S2,1
(i,2) ∪ {y′1,y

′
3} ∪ {z2}

e3,0
(i,2) = A(i,2) ∪ (S \ S3,1

(i,2)) ∪ {y1,y2} ∪ {z1}, and

e3,1
(i,2) = A′

(i,2) ∪ S3,1
(i,2) ∪ {y′1,y

′
2,y

′
3} ∪ {z2},

where Sk,1
(i, j) with j ∈ {1, 2} and k ∈ {1, 2, 3} is defined as the

singleton Sk,1
(i, j) = {((i, j) | k, 1)}. The crucial property of these pairs

of edges ek,0
(i, j) and e

k,1
(i, j) is that they together encode the k-th literal

of the j-th clause in the following way: if the literal is of the form
xl (resp. of the form ¬xl ), then ek,0

(i, j) ∪ ek,1
(i, j) covers all of Y ∪ Y ′

except for y′l (resp. except for yl ).
Clearly, φ is satisfiable, e.g., by the truth assignment σ with

σ (x1) = true and σ (x2) = σ (x3) = false. Hence, for the problem
reduction to be correct, there must exist a GHD (and thus also an
FHD) of width 2 of H . In Figure 2, the tree structure T plus the
bags (Bt )t ∈T of such a GHD is displayed. Moreover, in Table 1,
the precise definition of Bt and λt of every node t ∈ T is given.
The set Z in the bags of this GHD is defined as Z = {yi | σ (xi ) =
true } ∪ {y′i | σ (xi ) = false }. In this example, for the chosen truth
assignment σ , we thus have Z = {y1,y′2,y

′
3}. The bags Bt and the

edge covers λt for each t ∈ T are explained below.
The nodesuC ,uB ,uA to cover the edges of the subhypergraphH0

and the nodes u ′A,u
′
B ,u

′
C to cover the edges of the subhypergraph

H ′
0 are clear by Lemma 3.1. The purpose of the nodes umin ⊖1 and

umax is mainly to make sure that each edge {yi ,y′i } is covered by
some bag. Recall that the set Z contains exactly one of yi and y′i
for every i . Hence, the node umin ⊖1 (resp. umax) covers each edge
{yi ,y

′
i }, such that y′i ∈ Z (resp. yi ∈ Z ).

We now have a closer look at the nodes u(1,1) to u(9,1) on the
“long” path π . More precisely, let us look at the nodesu(i,1) andu(i,2)
for some i ∈ {1, . . . , 8}, i.e., the “i-th block”. It will turn out that
the bags at these nodes can be covered by edges from H because
φ is satisfiable. Indeed, our choice of λu(i,1) and λu(i,2) is guided by
the literals satisfied by the truth assignment σ , namely: for λu(i, j ) ,
we have to choose some kj , such that the kj -th literal in the j-th
clause is true in σ . For instance, we may define λu(i,1) and λu(i,2) as
follows:

λu(i,1) = {e1,0
(i,1), e

1,1
(i,1)} λu(i,2) = {e3,0

(i,2), e
3,1
(i,2)}

The covers λu(i,1) and λu(i,2) were chosen because the first literal of
the first clause and the third literal of the second clause are true in
σ . Now let us verify that λu(i,1) and λu(i,2) are indeed covers of Bu(i,1)
and Bu(i,2) , respectively. By the definition of the edges ek,0

(i, j), e
k,1
(i, j)

for j ∈ {1, 2} and k ∈ {1, 2, 3}, it is immediate that ek,0
(i, j) ∪ ek,1

(i, j)
covers A(i, j) ∪A′

(i, j) ∪ S ∪ {z1, z2}. The only non-trivial question
is if λu(i, j ) also covers Z . Recall that by definition, (e1,0

(i,1) ∪ e1,1
(i,1)) ⊇

(Y ∪ Y ′) \ {y′1}. Our truth assignment σ sets σ (x1) = true. Hence,
by our definition of Z , we have y1 ∈ Z and y′1 < Z . This means that
e1,0
(i,1) ∪ e1,1

(i,1) indeed covers Z and, hence, all of Bu(i,1) . Note that we
could have also chosen λu(i,1) = {e2,0

(i,1), e
2,1
(i,1)}, since also the second

literal of the first clause (i.e., ¬x2) is true in σ . In this case, we would
have (e2,0

(i,1)∪e
2,1
(i,1)) ⊇ (Y ∪Y ′) \ {y2} and Z indeed does not contain

y2. Conversely, setting λu(i,1) = {e3,0
(i,1), e

3,1
(i,1)} would fail, because

in this case, y′3 < (e3,0
(i,1) ∪ e3,1

(i,1)) since x3 occurs positively in the
first clause. On the other hand, we have y′3 ∈ Z by definition of Z ,
because σ (x3) = false holds.



Checking that λu(i,2) as defined above covers Z is done anal-
ogously. Note that in the second clause, only the third literal is
satisfied by σ . Hence, setting λu(i,2) = {e3,0

(i,2), e
3,1
(i,2)} is the only

option to cover Bu(i,2) (in particular, to cover Z ). Finally, note that
σ as defined above is not the only satisfying truth assignment of φ.
For instance, we could have chosen σ (x1) = σ (x2) = σ (x3) = true.
In this case, we would define Z = {y1,y2,y3} and the covers λu(i, j )
would have to be chosen according to an arbitrary choice of one
literal per clause that is satisfied by this assignment σ . �

B NP-HARDNESS: CLAIMS A-I
Proof of Claim A. We only show that none of the nodes u ′i

with i ∈ {A,B,C} is on the path from uA to uC . The other property
is shown analogously. Suppose to the contrary that some u ′i is on
the path from uA to uC . Since uB is also on the path between uA
and uC we distinguish two cases:

• Case (1) u ′i is on the path between uA and uB ; then {b1,b2} ⊆
Bu′

i
. This contradicts that u ′i is already full.

• Case (2) u ′i is on the path between uB and uC ; then {c1, c2} ⊆
Bu′

i
, which again contradicts that u ′i is already full.

The paths from uA to uC and from u ′A to u ′C are indeed disjoint. �

Proof of Claim B. Suppose there is a ui (analog. for u ′i ) for
some i ∈ {A,B,C}, s.t. ui ∈ nodes(A ∪ A′,F ); then there is some
a ∈ (A∪A′), s.t. a ∈ Bui . This contradicts the fact thatui is full. �

Proof of Claim C. Suppose that no such path exists. Let p ≥

min be the maximal value such that there is a path containing nodes
û1, û2, . . . , ûl , which cover emin ⊖1, . . . , ep in this order. Clearly,
there exists a node û that covers ep⊕1 = A′

p⊕1 ∪Ap⊕1. We distin-
guish four cases:

• Case (1): û is on the path from û1 to ûl . Hence, û is between
two nodes ûi and ûi+1 for some 1 ≤ i < l or û = ûi+1 for some
1 ≤ i < l−1. The following arguments hold for both cases. Now,
there is some q ≤ p, such that eq is covered by ûi+1 and eq⊖1 is
covered by ûi . Therefore, û covers Aq either by the connected-
ness condition (if û is between ûi and ûi+1) or simply because
û = ûi+1. Hence, in total, û covers A′

p⊕1 ∪ Aq with A′
p⊕1 =

{a′min, . . . ,a
′
p⊕1} and Aq = {aq ,aq⊕1, . . . ,ap ,ap⊕1, . . . amax}.

Then, û covers all edges eq , eq⊕1, . . . , ep⊕1. Therefore, the path
containing nodes û1, . . . , ûi , û covers emin ⊖1, . . . , ep⊕1 in this
order, which contradicts the maximality of p.

• Case (2): There is a u∗ on the path from û1 to ûl , such that the
paths from û1 to û and from û to ûl go through u∗. Then, u∗
is either between ûi and ûi+1 for some 1 ≤ i < l or u∗ = ûi+1
for some 1 ≤ i < l − 1. The following arguments hold for both
cases. There is some q ≤ p, such that eq is covered by ûi+1
and eq⊖1 is covered by ûi . By the connectedness condition, u∗
covers
– A′

p = {a′min, . . . ,a
′
p }, since u∗ is on the path from û to ûl ,

and
– Aq = {aq , . . . ,ap ,ap⊕1, . . . amax}, since u∗ is on the path
from ˆuA to ûi+1 or u∗ = ûi+1.

Then u∗ covers all edges eq , eq⊕1, . . . , ep . Therefore, the path
containing the nodes û1, . . . , ûi ,u∗, û covers emin ⊖1, . . . , ep⊕1
in this order, which contradicts the maximality of p.

• Case (3): û1 is on the path from û to all other nodes ûi , with
1 < i ≤ l . By the connectedness condition, û1 covers A′

p .
Hence, in total û1 coversA′

p ∪AwithA′
p = {a′min, . . . ,a

′
p } and

A = {amin, . . . ,amax}. Then û1 covers all edges emin ⊖1, . . . , ep .
Therefore, the path containing nodes û1 and û covers emin ⊖1, . . . ,
ep⊕1 in this order, which contradicts the maximality of p.

• Case (4): û = û1, hence, û1 covers A′
p⊕1 ∪ A with A′

p⊕1 =
{a′min, . . . ,a

′
p⊕1} andA = {amin, . . . ,amax}. Then, û1 covers all

emin ⊖1, . . . , ep⊕1, which contradicts the maximality of p. �

Proof of Claim D. Suppose to the contrary that the path from
uA to u ′A is disjoint from π (û1, ûN ). We distinguish three cases:
• Case (1): uA is on the path from u ′A to π (û1, ûN ). Then, by the
connectedness condition, uA must contain a′1, which contra-
dicts the fact that uA is full.

• Case (2): u ′A is on the path from uA to π (û1, ûN ). Analogously
to Case (1), we get a contradiction by the fact that thenu ′A must
contain a1.

• Case (3): There is a node u∗ on the path from uA to u ′A, which
is closest to π (û1, ûN ), i.e., u∗ lies on the path from uA to u ′A
and both paths, the one connecting uA with π (û1, ûN ) and the
one connecting u ′A with π (û1, ûN ), go through u∗. Hence, by
the connectedness condition, the bag of u∗ contains S ∪ {z1, z2,
a1,a′1}. By Lemma 3.2, in order to cover S∪{z1, z2}with weight
≤ 2, we are only allowed to put non-zero weight on pairs of
complementary edges. However, then it is impossible to achieve
also weight ≥ 1 on a1 and a′1 at the same time. �

Proof of Claim E. First, we show that û and û ′ are indeed dis-
tinguished. Suppose towards a contradiction that they are not, i.e.
û = û ′. But then, by connectedness û has to cover S ∪

{
z1, z2,a1,a′1

}
.

By Lemma 3.2, we know that, to cover S ∪ {z1, z2} with weight ≤ 2,
we are only allowed to put non-zero weight on pairs of complemen-
tary edges. However, then it is impossible to achieve also weight
≥ 1 on a1 and on a′1 at the same time.

Second, suppose towards a contradiction that û is closer to uN .
As before, by connectedness û has to cover S ∪

{
z1, z2,a1,a′1

}
,

which is impossible with weight ≤ 2. �

Proof of Claim F. First, it is easy to verify that N ≥ 2 must
hold. Otherwise, a single node would have to cover {emin ⊖1, emin,
emin ⊕1, . . . , emax ⊖1, emax} and also S ∪ {z1, z2,a1,a′1}. However,
we have already seen in Case (3) of the proof of Claim D that not
even S ∪ {z1, z2,a1,a′1} can be covered using weight ≤ 2.

It remains to prove N ≥ 3. Suppose to the contrary that N = 2.
Observe that by the reduction every hypergraph has at least the
edges emin ⊖1, emin and emax, and that û1 covers at least emin ⊖1
and û2 covers at least emax. We distinguish 4 cases, based on the
intersection with the path from uA to u ′A. Recall nodes û and û ′
from Claim E.
• Case (1) - û = û1 and û ′ = û2: By connectedness and definition
û1 covers the vertices S ∪ A ∪ {a1, z1, z2} and ûN covers the
vertices S ∪A′ ∪ {a′1, z1, z2}. The edge emin is also covered in



either û1 or û2. If emin is covered in û1 then û1 has to cover ad-
ditionally the vertex a′min which is impossible with weight ≤ 2.
Similar, if emin is covered in û2 then û2 has to cover additionally
the vertices A which is impossible with weight ≤ 2.

• Case (2) - û = û1 and û ′ is on the path from û1 to û2: By
connectedness and definition û1 covers the vertices S ∪ A ∪

{a1, z1, z2} and û ′ covers the vertices S ∪ {a′1, z1, z2}. The edge
emin is also covered in either û1 or û2. If emin is covered in
û1 then û1 has to cover additionally the vertex a′min which is
impossible with weight ≤ 2. Similar, if emin is covered in û2
then by connectedness û ′ has to cover additionally the vertices
A which is impossible with weight ≤ 2.

• Case (3) - û is on the path from û1 to û2 and û ′ = û2: By con-
nectedness and definition û covers the vertices S ∪ {a1, z1, z2}
and û2 covers the vertices S ∪A′ ∪ {a′1, z1, z2}. The edge emin
is also covered in either û1 or û2. If emin is covered in û1 then
by connectedness û has to cover additionally the vertex a′min
which is impossible with weight ≤ 2. Similar, if emin is covered
in û2 then û2 has to cover additionally the vertices A which is
impossible with weight ≤ 2.

• Case (4) - û is on the path from û1 to û2 and û ′ is on the path
from û1 to û2: By connectedness and definition û covers the
vertices S∪{a1, z1, z2} and û ′ covers the vertices S∪{a′1, z1, z2}.
The edge emin is also covered in either û1 or û2. If emin is covered
in û1 then by connectedness û has to cover additionally the
vertex a′min which is impossible with weight ≤ 2. Similar, if
emin is covered in û2 then by connectedness û ′ has to cover
additionally the verticesAwhich is impossible with weight ≤ 2.

Hence, the path π (û1, ûN ) has at least 3 nodes ûi . �

Proof of Claim G. We have to show that û2 is on the path from
uA to any node ûi with i > 2 and ûN−1 is on the path from u ′A to
any ûi with i < N − 1. We only prove the first property since the
two properties are symmetric. Suppose to the contrary that there
exists some i > 2 such that û2 is not on the path from uA to ûi . We
distinguish two cases:

• Case (1): ûN is on the path from û2 to uA. Then ûN is also on
the path from û1 to uA. Hence, by the connectedness condition,
ûN has to cover the following (sets of) vertices:
– a1, since the path between û1 and uA goes through ûN ,
– S ∪ {z1, z2}, since the path from uA to u ′A passes π (û1, ûN ),
– A′, since ûN covers emax = e1max.
By Lemma 3.2, we know that, to cover S ∪ {z1, z2} with weight
≤ 2, we are only allowed to put non-zero weight on pairs of
complementary edges. However, then it is impossible to achieve
also weight ≥ 1 on A′ and on a1 at the same time.

• Case (2): There is some û on the path from ûi to ûi+1 for some
i with 2 ≤ i < N , such that uA is closest to û among all nodes
on π (û1, ûN ). This also includes the case that û = ûi holds.
By definition of ûi and ûi+1, there is a p ∈ [2n + 3;m], such
that both ûi and ûi+1 cover a′p . Then, by the connectedness
condition, û covers the following (sets of) vertices:
– a′p , since û is on the path from ûi to ûi+1,
– a1, since û is on the path from û1 to uA,
– S ∪ {z1, z2}, since û is on the path from uA to u ′A.

Again, by Lemma 3.2, we know that, to cover S ∪ {z1, z2} with
weight ≤ 2, we are only allowed to put non-zero weight on
pairs of complementary edges. However, then it is impossible
to achieve also weight ≥ 1 on a′p and a1 at the same time. �

Proof of Claim H. Weprove this property for the “outer nodes”
û1, ûN and for the “inner nodes” û2 · · · ûN−1 separately.

We start with the “outer nodes”. The proof for û1 and ûN is
symmetric. We thus only work out the details for û1. Suppose to
the contrary that û1 not only covers emin ⊖1 but also some further
edges ep with p ≥ min. Then it also covers emin. We distinguish
two cases:
• Case (1): û1 is on the path from uA to û2. Then, û1 has to cover
the following (sets of) vertices:
– S ∪ {z1, z2}, since û1 is on the path from uA to u ′A.
– a1, since û1 covers emin ⊖1,
– a′min, since û1 covers emin.
By applying Lemma 3.2, we may conclude that the set S ∪

{z1, z2,a1,a′min} cannot be covered by a fractional edge cover
of weight ≤ 2.

• Case (2): There is some û on the path from û1 to û2, such that
û , û1 and uA is closest to û among all nodes on π (û1, ûN ).
Then û has to cover the following (sets of) vertices:
– S ∪ {z1, z2}, since û is on the path from uA to u ′A,
– a1, since û is on the path from uA to û1,
– a′min, since û is on the path from û1 to û2.
As in Case (1) above, S ∪ {z1, z2,a1,a′min} cannot be covered
by a fractional edge cover of weight ≤ 2 due to Lemma 3.2.

It remains to consider the “inner” nodes ûi with 2 ≤ i ≤ N − 1.
Each such ûi has to cover S ∪ {z1, z2} since all these nodes are on
the path from uA to u ′A by Claim E. Now suppose that ûi covers
ep = A′

p ∪ Ap for some p ∈ {emin, . . . , emax ⊖1}. By Lemma 3.3,
covering all of the vertices A′

p ∪Ap ∪ S ∪ {z1, z2} by a fractional
edge cover of weight ≤ 2 requires that we put total weight 1 on the
edges ek,0p and total weight 1 on the edges ek,1p with k ∈ {1, 2, 3}.
However, then it is impossible to cover also ep′ for some p′ with
p′ , p. This concludes the proof of Claim F. �

Proof of Claim I. For each j, there is a node u(s, j) between
u(s,1) and u(s+1,1), such that Bu(s, j ) ⊇ A′

(s, j) ∪A(s, j) ∪ S ∪ {z1, z2}.
Now let p = (s, j). Observe that, by the definition of FHDs, we have
that Bup ⊆ B(γup ) and, by Xs ⊆ Bup , also Xs ⊆ B(γup ) holds. By
Lemma 3.3, the only way to cover Bup with weight ≤ 2 is by using
edges ek,0p and ek,1p with k ∈ {1, 2, 3}. Therefore, γup (e

k,0
p ) > 0

for some k . Now suppose Lkp = xl . By Lemma 3.2, we also have
that γup (e

k,1
p ) > 0 and therefore the weight on y′l is less than 1,

which means that y′l < B(γup ) and consequently y′l < Xs . Since this
implies that yl ∈ Xs , we have that σ (xl ) = 1. Conversely, suppose
Lkp = ¬xl . Since γup (e

k,0
p ) > 0, the weight on yl is less than 1,

which means that yl < B(γup ) and consequently yl < Xs . Hence,
we have σ (xl ) = 0. In either case, Lkp is satisfied by σ and therefore,
σ satisfies φ. �
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