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Abstract. Complexity theory provides a wealth of complexity classes
for analyzing the complexity of decision and counting problems. Despite
the practical relevance of enumeration problems, the tools provided by
complexity theory for this important class of problems are very limited.
In particular, complexity classes analogous to the polynomial hierarchy
and an appropriate notion of problem reduction are missing. In this work,
we lay the foundations for a complexity theory of hard enumeration prob-
lems by proposing a hierarchy of complexity classes and by investigating
notions of reductions for enumeration problems.

1 Introduction

While decision problems often ask for the existence of a solution to some prob-
lem instance, enumeration problems aim at outputting all solutions. In many
domains, enumeration problems are thus the most natural kind of problems.
Just take the database area (usually the user is interested in all answer tuples
and not just in a yes/no answer) or diagnosis (where the user wants to retrieve
possible explanations, and not only whether one exists) as two examples. Nev-
ertheless, the complexity of enumeration problems is far less studied than the
complexity of decision problems.

It should be noted that even simple enumeration problems may produce
big output. To capture the intuition of easy to enumerate problems – despite
a possibly exponential number of output values – various notions of tractable
enumeration classes have been proposed in [13]. The class DelayP (“polynomial
delay”) contains all enumeration problems where, for given instance x, (1) the
time to compute the first solution, (2) the time between outputting any two
solutions, and (3) the time to detect that no further solution exists, are all
polynomially bounded in the size of x. The class IncP (“incremental polynomial
time”) contains those enumeration problems where, for given instance x, the time
to compute the next solution and for detecting that no further solution exists

? This is a pre-print of an article published in LATA 2017, LNCS 10168, pp. 183–195.
The final authenticated version is available online at https://doi.org/10.1007/

978-3-319-53733-7_13



2 Creignou et al.

is polynomially bounded in the size of both x and of the already computed
solutions. Obviously, the relationship DelayP ⊆ IncP holds. In [17], the proper
inclusion DelayP ( IncP is mentioned. For these tractable enumeration classes,
a variety of membership results exist, a few examples are [15, 14, 6, 2, 9]

There has also been work on intractable enumeration problems. Intractability
of enumeration is typically proved by showing intractability of a related decision
problem rather than directly proving lower bounds by relating one enumera-
tion problem to the other. Tools for a more fine-grained analysis of intractable
enumeration problems are missing to date. For instance, up to now we are not
able to make a differentiated analysis of the complexity of the following typical
enumeration problems:

ΠkSATe / ΣkSATe

INSTANCE: ψ = ∀x1∃x2 . . . Qkxkφ(x,y) / ψ = ∃x1∀x2 . . . Qkxkφ(x,y)
OUTPUT: All assignments for y such that ψ is true.

This is in sharp contrast to decision problems, where the polynomial hierar-
chy is crucial for a detailed complexity analysis. As a matter of fact, it makes a big
difference, if an NP-hard problem is in NP or not. Indeed, NP-complete problems
have an efficient transformation into SAT and can therefore be solved by making
use of powerful SAT-solvers. Similarly, problems in ΣP

2 can be solved by using
ASP-solvers. Finally, also for problems on higher levels of the polynomial hier-
archy, the number of quantifier alternations in the QBF-encoding matters when
using QBF-solvers. For counting problems, an analogue of the polynomial hier-
archy has been defined in form of the # · C–classes with C ∈ {P, coNP, ΠP

2 , . . . }
[12, 19]. For enumeration problems, no such analogue has been studied.

Goal and Results. The goal of this work is to lay the foundations for a com-
plexity theory of hard enumeration problems by defining appropriate complexity
classes for intractable enumeration and a suitable notion of problem reductions.
We propose to extend tractable enumeration classes by oracles. We will thus
get a hierarchy of classes DelayPC , IncPC , where various complexity classes C are
used as oracles. As far as the definition of an appropriate notion of reductions
is concerned, we follow the usual philosophy of reductions: if some enumeration
problem can be reduced to another one, then we can use this reduction together
with an enumeration algorithm for the latter problem to solve the first one. We
observe that two principal kinds of reductions are used for decision problems,
namely many-one reductions and Turing reductions. Similarly, we shall define a
more declarative-style and a more procedural-style notion of reduction for enu-
meration problems. Our results are summarized below. All missing proof details
can be found in the full version of this article [5].

• Enumeration complexity classes. In Section 3, we introduce a hierarchy of
complexity classes of intractable enumeration via oracles and prove that it is
strict unless the polynomial hierarchy collapses.
• Declarative-style reductions. In Section 4, we introduce a declarative-style no-

tion of reductions. While they enjoy some desirable properties, we do not
succeed in exhibiting complete problems under this reduction.
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• Procedural-style reductions and completeness results. In Section 5, we intro-
duce a procedural-style notion of reductions and show that they remedy some
shortcomings of the declarative-style notion. In particular we prove complete-
ness results. We obtain a Schaefer-like dichotomy complexity classification for
the enumeration of models of generalized CNF-formulas.

2 Preliminaries

In the following, Σ denotes a finite alphabet and R denotes a polynomially
bounded, binary relation R ⊆ Σ∗ × Σ∗, i.e., there is a polynomial p such that
for all (x, y) ∈ R, |y| ≤ p(|x|). For every string x, R(x) = {y ∈ Σ∗ | (x, y) ∈ R}.
A string y ∈ R(x) is called a solution for x. With a polynomially bounded,
binary relation R, we can associate several natural problems:

Exist R
INSTANCE: x ∈ Σ∗
QUESTION: Exists y ∈ Σ∗

s.t. (x, y) ∈ R?

Exist-AnotherSol R / AnotherSol R
INSTANCE: x ∈ Σ∗, Y ⊆ R(x)
OUTPUT: Is (R(x) \ Y ) 6= ∅? / y ∈ R(x)\Y

or declare that no such y exists.

Check R
INSTANCE: (x, y) ∈ Σ∗ ×Σ∗
QUESTION: Is (x, y) ∈ R?

ExtSol R
INSTANCE: (x, y) ∈ Σ∗ ×Σ∗
QUESTION: Is there some (possibly empty)

y′ ∈ Σ∗ such that (x, yy′) ∈ R?

A binary relation R also gives rise to an enumeration problem, which aims
at outputting the function SolR : Σ∗ → 2Σ

∗
, x 7→ {y ∈ Σ∗ | (x, y) ∈ R}.

Enum R
INSTANCE: x ∈ Σ∗
OUTPUT: R(x) = {y ∈ Σ∗ | (x, y) ∈ R}.

We assume the reader to be familiar with the polynomial hierarchy – the
complexity classes P, NP, coNP and, more generally, ∆P

k , ΣP
k , and ΠP

k for k ∈
{0, 1, . . . }. For a definition of the counting hierarchy # · C via the complexity of
the Check R problem, we refer to [12].

In Section 1, we have already recalled two important tractable enumera-
tion complexity classes, DelayP and IncP from [13]. Note that in [17, 18], these
classes are defined slightly differently by allowing only those Enum R problems
in DelayP and IncP where the corresponding Check R problem is in P. We
adhere to the definition of tractable enumeration classes from [13].

A complexity class C is closed under a reduction ≤r if, for any two binary
relations R1 and R2 we have that R2 ∈ C and R1 ≤r R2 implies R1 ∈ C. Further-
more, a reduction ≤r is transitive if for any three binary relations R1, R2, R3, it
is the case that R1 ≤r R2 and R2 ≤r R3 implies R1 ≤r R3.

3 Complexity Classes

In contrast to counting complexity, defining a hierarchy of enumeration prob-
lems via the Check R problem of binary relations R is not appropriate. This
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can be seen by considering artificial problems obtained by padding the set of
solutions of any problem with an exponential number of fake (and trivial to pro-
duce) solutions. While these fake solutions do not change the complexity of the
check problem, enumerating these exponentially many fake solutions first gives
an enumeration algorithm enough time to search for the non trivial ones.

Thus, we need an alternative approach for defining meaningful enumeration
complexity classes. To this end, we first fix our computation model. We have al-
ready observed in the previous section that an enumeration problem may produce
exponentially big output. Hence, the runtime and also the space requirements
of an enumeration algorithm may be exponential in the input. Therefore, it is
common (cf. [17]) to use the RAM model as a computational model, because
a RAM can access parts of exponential-size data in polynomial time. We re-
strict ourselves here to polynomially bounded RAM machines, i.e., throughout
the computation of such a machine, the size of the content of each register is
polynomially bounded in the size of the input.

For enumeration, we will also make use of RAM machines with an output-
instruction, as defined in [17]. This model can be extended further by introducing
decision oracles. The input to the oracle is stored in special registers and the
oracle takes consecutive non-empty registers as input. Moreover, following [1], we
use a computational model that does not delete the input of an oracle call once
such a call is made. For a detailed definition, refer to [17] or [5]. It is important
to note that due to the exponential runtime of an enumeration algorithm and
the fact that the input to an oracle is not deleted when the oracle is executed,
the input to an oracle call may eventually become exponential as well. Clearly,
this can only happen if exponentially many consecutive special registers are non-
empty, since we assume also each special register to be polynomially bounded.

Using this we define a collection of enumeration complexity classes via oracles:

Definition 1 (enumeration complexity classes). Let Enum R be an enu-
meration problem, and C a decision complexity class. Then we say that:

– Enum R ∈ DelayPC if there is a RAM machine M with an oracle L in C
such that M enumerates Enum R with polynomial delay. The class IncPC is
defined analogously.

– Enum R ∈ DelayPCp if there is a RAM machine M with an oracle L in C
such that for any instance x, M enumerates R(x) with polynomial delay and
the size of the input to every oracle call is polynomially bounded in |x|.

Note that the restriction of the oracle inputs to polynomial size only makes sense
for DelayPC , where we have a discrepancy between the polynomial restriction
(w.r.t. the input x) on the time between two consecutive solutions are output
and the possibly exponential size (w.r.t. the input x) of oracle calls. No such
discrepancy exists for IncPC , where the same polynomial upper bound w.r.t. the
already computed solutions (resp. all solutions) applies both to the allowed time
and to the size of the oracle calls.

We now prove several properties of these complexity classes. First, we draw
a connection between the complexity of enumeration and decision problems.
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It turns out that in order to study the class DelayPCp the ExtSol R problem is
most relevant. Indeed, the standard enumeration algorithm [17, 6], which outputs
the solutions in lexicographical order, gives the following relationship.

Proposition 2. Let R be a binary relation, k ≥ 0, and C ∈ {∆P
k , Σ

P
k }. If

ExtSol R ∈ C then Enum R ∈ DelayPCp .

An important class of search problems are those for which search reduces to
decision, the so-called self-reducible problems. This notion can be captured by
the following definition.

Definition 3 (self-reducibility). Let ≤T denote Turing reductions. We say
that a binary relation R is self-reducible, if ExtSol R ≤T Exist R,

For self-reducible problems the above proposition can be refined as follows.

Proposition 4. Let R be a binary relation, which is self-reducible, and k ≥ 0.

Then the following holds: Exist R ∈ ∆P
k if and only if Enum R ∈ DelayP∆

P
k

p .

The above proposition gives a characterization of the class DelayP∆
P
k

p in
terms of the complexity of decision problems in the case of self-reducible re-
lations. Analogously, the notion of “enumeration self-reducibility” introduced

by Kimelfeld and Kolaitis [14] allows a characterization of the class IncP∆
P
k .

Definition 5 ([14], enumeration self-reducibility). A binary relation R is
enumeration self-reducible if AnotherSol R ≤T Exist-AnotherSol R.

Proposition 6. Let R be a binary relation, which is enumeration self-reducible,
and k ≥ 0. Then the following holds: Exist-AnotherSol R ∈ ∆P

k if and only

if Enum R ∈ IncP∆
P
k .

We now prove that our classes provide strict hierarchies under the assumption
that the polynomial hierarchy is strict.

Theorem 7. Let k ≥ 0. Then, unless the polynomial hierarchy collapses to the
(k + 1)-st level,

DelayPΣ
P
k

p ( DelayP
ΣP

k+1
p ,DelayPΣ

P
k ( DelayPΣ

P
k+1 and IncPΣ

P
k ( IncPΣ

P
k+1

Proof. Let k ≥ 0, let L be a ΣP
k+1-complete problem. Define a relation RL =

{(x, 1) | x ∈ L}. It is clear that Check RL is ΣP
k+1-complete. Moreover, the

enumeration problem Enum RL is in DelayP
ΣP

k+1
p (thus also in DelayPΣ

P
k+1 and

IncPΣ
P
k+1). Assume that Enum RL ∈ DelayPΣ

P
k

p (or Enum RL ∈ DelayPΣ
P
k or

Enum RL ∈ IncPΣ
P
k ). Then Check RL can be decided in polynomial time us-

ing a ΣP
k -oracle, meaning that Check RL ∈ ∆P

k+1 and thus the polynomial
hierarchy collapses to the (k + 1)-st level.
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The following proposition states that the complexity classes based on DelayPp
and DelayP, respectively, are very likely to be distinct. We refer to the definition
of the exponential hierarchy in [11]. We only recall here that ∆EXP

k+1 denotes the

class of decision problems decidable in exponential time with a ΣP
k -oracle.

Proposition 8. Let k ≥ 0. If EXP ( ∆EXP
k+1, then DelayPΣ

P
k

p ( DelayPΣ
P
k 6⊆

DelayP
ΣP

k+1
p .

I.e., the lower computational power of DelayPp compared with DelayP or
IncP cannot be compensated by equipping the lower class with a slightly more
powerful oracle. While complementing this result, we now also show that in
contrast, the lower computational power of DelayP compared with IncP can be
compensated by equipping the lower class with a slightly more powerful oracle.

Theorem 9. Let k ≥ 0. Then the following holds.

1. DelayP
ΣP

k+1
p 6⊆ DelayPΣ

P
k and DelayP

ΣP
k+1

p 6⊆ IncPΣ
P
k , unless the polynomial

hierarchy collapses to the (k + 1)-st level.

2. DelayP∆
P
k+1 = IncPΣ

P
k .

Proof (Idea). The first claim follows from the proof of Theorem 7. For the sec-

ond claim, the inclusion DelayP∆
P
k+1 ⊆ IncPΣ

P
k holds since the incremental de-

lay with access to a ΣP
k -oracle gives enough time to compute the answers of a

∆P
k+1-oracle. To show that DelayP∆

P
k+1 ⊇ IncPΣ

P
k , let Enum R ∈ IncPΣ

P
k and

A be a corresponding enumeration algorithm. We define a decision problem
AnotherSolExt<

∗

R that, on an input y1, . . . , yn, y
′, x ∈ Σ∗, decides whether y′

is the prefix of the (n+ 1)-st output of A(x). Since A witnesses the membership

Enum R ∈ IncPΣ
P
k , it follows that AnotherSolExt<

∗

R ∈ ∆P
k+1, and using this

language as an oracle, we have that Enum R ∈ DelayP∆
P
k+1 .

Concerning the effect of the allowed input size to the oracles, observe that it

follows immediately that DelayP∆
P
k+1 6= DelayPΣ

P
k , but DelayP

∆P
k+1

p = DelayPΣ
P
k

p .

4 Declarative-style Reductions

As far as we know, only a few kinds of reductions between enumeration problems
have been investigated so far. One such reduction is implicitely described in [7]. It
establishes a bijection between sets of solutions. A different approach introduced
in [3] relaxes this condition and allows non-bijective reduction functions. We go
further in that direction in proposing a declarative style reduction relaxing the
isomorphism requirement while closing the relevant enumeration classes.

Definition 10 (reduction ≤e). Let R1, R2 ⊆ Σ∗ be binary relations. Then we
define Enum R1 ≤e Enum R2 if there exist a function σ : Σ∗ → Σ∗ computable
in polynomial time and a relation τ ⊆ Σ∗ × Σ∗ × Σ∗, s.t. for all x ∈ Σ∗ the
following holds. For y ∈ Σ∗, let τ(x, y,−) := {z ∈ Σ∗ | (x, y, z) ∈ τ} and for
z ∈ Σ∗, let τ(x,−, z) := {y ∈ Σ∗ | (x, y, z) ∈ τ}. Then:
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SolR1(x)

..
.

SolR2(σ(x))

..
.

One solution of R2(σ(x)) may map to an un-
bounded number of solutions of R1(x).

At most polynomially many solutions of R2(σ(x))
may map to one solution of R1(x).

z y

Fig. 1. Illustration of relation τ from Definition 10.

1. SolR1
(x) =

⋃
y∈SolR2

(σ(x)) τ(x, y,−);

2. ∀y ∈ SolR2(σ(x)), we have ∅ ( τ(x, y,−) ⊆ SolR1(x) and τ(x, y,−) can be
enumerated with polynomial delay in |x|;

3. ∀z ∈ SolR1
(x), we have τ(x,−, z) ⊆ SolR2

(σ(x)) and the size of τ(x,−, z) is
polynomially bounded in |x|.

Intuitively, τ establishes a relationship between instances x, solutions y ∈
SolR2

(σ(x)) and solutions z ∈ SolR1
(x). We can thus use τ to design an enu-

meration algorithm for SolR1(x) via an enumeration algorithm for SolR2(σ(x)).
The conditions imposed on τ have the following meaning: By condition 1, the
solutions SolR1

(x) can be computed by iterating through the solutions y ∈
SolR2

(σ(x)) and computing τ(x, y,−) ⊆ SolR1
(x). Conditions 2 and 3 make

sure that the delay of enumerating SolR1
(x) only differs by a polynomial from

the delay of enumerating SolR2(σ(x)): condition 2 ensures that, for every y, the
set τ(x, y,−) can be enumerated with polynomial delay and that we never en-
counter a “useless” y (i.e., a solution y ∈ SolR2

(σ(x)) which is associated with
no solution z ∈ SolR1

(x)). In principle, we may thus get duplicates z associated
with different values of y. However, condition 3 ensures that each z can be asso-
ciated with at most polynomially many values y. Using a priority queue storing
all z that are output, we can avoid duplicates, c.f. the proof of Proposition 12
or [17]. Figure 1 illustrates τ .

Example 11. The idea of the relation τ can also be nicely demonstrated on an
≤e reduction from 3-Colourabilitye to 4-Colourabilitye (enumerating all
valid 3- respectively 4-colourings of a graph). We intentionally choose this re-
duction since there is no bijection between the solutions of the two problems.

Recall the classical many-one reduction between these problems, which takes
a graph G and defines a new graph G′ by adding an auxiliary vertex v and
connecting it to all the other ones. This reduction can be extended to a ≤e re-
duction with the following relation τ : With every graph G in the first component
of τ , we associate all valid 4-colourings (using 0, 1, 2, and 3) of G′ in the third
component of τ . With each of those we associate the corresponding 3-colouring
of G in the second component. They are obtained from the 4-colourings by first
making sure that v is coloured with 3 (by “switching” the colour of v with 3)
and then by simply reading off the colouring of the remaining vertices.
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The reductions ≤e have two desirable important properties, as stated next.

Proposition 12. Let C ∈ {ΣP
k , ∆

P
k | k ≥ 0}. The classes DelayPCp , DelayPC,

and IncPC are closed under ≤e. In addition, the reductions ≤e are transitive.

Nevertheless their main drawback is that it is very unlikely that completeness re-
sults under ≤e reductions can be obtained, since even the most natural problems
are not complete under such a reduction.

Proposition 13. Let k ≥ 1. The problem ΣkSATe is not complete for DelayPΣ
P
k

p

under ≤e reductions unless the polynomial hierarchy collapses to the kth level.

5 Procedural-style Reductions and Completeness Results

Although Turing reductions are too strong to show completeness results for
classes in the polynomial hierarchy, Turing style reductions turn out to be mean-
ingful in our case. In this section we introduce two types of reductions that are
motivated by Turing reductions. Both of them are able to reduce between enu-
meration problems for which the reduction ≤e seems to be too weak.

Towards this goal, we first have to define the concept of RAMs with an oracle
for enumeration problems. The intuition behind the definition of such enumer-
ation oracle machines is the following: For algorithms (i.e., Turing machines or
RAMs in the case of enumeration) using a decision oracle for the language L,
we usually have a special instruction that given an input x decides in one step
whether x ∈ L, and then executes the next step of the algorithm accordingly. For
an algorithm A using an enumeration oracle, an input x to some Enum R-oracle
returns in a single step (using the instruction NOO, see the definition below) a
single element of SolR(x), and then A can proceed according to this output.

Definition 14 (Enumeration Oracle Machines). Let Enum R be an enu-
meration problem. An Enumeration Oracle Machine with an enumeration oracle
Enum R (EOM R) is a RAM with a sequence of new registers Oe(0), Oe(1), . . .
and a new instruction NOO (next Oracle output). An EOM R is oracle-bounded
if the size of all inputs to the oracle is at most polynomial in the size of the input
to the EOM R.

When executing NOO, the machine writes – in one step – some yi ∈ SolR(x)
to the accumulator A, where x is the word stored in Oe(0), Oe(1), . . . and yi is
defined as follows:

Definition 15 (Next Oracle Output). Let R be a binary relation, π1, π2, . . .
be the run of an EOM R and assume that the kth instruction is NOO, i.e.,
πk = NOO. Denote with xi the word stored in Oe(0), Oe(1), . . . at step i. Let
K = {πi ∈ {π1, . . . , πk−1} | πi = NOO and xi = xk}. Then the oracle output
yk in πk is defined as an arbitrary yk ∈ SolR(xk) s.t. yk has not been the oracle
output in any πi ∈ K. If no such yk exists, then the oracle output in πk is
undefined.
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When executing NOO in step πk, if the oracle output yk is undefined, then
the accumulator A contains some special symbol in step πk+1. Otherwise in step
πk+1 the accumulator A contains yk .

Observe that since an EOM Me is a polynomially bounded RAM and the com-
plete oracle output is stored in the accumulator A, only such oracle calls are
allowed where the size of each oracle output is guaranteed to be polynomially in
the size of the input of Me.

Using EOMs, we can now define another type of reductions among enumer-
ations problems, reminiscent of classical Turing reductions. I.e., we say that one
problem Enum R1 reduces to another problem Enum R2 if Enum R1 can be
solved by an EOM using Enum R2 as an enumeration oracle.

Definition 16 (Reductions ≤D, ≤I). Let R1 and R2 be binary relations.

– We say that Enum R1 ≤D Enum R2 if there is an oracle-bounded EOM R2

that enumerates R1 in DelayP and is independent of the order in which the
Enum R2 oracle enumerates its answers.

– We say that Enum R1 ≤I Enum R2 if there is an EOM R2 that enumerates
R1 in IncP and is independent of the order in which the Enum R2 oracle
enumerates its answers.

For ≤D, we required the EOM R2 to be oracle-bounded. We would like to
point out that this restriction is essential: if we drop it, then the classes DelayPC

are not closed under the resulting reduction. They are, however, closed under
the reductions as defined above.

Proposition 17. Let C ∈ {ΣP
k , ∆

P
k | k ≥ 0}. The classes DelayPC and DelayPCp

are closed under ≤D. The classes IncPC are closed under ≤I .

We note that all of these properties still hold when there is no oracle at all, i.e.,
for the classes DelayP and IncP.

Proposition 18. The reductions ≤D and ≤I are transitive.

Now, unlike for ≤e, the next theorem shows that the reductions ≤D and ≤I
induce complete problems for the enumeration complexity classes introduced in
Section 3.

Theorem 19. Let R be a binary relation and k ≥ 1 such that Exist R is ΣP
k -

complete.

– Enum R is DelayPΣ
P
k

p -hard under ≤D reductions.

– Enum R is IncPΣ
P
k -hard under ≤I reductions.

– If R is self-reducible, then Enum R is DelayPΣ
P
k

p -complete under ≤D reduc-

tions and IncPΣ
P
k -complete under ≤I reductions.



10 Creignou et al.

Proof (Idea). Let Enum R′ ∈ DelayPLp for some L ∈ ΣP
k , and assume that

z is the input to an L-oracle when enumerating SolR′(x) for some x ∈ Σ∗.
As Exist R is ΣP

k -complete and the enumeration is oracle-bounded, z can be
transformed to an equivalent instance z′ of Exist R in time polynomial only
in |x|. Therefore by calling the Enum R-oracle once and by checking whether
SolR(z′) = ∅, one can decide whether z ∈ L. The membership Enum R ∈
DelayPΣ

P
k

p in the case of self-reducibility follows by Proposition 2.

As a consequence, the enumeration problems ΣkSATe and also ΠkSATe are
natural complete problems for our enumeration complextiy classes:

Corollary 20. Let k ≥ 0. Then

1. Σk+1SATe is complete for DelayP
ΣP

k+1
p under ≤D reductions.

2. ΠkSATe and Σk+1SATe are complete for IncPΣ
P
k+1 under ≤I reductions.

Observe that, under different reductions, ΣkSATe is complete for both,

IncPΣ
P
k and for the presumably smaller class DelayPΣ

P
k

p . This provides addi-

tional evidence that the two reductions nicely capture IncPΣ
P
k and DelayPΣ

P
k

p ,

respectively. Also from Corollary 20 it follows as a special case that IncPΣ
P
0 and

IncPΣ
P
1 are equivalent under ≤I reductions: Clearly, Σ0SATe = Π0SATe, since

in both cases the formulas are quantifier free and one asks for all satisfying truth
assignments. Now by the theorem we know that both, Σ1SATe and Π0SATe,

and thus also Σ0SATe, are complete for IncPΣ
P
1 . As a result we have that the

enumeration variant of the traditional SAT problem is IncPNP-complete.

Roughly speaking Theorem 19 says that any self-reducible enumeration prob-
lem whose corresponding decision problem is hard, is hard as well. An interesting
question is whether there exist easy decision problems for which the correspond-
ing enumeration problem is hard. We answer positively to this question in revis-
iting, in our framework, a classification theorem obtained for the enumeration
of generalized satisfiability [4]. It is convenient to first introduce some notation.

A logical relation of arity k is a relation R ⊆ {0, 1}k. A constraint, C, is
a formula C = R(x1, . . . , xk), where R is a logical relation of arity k and the
xi’s are variables. An assignment m of truth values to the variables satisfies
the constraint C if

(
m(x1), . . . ,m(xk)

)
∈ R. A constraint language Γ is a finite

set of nontrivial logical relations. A Γ -formula φ is a conjunction of constraints
using only logical relations from Γ . A Γ -formula φ is satisfied by an assignment
m : var(φ)→ {0, 1} if m satisfies all constraints in φ.

Throughout the text we refer to different types of Boolean relations following
Schaefer’s terminology, see [16, 4]. We say that a constraint language is Schaefer
if every relation in Γ is either Horn, dualHorn, bijunctive, or affine.

SAT(Γ )e

INSTANCE: φ a Γ -formula
OUTPUT: all satisfying assignments of φ.

The following theorem gives the complexity of this problem according to Γ .
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Theorem 21. Let Γ be a finite constraint language. If Γ is Schaefer, then
SAT(Γ )e is in DelayP, otherwise it is DelayPNP

p -complete under ≤D reductions.

Proof. The polynomial cases were studied in [4]. Let us now consider the case
where Γ is not Schaefer. Membership of SAT(Γ )e in DelayPNP

p is clear. For
the hardness, let us introduce T and F as the two unary constant relations
T = {1} and F = {0}. According to Schaefer’s dichotomy theorem [16], deciding
whether a Γ ∪ {F,T}-formula is satisfiable is NP-complete. Since this problem
is self-reducible, according to Theorem 19, SAT(∪{F,T})e is DelayPNP

p -complete
under ≤D reductions. From the proof given in [4] it is easy to see that if Γ is
not Schaefer, then SAT(∪{F,T})e ≤D SAT(Γ )e, thus concluding the proof.

To come back to the above discussion, we point out that there exist con-
straint languages Γ such that the decision problem SAT(Γ ) is in P, while the
enumeration problem SAT(Γ )e is DelayPNP

p -complete, namely 0-valid or 1-valid
constraint languages that are not Schaefer.

A rather surprising completeness result is the following.

Proposition 22. Let CIRCUMSCRIPTIONe denote the problem of enumerat-
ing all subset minimal models of a boolean formula. Then CIRCUMSCRIPTIONe

is IncPNP-complete under ≤I reductions.

What makes this result surprising is the discrepancy from the behaviour of the
counting variant of the problem: The counting variant of CIRCUMSCRIPTIONe

is a prototypical # · coNP-complete problem [8], and thus of the same hardness
as the counting variant of Π1SATe. However, for enumeration we have that
CIRCUMSCRIPTIONe shows the same complexity as Σ1SATe, which is consid-
ered to be lower than that of Π1SATe.

Observe that CIRCUMSCRIPTIONe is very unlikely to be self-reducible: In
fact, the problem of deciding if a partial truth assignment can be extended to
a subset minimal model is ΣP

2 -complete [10], while deciding the existence of
a minimal model is clearly NP-complete. Thus CIRCUMSCRIPTIONe is not
self-reducible unless the polynomial hierarchy collapses to the first level.

6 Conclusion

We introduced a hierarchy of enumeration complexity classes, extending the well-
known tractable enumeration classes DelayP and IncP, just as the ∆P

k -classes of
the polynomial-time hierarchy extend the class P. We show that under reason-
able complexity assumptions these hierarchies are strict. We introduced a type
of reduction among enumeration problems under which the classes in our hierar-
chies are closed and which allow to exhibit complete problems. For well-studied
problems like Boolean CSPs in the Schaefer framework or circumscription, we
obtain completeness results for the associated enumeration problems. Up to now,
lower bounds for enumeration problems were only of the form “Enum R is not
in DelayP (or IncP) unless P 6= NP”. Our work provides a framework which al-
lows us to pinpoint the complexity of such problems in a better way in terms of
completeness.
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