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Recently, belief change within the framework of fragments of propositional logic has gained increasing attention. Previous
research focused on belief contraction and belief revision on the Horn fragment. However, the problem of belief merging
within fragments of propositional logic has been neglected so far. We present a general approach to define new merging
operators derived from existing ones such that the result of merging remains in the fragment under consideration. Our
approach is not limited to the case of Horn fragment but applicable to any fragment of propositional logic characterized by
a closure property on the sets of models of its formulæ. We study the logical properties of the proposed operators regarding
satisfaction of merging postulates, considering in particular distance-based merging operators for Horn and Krom fragments.
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1. INTRODUCTION
Belief merging consists in achieving a synthesis between pieces of information provided by different
sources. Although these sources are individually consistent, they may mutually conflict. The aim of
merging is to provide a consistent set of information, making maximum use of the information
provided by the sources while not favoring any of them. Belief merging is an important issue in
many fields of Artificial Intelligence (AI) [?] and symbolic approaches to multi-source fusion gave
rise to increasing interest within the AI community since the 1990s [?; ?; ?; ?; ?]. One of today’s
major approaches is belief merging under (integrity) constraints, which generalizes both merging
(without constraints) and revision (of old information by a new piece of information). For the latter
the constraints then play the role of the new piece of information. Postulates characterizing the
rational behavior of such merging operators, known as IC postulates, have been proposed by ?] and
improved by ?] in the same spirit as the seminal AGM [?] postulates for revision. Concrete merging
operators have been proposed according to either semantic (model-based) or syntactic (formula-
based) points of view in a classical logic setting. We focus here on the model-based approach of
distance-based merging operators [?; ?; ?]. These operators are parameterized by a distance which
represents the closeness between interpretations and an aggregation function which captures the
merging strategy and takes the origin of beliefs into account.

Belief change operations within the framework of fragments of classical logic constitute a vivid
research branch. In particular, contraction [?; ?; ?; ?] and revision [?; ?; ?; ?] have been thoroughly
analyzed in the literature. The motivation for such a research is twofold:

— In many applications, the language is restricted a priori. For instance, a rule-based formalization
of expert’s knowledge is much easier to understand and manipulate for standard users. If users
revise or merge some sets of rules, they indeed expect that the outcome is still in the easy-to-read
format they are used to.
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— Many fragments of propositional logic allow for efficient reasoning methods. Suppose an agent
has to take a decision according to a group of experts’ beliefs. Since this should be efficiently
doable, the expert’s beliefs are stored as formulæ known to be in a tractable class. For making a
decision, it is desired that the result of the change operation yields a set of formulæ in the same
fragment. Hence, the agent still can use the dedicated solving method she is equipped with for this
fragment.

Most of previous research has focused on the Horn fragment except that of ?] that studied revision
in several fragments of propositional logic. However, as far as we know, the problem of belief
merging within fragments of propositional logic has been neglected so far.

The main obstacle is that for language fragment L′, given n belief bases K1, . . . ,Kn ∈ 2L
′

and
a constraint µ ∈ L′, it is not guaranteed that the outcome of the merging, ∆µ({K1, . . . ,Kn}),
remains in L′ as well. Let for example, K1 = {a}, K2 = {b} and µ = ¬a ∨ ¬b be two sets of
formulæ and a formula expressed in the Horn fragment. Merging with a family of typical distance-
based operators proposed by ?] does not remain in the Horn language fragment since the result of
merging is equivalent to (a ∨ b) ∧ (¬a ∨ ¬b), which is not equivalent to any Horn formula [?].
This example per se does not rule out the possibility of merging operators that remain within the
specified fragment. But it shows that there is indeed a need for identifying and studying the class of
merging operators that possess this property.

One line of research tackles this problem by modifying the existing set of postulates in such a way
that they classify merging operators within a specific language fragment. This has been done within
Horn logic for revision [?], contraction [?; ?] and more recently for merging [?]. A more general
logic, namely the first-order conjunctive logic, which subsumes both Horn and Krom fragments, has
also been investigated for entrenchment-based contraction [?].

Here we propose the concept of refinement of merging operators to overcome the problems men-
tioned above. Refinements have been proposed for revision [?] and capture the intuition of adapting
a given operator (defined for full classical logic) to become applicable within a fragment. The basic
properties of a refinement are thus

(1) to guarantee the result of the change operation to be in the same fragment as the belief change
scenario given and

(2) to keep the behavior of the original operator unchanged if it delivers a result which already fits
in the fragment.

Refinements are interesting from different points of view. Several fragments can be treated in a
uniform way and a general characterization of refinements is provided for any fragment. Defining
and studying refinements of merging operators is not a straightforward extension of the revision
case. It is more complex due to the nature of the merging operators. Even if the constraints play
the role of the new piece of information in revision, model-based merging deals with multi-sets
of models. Moreover applying this approach to different distance-based merging operators, each
parameterized by a distance and an aggregation function, reveals that all the different parameters
matter, thus showing a rich variety of behaviors for refined merging operators.

Our main contributions are the following:

— We propose to adapt known belief merging operators to make them applicable in fragments of
propositional logic. We provide natural criteria which refined operators should satisfy. We charac-
terize refined operators in a constructive way.

— This characterization allows us to study their properties regarding satisfaction of the IC postulates
[?]. On the one hand we prove that the basic postulates (IC0–IC3) are preserved for any refinement
for any fragment. On the other hand we show that the situation is more complex for the remaining
postulates. We provide detailed results for the Horn and the Krom fragment where we study two
kinds of distance-based merging operators and three approaches for refinements.
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This article is an extension of the paper [?]. Besides providing full proofs for all results, we add here
also a discussion of the Majority Postulate (Section ??) as well as a generalization towards merging
scenarios where either the belief bases or the integrity constraint is not in the fragment (Section ??).

2. PRELIMINARIES
Propositional Logic. We consider L as the language of propositional logic over some fixed alpha-

bet U of propositional atoms. We use standard connectives ∨, ∧, ¬,⊕, and constants>,⊥. A clause
is a disjunction of literals. A clause is called (i) Horn if at most one of its literals is positive; (ii)
dual Horn if at most one of its literals is negative; (iii) Krom if it consists of at most two literals. A
⊕-clause is defined like a clause but using exclusive– instead of standard– disjunction. We identify
the following subsets of L:

—LHorn is the set of all formulæ in L being conjunctions of Horn clauses
—LDHorn is the set of all formulæ in L being conjunctions of dual Horn clauses
—LKrom is the set of all formulæ in L being conjunctions of Krom clauses
—LAffine is the set of all formulæ in L being conjunctions of ⊕-clauses

In what follows we sometimes just talk about arbitrary fragmentsL′ ⊆ L. Hereby, we tacitly assume
that any such fragment L′ ⊆ L contains at least the formula >.

An interpretation is represented either by a set ω ⊆ U of atoms (corresponding to the variables
set to true) or by its corresponding characteristic bit-vector of length |U|. For instance if we consider
U = {x1, . . . , x6}, the interpretation x1 = x3 = x6 = 1 and x2 = x4 = x5 = 0 will be represented
either by {x1, x3, x6} or by (1, 0, 1, 0, 0, 1). As usual, if an interpretation ω satisfies a formula φ,
we call ω a model of φ. By Mod(φ) we denote the set of all models (over U) of φ. Moreover, ψ |= φ
if Mod(ψ) ⊆ Mod(φ) and ψ ≡ φ (φ and ψ are equivalent) if Mod(ψ) = Mod(φ).

A base K is a finite set of propositional formulæ {φ1, . . . , φn}. We shall often identify K via∧
K, the conjunction of formulæ of K, i.e.,

∧
K = φ1 ∧ · · · ∧ φn. Thus, a base K is said to be

consistent if
∧
K is consistent, Mod(K) is a shortcut for Mod(

∧
K), K |= φ stands for

∧
K |= φ,

etc. Given L′ ⊆ L we denote by KL′ the set of bases restricted to formulæ from L′. For fragments
L′ ⊆ L, we also use TL′(K) = {φ ∈ L′ | K |= φ}.

A profile E is a non-empty finite multiset of consistent bases E = {K1, . . . ,Kn} and represents
a group of n agents having different beliefs. Given L′ ⊆ L, we denote by EL′ the set of profiles
restricted to the use of formulæ from L′. We denote

∧
K1 ∧ . . . ∧

∧
Kn by

∧
E. The profile is

said to be consistent if
∧
E is consistent. By abuse of notation we write K t E to denote the

multi-set union {K} t E. The multi-set consisting of the sets of models of the bases in a profile is
denotedMod(E) = {Mod(K1), . . . ,Mod(Kn)}. Two profiles E1 and E2 are equivalent, denoted
by E1 ≡ E2 if Mod(E1) = Mod(E2). Finally, for a set of interpretations M and a profile
E = {K1, . . . ,Kn} we define #(M, E) = |{i :M∩Mod(Ki) 6= ∅}|.

Characterizable Fragments of Propositional Logic. Let B denote the set of all Boolean functions
β : {0, 1}k → {0, 1} that have the following two properties1:

— symmetry, i.e., for all permutations σ, β(x1, . . . , xk) = β(xσ(1), . . . , xσ(k)) and
— 0- and 1-reproduction, i.e., for all x ∈ {0, 1}, β(x, . . . , x) = x.

Examples are

— the binary AND function denoted by ∧;
— the binary OR function denoted by ∨;
— the ternary MAJORITY function, maj3(x, y, z) = 1 if at least two of the variables x, y, and z are

set to 1;
— the ternary XOR function ⊕3(x, y, z) = x⊕ y ⊕ z.

1These two properties are also known as anonymity and unanimity.
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We extend Boolean functions to interpretations by applying coordinate-wise the original function
(recall that we consider interpretations also as bit-vectors). So, if we have M1, . . . ,Mk ∈ {0, 1}n,
then β(M1, . . . ,Mk) is defined by

β(M1, . . . ,Mk) = (β(M1[1], . . . ,Mk[1]), . . . , β(M1[n], . . . ,Mk[n])),

where M [i] is the i-th coordinate of the interpretation M .

Definition 2.1. Given a set M ⊆ 2U of interpretations and β ∈ B, we define Clβ(M), the
closure ofM under β, as the smallest set of interpretations that containsM and that is closed under
β, i.e., if M1, . . . ,Mk ∈ Clβ(M), then also β(M1, . . . ,Mk) ∈ Clβ(M).

Let us mention some easy properties of such a closure:

— IfM⊆ N , then Clβ(M) ⊆ Clβ(N ) (monotonicity);
— If |M| = 1, then Clβ(M) =M (because by assumption β is 0- and 1-reproducing);
—Clβ(∅) = ∅.

Definition 2.2. Let β ∈ B. A set L′ ⊆ L of propositional formulæ is a β-fragment (or charac-
terizable fragment) if:

(1) for all ψ ∈ L′, Mod(ψ) = Clβ(Mod(ψ))
(2) for allM⊆ 2U withM = Clβ(M) there exists a ψ ∈ L′ with Mod(ψ) =M
(3) if φ, ψ ∈ L′ then φ ∧ ψ ∈ L′.

It is well known that LHorn is an ∧-fragment, LDHorn is an ∨-fragment, LKrom is a maj3-
fragment, and LAffine is a ⊕3-fragment [?].

Let us mention at this point that, for instance, LHorn as defined above is not the only ∧-fragment.
This is due to the syntactic nature in the definition of LHorn while to be an ∧-fragment is a seman-
tical concept. Indeed, any set of propositional formulae equivalent to LHorn is also an ∧-fragment,
for instance the set of all conjunctions of implications where the antecedents are a conjunction of
atoms and the consequence is either an atom or ⊥. Analogous observations indeed apply to other
fragments.

As suggested by their names the Horn fragment and the dual Horn fragment are dual in the
following sense: a formula φ is Horn if and only if the formula dual(φ) obtained from φ in negating
each literal is dual Horn. Moreover the set of models of φ is in one-to-one correspondence with the
set of models of dual(φ): M ∈ Mod(φ) if and only if M , which denotes the complement of M ,
is a model of dual(φ). The Horn fragment is an ∧-fragment whereas the dual Horn fragment is an
∨-fragment. As a consequence from now on we will omit discussions about the dual Horn fragment.
All the results stated in the following for the Horn fragment also hold for the dual Horn fragment in
replacing the function ∧ by the function ∨.

Logical Merging Operators. Belief merging aims at combining several pieces of information
coming from different sources. Merging operators we consider are functions from the set of profiles
and the set of propositional formulæ to the set of bases, i.e., ∆: EL × L → KL. For E ∈ EL and
µ ∈ L we will write ∆µ(E) instead of ∆(E,µ). The formula µ is called the integrity constraint
(IC) and restricts the result of the merging.

As for belief revision some logical properties that one could expect from any reasonable merging
operator have been stated and discussed in detail [?]. Intuitively ∆µ(E) is the “closest” belief base
to the profile E satisfying the integrity constraint µ. This is what the following postulates try to
capture.

(IC0). ∆µ(E) |= µ
(IC1). If µ is consistent, then ∆µ(E) is consistent
(IC2). If

∧
E is consistent with µ, then ∆µ(E) =

∧
E ∧ µ

(IC3). If E1 ≡ E2 and µ1 ≡ µ2, then ∆µ1
(E1) ≡ ∆µ2

(E2)

ACM Transactions on Computational Logic, Vol. 17, No. 3, Article 20, Publication date: January 2016.



Belief merging within fragments of propositional logic 20:5

(IC4). If K1 |= µ and K2 |= µ, then ∆µ({K1,K2}) ∧K1 is consistent if and only if
∆µ({K1,K2}) ∧K2 is consistent

(IC5). ∆µ(E1) ∧∆µ(E2) |= ∆µ(E1 t E2)
(IC6). If ∆µ(E1) ∧∆µ(E2) is consistent, then ∆µ(E1 t E2) |= ∆µ(E1) ∧∆µ(E2)
(IC7). ∆µ1

(E) ∧ µ2 |= ∆µ1∧µ2
(E)

(IC8). If ∆µ1
(E) ∧ µ2 is consistent, then ∆µ1∧µ2

(E) |= ∆µ1
(E) ∧ µ2

The meaning of the postulates is the following: (IC0) assures that the result of the merging
satisfies the integrity constraint. (IC1) states that if the integrity constraint is consistent, so is the
result of the merging. (IC2) states that the result of the merging is exactly the conjunction of the
belief bases with the integrity constraint, whenever this conjunction is consistent. (IC3) expresses
the principle of irrelevance of the syntax. (IC4) is the fairness postulate, it says that when we merge
two belief bases no preference should be given to one of them. (IC5) and (IC6) together express
that if two subgroups agree on at least one alternative, then the result of the merging is exactly
those alternatives the two subgroups agree on. (IC7) and (IC8) together express conditions on
conjunctions of integrity constraints.

Similarly to belief revision, a representation theorem [?] shows that a merging operator corre-
sponds to a family of total preorders over interpretations satisfying certain conditions. More for-
mally, for E ∈ EL, µ ∈ L and ≤E a total preorder over interpretations, a model-based operator is
defined by Mod(∆µ(E)) = min(Mod(µ),≤E). The model-based merging operators select inter-
pretations that are the “closest” to the original belief bases.

Note that belief revision is a special case of belief merging in which there is only one belief
base, the integrity contraint represents then the new information, i.e., ∆µ({K}) = K ◦ µ. As
a consequence some IC postulates for belief merging are direct generalization of KM postulates
proposed for belief revision [?]. Namely (IC0)–(IC3) correspond to (R1)–(R4), and (IC7) and
(IC8) correspond respectively to (R5) and (R6). In contrast the postulates (IC4)–(IC6) take into
account the profiles and are specific to merging.

Distance-based operators where closeness is calculated based on the definition of a distance
(or a pseudo-distance2) between interpretations and from an aggregation function have been pro-
posed [?; ?]. More formally, let E = {K1, . . . ,Kn} ∈ EL, µ ∈ L, d be a pseudo-distance
and f be an aggregation function, we consider the family of ∆d,f

µ merging operators defined by
Mod(∆d,f

µ (E)) = min(Mod(µ),≤E) where ≤E is a total preorder over the set 2U of interpreta-
tions defined as follows:

— d(ω,Ki) = minω′|=Kid(ω, ω′),
— d(ω,E) = f(d(ω,K1), . . . , d(ω,Kn)), and
— ω ≤E ω′ if d(ω,E) ≤ d(ω′, E).

Several distance-based merging operators have been proposed according to the chosen pseudo-
distance and the selected aggregation function. We first recall some known pseudo-distances.

Definition 2.3. A counting distance between interpretations is a function d : 2U × 2U → R+

defined for every pair of interpretations (ω, ω′) by

d(ω, ω′) = g(|(ω \ ω′) ∪ (ω′ \ ω)|),

where g : N → R+ is a nondecreasing function such that g(n) = 0 if and only if n = 0. If
g(n) = g(1) for every n 6= 0, we call d a drastic distance and denote it via dD. If g(n) = n for all
n, we call d the Hamming distance and denote it via dH . If for every interpretations ω, ω′ and ω′′
we have d(ω, ω′) ≤ d(w,w′′) + d(w′′, w′), then we say that the distance d satisfies the triangular
inequality.

2Let ω, ω′ ⊆ U , a pseudo-distance d is such that d(ω, ω′) = d(ω′, ω) and d(ω, ω′) = 0 if and only if ω = ω′.
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Observe that a counting distance is indeed a pseudo-distance, and that both the Hamming distance
and the drastic distance satisfy the triangular inequality.

As aggregation functions, we consider here Σ, the sum aggregation function, and the aggregation
function GMax defined as follows. Let E = {K1, . . . ,Kn} ∈ EL and ω, ω′ be two interpretations.
Let (dω1 , . . . , d

ω
n), where dωj = dH(ω,Kj), be the vector of distances between ω and the n belief

bases in E. Let LEω be the vector obtained from (dω1 , . . . , d
ω
n) by ranking it in decreasing order. The

aggregation function GMax is defined by GMax(dω1 , . . . , d
ω
n) = LEω , with GMax(dω1 , . . . , d

ω
n) ≤

GMax(dω
′

1 , . . . , d
ω′

n ) if LEω ≤lex LEω′ , where ≤lex denotes the lexicographical ordering.
We focus on the ∆d,Σ and ∆d,GMax operators where d is an arbitrary counting distance. These

operators are known to satisfy the postulates (IC0)–(IC8) [?], generalizing previous and more spe-
cific results [?; ?]. Interestingly, these two operators coincide for the drastic distance. The operator
∆d,Σ is a majority merging operator, whereas ∆d,GMax is an arbitration merging operator. Majority
and Arbitration are expressed by the following additional postulates [?]:

(Maj). ∃n ∆µ(E1 t En2 ) |= ∆µ(E2)
(Arb). If ∆µ1

(K1) ≡ ∆µ2
(K2),∆µ1↔¬µ2

{K1,K2} ≡ (µ1 ↔ ¬µ2), µ1 6|= µ2, and µ2 6|= µ1,

then ∆µ1∨µ2{K1,K2} ≡ ∆µ1(K1).

The (Maj) postulate expresses the fact that if a subset of belief bases is repeated sufficiently
many times then this subset will prevail. The (Arb) postulate says that if a set of alternatives pre-
ferred among one set of integrity constraints µ1 for a belief base K1 corresponds to the set of
alternatives preferred among another set of integrity constraints µ2 for a belief base K2, and if the
alternatives that belong to a set of integrity constraints but not to the other are equally preferred
for the whole group {K1,K2}, then the subset of preferred alternatives among the disjunction of
integrity constraints will coincide with the preferred alternatives of each belief base among their
respective integrity constraints. We refer to [?] for further explanations.

We are interested here in merging operators which are tailored for certain fragments. The fol-
lowing definition thus serves our purposes and is very general. Of course, we later shall consider
merging operators which satisfy several criteria and postulates.

Definition 2.4. A merging operator for L′ ⊆ L is any function ∆ : EL′ × L′ → KL′ . We say
that ∆ satisfies an (IC) postulate (ICi) (i ∈ {0, . . . , 8}) in L′ if the respective postulate holds when
restricted to formulæ from L′.

Postulate (Arb) as stated above requires that the formula µ1 ↔ ¬µ2 is expressible in the consid-
ered language fragment. Since we cannot guarantee this to be the case, we restrict the scope of the
paper to postulates (IC0)–(IC8) and (Maj).

3. REFINED OPERATORS
Let us reconsider the example from Section ?? to illustrate the problem of standard operators when
applied within a β-fragment.

Example 3.1. Let U = {a, b}, E = {K1,K2} ∈ ELHorn
and µ ∈ LHorn such that Mod(K1) =

{{a}, {a, b}}, Mod(K2) = {{b}, {a, b}}, and Mod(µ) = {∅, {a}, {b}}. Consider the distance-
based merging operators, ∆dH ,Σ and ∆dH ,GMax. Table ?? gives the distances between the models
of µ and the belief bases, and the result of the aggregation functions Σ and GMax. The table should
be read as follows: The first column contains all possible models of µ. The cell contents of the
second column depict the minimal distance between the corresponding model of µ and any model
of K1. Analogously, the third column contains the minimal distances between µ and the models of
K2. The column with the header Σ shows the outcome of aggregating the second and third column
with the Σ function and the last column depicts the outcome of aggregating with the GMax function.

Hence, we have Mod(∆dH ,Σ
µ (E)) = Mod(∆dH ,GMax

µ (E)) = {{a}, {b}}. Thus, for instance, we
can return φ = (a ∨ b) ∧ (¬a ∨ ¬b) as the merging result for both operators. However, there is no
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Table I. Example Merging Scenario.

K1 K2 Σ GMax
∅ 1 1 2 (1, 1)
{a} 0 1 1 (1, 0)
{b} 1 0 1 (1, 0)

ψ ∈ LHorn with Mod(ψ) = {{a}, {b}} (each ψ ∈ LHorn satisfies the following closure property
in terms of its set of models: for every ω, ω′ ∈ Mod(ψ), also ω ∩ ω′ ∈ Mod(ψ))). Thus, the result
of the operator has to be refined, such that it fits into the Horn fragment. On the other hand, it holds
that µ ∈ LKrom , E ∈ ELKrom

and also the result φ is in Krom. This shows that different fragments
behave differently on certain instances. Nonetheless, we aim for a uniform approach for refining
merging operators.

We are interested in the following: Given a known merging operator ∆ and a fragment L′ of
propositional logic, how can we adapt ∆ to a new merging operator ∆? such that, for each E ∈ EL′

and µ ∈ L′, ∆?
µ(E) ∈ KL′? Let us define a few natural desiderata for ∆? inspired by the research

on belief revision [?].

Definition 3.2. Let L′ be a fragment of classical logic and ∆ a merging operator. We call an
operator ∆? : EL′ ×L′ → KL′ a ∆-refinement for L′ if it satisfies the following properties, for each
E,E1, E2 ∈ EL′ and µ, µ1, µ2 ∈ L′.

(1) consistency: ∆µ(E) is consistent if and only if ∆?
µ(E) is consistent

(2) equivalence: if E1 ≡ E2 and ∆µ1
(E1) ≡ ∆µ2

(E2) then ∆?
µ1

(E1) ≡ ∆?
µ2

(E2)
(3) containment: TL′(∆µ(E)) ⊆ TL′(∆?

µ(E))
(4) invariance: If ∆µ(E) ∈ K〈L′〉, then TL′(∆?

µ(E)) ⊆ TL′(∆µ(E)), where 〈L′〉 denotes the set of
formulæ in L for which there exists an equivalent formula in L′.

Let us briefly discuss these properties. Containment ensures that ∆? can be seen as a form of
approximation of ∆ when applied in the L′ fragment. On the other hand, invariance states that if ∆
behaves as expected (i.e., the result of the merging is equivalent to a base contained in KL′ ) there
is no need for ∆? to do more. Containment and invariance jointly imply that for each E ∈ EL′

and µ ∈ L′ such that ∆µ(E) ∈ K〈L′〉, ∆µ(E) ≡ ∆?
µ(E) holds. The first two conditions are rather

independent from L′, but relate the refined operator ∆? to the original merging operator ∆ in certain
ways. To be more precise, consistency states that the refined operator ∆? should yield a consistent
merging exactly if the original operator ∆ does so. Equivalence means that for two equivalent
profiles, the definition of the ∆?-operator should not be syntax-dependent: mergings which are
equivalent w.r.t ∆ are also equivalent w.r.t. ∆?. Observe that these properties are a generalization of
the ones proposed for refinements in the context of belief revision [?]. On the one hand properties
(1), (3) and (4) are direct generalizations of the corresponding ones for belief revision. On the
other hand property (2), which reflects the syntax-independence, has to take the belief profiles into
account in order to distinguish the merging strategies.

One can show that a ∆-refinement ∆? for a β-fragment satisfies the properties:

(1) Mod(∆?
µ(E)) ⊆ Clβ(Mod(∆µ(E))) and

(2) Mod(∆?
µ(E)) = Mod(∆µ(E)) in case Mod(∆µ(E)) is closed under β.

This motivates the following candidates for such refinements.

Definition 3.3. Let ∆ be a merging operator and β ∈ B. We define the Clβ-based refined
operator ∆Clβ as:

Mod(∆
Clβ
µ (E)) = Clβ(M).

whereM = Mod(∆µ(E)).
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We define the Min-based refined operator ∆Min as3:

Mod(∆Min
µ (E)) =

{
M if Clβ(M) =M,

{Min(M)} otherwise,

where Min is a function that selects the smallest interpretation from any set of interpretations, the
order on the interpretations being given and fixed.

We define the Min/Clβ-based refined operator ∆Min/Clβ as:

∆
Min/Clβ
µ (E) =

{
∆Min
µ (E) if #(M, E) = 0

∆
Clβ
µ (E) otherwise.

The first two refinements above are inspired from the ones proposed for revision [?]. The last
refinement takes the origin of beliefs into account. In words, this refinement selects the smallest
interpretation of a given and fixed order if ∆µ(E) shares no model with the bases of E. Otherwise,
it switches to the Clβ-based refinement. The intuition behind this is to ensure that the fairness
postulate (IC4) is satisfied. We will come back to this issue in the next section.

PROPOSITION 3.4. For any merging operator ∆ : EL × L → KL, β ∈ B and L′ ⊆ L a
β-fragment, the operators ∆Clβ , ∆Min and ∆

Min/Clβ
µ are ∆-refinements for L′.

PROOF. Let µ ∈ L′, E ∈ EL′ and β ∈ B. We show that each operator yields a base from KL′

and moreover satisfies consistency, equivalence, containment and invariance, cf. Definition ??.
∆Clβ : ∆

Clβ
µ (E) ∈ L′ since by assumption L′ is a β-fragment and thus closed under β. Consis-

tency holds since Mod(∆
Clβ
µ (E)) = Clβ(Mod(∆µ(E))) and Clβ(M) = ∅ if and only ifM = ∅.

Equivalence holds since Mod(∆µ1
(E1)) = Mod(∆µ2

(E2)) implies Clβ(Mod(∆µ1
(E1))) =

Clβ(Mod(∆µ2
(E2))). Containment: let φ ∈ TL′(∆µ(E)), i.e., φ ∈ L′ and Mod(∆µ(E)) ⊆

Mod(φ). By monotonicity of Clβ , we have Clβ(Mod(∆µ(E))) ⊆ Clβ(Mod(φ)). Since φ ∈ L′,
it holds that Clβ(Mod(∆µ(E))) ⊆ Mod(φ), and therefore φ ∈ TL′(∆

Clβ
µ (E)). Invariance:

let φ ∈ TL′(∆
Clβ
µ (E)), i.e., φ ∈ L′ and Clβ(Mod(∆µ(E))) ⊆ Mod(φ). By hypothesis

Clβ(Mod(∆µ(E))) ⊇ Mod(∆µ(E)), therefore φ ∈ TL′(∆µ(E)).
∆Min: if Mod(∆Min

µ (E))) = Clβ(Mod(∆µ(E))) (i.e., ∆µ(E) ∈ K〈L′〉) then ∆Min satisfies all
the required properties as shown above; otherwise consistency, equivalence and containment hold
since Mod(∆Min

µ (E))) = {Min(Mod(∆µ(E)))}. Moreover, by definition each fragment contains
a formula φ with Mod(φ) = {ω} where ω is an arbitrary interpretation. Thus, ∆Min

µ (E) ∈ L′ also
holds in this case.

∆Min/Clβ : satisfies the required properties since ∆Clβ and ∆Min satisfy them.

Example 3.5. Consider the profile E, the integrity constraint µ given in Example ??, the
distance-based merging operator ∆dH ,Σ, and let β be the binary AND function. Let us have the
following order over the set of interpretations on {a, b}: ∅ < {a} < {b} < {a, b}. The result of
merging is Mod(∆dH ,Σ

µ (E)) = {{a}, {b}}. The Min-based ∆dH ,Σ-refined operator, denoted by
∆Min, is such that Mod(∆Min

µ (E)) = {{a}}. The Clβ-based ∆dH ,Σ-refined operator, denoted by

∆Clβ , is such that Mod(∆
Clβ
µ (E)) = {{a}, {b}, ∅}. The same result is achieved by the Min/Clβ-

based ∆dH ,Σ-refined operator since #(Mod(∆dH ,Σ
µ (E)), E) = 2.

In what follows we show how to capture not only a particular refined operator but characterize
the class of all refined operators. Towards a more general approach to define merging operators

3Note that the Min-based refinement depends on β since it involves a check to determine if the set of models is closed under
β. But in order to stress that selecting the smallest interpretation is independent of β, we will use ∆Min instead of ∆Minβ .

ACM Transactions on Computational Logic, Vol. 17, No. 3, Article 20, Publication date: January 2016.



Belief merging within fragments of propositional logic 20:9

fitting into fragments that are obtained by refining existing operators we define a concept of map-
ping, which has to satisfy some basic properties which we give in the forthcoming definition. The
intuition behind these mappings is that they model a post-processing computation after the original
merging operator was applied. Hence, these mappings take as argument the set of models which the
original merging operator returned, and provide as a result again a set of models. To capture profile-
dependent refinements such as the Min/Clβ-based refined operator, we provide these mappings
with a second argument, which corresponds to the models of the profile. The mappings which we
define here differ from the ones used for revision, since those only needed one argument [?]. They
aim at producing refined merging operators that have different merging strategies and that take into
account the different sources of information. Therefore it is natural that in case of merging the map-
pings take also into account the belief profile. However, we shall identify mappings for which this
second argument plays no role and call them profile-independent.

Definition 3.6. Given β ∈ B, we define a β-mapping, fβ , as an application which to every set
of modelsM and every multi-set of sets of models X associates a set of models fβ(M,X ) such
that:

(1) Clβ(fβ(M,X )) = fβ(M,X ) (i.e., fβ(M,X ) is closed under β)
(2) fβ(M,X ) ⊆ Clβ(M)
(3) ifM = Clβ(M), then fβ(M,X ) =M
(4) IfM 6= ∅, then fβ(M,X ) 6= ∅.
A β-mapping fβ is profile-independent if for all set of modelsM and all multisets of sets of models
X and X ′, we have fβ(M,X ) = fβ(M,X ′).

For example, the Clβ-based refinement can be expressed through a profile-independent β-
mapping. Indeed, forM = Mod(∆µ(E)) and X = Mod(E) we can define Mod(∆

Clβ
µ (E)) =

fβ(M,X ) where fβ(M,X ) = Clβ(M). Similarly the Min-based refinement can be expressed
through a profile-independent β-mapping: Mod(∆Min

µ (E)) = fβ(M,X ) where

fβ(M,X ) =

{
M if Clβ(M) =M,

{Min(M)} otherwise,

In contrast the Min/Clβ-based refinement can be expressed through β-mapping that is profile-
dependent.

The concept of mappings allows us to define a family of refined operators for fragments of clas-
sical logic that captures the examples given before.

Definition 3.7. Let ∆ : EL × L → KL be a merging operator and L′ ⊆ L be a β-fragment of
classical logic with β ∈ B. For a β-mapping fβ we denote with ∆fβ : EL′ ×L′ → KL′ the operator
for L′ defined as

Mod(∆
fβ
µ (E)) = fβ(Mod(∆µ(E)),Mod(E)).

The class [∆,L′] contains all operators ∆fβ where fβ is a β-mapping and β ∈ B such that L′ is a
β-fragment.

The next proposition is central in reflecting that the class [∆,L′] captures all refined operators we
had in mind, cf. Definition ??.

PROPOSITION 3.8. Let ∆ : EL×L → KL be a merging operator andL′ ⊆ L a characterizable
fragment of classical logic. Then, [∆,L′] is the set of all ∆-refinements for L′.

PROOF. Since L′ is a characterizable fragment it is also a β-fragment for some β ∈ B.
Let ∆? ∈ [∆,L′]. We show that ∆? is a ∆-refinement for L′. Since ∆? ∈ [∆,L′] there ex-
ists a β-mapping fβ , such that Mod(∆?

µ(E)) = fβ(Mod(∆µ(E)),Mod(E)) for all µ ∈ L′
and E ∈ EL′ . Since fβ satisfies Property ?? in Definition ?? and L′ is a β-fragment, ∆?

µ(E)

ACM Transactions on Computational Logic, Vol. 17, No. 3, Article 20, Publication date: January 2016.



20:10 Nadia Creignou et al.

is indeed in KL′ . Consistency for ∆?: Let µ ∈ L′ and E ∈ EL′ . If Mod(∆µ(E)) 6= ∅
then Mod(∆?

µ(E)) = fβ(Mod(∆µ(E)),Mod(E)) 6= ∅ by Property ?? in Definition ??. If
Mod(∆µ(E)) = ∅, we make use of the fact that Clβ(∅) = ∅ holds for all β ∈ B. By Property ?? in
Definition ??, we get Mod(∆?

µ(E)) = fβ(Mod(∆µ(E)),Mod(E)) ⊆ Clβ(Mod(∆µ(E))) = ∅.
Equivalence for ∆? is clear by definition and since fβ is defined on sets of models. To show
containment for ∆?, let φ ∈ TL′(∆µ(E)), i.e., φ ∈ L′ and Mod(∆µ(E)) ⊆ Mod(φ). We
have Clβ(Mod(∆µ(E))) ⊆ Clβ(Mod(φ)) by monotonicity of Clβ . By Property ?? of Defini-
tion ??, Mod(∆?

µ(E)) ⊆ Clβ(Mod(∆µ(E))). Since φ ∈ L′ we have Clβ(Mod(φ)) = Mod(φ).
Thus, Mod(∆?

µ(E)) ⊆ Mod(φ), i.e., φ ∈ TL′(∆?
µ(E)). Finally, we require invariance for ∆?: If

∆µ(E) ∈ K〈L′〉, we have Clβ(Mod(∆µ(E))) = Mod(∆µ(E)) since L′ is a β-fragment. By Prop-
erty ?? in Definition ??, we have Mod(∆?

µ(E)) = fβ(Mod(∆µ(E)),Mod(E)) = Mod(∆µ(E)).
Thus TL′(∆?

µ(E)) ⊆ TL′(∆µ(E)) as required.
Let ∆? be a ∆-refinement for L′. We show that ∆? ∈ [∆,L′]. Let f be defined as follows for

any setM of interpretations and X a multi-set of sets of interpretations: f(∅,X ) = ∅. ForM 6= ∅,
if Clβ(M) =M then f(M,X ) =M, otherwise if there exists a pair (E,µ) ∈ (EL′ ,L′) such that
Mod(E) = X and Mod(∆µ(E)) =M, then we define f(M,X ) = Mod(∆?

µ(E)). If there is no
such a pair (E,µ) then we arbitrarily define f(M,X ) = Clβ(M). Thus the refined operator ∆?

behaves like the operator ∆f .
We show that such a mapping f is a β-mapping. Since ∆? is a ∆-refinement for L′, it satisfies the

property of equivalence, thus the actual choice of the pair (E,µ) is not relevant, i.e., given (M,X ),
and pairs (E,µ) and (E′, µ′) such thatMod(E) =Mod(E′) = X and ∆µ(E) = ∆µ′(E′) =M,
we have that ∆?

µ(E) is equivalent to ∆?
µ′(E′). Thus f is well-defined.

We continue to show that the four properties in Definition ?? hold for f . Property ?? is en-
sured since for every pair (M,X ), f(M,X ) is closed under β. Indeed, either f(M,X ) = M
if M is closed under β, or f(M,X ) = Mod(∆?

µ(E)) and since ∆?
µ(E) ∈ KL′ its set of

models is closed under β, or f(M,X ) = Clβ(M), and thus is also closed under β. Let us
show Property ??, i.e., f(M,X ) ⊆ Clβ(M) for any pair (M,X ). It is obvious when M = ∅
(then f(M,X ) = ∅), as well as when f(M,X ) = Clβ(M) and when M is closed and
thus f(M,X ) = M. Otherwise f(M,X ) = Mod(∆?

µ(E)) and since ∆? satisfies containment
Mod(∆?

µ(E)) ⊆ Clβ(Mod(∆µ(E)). Therefore in any case we have f(M,X ) ⊆ Clβ(M). Prop-
erty ?? follows trivially from the definition of f(M,X ) whenM is closed under β. Property ?? is
ensured by consistency of ∆?.

An easy consequence of this characterization of refined operators is the following. Let ∆: EL ×
L → KL be a merging operator, let L′ ⊆ L be a β-fragment of classical logic with β ∈ B, and
let ∆? : EL′ × L′ → KL′ be a ∆-refinement for L′. Then for each E ∈ EL′ , Mod(∆?(E)) ⊆
Clβ(Mod(∆(E))).

4. PRESERVATION OF POSTULATES
The aim of this section is to study whether refinements of merging operators preserve the IC pos-
tulates. We first show that if the initial operator satisfies the most basic postulates ((IC0)–(IC3)),
then so does any of its refinements. It turns out that this result cannot be extended to the remaining
postulates. For (IC4) we characterize a subclass of refinements for which this postulate is preserved.
For the four remaining postulates we study two representative kinds of distance-based merging op-
erators. We show that postulates (IC5) and (IC7) are violated for all of our proposed examples of
refined operators with the exception of the Min-based refinement. For (IC6) and (IC8) the situation
is even worse in the sense that no refinement of our proposed examples of merging operators can
satisfy them neither for LHorn nor for LKrom . Finally, we study the preservation of the majority
postulate (Maj). Table ?? gives an overview of most of the results of this section.
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Table II. Overview of some results for (IC0)–(IC8) for refinements together with restrictions under which the
results hold.

Postulate Satisfied Restriction
IC0 - IC3 yes no restriction (Prop. ??)

IC4

yes any fair refinement (Prop. ??)
∆Clβ with ∆d,Σ, counting distance d satisfying triangular inequality (Prop. ??)

no
∆Min for LHorn and LKrom with ∆ ∈ {∆d,Σ,∆d,GMax}, counting distance d (Prop. ??)
∆Min with ∆ ∈ {∆dD,Σ,∆dD,GMax} (Prop. ??)
∆Clβ for LHorn and LKrom with ∆d,GMax, non-drastic counting distance d (Prop. ??)

IC5, IC7

yes ∆Min (Prop. ??)

no

any fair refinement for LHorn with ∆ ∈ {∆d,Σ,∆d,GMax}, counting distance d (Prop. ??)
∆Clβ and ∆Min/Clβ for LHorn and LKrom with ∆ ∈ {∆d,Σ,∆d,GMax}, counting dis-
tance d (Prop. ??)

IC6, IC8 no for LHorn and LKrom with ∆ ∈ {∆d,Σ,∆d,GMax}, counting distance d (Prop. ??)

Maj

yes ∆Clβ with ∆d,Σ, counting distance d (Prop. ??)

no
∆fβ s.t. fβ(M,X ) 6= Clβ(M) for non-closed setsM; forLHorn andLKrom with ∆d,Σ,
counting distance d (Prop. ??)
∆Min/Clβ for LHorn and LKrom with ∆d,Σ, non-drastic counting distance d (Prop. ??)

In the following, within a characterizable fragment, it is implicit that any β-mapping we refer
to uses the β which characterizes the fragment. This means that within LHorn (resp. LKrom ) a
β-mapping is a ∧-mapping (resp., maj3-mapping).

4.1. Basic Postulates IC 0 – IC 3
We first prove that, as in the framework of belief revision, the refined merging operatores preserve
the basic postulates.

PROPOSITION 4.1. Let ∆ be a merging operator satisfying postulates (IC0)–(IC3), and L′ ⊆
L a characterizable fragment. Then each ∆-refinement for L′ satisfies (IC0)–(IC3) in L′ as well.

PROOF. Since L′ is characterizable there exists a β ∈ B, such that L′ is a β-fragment. Let ∆?

be a ∆-refinement for L′. According to Proposition ?? we can assume that ∆? ∈ [∆,L′] is an
operator of form ∆fβ where fβ is a suitable β-mapping. In what follows, we can restrict ourselves
to E ∈ EL′ and to µ ∈ L′ since we have to show that ∆fβ satisfies (IC0)–(IC3) in L′.

(IC0): Since ∆ satisfies (IC0), Mod(∆µ(E)) ⊆ Mod(µ). Thus, by monotonicity of the closure
Clβ(Mod(∆µ(E))) ⊆ Clβ(Mod(µ)). This yields together with µ ∈ L′ and the fact that L′ is
a β-fragment, that Clβ(Mod(∆µ(E))) ⊆ Mod(µ). According to Property ?? in Definition ??
we have fβ(Mod(∆µ(E)),Mod(E)) ⊆ Clβ(Mod(∆µ(E))), and therefore by definition of ∆?,
Mod(∆?

µ(E)) ⊆ Mod(µ), which proves that ∆?
µ(E) |= µ.

(IC1): Suppose µ satisfiable. Since ∆ satisfies (IC1), ∆µ(E) is satisfiable. Since ∆fβ is a ∆-
refinement (Proposition ??), ∆

fβ
µ (E) is also satisfiable by the property of consistency (see Defini-

tion ??).
(IC2): Suppose

∧
E is consistent with µ. Since ∆ satisfies (IC2), ∆µ(E) =

∧
E ∧ µ. We have

Mod(∆?
µ(E)) = fβ(Mod(∆µ(E)),Mod(E)) = fβ(Mod(

∧
E∧µ),Mod(E)). Since

∧
E∧µ ∈

L′ by Property ?? of Definition ?? we have Mod(∆?
µ(E)) =

∧
E ∧ µ.

(IC3): Let E1, E2 ∈ EL′ and µ1, µ2 ∈ L′ with E1 ≡ E2 and µ1 ≡ µ2. Since ∆ satisfies
(IC3), ∆µ1(E1) ≡ ∆µ2(E2). By the property of equivalence in Definition ?? we have ∆?

µ1
(E1) ≡

∆?
µ2

(E2).

4.2. Fairness Postulate IC 4
A natural question is whether refined operators for characterizable fragments in their full generality
preserve other postulates, and if not whether one can nevertheless find some refined operators that
satisfy some of the remaining postulates.

ACM Transactions on Computational Logic, Vol. 17, No. 3, Article 20, Publication date: January 2016.



20:12 Nadia Creignou et al.

First we show that one cannot expect to extend Proposition ?? to (IC4). Indeed, in the two fol-
lowing propositions we present merging operators which satisfy all postulates, whereas some of
their refinements violate (IC4) in certain fragments. The proof of these propositions together with
other missing proofs can be found in the appendix.

PROPOSITION 4.2. Let ∆ be a merging operator with ∆ ∈ {∆d,Σ,∆d,GMax}, where d is an
arbitrary counting distance. Then the Min-based refined operator ∆Min violates postulate (IC4)
in LHorn and LKrom . In case d is the drastic distance, ∆Min violates postulate (IC4) in every
characterizable fragment L′ ⊂ L.

PROPOSITION 4.3. Let ∆ = ∆d,GMax be a merging operator where d is an arbitrary non-
drastic counting distance. Then the closure-based refined operator ∆Clβ violates (IC4) in LHorn

and LKrom .

To identify a class of refinements which satisfy (IC4), we now introduce the concept of fairness
for ∆-refinements.

Definition 4.4. Let L′ be a fragment of classical logic. A ∆-refinement for L′, ∆?, is fair
if it satisfies the following property for each E ∈ EL′ , µ ∈ L′: If #(∆µ(E), E) 6= 1 then
#(∆?

µ(E), E) 6= 1.

As we will see in the following the fairness of a refined operator depends on both the initial
operator and the β-mapping used to refine it.

PROPOSITION 4.5. Let L′ be a characterizable fragment. Then the Min/Clβ-based refinement
of any merging operator for L′ is fair.

To show fairness for the Clβ-based refinement, we first prove that it coincides for certain opera-
tors with the Min/Clβ-based refinement.

PROPOSITION 4.6. Let L′ be a characterizable fragment and let ∆ be a merging operator with
∆ ∈ {∆dD,Σ,∆dD,GMax}. Then the Clβ-based refinement and the Min/Clβ-based refinement
coincide.

From Proposition ?? and Proposition ?? we get the following statement about fairness of the
Clβ-based refinement.

COROLLARY 4.7. Let L′ be a characterizable fragment. Then the Clβ-based refinement of both
∆dD,Σ and ∆dD,GMax for L′ is fair.

Fairness turns out to be a sufficient property to preserve the postulate (IC4) as stated in the
following proposition.

PROPOSITION 4.8. Let ∆ be a merging operator satisfying postulate (IC4), and L′ ⊆ L a
characterizable fragment. Then every fair ∆-refinement for L′ satisfies (IC4) as well.

PROOF. Consider ∆ a merging operator satisfying postulate (IC4). Let ∆? be a fair ∆-
refinement for L′. If ∆? does not satisfy (IC4), then there exist E = {K1,K2} with K1,K2 ∈ L′
and µ ∈ L′, with K1 |= µ and K2 |= µ such that Mod(∆?

µ(E)) ∩ Mod(K1) 6= ∅ and
Mod(∆?

µ(E)) ∩ Mod(K2) = ∅, i.e., such that #(∆?
µ(E), E) = 1. Since ∆ satisfies postulate

(IC4) we have #(∆µ(E), E) 6= 1, thus contradicting the fairness property in Definition ??.

With Proposition ?? at hand, we can conclude that the Clβ-based refinement of both ∆dD,Σ and
∆dD,GMax for L′ as well as the Min/Clβ-based refinement of any merging operator satisfies (IC4).

Remark 4.9. Observe that the distance which is used in distance-based operators matters for
the preservation of (IC4), as well as for fairness. Indeed, while the Clβ-refinement of ∆dD,GMax
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is fair, and therefore satisfies (IC4), the Clβ-refinement of ∆d,GMax where d is an arbitrary non-
drastic counting distance violates postulate (IC4) in LHorn and LKrom , and therefore is not fair.

For all refinements considered so far we know whether (IC4) is preserved or not, with one single
exception: the Clβ-refinement of ∆d,Σ where d is an arbitrary non-drastic counting distance. In this
case we get a partial positive result.

PROPOSITION 4.10. Let ∆ be a merging operator with ∆ = ∆d,Σ, where d is an arbitrary
counting distance that satisfies the triangular inequality. Then the closure-based refined operator
∆Clβ satisfies postulate (IC4) in any characterizable fragment.

Remark 4.11. Proposition ?? together with Proposition ?? shows that the aggregation function
that is used in distance-based operators matters for the preservation of the postulate (IC4).

Interestingly Proposition ?? (recall that the Hamming distance satisfies the triangular inequal-
ity) together with the following proposition show that fairness, which is a sufficient condition for
preserving (IC4) is not a necessary one.

PROPOSITION 4.12. The Clβ-refinement of ∆dH ,Σ is neither fair in LHorn nor in LKrom .

4.3. Postulates IC 5 – IC 8
It turns out that our refined operators have a similar behavior regarding the satisfaction of postulates
(IC5) & (IC7) as well as (IC6) & (IC8). Therefore we will deal with the remaining postulates in
pairs.

In the case of belief revision [?] the only refinement which is proved to preserve the postulate
(R5) is the Min-based one. We obtain a similar result in the context of belief merging for the postu-
late (IC7). We prove that the Min-based refinement satisfies (IC5) and (IC7), whereas the refined
operators ∆Clβ and ∆Min/Clβ violate these two postulates.

PROPOSITION 4.13. Let ∆ be a merging operator satisfying postulates (IC5) and (IC6) (resp.
(IC7) and (IC8)), and L′ ⊆ L a characterizable fragment. Then the refined operator ∆Min for L′
satisfies (IC5) (resp. (IC7)) in L′ as well.

PROPOSITION 4.14. Let ∆ be a merging operator with ∆ ∈ {∆d,Σ,∆d,GMax}, where d is
an arbitrary counting distance. Then the refined operators ∆Clβ and ∆Min/Clβ violate postulates
(IC5) and (IC7) in LHorn and in LKrom .

In the Horn fragment the negative results of Proposition ?? can be extended to any fair refinement.

PROPOSITION 4.15. Let ∆ be a merging operator with ∆ ∈ {∆d,Σ,∆d,GMax}, where d is an
arbitrary counting distance. Then any fair refined operator ∆∗ violates (IC5) and (IC7) in LHorn .

We leave it as an open question whether this proposition can be extended to Krom.
In the case of belief revision [?] all the studied refinements are proved to violate the postulate

(R6). We obtain similar results in the context of belief merging for the postulate (IC8). We prove
that any refinement of the two kinds of operators we considered violates both (IC6) and (IC8) in
LHorn and in LKrom .

PROPOSITION 4.16. Let ∆ be a merging operator with ∆ ∈ {∆d,Σ,∆d,GMax}, where d is an
arbitrary counting distance. Then any refined operator ∆? violates postulates (IC6) and (IC8) in
LHorn and in LKrom .

This last result shows us that there is a clear limit with respect to which postulates we can satisfy
with the technique of refinements if the original merging operator is based on a counting distance.
On the other hand, there exists a distance-based Horn merging operator [?], that satisfies all pos-
tulates but uses a distance that does not classify as a counting distance. This leads to the follow-
ing open question: Does there exist a refined operator satisfying postulates (IC6) and (IC8) if the
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original operator is based on a counting distance but uses a different aggregation function or can
Proposition ?? be generalized to arbitrary counting distance-based merging operators?

4.4. Majority
As we said in the introduction there are two main families of merging operators, the majority and
the arbitration families. As previously observed the arbitration postulate does not make sense in
our framework. Indeed this postulate involves disjunction of formulae, while our fragments are not
closed under disjunction, i.e., given two formulae µ1 and µ2 in a fragment L′, there is no reason
that still µ1 ∨ µ2 ∈ L′. So we will focus on the majority postulate. A natural question is whether a
refinement of a majority merging operator is still a majority operator. As we show below, while the
closure-based refinement of a majority merging operator is still a majority operator, it seems not to
be the case for a large variety of other refinements.

First we show a positive result for the refinement by closure.

PROPOSITION 4.17. Let ∆ be a merging operator with ∆ = ∆d,Σ, where d is an arbitrary
counting distance. Then the closure-based refined operator ∆Clβ satisfies postulate (Maj) in any
characterizable fragment.

PROOF. Since ∆ = ∆d,Σ satisfies (Maj), there exists an integer n such that Mod(∆µ(E1 t
En2 )) ⊆ Mod(∆µ(E2)). Thus, Clβ(Mod(∆µ(E1 t En2 ))) ⊆ Clβ(Mod(∆µ(E2))) and it follows
∆
Clβ
µ (E1 t En2 ) |= ∆

Clβ
µ (E2).

Second we investigate refinements that do not make use of the closure, and for them obtain a
general negative result.

PROPOSITION 4.18. Let ∆ be a merging operator with ∆ = ∆d,Σ, where d is a counting
distance. Then any refinement ∆fβ such that fβ(M,X ) 6= Clβ(M) for every non-β-closed set of
modelsM violates postulate (Maj) in LHorn and LKrom .

The Min-based refinement is a special case of Proposition ??. Therefore, ∆Min violates postulate
(Maj) in LHorn and LKrom . The next proposition shows that it is also the case for ∆Min/Clβ .

PROPOSITION 4.19. Let ∆ be a merging operator with ∆ = ∆d,Σ, where d is a non-drastic
counting distance. Then ∆Min/Clβ violates postulate (Maj) in LHorn and LKrom .

PROOF. If #(M, E) = 0 then ∆
Min/Clβ
µ (E) = ∆Min

µ (E). Therefore the examples developed
in the first part of proof of Proposition ?? show that ∆Min/Clβ violates postulate (Maj) as well.

Concerning the drastic distance and the Min/Clβ-based refinement, recall that ∆Min/Clβ and
∆Clβ coincide in this situation (cf. Proposition ??). Thus by Proposition ??, postulate (Maj) re-
mains satisfied.

COROLLARY 4.20. Let ∆ be a merging operator with ∆ = ∆dD,Σ. Then ∆Min/Clβ satisfies
postulate (Maj) in any characterizable fragment.

5. GENERALIZATIONS
A natural extension of this work is to study merging when only the belief bases of the profile are
in the fragment, or when only the formula representing the integrity constraint is in the fragment.
Given a merging operator ∆, we call ∆∗ : EL′ ×L → KL′ a ∆-left-refinement (for L′) if it satisfies
all properties given in Definition ?? with profiles in EL′ and integrity constraints in L. Similarly we
call ∆∗ : EL×L′ → KL′ a ∆-right-refinement (for L′) if it satisfies all properties given in Definition
?? with profiles in EL and integrity constraints in L′. It is then easy to check that the characterization
given in Proposition ?? still holds, that is that any ∆-left-refinement (resp., ∆-right-refinement) can
be defined as ∆fβ for some β-mapping fβ .
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Table III. Overview of some results for (IC0)–(IC8) for refinements in the Horn and Krom fragment
(x ∈ {Σ,GMax}, d ∈ {dH , dD}).

(∆dH ,Σ)Clβ (∆dH ,GMax)Clβ (∆dD,x)Clβ (∆d,x)Min (∆d,x)Min/Clβ

IC0 - IC3 + + + + +
IC4 + − + − +

IC5, IC7 − − − + −
IC6, IC8 − − − − −

Let us now study whether such more general refined operators still preserve the basic postulates.
It is immediate to prove that they violate the postulate (IC2).

PROPOSITION 5.1. Let ∆ be a merging operator, and L′ ⊆ L a characterizable fragment.
Then each ∆-left-refinement for L′, ∆∗ : EL′ × L → KL′ (resp., each ∆-right-refinement for L′,
∆∗ : EL × L′ → KL′ ) violates (IC2).

PROOF. Let φ ∈ L \ L′ such that Clβ(Mod(φ)) 6= Mod(φ). Consider E = {{>}} and µ = φ
(resp., E = {{φ}} and µ = >). If ∆∗ satisfied (IC2), then we would have Mod(∆∗µ(E)) =
Mod(φ), which provides a contradiction since by assumption Mod(φ) is not closed under β.

For right-refinements, the case where only the integrity constraint has to belong to the fragment,
we prove that all other basic postulates are preserved.

PROPOSITION 5.2. Let ∆ be a merging operator satisfying postulates (IC0)–(IC3), and L′ ⊆
L a characterizable fragment. Then each ∆-right-refinement for L′, ∆∗ : EL × L′ → KL′ satisfies
(IC0), (IC1) and (IC3)

PROOF. Let E ∈ EL and µ ∈ L′. We have Mod(∆∗µ(E)) ⊆ Clβ(Mod(∆µ(E))), thus
Mod(∆∗µ(E)) ⊆ Clβ(Mod(µ)) since ∆ satisfies (IC0) and Clβ is a monotone function. Since
µ ∈ L′, we get Mod(∆∗µ(E)) ⊆ Mod(µ), thus proving that ∆∗ satisfies (IC0).

The proof of the preservation of (IC1) and (IC3) is straightforward and similar to the one in
Proposition ??.

The preservation of postulate of (IC0) is less clear for left-refinements, that is in the case where
only the belief bases that are in the profile have to be in the fragment.

PROPOSITION 5.3. Let ∆ be a merging operator satisfying postulates (IC0)–(IC3), and L′ ⊆
L a characterizable fragment. Then each ∆-left-refinement for L′, ∆∗ : EL′ × L → KL′ satisfies
(IC1) and (IC3). The preservation of (IC0) depends on the associated β-mapping, in particular
∆Min satisfies (IC0), while ∆Clβ and ∆Min/Clβ violate it.

PROOF. Let us deal with (IC0). Suppose ∆∗ = ∆fβ where fβ is a contracting β-mapping, that
is for any M and X , fβ(M,X ) ⊆ M. Then Mod(∆

fβ
µ (E)) = fβ(Mod(∆µ(E),Mod(E)) ⊆

Mod(∆µ(E)). Thus, Mod(∆
fβ
µ (E)) ⊆ Mod(µ) since ∆ satisfies (IC0). Therefore ∆fβ satisfies

(IC0) for any contracting β-mapping, in particular when fβ = Min. Now, considerE = {{>}} and
µ ∈ L \ L′ such that Clβ(Mod(µ)) 6= Mod(µ). Since ∆ satisfies (IC2), we have Mod(∆µ(E)) =

Mod(µ). Since Mod(µ) is not closed under β, we have Mod(∆
Clβ
µ (E)) = Mod(∆

Min/Clβ
µ (E)) =

Clβ(Mod(µ)). Hence, we get ∆
Clβ
µ (E) 6|= µ and ∆

Min/Clβ
µ (E) 6|= µ, thus showing that (IC0) is

not preserved for these refinements.

Observe that all negative results that have been obtained in the previous sections still hold in this
broader context. Moreover it is easy to check that the positive results reported in Proposition ??,
Proposition ??, Proposition ?? and Proposition ?? are still valid when either only the belief bases
of the profile or only the integrity constraint are in the fragment.
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6. CONCLUSION
We have investigated to which extent known merging operators can be refined to work within frag-
ments of propositional logic. Compared to revision, this task is more involved since merging oper-
ators have many parameters that have to be taken into account.

We have first defined desired properties any refined merging operator should satisfy and provided
a characterization of all refined merging operators. We have shown that the refined merging opera-
tors preserve the basic postulates, namely (IC0)–(IC3). The situation is more complex for the other
postulates. For the postulate (IC4) we have provided a sufficient condition for its preservation by
a refinement (fairness). For the other postulates, we have focused on two representative families of
distance-based merging operators that satisfy the postulates (IC0)–(IC8). For these two families
the preservation of (IC5) and (IC7) depends on the used refinement and it would be interesting to
obtain a necessary and sufficient condition for this. In contrast, there is no hope for such a condition
for (IC6) and (IC8), since we have shown that any refinement of merging operators belonging to
these families violates these postulates in LHorn and LKrom . We also studied the majority postulate
and showed that the refinement by the closure of majority operators provides refined majority oper-
ators. Finally, we had a brief look on relaxations of merging scenarios in Section ??, where not all
ingredients need to be from the fragment.

Table ?? summarizes some results for refinements in LHorn and LKrom . This table shows the ap-
parent trade-off one has to expect when choosing a refinement. The closure-based refinements tend
to satisfy (IC4) but violate (IC5) and (IC7). On the other hand, while the Min-based refinement
satisfies (IC5) and (IC7), it violates (IC4). An interesting issue is whether the postulate (IC4) is
compatible with (IC5) and (IC7) for some refinements and whether this can depend on the fragment
under consideration.

More generally, we plan to study further refinements and see whether they may yield better re-
sults than the natural refinements investigated in the current paper. As mentioned in Section ??, the
arbitration postulate (Arb) is stated in a way that seems incompatible with our notion of fragments.
Hence, an interesting open problem is to find a modified or weaker version of this postulate, which
is applicable in the fragment setting. Finally, another interesting issue is to apply our findings to
other domains of merging, for instance merging in (fragments) of Answer-Set programs [?].

APPENDIX
PROOF OF PROPOSITION ??. First consider d is a drastic distance. We show that ∆Min violates

postulate (IC4) in every characterizable fragment L′ ⊂ L. Since L′ is a characterizable fragment
there exists β ∈ B such that L′ is a β-fragment. Consider a set of modelsM that is not closed under
β and that is cardinality-minimum with this property. Such a set exists since L′ is a proper subset
of L. Observe that necessarily |M| > 1. Let m ∈ M, consider the knowledge bases K1 and K2

such that Mod(K1) = {m} and Mod(K2) =M\ {m}. By the choice ofM both K1 and K2 are
in KL′ , whereas K1 ∪K2 is not. Let µ = >. Since the merging operator uses a drastic distance it is
easy to see that ∆µ({K1,K2}) = Mod(K1) ∪Mod(K2). Therefore, Mod(∆Min

µ ({K1,K2})) =
Min(Mod(K1)∪Mod(K2)), and this single element is either a model of K1 or a model of K2 (but
not of both since they do not share any model). This shows that ∆Min violates (IC4).

Otherwise, consider d is a non-drastic counting distance. Let g be the function which we used
to define counting distances in Definition ??. Since d is non-drastic, there exists an x > 0,
such that g(x) < g(x + 1). We first show that then ∆Min violates postulate (IC4) in LHorn .
Let A be a set of atoms such that |A| = x − 1 and A ∩ {a, b} = ∅. Moreover, consider
E = {K1,K2} with Mod(K1) = {∅, {a}, {b}}, Mod(K2) = {A ∪ {a, b}}, and let µ such that
Mod(µ) = {∅, {a}, {b}, A ∪ {a, b}}. Such profile and constraint exist in LHorn . We get:
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K1 K2 Σ GMax
∅ 0 g(x+ 1) g(x+ 1) (g(x+ 1), 0)
{a} 0 g(x) g(x) (g(x), 0)
{b} 0 g(x) g(x) (g(x), 0)
A ∪ {a, b} g(x) 0 g(x) (g(x), 0)

Since g(x) < g(x + 1), we have M = Mod(∆µ(E)) = {{a}, {b}, A ∪ {a, b}}, which is
not closed under intersection. Hence, Mod(∆Min

µ (E)) contains exactly one of the three models
depending on the ordering. Therefore, #(Mod(∆Min

µ (E)), E) = 1, thus violating (IC4).
For LKrom , let x > 0 be the smallest index such that g(x) < g(x + 1) in the definition of

distance d. For any y with 0 < y < x, thus g(y) = g(x) holds. Let A,A′ be two disjoint set
of atoms with cardinality x − 1 and A ∩ {a, b, c, d} = A′ ∩ {a, b, c, d} = ∅. Let us consider
E = {K1,K2} with Mod(K1) = {∅, {a}, {b}, {c}, {d}, {a, b}, {c, d}} (in case x > 1) resp.
Mod(K1) = {∅, {a}, {b}, {c}, {d}} (in case x = 1), Mod(K2) = {A ∪ {a, b}, A′ ∪ {c, d}}, and
µ such that Mod(µ) = {∅, {a}, {b}, {c}, {d}, {a, b}, {c, d}, A ∪ {a, b}, A′ ∪ {c, d}}. Such profile
and constraint exist in LKrom . The following table represents the case x > 1.

K1 K2 E
∅ 0 g(x+ 1) (g(x+ 1), 0)
{a} 0 g(x) (g(x), 0)
{b} 0 g(x) (g(x), 0)
{c} 0 g(x) (g(x), 0)
{d} 0 g(x) (g(x), 0)
{a, b} 0 g(x− 1) (g(x− 1), 0)
{c, d} 0 g(x− 1) (g(x− 1), 0)
A ∪ {a, b} g(x− 1) 0 (g(x− 1), 0)
A′ ∪ {c, d} g(x− 1) 0 (g(x− 1), 0)

For the case x > 1, observe g(x − 1) = g(x) < g(x + 1), and we haveM = Mod(∆µ(E)) =
{{a}, {b}, {c}, {d}, {a, b}, {c, d}, A∪{a, b}, A′∪{c, d}}. For the case x = 1, note thatA andA′ are
empty, thus the two last rows of the table coincide with the two rows before. Recall thatK1 is defined
differently for this case. Hence, the distances of {a, b} and {c, d} to K1 are g(x) = g(1). Thus,
we have M = Mod(∆µ(E)) = {{a}, {b}, {c}, {d}, {a, b}, {c, d}}. Neither of the M is closed
under ternary majority. Hence, Mod(∆Min

µ (E)) contains exactly one of the six resp. eight models
depending on the ordering. Therefore, #(Mod(∆Min

µ (E)), E) = 1, thus violating (IC4).

PROOF OF PROPOSITION ??. Since d is not drastic, there exists an x > 0 such that g(x) <
g(x+ 1). In what follows, we select the smallest such x.

We start with the case LHorn . Let A be a set of atoms of cardinality x− 1 not containing a, b. Let
us consider E = {K1,K2} with Mod(K1) = {∅} and Mod(K2) = {A ∪ {a, b}}, and µ such that
Mod(µ) = {∅, {a}, {b}, A ∪ {a, b}}. Such profile and constraint exist in LHorn .

K1 K2 E
∅ 0 g(x+ 1) (g(x+ 1), 0)
{a} g(1) g(x) (g(x), g(1))
{b} g(1) g(x) (g(x), g(1))
A ∪ {a, b} g(x+ 1) 0 (g(x+ 1), 0)

Since g(x) < g(x + 1), we haveM = Mod(∆µ(E)) = {{a}, {b}}, which is not closed under
intersection. Hence, Mod(∆Cl∧

µ (E)) = {{a}, {b}, ∅}. Therefore, #(Mod(∆Cl∧
µ (E)), E) = 1,

thus violating (IC4).
For the case LKrom , let us consider two disjoint sets A,A′ of atoms not containing a, b, c, d

of cardinality x − 1, the profile E = {K1,K2} with Mod(K1) = {∅} and Mod(K2) = {A ∪
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{a, b}, A′∪{c, d}}, and constraint µ such that Mod(µ) = {∅, {a}, {b}, {c}, {d}, {a, b}, {c, d}, A∪
{a, b}, A′ ∪ {c, d}}. Such profile and constraint exist in LKrom .

K1 K2 E
∅ 0 g(x+ 1) (g(x+ 1), g(0))
{a} g(1) g(x) (g(x), g(1))
{b} g(1) g(x) (g(x), g(1))
{c} g(1) g(x) (g(x), g(1))
{d} g(1) g(x) (g(x), g(1))
{a, b} g(2) g(x− 1) (g(x− 1), g(2))
{c, d} g(2) g(x− 1) (g(x− 1), g(2))
A ∪ {a, b} g(x+ 1) g(0) (g(x+ 1), g(0))
A′ ∪ {c, d} g(x+ 1) g(0) (g(x+ 1), g(0))

If x = 1 note that A and A′ are empty and g(2) > g(x) > g(x − 1) = g(0) (thus the
last four lines collapse into two lines). We have M = Mod(∆µ(E)) = {{a}, {b}, {c}, {d}},
which is not closed under ternary majority. Hence, Mod(∆

Clmaj3
µ (E)) = {{a}, {b}, {c}, {d}, ∅}.

If x > 1, we have g(x + 1) > g(x) = g(x − 1) = g(2) = g(1). Thus,M = Mod(∆µ(E)) =
{{a}, {b}, {c}, {d}, {a, b}, {c, d}}, which is not closed under ternary majority either and one has to
add ∅. Therefore, in both cases #(Mod(∆

Clmaj3
µ (E)), E) = 1, thus violating (IC4).

PROOF OF PROPOSITION ??. Let L′ be a β-fragment. Let profile E ∈ EL′ such that E =
{K1, . . .Kn}, µ ∈ L′ and let ∆ be an arbitrary merging operator.

If #(∆µ(E), E) = 0 then Mod(∆µ(E))∩
⋃
i Mod(Ki) = ∅. By Definition ?? ∆

Min/Clβ
µ (E) =

∆Min
µ (E), therefore #(∆

Min/Clβ
µ (E), E) = 0 as well. If #(∆µ(E), E) > 1 then by Definition ??,

Mod(∆
Min/Clβ
µ (E)) = Mod(∆

Clβ
µ (E)), thus #(∆

Min/Clβ
µ (E), E) ≥ #(∆µ(E), E) > 1.

PROOF OF PROPOSITION ??. Let L′ be a β-fragment. Let profile E ∈ EL′ such that E =
{K1, . . .Kn}, µ ∈ L′ and let ∆ be a merging operator with ∆ = ∆dD,f and f ∈ {Σ,GMax}.
LetM = Mod(∆µ(E)). We will show that Mod(∆

Clβ
µ (E)) = Mod(∆

Min/Clβ
µ (E)).

If M = Clβ(M) we immediately get from Definition ?? that Mod(∆
Clβ
µ (E)) = M =

Mod(∆
Min/Clβ
µ (E)).

Hence, assume thatM 6= Clβ(M). We proceed by case distinction on #(M, E). First, consider
the case #(M, E) ≥ 1. Again, it follows immediately from Definition ?? that Mod(∆

Clβ
µ (E)) =

Mod(∆
Min/Clβ
µ (E)).

Hence, the only interesting case is #(M, E) = 0. In this case we know thatM∩ Ki = ∅ for
1 ≤ i ≤ n. Therefore, for all ω ∈ M and for all Ki ∈ E we have dD(ω,Ki) = g(1) and hence
dD(ω,E) = f(g(1), . . . , g(1)). Since we are using drastic distance, we have for all ω′ ∈ Mod(µ)
and for all Ki ∈ E either dD(ω,Ki) = 0 or dD(ω,Ki) = g(1). Assume there exists ω′ ∈ Mod(µ)
andKi ∈ E such that dD(ω,Ki) = 0. Since f(g(1), . . . , 0, . . . , g(1)) < f(g(1), . . . , g(1)) we have
ω′ <E ω for all ω ∈M. But this contradicts thatM contains the minimal models according to≤E .
Hence it follows thatM = Mod(µ). But thenM = Clβ(M) which contradicts our assumption.
Therefore, the Clβ-based refinement and the Min/Clβ-based refinement coincide.

PROOF OF PROPOSITION ??. Let L′ be a β-fragment. Let E = {K1,K2} with K1,K2 ∈ L′
and µ ∈ L′, with K1 |= µ and K2 |= µ. The merging operator ∆ satisfies (IC4) therefore ∆µ(E)∧
K1 is consistent if and only if ∆µ(E) ∧K2.

If both ∆µ(E) ∧ K1 and ∆µ(E) ∧ K2 are consistent, then so are a fortiori ∆
Clβ
µ (E) ∧ K1

and ∆
Clβ
µ (E) ∧ K2. Therefore a violation of (IC4) can only occur when both ∆µ(E) ∧ K1 and

∆µ(E)∧K2 are inconsistent. We prove that this never occurs. Suppose that ∆µ(E)∧K1 is incon-
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sistent, this means that there exists m 6∈ K1 such that min(Mod(µ),≤E) = d(m,E) and that for
all m1 ∈ K1, d(m,E) < d(m1, E), i.e., d(m,K1) +d(m,K2) < d(m1,K1) +d(m1,K2) since Σ
is the aggregation function. Choose now m1 ∈ K1 such that d(m,K1) = d(m,m1) and m2 ∈ K2

such that d(m,K2) = d(m,m2). We have d(m,K1) + d(m,K2) = d(m,m1) + d(m,m2) <
d(m1,K1) + d(m1,K2) = d(m1,K2) since m1 ∈ K1 and hence d(m1,K1) = 0. Since d sat-
isfies the triangular inequality we have d(m1,m2) ≤ d(m1,m) + d(m,m2). But this contradicts
d(m,m1) + d(m,m2) < d(m1,K2) ≤ d(m1,m2), thus ∆µ(E) ∧K1 cannot be inconsistent.

PROOF OF PROPOSITION ??. We give the proof for LHorn . One can verify that the same exam-
ple works for LKrom as well.

Let us consider E = {K1,K2} and µ in LHorn with

Mod(K1) = {{a}, {a, b}, {a, d}, {a, f}}
Mod(K2) = {{a, b, c, d, e, f, g}} and

Mod(µ) = {{a}, {a, b, c}, {a, d, e}, {a, f, g}}.
We have the following situation:

K1 K2 E
{a} 0 6 6
{a, b, c} 1 4 5
{a, d, e} 1 4 5
{a, f, g} 1 4 5

Therefore, we have Mod(∆dH ,Σ
µ (E)) = {{a, b, c}, {a, d, e}, {a, f, g}}, and Mod(∆Cl∧

µ (E)) =

{{a}, {a, b, c}, {a, d, e}, {a, f, g}}. Hence, #(Mod(∆dH ,Σ
µ (E)), E) = 0. On the other hand

#(Mod(∆Cl∧
µ (E)), E) = 1, thus proving that fairness is not satisfied.

PROOF OF PROPOSITION ??. Since L′ is characterizable there exists a β ∈ B, such that L′ is a
β-fragment.

(IC5): If ∆Min
µ (E1)∧∆Min

µ (E2) is inconsistent, then (IC5) is satisfied. Assume that ∆Min
µ (E1)∧

∆Min
µ (E2) is consistent. Then, by definition of ∆Min we know that ∆µ(E1)∧∆µ(E2) is consistent

as well. From (IC5) and (IC6) it follows that Mod(∆µ(E1)) ∩Mod(∆µ(E2)) = Mod(∆µ(E1 t
E2)). We distinguish two cases. First assume that both Mod(∆µ(E1)) and Mod(∆µ(E2)) are
closed under β. By Definition ?? we know that Mod(∆µ(E1))∩Mod(∆µ(E2)) = Mod(∆µ(E1 t
E2)) is closed under β as well. Hence, (IC5) is satisfied. For the second case assume that
not both Mod(∆µ(E1)) and Mod(∆µ(E2)) are closed under β. From the definition of ∆Min

it follows that Mod(∆Min
µ (E1)) ∩ Mod(∆Min

µ (E2)) consists of a single interpretation, say ω
with ω ∈ Mod(∆µ(E1)) ∩ Mod(∆µ(E2)). If Mod(∆µ(E1 t E2)) is closed under β we have
ω ∈ Mod(∆Min

µ (E1tE2)) and (IC5) is satisfied. If Mod(∆µ(E1tE2)) is not closed under β, then
Mod(∆Min

µ (E1tE2)) consists of a single interpretation, say ω′ ∈ Mod(∆µ(E1))∩Mod(∆µ(E2)).
From Mod(∆Min

µ (E1)) ∩ModMin(∆µ(E2)) = {ω} it follows that Min({ω, ω′}) = ω and from
Mod(∆Min

µ (E1 t E2)) = {w′} it follows that Min({ω, ω′}) = ω′. Hence, ω = ω′ and (IC5) is
satisfied.

(IC7): If ∆Min
µ1

(E) ∧ µ2 is inconsistent, then (IC7) is satisfied. Assume that ∆Min
µ1

(E) ∧ µ2 is
consistent. Then, by definition of ∆Min we know that ∆µ1

(E) ∧ µ2 is consistent as well. From
(IC7) and (IC8) it follows that Mod(∆µ1(E)) ∩Mod(µ2) = Mod(∆µ1∧µ2(E)). We distinguish
two cases. First assume that Mod(∆µ1(E)) is closed under β. By Definition ?? we know that
Mod(∆µ1(E)) ∩Mod(µ2) = Mod(∆µ1∧µ2(E)) is closed under β as well. Hence, (IC7) is satis-
fied. For the second case assume that Mod(∆µ1(E)) is not closed under β. From the definition of
∆Min it follows that Mod(∆Min

µ1
(E))∩Mod(µ2) consists of a single interpretation, say ω with ω ∈

Mod(∆µ1
(E))∩Mod(µ2). If Mod(∆µ1∧µ2

(E)) is closed under β we have ω ∈ Mod(∆Min
µ1∧µ2

(E))
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and (IC7) is satisfied. If Mod(∆µ1∧µ2
(E)) is not closed under β, then Mod(∆Min

µ1∧µ2
(E)) consists

of a single interpretation, say ω′ ∈ Mod(∆µ1
(E))∩Mod(µ2). From Mod(∆Min

µ1
(E))∩Mod(µ2) =

{ω} it follows that Min({ω, ω′}) = ω and from Mod(∆Min
µ1∧µ2

(E)) = {ω′} it follows that
Min({ω, ω′}) = ω′. Hence, ω = ω′ and (IC7) is satisfied.

PROOF OF PROPOSITION ??. We give the proof for ∆Clβ with ∆ = ∆d,Σ where d is associated
with a function g (see Definition ??). The given examples also apply to GMax and for the refinement
∆Min/Clβ .

(IC5): Let β ∈ {∧,maj3}. Consider profiles E1 = {K1,K2,K3}, E2 = {K4} and in-
tegrity constraint µ with Mod(K1) = {{a}, {a, b}, {a, c}}, Mod(K2) = {{b}, {a, b}, {b, c}},
Mod(K3) = {{c}, {a, c}, {b, c}}, Mod(K4) = {∅, {b}}, and Mod(µ) = {∅, {a}, {b}, {c}}. Such
profiles and constraint exist in LHorn and LKrom .

K1 K2 K3 K4 E1 E1 t E2

∅ g(1) g(1) g(1) 0 3g(1) 3g(1)
{a} 0 g(1) g(1) g(1) 2g(1) 3g(1)
{b} g(1) 0 g(1) 0 2g(1) 2g(1)
{c} g(1) g(1) 0 g(1) 2g(1) 3g(1)

By definition of counting distances we know that g(1) > 0. Hence, we have Mod(∆
Clβ
µ (E1)) =

{∅, {a}, {b}, {c}}, Mod(∆
Clβ
µ (E2)) = {∅, {b}}, and Mod(∆

Clβ
µ (E1 tE2)) = {{b}}, thus violat-

ing (IC5).
(IC7): For LHorn , consider E = {K1,K2,K3} with Mod(K1) = {{a}}, Mod(K2) = {{b}},

Mod(K3) = {{a, b}}, and assume Mod(µ1) = {∅, {a}, {b}} and Mod(µ2) = {∅, {a}}.

K1 K2 K3 E
∅ g(1) g(1) g(2) 2g(1) + g(2)
{a} 0 g(2) g(1) g(1) + g(2)
{b} g(2) 0 g(1) g(1) + g(2)

We have Mod(∆µ1
(E)) = {{a}, {b}}, thus Mod(∆Cl∧

µ1
(E)) = {∅, {a}, {b}}. Therefore,

Mod(∆Cl∧
µ1

(E) ∧ µ2) = {∅, {a}}, whereas Mod(∆Cl∧
µ1∧µ2

(E)) = {{a}}, violating (IC7).
For LKrom let E = {K1,K2,K3,K4,K5}, µ1 and µ2 with Mod(K1) = {{a}}, Mod(K2) =

{{b}}, Mod(K3) = {{c}}, Mod(K4) = {{a, b}, {a, c}}, Mod(K5) = {{a, b}, {b, c}},
Mod(µ1) = {∅, {a}, {b}, {c}}, and Mod(µ2) = {∅, {a}}.

K1 K2 K3 K4 K5 E
∅ g(1) g(1) g(1) g(2) g(2) 2g(2) + 3g(1)
{a} 0 g(2) g(2) g(1) g(1) 2g(2) + 2g(1)
{b} g(2) 0 g(2) g(1) g(1) 2g(2) + 2g(1)
{c} g(2) g(2) 0 g(1) g(1) 2g(2) + 2g(1)

We have Mod(∆
Clmaj3
µ1 (E)) = {∅, {a}, {b}, {c}}, thus Mod(∆

Clmaj3
µ1 (E)∧µ2) = {∅, {a}}, and

Mod(∆
Clmaj3
µ1∧µ2

(E)) = {{a}}. This violates postulate (IC7).

PROOF OF PROPOSITION ??. The same, or simpler examples as in the proof of the previous
proposition will work here. We give the proof in the case of ∆d,Σ where d is a counting distance
associated with the function g. The given counter-examples work as well when using the aggrega-
tion function GMax. Any involved set of models is closed under intersection and hence it can be
represented by a Horn formula.
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(IC5): Let us consider E1 = {K1,K2}, E2 = {K3} and µ with

Mod(K1) = {{a}, {a, b}} and
Mod(K2) = {{b}, {a, b}} and
Mod(K3) = {∅, {b}} and

Mod(µ) = {∅, {a}, {b}}.

K1 K2 K3 E1 E1 ∪ E2

∅ g(1) g(1) 0 2g(1) 2g(1)
{a} 0 g(1) g(1) g(1) 2g(1)
{b} g(1) 0 0 g(1) g(1)

Since g(1) > 0 by definition of a counting distance, we have Mod(∆µ(E1)) = {{a}, {b}},
and thus Mod(∆∗µ(E1)) ⊆ {∅, {a}, {b}}. We can exclude Mod(∆∗µ(E1)) = {{a}, {b}} since
it is not closed under ∧. By Definition ?? (∆∗ is fair) we can exclude Mod(∆∗µ(E1)) = {{a}}
and Mod(∆?

µ(E1)) = {{b}}. Therefore either Mod(∆∗µ(E1)) = {∅} or Mod(∆∗µ(E1)) =
{∅, {a}, {b}}. On the one hand, since Mod(∆∗µ(E2)) = {∅, {b}}, in any case Mod(∆∗µ(E1) ∧
∆∗µ(E2)) contains ∅. On the other hand Mod(∆∗µ(E1 t E2)) = {{b}}. This violates postulate
(IC5).

(IC7): Let us consider E = E1 and µ1 = µ as above, and µ2 such that Mod(µ2) = {∅, {a}}.
There we have Mod(∆µ1∧µ2(E)) = {{a}}. By Properties 3 and 4 of Definition ?? it holds that
Mod(∆?

µ1∧µ2
(E)) = {{a}}. Since Mod(∆µ1(E)) = {{a}, {b}}, it follows that Mod(∆?

µ1
(E)) ⊆

{∅, {a}, {b}}. We can exclude Mod(∆?
µ1

(E)) = {{a}, {b}} since it is not closed under ∧. By
Definition ?? we can exclude Mod(∆?

µ1
(E)) = {{a}} and Mod(∆?

µ1
(E)) = {{b}}. Hence, ∅ ∈

Mod(∆?
µ1

(E)). Therefore ∅ ∈ Mod(∆?
µ1

(E)) ∩ Mod(µ2) but ∅ 6∈ Mod(∆?
µ1∧µ2

(E)), which
violates (IC7).

PROOF OF PROPOSITION ??. (IC6): We start with the LHorn case. Since LHorn is an ∧-
fragment, there exists an ∧-mapping f such that ∆? = ∆f and we have f(M,X ) ⊆
Cl∧(M) with Cl∧(f(M,X )) = f(M,X ). Let us consider E1 = {K1,K2,K3} and µ with
Mod(K1) = {{a}, {a, b}}, Mod(K2) = {{b}, {a, b}}, Mod(K3) = {∅, {a}, {b}} and Mod(µ) =
{∅, {a}, {b}, {a, b}}.

K1 K2 K3 E1

∅ g(1) g(1) 0 (g(1), g(1), 0)
{a} 0 g(1) 0 (g(1), 0, 0)
{b} g(1) 0 0 (g(1), 0, 0)
{a, b} 0 0 g(1) (g(1), 0, 0)

We have M = Mod(∆µ(E1)) = {{a}, {b}, {a, b}}. Let us consider the possibilities for
Mod(∆?

µ(E1)) = f(M,Mod(E1)). If ∅ ∈ f(M,Mod(E1)), then let E2 = {K4} with K4

in LHorn be such that Mod(K4) = {∅}. Thus, Mod(∆?
µ(E2)) = {∅} and Mod(∆?

µ(E1) ∧
∆?
µ(E2)) = {∅}. Moreover, Mod(∆µ(E1 t E2)) = {∅, {a}, {b}} or {∅, {a}, {b}, {a, b}} depend-

ing on whether g(1) < g(2) or g(1) = g(2). Since both sets are closed under intersection, we have
Mod(∆?

µ(E1 tE2)) = Mod(∆µ(E1 tE2)). Thus Mod(∆?
µ(E1 tE2)) 6⊆ {∅} and (IC6) does not

hold.
On the other hand, let f(M,Mod(E1)) ⊆ {{a}, {b}, {a, b}}. By symmetry assume w.l.o.g.

that f(M,Mod(E1)) ⊆ {{a, b}, {a}} (note that {{a}, {b}} ⊆ f(M,Mod(E1)) would imply
∅ ∈ f(M,Mod(E1))). If f(M,Mod(E1)) = {{a}} or {{a, b}}, then let E2 = {K1}. Then,
Mod(∆µ(E2)) = {{a}, {a, b}} = Mod(∆?

µ(E2)), and Mod(∆?
µ(E1) ∧ ∆?

µ(E2)) = {{a}} or
{{a, b}}. Furthermore, Mod(∆µ(E1 t E2)) = {{a}, {a, b}} = Mod(∆?

µ(E1 t E2)), thus violat-
ing (IC6). If f(M,Mod(E1)) = {{a, b}, {a}}, then let E2 = {K2}. Then, Mod(∆µ(E2)) =
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{{b}, {a, b}} = Mod(∆?
µ(E2)), and Mod(∆?

µ(E1) ∧ ∆?
µ(E2)) = {{a, b}}. Furthermore,

Mod(∆µ(E1 t E2)) = {{b}, {a, b}} = Mod(∆?
µ(E1 t E2)), and thus (IC6) does not hold.

Let us now turn to the Krom case. Let us consider E1 = {K1,K2,K3} and µ with

Mod(K1) = {{a}, {b}, {a, c}},
Mod(K2) = {{a}, {c}, {b, c}},
Mod(K3) = {{b}, {c}, {a, b}},

Mod(µ) = {∅, {a}, {b}, {c}}.

K1 K2 K3 E1

∅ g(1) g(1) g(1) (g(1), g(1), g(1))
{a} 0 0 g(1) (g(1), 0, 0)
{b} 0 g(1) 0 (g(1), 0, 0)
{c} g(1) 0 0 (g(1), 0, 0)

We have M = Mod(∆µ(E1)) = {{a}, {b}, {c}}. Let us consider the possibilities for
Mod(∆?

µ(E1)) = f(M,Mod(E1)). First, assume ∅ ∈ f(M,Mod(E1)): Let E2 = {K4,K4}
(recall that a profile is a multiset) with K4 in LKrom be such that Mod(K4) = {∅}. Then,
Mod(∆?

µ(E2)) = {∅} and Mod(∆?
µ(E1)∧∆?

µ(E2)) = {∅}. Furthermore, Mod(∆µ(E1 tE2)) =
{∅, {a}, {b}, {c}} = Mod(∆?

µ(E1 t E2)) and thus (IC6) does not hold.
Otherwise, f(M,Mod(E1)) is one of the following six cases: {{a}}, {{b}}, {{c}}, {{a}, {b}},

{{a}, {c}}, or {{b}, {c}}. The set {{a}, {b}, {c}} is excluded, because {{a}, {b}, {c}} ⊆
f(M,Mod(E1)) would imply ∅ ∈ f(M,Mod(E1)). Let us suppose f(M,Mod(E1)) = {{a}}
or f(M,Mod(E1)) = {{a}, {b}}. The other cases are symmetric. Let E2 = {K2} Then,
Mod(∆?

µ(E2)) = {{a}, {c}} and Mod(∆?
µ(E1) ∧ ∆?

µ(E2)) = {{a}}. On the other hand
Mod(∆?

µ(E1 t E2)) = {{a}, {c}} 6⊆ {{a}} and thus (IC6) does not hold.
(IC8): We start with the LHorn case. Since LHorn is an ∧-fragment, there is an ∧-mapping f

such that ∆? = ∆f and we have f(M,X ) ⊆ Cl∧(M) with Cl∧(f(M,X )) = f(M,X ). Let us
consider E = {K1,K2} and µ1 with

Mod(K1) = {{a}, {a, b}, {a, c}, {a, b, d}},
Mod(K2) = {{b}, {a, b}, {b, c}} and
Mod(µ1) = {∅, {a}, {b}, {c}, {a, b, d}}.

K1 K2 Σ GMax
∅ g(1) g(1) 2g(1) (g(1), g(1))
{a} 0 g(1) g(1) (g(1), 0)
{b} g(1) 0 g(1) (g(1), 0)
{c} g(1) g(1) 2g(1) (g(1), g(1))
{a, b, d} 0 g(1) g(1) (g(1), 0)

We have M = Mod(∆µ1(E)) = {{a}, {b}, {a, b, d}}. Let us consider the possibilities
for Mod(∆?

µ1
(E)) = f(M,Mod(E)). By the definition of refined operators, we know that

{c} /∈ f(M,Mod(E)) since {c} /∈ Cl∧(M). First, assume ∅ ∈ f(M,Mod(E)): let µ2

in LHorn be such that Mod(µ2) = {∅, {c}} = N . Then, ∆?
µ1

(E) ∧ µ2 is consistent, and
∆µ1∧µ2(E) = ∆µ2(E) = N is closed under ∧ and thus ∆?

µ1∧µ2
(E) = N . Thus, ∆?

µ1∧µ2
(E) 6|=

∆?
µ1

(E), since {c} /∈ Mod(∆?
µ1

(E)). Otherwise, f(M,Mod(E)) ⊆ {{a, b, d}, {a}} or
f(M,Mod(E)) ⊆ {{a, b, d}, {b}}, because {{a}, {b}} ⊆ f(M,Mod(E)) would imply ∅ ∈
f(M,Mod(E)). For the cases with |f(M,Mod(E))| = 1, we select µ2 ∈ LHorn where
Mod(µ2) is {{a, b, d}, {a}} or {{a, b, d}, {b}} such that f(M,Mod(E)) ⊆ Mod(µ2) holds.
Mod(∆?

µ1∧µ2
(E)) = Mod(∆?

µ2
(E)) = f(Mod(∆µ2

(E))) = Mod(µ2) (again since Mod(µ2)
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is closed under ∧) but f(M,Mod(E)) ⊂ Mod(µ2), since |f(M,Mod(E))| = 1 by as-
sumption. Thus ∆?

µ1∧µ2
(E) 6|= ∆?

µ1
(E). Two cases remain. Let us suppose f(M,Mod(E)) =

{{a, b, d}, {a}}; the final case is then symmetric. We now use µ2 ∈ LHorn with Mod(µ2) =
{{a, b, d}, {b}}. Again, ∆?

µ1
(E) ∧ µ2 is consistent, Mod(∆?

µ1∧µ2
(E)) = Mod(∆?

µ2
(E)) =

f(Mod(∆µ2(E))) = Mod(µ2). Now, since {b} /∈ f(M,Mod(E)), ∆?
µ1∧µ2

(E) 6|= ∆?
µ1

(E).
Let us now turn to the Krom Case. Let us consider E = {K1,K2,K3} and µ1 with:

Mod(K1) = {{a}, {a, b}, {a, c}, {a, d}},
Mod(K2) = {{b}, {a, b}, {b, c}, {b, d}},
Mod(K3) = {{c}, {a, c}, {b, c}, {c, d}} and
Mod(µ1) = {∅, {a}, {b}, {c}, {d}}.

K1 K2 K3 Σ GMax
∅ g(1) g(1) g(1) 3g(1) (g(1), g(1), g(1))
{a} 0 g(1) g(1) 2g(1) (g(1), g(1), 0)
{b} g(1) 0 g(1) 2g(1) (g(1), g(1), 0)
{c} g(1) g(1) 0 2g(1) (g(1), g(1), 0)
{d} g(1) g(1) g(1) 3g(1) (g(1), g(1), g(1))

We have M = Mod(∆µ1
(E)) = {{a}, {b}, {c}}. Let us consider the possibilities for

Mod(∆?
µ1

) = f(M,Mod(E)). By the definition of refined operators, we know that {d} /∈
f(M,Mod(E)). For ∅ ∈ f(M,Mod(E)), let Mod(µ2) = {∅, {d}}. Otherwise there ex-
ist α, β ∈ {a, b, c} such that α ∈ f(M,Mod(E)) and β /∈ f(M,Mod(E)). Then, take
Mod(µ2) = {{α}, {β}}.

PROOF OF PROPOSITION ??. We have to make a case distinction depending on whether d is
drastic or not.

We first consider the case where d is non-drastic. Let g be the function associated with the count-
ing distance d and k ≥ 1 be the minimum number such that g(k) < g(k+ 1). Moreover, let X be a
set of atoms such that X ∩ {a, b, c} = ∅ and |X| = k − 1.

We start with the case LHorn and define µ with Mod(µ) = {X,X ∪ {a}, X ∪ {b}} and
E2 = {K2} with Mod(K2) = {{a, b}}. Such profile and constraint exist in LHorn . Thus
M = Mod(∆µ(E2)) = {X∪{a}, X∪{b}}. SinceM is non-β-closed, we have Mod(∆

fβ
µ (E2)) =

fβ(M,Mod(E2)). Since by assumption fβ(M,Mod(E2)) 6= Clβ(M) we can suppose w.l.o.g.
that fβ(M,Mod(E2)) is given by {X ∪ {a}}, {X} or {X,X ∪ {a}}. Then, let us consider
E1 = {K1} with Mod(K1) = {{b, c}}. Such a profile exists in LHorn . We have the following
situation:

E1 E2 E1 t E2 E1 t En2
X g(k + 1) g(k + 1) g(k + 1) + g(k + 1) (n+ 1)g(k + 1)
X ∪ {a} g(k + 2) g(k) g(k + 2) + g(k) ng(k) + g(k + 2)
X ∪ {b} g(k) g(k) 2g(k) (n+ 1)g(k)

By assumption g(k) < g(k + 1) ≤ g(k + 2). Moreover, for all n ≥ 1, (n + 1)g(k) < ng(k) +

g(k + 2) and (n + 1)g(k) < (n + 1)g(k + 1). Consequently, for all n ≥ 1, Mod(∆
fβ
µ (E1 t

En2 )) = Mod(∆µ(E1 t En2 )) = {X ∪ {b}}. Therefore, for all n ≥ 1, Mod(∆
fβ
µ (E1 t En2 )) 6⊆

Mod(∆
fβ
µ (E2)), thus proving that ∆fβ violates the postulate (Maj).

Let us now turn to LKrom . Here we use Mod(µ) = {X,X ∪ {a}, X ∪ {b}, X ∪ {c}} and
E2 = {K2} with Mod(K2) = {{a, b}, {b, c}}. Again, such profile and formula exist in LKrom .
We haveM = Mod(∆µ(E2)) = {X ∪ {a}, X ∪ {b}, X ∪ {c}}. SinceM is non-maj3-closed, we
have Mod(∆

fβ
µ (E2)) = fβ(M,Mod(E2)). Since by assumption fβ(M,Mod(E2)) 6= Clβ(M)

and since X ∪ {a}, X ∪ {b} and X ∪ {c} play a symmetric role inM and in E2, we can suppose
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w.l.o.g. that fβ(M,Mod(E2)) is a non-empty subset of {X,X ∪ {a}, X ∪ {b}}. Then, let us
consider E1 = {K1} with Mod(K1) = {{b, c}}. Such a profile exists in LKrom . We obtain:

E1 E2 E1 t E2 E1 t En2
X g(k + 1) g(k + 1) 2g(k + 1) (n+ 1)g(k + 1)
X ∪ {a} g(k + 2) g(k) g(k + 2) + g(k) ng(k) + g(k + 2)
X ∪ {b} g(k) g(k) 2g(k) (n+ 1)g(k)
X ∪ {c} g(k) g(k) 2g(k) (n+ 1)g(k)

By the same calculations as before, Mod(∆
fβ
µ (E1 t En2 )) = Mod(∆µ(E1 t En2 )) = {X ∪

{b}, X ∪ {c}} for all n ≥ 1. Therefore, in all cases Mod(∆
fβ
µ (E1 tEn2 )) 6⊆ Mod(∆

fβ
µ (E2)), thus

proving that ∆fβ violates the postulate (Maj).
Let us now consider the drastic distance. We start with the case LHorn and define µ with

Mod(µ) = {∅, {a}, {b}} and E2 = {K1,K2} with Mod(K1) = {{a}} and Mod(K2) = {{b}}.
Such profile and constraint exist in LHorn . ThusM = Mod(∆µ(E2)) = {{a}, {b}}. SinceM is
non-β-closed, we have Mod(∆

fβ
µ (E2)) = fβ(M, {E2}). Since by assumption fβ(M, {E2}) 6=

Clβ(M) we can suppose w.l.o.g. that fβ(M, {E2}) is given by {∅}, {{a}} or {∅, {a}}. Then, let
us consider E1 = {K0} with Mod(K0) = {{b}}. Such a profile exists in LHorn . We have the
following situation:

E1 E2 E1 t E2 E1 t En2
∅ 1 2 3 2n+ 1
{a} 1 1 2 n+ 1
{b} 0 1 1 n

Consequently, for all n ≥ 1, Mod(∆
fβ
µ (E1 tEn2 )) = Mod(∆µ(E1 tEn2 )) = {{b}}. Therefore,

for all n ≥ 1, Mod(∆
fβ
µ (E1tEn2 )) 6⊆ Mod(∆

fβ
µ (E2)), thus proving that ∆fβ violates the postulate

(Maj).
Let us now turn to LKrom . Here we use Mod(µ) = {∅, {a}, {b}, {c}} and E2 = {K1,K2,K3}

with Mod(K1) = {{a}}, Mod(K2) = {{b}} and Mod(K1) = {{c}}. Again, such profile and
formula exist in LKrom . We haveM = Mod(∆µ(E2)) = {{a}, {b}, {c}}. SinceM is non-maj3-
closed, we have Mod(∆

fβ
µ (E2)) = fβ(M, {E2}). Since by assumption fβ(M, {E2}) 6= Clβ(M)

and since X ∪ {a}, X ∪ {b} and X ∪ {c} play a symmetric role inM and in E2, we can suppose
w.l.o.g. that fβ(M, {E2}) is a non-empty subset of {∅, {a}, {b}}. Then, let us considerE1 = {K1}
with Mod(K1) = {{c}}. Such a profile exists in LKrom . We obtain:

E1 E2 E1 t E2 E1 t En2
∅ 1 3 4 3n+ 1
{a} 1 2 3 2n+ 1
{b} 1 2 3 2n+ 1
{c} 0 2 2 2n

By the same calculations as before, Mod(∆
fβ
µ (E1 t En2 )) = Mod(∆µ(E1 t En2 )) = {{c}}.

Therefore, in all cases Mod(∆
fβ
µ (E1 tEn2 )) 6⊆ Mod(∆

fβ
µ (E2)), thus proving that ∆fβ violates the

postulate (Maj).
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