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Abstract. Dynamic programming (DP) on tree decompositions is a well studied
approach for solving hard problems efficiently. Usually, implementations rely on
tables for storing information, and algorithms specify how tuples are manipulated
during traversal of the decomposition. However, a bottleneck of such table-based
algorithms is relatively high memory consumption. Binary Decision Diagrams
(BDDs) and related concepts have been shown to be very well suited to store in-
formation efficiently. While several techniques have been proposed that combine
DP with efficient BDD-based storage for some particular problems, in this work
we present a general approach where DP algorithms are specified on a logical
level in form of set-based formula manipulation operations that are executed di-
rectly on the BDD data structure. In the paper, we provide several case studies
in order to illustrate the method at work, and report on preliminary experiments.
These show promising results, both with respect to memory and run-time.

1 Introduction

For problems that are known to be intractable, one approach is to exploit structural
properties of the given input. An important parameter of graph-based instances is “tree-
width”, which, roughly speaking, measures the tree-likeness of the input. Tree-width is
defined on so-called tree decompositions [30], where the instance is split into smaller
parts, thereby taking into account its structure. The problem at hand can then be solved
by dynamic programming (DP). Many problems are fixed-parameter tractable (fpt) with
respect to tree-width, i.e., solvable in time f(k)·nO(1) where k is the tree-width, n is the
input size and f is some computable function. Note that here the explosion in run-time
is confined to k instead of the input size. Courcelle showed that every problem that is de-
finable in monadic second-order logic (MSO) is fixed-parameter tractable with respect
to tree-width [12]. There, the problem is solved via translation to a finite tree automa-
ton (FTA). However, the algorithms resulting from such “MSO-to-FTA” translation are
oftentimes impractical due to large constants [29]. One approach to overcome this prob-
lem is to develop dedicated DP algorithms for the problems at hand (e.g., [6,21]). Such
algorithms typically rely on tables for storing information, resulting in a large memory
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footprint. This problem has been addressed, e.g., by proposing heuristics [4] or reducing
the number of simultaneously stored tables [2].

In this work we mitigate the problem by developing DP algorithms with native
support for efficient storage. In our approach, Binary Decision Diagrams (BDDs) [9]
serve as the data structure. BDDs have undergone decades of research and are a well-
established concept used, e.g., in model-checking [27], planning [22] and software veri-
fication [5]. Our approach is in line with recent research that studies the effectiveness of
exploiting tree-width by applying decomposition techniques in combination with deci-
sion diagrams. In the area of knowledge compilation, so-called “Tree-of-BDDs” [19,33]
are constructed in an offline phase from a given CNF, and queried in the online phase to
answer questions on this data structure in linear time. Furthermore, Algebraic Decision
Diagrams (ADDs) [3] are used for compiling Bayesian networks in such a way that the
structure of the network can be exploited in order to compute inference efficiently [11].
Combining DP and decision diagrams has been proven well-suited also for Constraint
Optimization Problems (COPs) [31]. The key idea is to employ ADDs to store the set of
possible solutions, and the branch-and-bound algorithm is executed on a decomposition
of the COP instance. This was shown to be superior to earlier approaches in [8], where
additionally (no)good recording is applied during computation.

In this work we continue this promising branch of research. However, from a con-
ceptual perspective, our algorithms are specified on a logical level as formulae. This
gives a compact and exact specification of algorithms, which are executed directly on
the BDDs in form of BDD manipulation operations. In contrast to table-based DP algo-
rithms, we do not manipulate tuples directly, but modify the set of models. Furthermore,
in the course of this work we develop two different DP algorithm design paradigms,
which we call early decision method (EDM) and late decision method (LDM). In EDM,
information is incorporated in the BDD as soon as it becomes available when traversing
the tree decomposition and is thus similar to the approach usually employed in standard
table-based implementations. As we will see, LDM gives rise to novel DP algorithms
where the BDD manipulation operations are delayed until just before the information
is removed. We illustrate these concepts by providing several case studies that exem-
plarily show how DP algorithms can be implemented following our approach. These
prototypical problems differ in that only fixed information, also changing information
or even connectedness has to be handled appropriately. While we focus here on prob-
lems that are NP-complete, we plan to apply our method also to problems beyond NP
(thus covering applications from the AI and LPNMR domain) with the long-term goal
to extend our way of DP algorithm specification to all MSO-definable problems. To
summarize, the main contributions of this paper are as follows:

– An approach for specifying DP algorithms on tree decompositions via formula ma-
nipulation, and two design patterns called early/late decision method (EDM/LDM).

– Case studies of 3-COLORABILITY, STABLE EXTENSION (from the field of argu-
mentation) and HAMILTONIAN CYCLE to illustrate our method at work.
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– A performance analysis that compares memory and time requirements of our ap-
proach with available DP implementations, indicating that our approach signifi-
cantly reduces memory requirements and gives advantages in performance.1

2 Background

Tree Decompositions. Tree decompositions, introduced in [30], are defined as follows.

Definition 1. A tree decomposition of an undirected graph G = (V,E) is a pair (T ,X )
where T = (VT , ET ) is a tree and X : VT → 2V assigns to every node VT of the tree
a set of vertices V from the original graph. The sets of vertices X = (Xt)t∈VT have
to satisfy the following conditions: a)

⋃
t∈VT

Xt = V . b) {x, y} ∈ E ⇒ ∃t ∈ VT :
{x, y} ⊆ Xt. c) x ∈ Xt′ ∧ x ∈ Xt′′ ∧ t′′′ ∈ path(t′, t′′)⇒ x ∈ Xt′′′ . Xt is also called
the bag for the vertex t ∈ VT . The width w of the decomposition is max t∈VT |Xt| − 1.
The tree-width k of a graph is the minimum width over all its tree decompositions.

Intuitively, this definition guarantees that every vertex of the graph is contained in
some bag of the tree decomposition, adjacent vertices appear together in some bag,
and that nodes that contain the same vertex are connected. For problems on directed
graphs, Definition 1 can be naturally extended. We will denote an edge between two
vertices x, y by {x, y}, and directed arcs by (x, y). Furthermore, for a decomposition
node t, we denote by Et = {{x, y} ∈ E | x, y ∈ Xt} the edges of G induced by
the vertices Xt, and analogously by At the arcs in t. It is well-known that obtaining an
optimal decomposition (with respect to width) is NP-hard [1], but there are heuristics
that provide a “good” decomposition in polynomial time [7,13,14]. For the ease of
representation, we consider a special type of tree decomposition throughout this work.

Definition 2. A tree decomposition T = (VT , ET ) is called normalized if each t ∈ VT
is of one of the following types: (1) Leaf node: t has no child nodes. (2) Introduction
node: t has exactly one child node t′ with Xt′ ⊂ Xt and |Xt′ | = |Xt|− 1. (3) Removal
node: t has exactly one child node t′ with Xt ⊂ Xt′ and |Xt′ | = |Xt| + 1. (4) Join
node: t has exactly two child nodes t′ and t′′ with Xt = Xt′ = Xt′′ .

Furthermore, without loss of generality, we assume that Xr = ∅ for the root node
r of T . Note that such a normalized decomposition can be obtained in linear time from
an arbitrary one without increasing the tree-width [23].

Example 1. Figure 1 shows an example graph G and a possible (normalized) tree de-
composition T (Tn) of width 2. The tree decompositions are optimal w.r.t. width.

(Reduced Ordered) Binary Decision Diagrams. In our approach, Reduced Ordered
Binary Decision Diagrams (ROBDDs) [9] serve as the data structure for storing infor-
mation during the traversal of the decomposition.

1 A prototype system, called dynBDD, which is built on top of the BDD library CUDD [32] is
available under http://dbai.tuwien.ac.at/proj/decodyn/dynbdd.
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Fig. 1. Graph G and possible (normalized) tree decomposition T (Tn) of G.

Definition 3. An Ordered Binary Decision Diagram B = (VB, AB) is a rooted, con-
nected, directed acyclic graph where VB = VT ∪VN and AB = A>∪A⊥. The following
conditions have to be satisfied:

1. VT may contain the terminal nodes > and ⊥.
2. VN contains the internal nodes, where each v ∈ VN represents a variable v.
3. Each v ∈ VN has exactly one outgoing arc in A> and one in A⊥, represented by a

solid and a dashed arc respectively.
4. For every path from the root to a terminal node, each variable occurs at most once

and in the same order (i.e., we have a strict total order over the variables).

In Reduced OBDDs (ROBBD), isomorphic nodes are merged into a single node with
several incoming edges. Furthermore, nodes v ∈ VN where both outgoing arcs reach
the same node v′ ∈ VB, are removed.

Given an OBDD B, propositional variables VN and an assignment A to VN , the
corresponding path in B is the unique path from the root node to a terminal node, such
that for every v ∈ VN it includes the outgoing arc in A> (A⊥) iff A gets assigned true
(false) for v. A is a satisfying assignment of the function represented by B iff the path
ends in >. With slight abuse of notation, in the following we will specify BDDs by
giving the function in form of a logic formula.

Example 2. Figure 2 shows an OBBD B and the corresponding ROBBD Bred for for-
mula (a ∧ b ∧ c) ∨ (a ∧ ¬b ∧ c) ∨ (¬a ∧ b ∧ c). Nodes c1, c2 and c3 represent the same
variable c and have arcs to the same terminal nodes. Hence, these isomorphic nodes are
merged to a single node c. Then, both outgoing arcs of b1 reach c, and b1 is removed.
Furthermore, c4 is removed.

B: a

b1 b2

c1 c2 c3 c4

> ⊥

Bred : a

b

c

> ⊥

Fig. 2. OBBD and ROBBD of formula (a ∧ b ∧ c) ∨ (a ∧ ¬b ∧ c) ∨ (¬a ∧ b ∧ c).
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BDDs support standard logical operators conjunction (∧), disjunction (∨), negation
(¬) and equivalence (↔). Furthermore, for a BDD B, existential quantification over
a set of variables V , V ⊆ VN is denoted by ∃V B. Restriction of a variable v ∈ VN

to true (>) or false (⊥) and renaming to a variable v′ is denoted by B[v/·] where · ∈
{>,⊥, v′}. For sets of variables V ⊆ VN , B[V/·] with · ∈ {>,⊥, V ′} and V ′ = {v′ |
v ∈ V }, denotes restriction or renaming of each v ∈ V by applying B[v/·].

3 DP on Tree Decompositions with BDDs

Our algorithms follow a general pattern of how the solution is constructed. First, the
graph representation of the input instance is decomposed. Next, the decomposition is
normalized in linear time. The resulting tree decomposition T is traversed in bottom-up
order, and at each node t ∈ VT the associated BDD, denoted by Bt, is manipulated
according to the problem at hand. In the root node r of the decomposition (where Xr =
∅), either Br = > or Br = ⊥ holds, representing the solution to the problem.

We present two algorithm design choices, which we call the early decision method
(EDM), where information is incorporated within introduction nodes, and the late deci-
sion method (LDM), where BDD manipulation is delayed until removal of vertices. For
unsatisfiable instances, EDM potentially detects conflicts earlier during the traversal of
the decomposition. However, LDM gives advantages when specifying more involved
algorithms (see Section 4). Note that EDM is similar to the approach employed in stan-
dard table-based implementations, while LDM is usually harder to implement on tables.

For the case studies presented in the following, we will specify the manipulation op-
erations on Bt based on the node type of t, with Blt representing the BDD resulting from
a leaf node operation, Bit (introduction node), Brt (removal node), and Bjt (join node).
Nodes t′, t′′ denote child nodes, Bt′ ,Bt′′ the BDDs constructed in the child nodes, and
u the introduced or removed vertex (if any). All Bt for t ∈ VT are required to share the
same global variable ordering for efficiency during manipulation. In general, the size
of the stored BDDs (i.e., the number of nodes in Bt) is bounded by O(2wl) where w
is the width of T and l the number of variables stored per bag element (i.e., vertex of
the original input graph). However, in practice the size may be exponentially smaller,
in particular in case a “good” variable ordering is applied [20]. Since finding an opti-
mal variable ordering is in general NP-hard [9], we rely on BDD-internal heuristics for
finding such a good ordering [32]. With this, the BDDs require much less space than an
equivalent table representation as used in state-of-the-art systems (see Section 4).

3.1 3-Colorability

The 3-COLORABILITY problem (“Given a graph G, is G 3-colorable?”) is very well-
suited to illustrate how DP algorithms for problems that are FPT with respect to tree-
width can be specified following our approach. As input, the algorithms expect a simple
graph G = (V,E). Furthermore, we define the set of colors C = {r, g, b}. The follow-
ing variables are to be used within the BDDs: For all c ∈ C and x ∈ V , the truth value
of variable cx denotes whether vertex x gets assigned color c.
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EDM. The BDD manipulation operations given below are applied at the respective
decomposition nodes. We have to guarantee that every vertex gets assigned exactly
one color, and adjacent vertices do not have the same color. Intuitively, Blt and Bit are
constructed by adding the respective constraints for introduced vertices. In Brt , due to
the definition of tree decompositions, we know that all constraints related to removed
vertex u were already taken into account. Hence, we can abstract away the variables
associated with u, thereby keeping the size of the BDD bound by the width of the
decomposition. In join nodes, Bjt combines the intermediate results obtained in the
child nodes of the decomposition.

Bl
t =

∧
c∈C

∧
{x,y}∈Et

¬(cx ∧ cy) ∧
∧

x∈Xt

(rx ∨ gx ∨ bx)∧∧
x∈Xt

(
¬(rx ∧ gx) ∧ ¬(rx ∧ bx) ∧ ¬(gx ∧ bx)

)
Bi

t =Bt′ ∧
∧
c∈C

∧
{x,u}∈Et

¬(cx ∧ cu) ∧ (ru ∨ gu ∨ bu)∧

¬(ru ∧ gu) ∧ ¬(ru ∧ bu) ∧ ¬(gu ∧ bu)

Br
t =∃rugubu[Bt′ ] Bj

t = Bt′ ∧ Bt′′

LDM. Another possibility for specifying the algorithm is to incorporate information as
late as possible, that is, when a vertex is removed from the decomposition. In leaf nodes
the BDD Blt is initialized with>, and in introduction nodes the BDD Bit corresponds to
that of the child nodes. When a vertex u is removed, one variable of ru, gu, bu is set to
true, thereby assigning to the vertex exactly one color c ∈ C. Furthermore, neighboring
vertices x with {x, u} ∈ Et′ must not get assigned the same color, which is achieved by
adding ¬cx to the formula. Brt is simply the disjunction over the three BDDs resulting
from the choice of the color. As in EDM, it is sufficient to construct Bjt via conjunction
of the child BDDs.

Bl
t => Bi

t = Bt′ Bj
t = Bt′ ∧ Bt′′

Br
t =
(
Bt′ [ru/>, gu/⊥, bu/⊥] ∧

∧
{x,u}∈Et′

¬rx
)
∨(

Bt′ [ru/⊥, gu/>, bu/⊥] ∧
∧

{x,u}∈Et′

¬gx
)
∨(

Bt′ [ru/⊥, gu/⊥, bu/>] ∧
∧

{x,u}∈Et′

¬bx
)

3.2 Stable Extension

The STABLE EXTENSION problem (“Given an argumentation framework AF , does
there exist a stable extension in AF?”) is a well-known problem from the area of ab-
stract argumentation [16]. An argumentation framework AF = (V,A) is a directed
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graph where the vertices V represent arguments and the arcs A the so-called attack re-
lation between arguments. A stable extension E of an AF is a set E ⊆ V that is (i)
conflict-free, i.e., for all x, y ∈ E : (x, y) 6∈ A holds, and (ii) all arguments are either
in the set or defeated, i.e., for all x ∈ V : x ∈ E ∨ (∃(y, x) ∈ A : y ∈ E) holds. In the
area of argumentation, DP algorithms for various semantics have been studied in [17].

In our BDD-based approach we specify the following variables. For all x ∈ V , the
truth value of variable ix denotes whether argument x is in some E . Furthermore, the
assignment of true to variable dx represents that x is defeated. Additionally, for a node
t of the tree decomposition, we denote by Dt = {dx | x ∈ Xt} the defeated arguments
in t. Here, ix for x ∈ V are variables with fixed truth assignment (i.e., containment
in an extension is guessed once), while all dx have a truth assignment that changes
during the traversal of the tree decomposition (an argument may become defeated in a
decomposition node).

Bl
t =

∧
(x,y)∈At

(¬ix ∨ ¬iy) ∧
∧

y∈Xt

(
dy ↔

∨
(x,y)∈At

ix
)

Bi
t =∃D′

t′

[
Bt′ [Dt′/D

′
t′ ] ∧

∧
{u,y}∈Et

(¬iu ∨ ¬iy) ∧
(
du ↔

∨
(x,u)∈At

ix
)
∧∧

(u,y)∈At∧
u6=y

(
dy ↔ d′y ∨ iu

)
∧

∧
y∈Xt∧(u,y)6∈At

(
dy ↔ d′y

) ]
Br

t =Bt′ [iu/>, du/⊥] ∨ Bt′ [iu/⊥, du/>]

Bj
t =∃D′

t∃D′′
t

[
Bt′ [Dt/D

′
t] ∧ Bt′′ [Dt/D

′′
t ] ∧

∧
x∈Xt

(
dx ↔ d′x ∨ d′′x

) ]

EDM. In leaf nodes, variable dy for arguments y ∈ Xt is true (i.e., defeated) iff one
of its attacking arguments is in the stable extension, and adjacent arguments can not be
both in the extension. In Bit, for u the formula is constructed as in leaf nodes. In order to
update the truth value of defeat variables, for any argument y we apply a general pattern
of ∃y′[Bt′ [y/y′] ∧ (y ↔ (y′ ∨ cond))], that is, renaming, potentially adding conditions
(cond ), and removing the renamed variable y′. Here, cond contains iu in case u is an
incoming neighbor of y. By this, the size of the BDDs remains bounded by the width
of the decomposition. In removal nodes, u must either be contained in the extension, or
it is defeated. Note that the conflict-free property would be violated in case u is both in
the extension and defeated. In Bjt , the defeat information is propagated via renaming,
equivalence, and existential quantification.
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Bl
t =

∧
x∈Xt

¬dx Bi
t = Bt′ ∧ ¬du

Br
t =φr

t [iu/>, du/⊥] ∨ φr
t [iu/⊥, du/>] with

φr
t =∃D′

t′

[
Bt′ [Dt′/D

′
t′ ] ∧

∧
{u,y}∈Et′

(¬iu ∨ ¬iy)∧∧
y∈Xt

(dy ↔ d′y ∨(u,y)∈At′
iu) ∧ (du ↔ d′u ∨

∨
(x,u)∈At′

ix)
]

Bj
t =∃D′

tD
′′
t

[
Bt′ [Dt/D

′
t] ∧ Bt′′ [Dt/D

′′
t ] ∧

∧
x∈Xt

(
dx ↔ d′x ∨ d′′x

) ]

LDM. Here, all information is considered when a vertex is removed. Hence, introduced
vertices cannot become defeated in leaf or introduction nodes, and the corresponding
variables are initialized with ⊥. In Brt , we guess whether the removed vertex u is in
the extension or defeated. Furthermore, we guarantee conflict-freeness with vertices
adjacent to u. A vertex y becomes defeated if it is attacked by u and u is in the extension,
and u is defeated if it is attacked by some vertex that was already removed, or by an
in-vertex on an arc in At′ . Note that we use a small disjunction symbol with condition
whenever there is at most one disjunction in the instantiated formula, and a large symbol
otherwise. Bjt is specified as in EDM.

3.3 Hamiltonian Cycle

The HAMILTONIAN CYCLE problem (“Given a graph G = (V,E), does there exist
a Hamiltonian Cycle in G?”) requires a more involved algorithm specification. Mono-
lithic propositional encodings (where the whole instance is available at once) allow one
to assign a global order over the variables that specifies the ordering over the vertices
in the cycle. However, in our DP-based approach, we are restricted to information that
is available in the current decomposition node. Hence, we consider a relative ordering
as follows. The idea is to first specify exactly one incoming and one outgoing edge for
each vertex. For x ∈ V , the truth value of variable ix (ox) denotes that it has an outgoing
(incoming) edge. A selected edge {x, y} ∈ E is represented by variable txy . Second,
we have to guarantee that we have a single cycle that covers all vertices. Therefore we
select a fixed vertex f ∈ V that denotes where the cycle starts and ends. Variable axy
for x, y ∈ V denotes that x lies after y on the path from f to f . For a tree decomposition
node t we have St = {ix, ox, axy | x, y ∈ Xt}. Furthermore, for a vertex u ∈ Xt, let
Tt,u = {txu, tux | {x, u} ∈ Et}. Due to space limitations in the following we only
present the LDM version.
LDM. In leaf and introduction nodes all changing variables are initialized with ⊥. In
removal nodes, at least one incoming edge for removed vertex u is selected. Here, i′u
is true iff the incoming neighbor of u was already removed from the bag. Furthermore,
at most one incoming edge from Et′ is selected. Finally, if i′u is true, we cannot select
an additional incoming edge, and the incoming and outgoing edges for u have to be
different. The same construction is used to guarantee exactly one outgoing edge for u.
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For vertices x ∈ Xt, ix and ox are updated in case u was a neighbor of x. Again, at
most one incoming (outgoing) edge must be selected. For x, z ∈ Xt, axz becomes true
if u 6= f and u lies on the path between x and z. With this, we keep information on the
path (from f to f ), restricted to Xt, where the truth value of txy-variables represents
selected edges in Xt and axy-variables denote that x is before y on the path where
intermediate vertices were already removed. Finally, in case axx for x 6= f is true, we
know that there is a cycle that does not cover f , and is therefore no Hamiltonian cycle.
In join nodes, ix, ox and axy variables are propagated as usual. Here, whenever both
i′x and i′′x are true, due to the connectedness condition of tree decompositions and the
fact that these variables are updated when a vertex is removed, x has different incoming
edges and cannot be a solution. The same holds for outgoing edges.

Bl
t =

∧
x∈Xt

(¬ix ∧ ¬ox) ∧
∧

x,y∈Xt

¬axy

Bi
t =Bt′ ∧ ¬iu ∧ ¬ou ∧

∧
x∈Xt

(¬axu ∧ ¬aux)

Br
t =∃Tt′,uS

′
t′

[
Bt′ [St′/S

′
t′ ] ∧ (i′u ∨

∨
{x,u}∈Et′

txu) ∧ (o′u ∨
∨

{u,y}∈Et′

tuy)∧∧
{x′,u}∈E′

t∧
{x′′,u}∈E′

t∧x′ 6=x′′

(
¬(tx′u ∧ tx′′u) ∧ ¬(tux′ ∧ tux′′)

)
∧

∧
{x,u}∈Et′

(
¬(i′u ∧ txu) ∧ ¬(o′u ∧ tux) ∧ ¬(txu ∧ tux)

)
∧∧

x∈Xt

((
ix ↔ (i′x ∨{u,x}∈Et′

tux)
)
∧
(
ox ↔ (o′x ∨{x,u}∈Et′

txu)
))

∧

∧
{x,u}∈Et′

(
¬(i′x ∧ tux) ∧ ¬(o′x ∧ txu)

)
∧∧

x,z∈Xt

(
axz ↔ a′xz ∨u6=f

(
(a′xu ∨{x,u}∈Et′

txu) ∧ (a′uz ∨{u,z}∈Et′
tuz)

))
∧∧

x∈Xt∧x 6=f

¬axx
]

Bj
t =∃S′

tS
′′
t

[
Bt′ [St/S

′
t] ∧ Bt′′ [St/S

′′
t ]∧∧

x∈Xt

((
ix ↔ (i′x ∨ i′′x)

)
∧
(
ox ↔ (o′x ∨ o′′x)

)
∧ ¬(i′x ∧ i′′x) ∧ ¬(o′x ∧ o′′x)

)
∧∧

x,y∈Xt

(
axy ↔ (a′xy ∨ a′′xy)

)]

4 Experimental Analysis

The aforementioned algorithms were implemented in the prototype system dynBDD
that utilizes the library CUDD [32] for efficient BDD management and the HTDE-
COMP library [14] for constructing the tree decompositions by applying the “min-
degree” heuristics. We compare run-time and memory requirements to freely available
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Fig. 3. Result Overview: System comparison and detailed results for best-performing systems.

implementations that also utilize the concept of DP on tree decompositions, namely
SEQUOIA [25] (version 0.9) and D-FLAT [6] (version 1.0.0). Furthermore, for the
area of abstract argumentation, the DP-based dynPARTIX system [10] (version 2.0) is
available. SEQUOIA implements a game-theoretic approach [24]. As input, SEQUOIA
expects the problem to be formulated as an MSO formula. The instance is decomposed
and the DP algorithm automatically generated and executed. D-FLAT combines DP
with answer-set programming (ASP). In contrast to SEQUOIA, the user specifies an
ASP encoding that is executed at each node of the decomposition, thereby defining the
DP algorithm explicitly. dynPARTIX comprises of implementations of reasoning tasks
relevant to the field of argumentation.

All experiments were performed on a single core of an AMD Opteron 6308 (3.5GHz)
processor running Debian GNU/Linux 7 (kernel 3.2.0-4-amd64). Each run was limited
to 10 minutes (Timeout) and 4GB of memory (Memout). Instances were generated us-
ing the random graph model due to Erdös and Rényi [18]. This allows us to compare
the implementations on various instances that cover a broad range of different widths.
Below, we denote by n the number of vertices and by p the edge probability of an in-
stance. Since run-time depends on the heuristically obtained tree decomposition, we run
the algorithms on the same normalized tree decompositions (if not stated otherwise).

3-Colorability. To analyze the performance, the EDM and LDM versions of the algo-
rithms were implemented in dynBDD and D-FLAT. For SEQUOIA, the performance of
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the MSO-based algorithm is measured. Overall, 252 instances with n between 10 and
1000 and p between 0.001 (very sparse) and 0.2 (dense) were tested. Figure 3 (upper
left) shows the number of solved instances per system and implementation variant. SE-
QUOIA implements a pre-check to tell whether it is capable of solving the instance.
Error denotes the number of times this check failed. Results show that EDM is by
far superior to LDM. Here, we observed that EDM detects conflicts in unsatisfiable
instances earlier than LDM. In fact, additional analysis showed that for satisfiable in-
stances dynBDD (EDM) performed only marginally better than dynBDD (LDM). In
total, 161 instances were solved by both dynBDD (EDM) and D-FLAT (EDM). Fig-
ure 3 (lower left) gives details on the accumulated run-time and memory usage of the
best-performing systems over these instances. The figure shows how many instances
were solved after a certain amount of time. For example, D-FLAT (EDM) solved the
first 100 instances in approx. 1500 seconds with a total of 4700 MB of memory usage,
whereas dynBDD (EDM) required only 30 seconds and 500 MB. In total, dynBDD
(EDM) required approx. 18% less time and 47% less memory on solved instances, and
solved 36 instances more than D-FLAT (EDM). Note that we omitted dynBDD (LDM)
since it solves significantly less instances than the best systems.

Regarding the width w of the tree decompositions, dynBDD (EDM) solved satisfi-
able instances up to w = 48 and unsatisfiable instances up to w = 944. While unsatis-
fiable instances of high width may be easily solvable due to early conflict detection, the
measured width for solved satisfiable instances is quite large. Recall that the size of the
BDD (or an equivalent table representation) may be up to O(2wl) which corresponds
to 248·3 ≈ 2.2 · 1043 for w = 48 and 3 variables per bag element. This indicates that
BDDs are indeed memory-efficient.

Stable Extension. We compare dynBDD with D-FLAT as well as dynPARTIX. Note
that dynPARTIX constructs decompositions on the same heuristics as used for the other
systems, but obtaining the same decomposition can not be guaranteed. Furthermore, we
compare dynBDD to SEQUOIA. However, to the best of our knowledge, SEQUOIA is
incapable of handling directed graphs. To give an impression on its performance, we
decided to show results for the related INDEPENDENT DOMINATING SET problem.

260 instances with n between 10 and 100 and p between 0.001 and 0.1 were tested.
Figure 3 (middle column) illustrates the overall number of solved instances per system.
The run-time of the problem-tailored implementation in dynPARTIX (that implements
an approach similar to EDM) is almost the same as that of dynBDD (EDM). How-
ever, the advantage of BDDs becomes evident with respect to memory, where dynBDD
(EDM) requires less than 8% of that of dynPARTIX. Although dynBDD (LDM) solves
slightly less instances and requires more memory than dynBDD (EDM), it is by far
fastest implementation over all solved instances. One reason may be that due to the
LDM specification being more compact than the EDM version, less BDD manipulation
operations are to be executed. Compared to D-FLAT (restricted to solved instances),
dynBDD (EDM) uses less than 0.6% of time and 9% of memory. dynBDD (LDM)
requires less than 0.5% of time and 14% of memory compared to D-FLAT.

Hamiltonian Cycle. In our dynBDD implementation for this problem we selected
the lexicographically smallest vertex as fixed vertex f . A study of how this selection
influences run-time is deferred to future work. We tested 390 instances with n between
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10 and 50 and p between 0.01 and 0.25. Here, generated instances had a width between
1 and 22. As depicted in Figure 3, dynBDD (LDM) solved most instances, followed
by dynBDD (EDM) and D-FLAT. For this problem, it becomes apparent that width
is crucial for the run-time. Considering instances solved by the three best-performing
systems, we observed that instances up to width 12 were solved. Note that in this case
we have BDDs with up to 212·(6+4·12) ≈ 1.3 · 1036 nodes since we have 3 · 1 ix, 3 · 1
ox, 12 txy , and 3 · 12 axy-variables per vertex in the bag (including renamed variables).

As also observed for the STABLE EXTENSION problem, our results indicate that for
more complex problems the LDM variant pays off, especially for satisfiable instances.

5 Conclusion

In this work we showed how classical DP algorithms on tree decompositions can be re-
formulated in order to be executed on Binary Decision Diagrams. This gives rise to al-
gorithms that are specified on a logical level where - opposed to manipulation of tuples
in a table-based specification - the set of models is modified by executing operations
directly on the BDD. Furthermore, we studied two algorithm design patterns, namely
early (EDM) and late decision method (LDM), and illustrated the concepts by provid-
ing several case studies. The case studies are exemplary for NP-complete problems
that are tractable w.r.t. tree-width. The corresponding algorithms are specified solely on
fixed variables (3-COLORABILITY), additionally require changing variables (STABLE
EXTENSION) and handling of connectedness within the DP algorithm (HAMILTONIAN
CYCLE). From a practical perspective, our work is in line with the freely available sys-
tems D-FLAT [6], SEQUOIA [25] and dynPARTIX [10]. Our preliminary experiments
showed that the implementation of dynBDD indeed mitigates performance and memory
shortcomings of these systems. In particular, results indicate that for problems which
require a more involved algorithm, LDM is superior to EDM. Note that our system
currently does not implement any problem-specific shortcuts and that the libraries have
been employed as black-box tools.

In the future, we want to tighten the integration of BDD handling and the tree de-
composition (in particular, to obtain a good ordering of variables in the BDD from the
structure of the decomposition) and to study how problem-specific shortcuts can be in-
corporated. Additionally, our approach natively supports parallel problem solving (over
decomposition branches), which would be a complementary approach to recent devel-
opments on parallel BDD implementations [15,26]. Finally, our approach can directly
be extended to problems that involve optimization. Here, ADDs as well as Multi-valued
Decision Diagrams (MDDs) (see, e.g., [28]) and related data structures can serve as
appropriate tools. Most importantly, we want to study our approach in the context of
problems that are hard for the second level of the polynomial hierarchy (e.g., Circum-
scription, Abduction) and ultimately provide a tool-set for all MSO-definable problems.
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