
27

Managing Change in Graph-structured Data Using Description Logics

SHQIPONJA AHMETAJ, TU Wien
DIEGO CALVANESE, Free University of Bozen-Bolzano
MAGDALENA ORTIZ and MANTAS ŠIMKUS, TU Wien

In this paper, we consider the setting of graph-structured data (GSD) that evolves as a result of operations
carried out by users or applications. We study different reasoning problems, which range from deciding
whether a given sequence of actions preserves the satisfaction of a given set of integrity constraints, for
every possible initial data instance, to deciding the (non-)existence of a sequence of actions that would
take the data to an (un)desirable state, starting either from a specific data instance or from an incomplete
description of it. For describing states of the data instances and expressing integrity constraints on them, we
use Description Logics (DLs) closely related to the two-variable fragment of first-order logic with counting
quantifiers. The updates are defined as actions in a simple yet flexible language, as finite sequences of
conditional insertions and deletions, which allow one to use complex DL formulas to select the (pairs of)
nodes for which (node or arc) labels are added or deleted. We formalize the above data management problems
as a static verification problem and several planning problems and show that, due to the adequate choice of
formalisms for describing actions and states of the data, most of these data management problems can be
effectively reduced to the (un)satisfiability of suitable formulas in decidable logical formalisms. Leveraging
this, we provide algorithms and tight complexity bounds for the formalized problems, both for expressive
DLs and for a variant of the popular DL-Lite, advocated for data management in recent years.

CCS Concepts: •Theory of computation → Logic and verification; Description logics; Logic and
databases; Pre- and post-conditions; •Information systems→ Graph-based database models;

Additional Key Words and Phrases: Integrity Constraints, Graph-structured Data, Static Analysis, Planning

ACM Reference Format:
Shqiponja Ahmetaj, Diego Calvanese, Magdalena Ortiz, Mantas Šimkus, 2017. Managing Change in Graph-
structured Data Using Description Logics. ACM Trans. Comput. Logic 18, 4, Article 27 (October 2017), 35
pages.
DOI: http://doi.acm.org/10.1145/3143803

1. INTRODUCTION
The complex structure and increasing size of information that has to be managed in
today’s applications calls for flexible mechanisms for storing such information, mak-
ing it easily and efficiently accessible, and facilitating its change and evolution over
time. While technologies for data storage and access have not ceased to evolve and
mature on the solid theoretical basis of the principles of data management, these tech-
nologies often disregard the fundamental fact that data is intrinsically dynamic and
evolves constantly, mainly as the results of updates carried out by users and applica-
tions. Tools for automated reasoning about the evolution of data, and the preservation
of its integrity over time remain in their infancy. The urgent need for such tools has
become increasingly clear, and the development of tools for reasoning about evolving
data has in fact been recognized as one of the central research challenges that must be

This research has been partially supported by FWF projects T515, P25518, P30360, and W1255, by WWTF
project ICT12-015, by EU IP Project Optique FP7-318338, and by the Wolfgang Pauli Institute.
Author’s addresses: Shqiponja Ahmetaj, TU Wien, Austria, email: ahmetaj@dbai.tuwien.ac.at; Diego Cal-
vanese, Free University of Bozen-Bolzano, Italy, email: calvanese@inf.unibz.it; Magdalena Ortiz, TU Wien,
Austria, email: ortiz@kr.tuwien.ac.at; Mantas Šimkus, TU Wien, Austria, email: simkus@dbai.tuwien.ac.at.
This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The
definitive Version of Record was published in ACM Transactions on Computational Logic (TOCL) 18(4):
27:1-27:35 (2017). It is available at http://doi.acm.org/10.1145/3143803.
c© 2017 ACM. 1529-3785/2017/10-ART27 $15.00
DOI: http://doi.acm.org/10.1145/3143803

ACM Transactions on Computational Logic, Vol. 18, No. 4, Article 27, Publication date: October 2017.

http://doi.acm.org/10.1145/3143803

27:2 S. Ahmetaj, D. Calvanese, M. Šimkus, and M. Ortiz

faced by the Foundations of Data Management community in the next years [Arenas
et al. 2016]. This has become the main goal of significant research efforts. For exam-
ple, in the area of data-centric dynamic processes, many database-aware verification
techniques have been developed [Calvanese et al. 2013a; Deutsch et al. 2014].

In this paper, we also aim at developing tools that allow one to reason about evolv-
ing data, and in particular, to ensure the correctness and integrity preservation of
databases that are modified and updated. Our focus is on the paradigm of graph struc-
tured data (GSD) [Sakr and Pardede 2011], which has roots in work done in the early
1990s (see, e.g., [Consens and Mendelzon 1990]), and has gained popularity recently
as an alternative to traditional relational databases that provides more flexibility and
thus can overcome the limitations of an a priori imposed rigid structure on the data.
Indeed, differently from relational data, GSD do not require a schema to be fixed a pri-
ori. This flexibility makes them well suited for many emerging application areas such
as managing Web data, information integration, persistent storage in object-oriented
software development, or management of scientific data. Concrete examples of models
for GSD are RDFS [Brickley and Guha 2004], object-oriented data models [Hull and
King 1987; Abiteboul and Kanellakis 1989], and XML [Bray et al. 1998].

It is widely recognized that GSD are often dynamic, and problems like evaluating
queries over evolving GSD have been studied [Muñoz et al. 2016]. However, reasoning
about the effects that changes on GSD have on the integrity of data and on the proper-
ties the data satisfy, remains largely unexplored. As we will see here, focusing on GSD
allows us to leverage results from powerful languages for knowledge representation,
which can describe complex properties of GSD instances, and still have decidable sat-
isfiability problems. In this way, we can go beyond the task of simply model checking
a given initial data instance that is common in dynamic data-centric systems, and in-
stead consider more challenging problems, like testing whether for every possible data
instance, some given property is guaranteed to hold after applying some given updates.

The languages we leverage in this paper are Description Logics (DLs) [Baader et al.
2003], a well-established family of formalisms for knowledge representation that are
particularly well-suited for describing properties of GSD. Indeed, in GSD, informa-
tion is represented by means of a node and edge labeled graph, in which the labels
convey semantic information. The representation structures underlying most DLs are
paradigmatic examples of GSD: in DLs, a domain of interest is modeled by means of
unary relations (a.k.a. concepts) and binary relations (a.k.a. roles), and hence the first-
order interpretations of a DL knowledge base (KB) can be viewed as node and edge
labeled graphs. DLs have been advocated as a proper tool for data management [Lenz-
erini 2011], and are very natural for describing complex knowledge about domains rep-
resented as GSD. A DL KB comprises an assertional component, called ABox, which
is often viewed as a possibly incomplete instance of GSD, and a logical theory, called
terminology or TBox, which can be used to infer implicit information from the asser-
tions in the ABox. An alternative possibility is to view the finite structures over which
DLs are interpreted as (complete) GSD, and the KB as a description of constraints and
properties of the data. Taking this view, DLs have been applied, for example, for the
static analysis of traditional data models, such as UML class diagrams [Berardi et al.
2005; Balaban and Maraee 2013] and Entity Relationship schemata [Calvanese et al.
1999; Artale et al. 2007]. Problems such as the consistency of a diagram are reduced
to KB (or TBox) satisfiability in a suitable DL, and DL reasoning services become tools
for data management.

In this paper, we follow the latter view, but aim at using DLs not only for static
reasoning about data models, but also for reasoning about the evolution and change
over time of GSD that happens as the result of executing actions. The development
of automated tools to support such tasks is becoming a pressing problem, given the

ACM Transactions on Computational Logic, Vol. 18, No. 4, Article 27, Publication date: October 2017.

Managing Change in Graph-structured Data Using Description Logics 27:3

large amounts and complexity of GSD currently available. Having tools to understand
the properties and effects of actions is important and provides added value for many
purposes, including application development, integrity preservation, security, and opti-
mization. Questions of interest are, e.g.,: (i) Will the execution of a given action preserve
the integrity constraints, for every initial data instance? (ii) Is there a sequence of ac-
tions that leads a given data instance into a state where some property (either desired
or not) holds? (iii) Does a given sequence of actions lead every possible initial data in-
stance into a state where some property necessarily holds? The first question is anal-
ogous to a classic problem in relational databases: verifying consistency of database
transactions. The second and third questions are classic questions in AI (called plan-
ning and projection, respectively). In this paper we address these and other related
questions, develop tools to answer them, and characterize the computational complex-
ity of the underlying problems. Our results are quite general and allow for analyzing
data evolution in several practically relevant settings, including RDF data under con-
straints expressed in RDFS or OWL. Via the standard reification technique [Calvanese
et al. 1999; Berardi et al. 2005], they also apply to the more traditional setting of rela-
tional data under schemas expressed in conceptual models (e.g., ER schemas, or UML
class diagrams), or to object-oriented data.

Our contributions are organized as follows:

— In Section 2, we propose a very expressive DL that is suitable for reasoning about
evolving GSD. In particular, we aim at a DL that is good for the following purposes:
(i) modeling rich constraints on GSD, which express sophisticated domain knowl-
edge, (ii) specifying conditions on data states that should be reached or avoided,
(iii) specifying actions to evolve GSD over time, and (iv) expressing weakest pre-
conditions that capture the effect of action sequences on data states. While stan-
dard DLs could be used for (i) and (ii), their use for (iii) and (iv) is to our knowledge
novel and calls for some less frequent constructs, which we introduce in the logic
ALCHOIQbr. This DL is an extension of the well known ALCHOIQ and, as we will
see, is closely related to the two-variable fragment of first-order logic with counting
quantifiers.

— Next, in Section 3, we introduce a simple yet powerful language in which actions
are finite sequences of (possibly conditional) insertions and deletions performed on
concepts and roles, using complex concepts and roles in ALCHOIQbr as queries. We
define the syntax and semantics of this language, and give some examples illustrat-
ing its suitability for describing changes on GSD.

— Our main technical tool is developed in Section 4. From a DL KB expressing a set
of constraints and a sequence of actions, we obtain a new KB that is satisfied by a
GSD instance exactly when the result of executing the actions on it leads to a model
of the constraints. It can be seen as a computation of the weakest pre-conditions
for the constraints and the actions, and allows one to express the effects of actions
within the syntax of DLs. The technique for obtaining the new KB is similar in
spirit to regression in reasoning about actions [Levesque et al. 1997]. This is the
core stepping stone of our results, as it allows us to reduce reasoning about evolving
GSD to reasoning about traditional, static, DL KBs.

— In Section 5 we address the static verification problem, that is, the problem of ver-
ifying whether for every possible state satisfying a given set of constraints (i.e., a
given KB), the constraints are still satisfied in the state resulting from the execution
of a given (complex) action. Using the technique of Section 4 we are able to reduce
static verification to satisfiability of DL KBs, showing that the former problem is
decidable, and obtaining tight complexity bounds for it, using two different DLs in
the constraints and actions. Specifically, we provide a tight coNEXPTIME bound for

ACM Transactions on Computational Logic, Vol. 18, No. 4, Article 27, Publication date: October 2017.

27:4 S. Ahmetaj, D. Calvanese, M. Šimkus, and M. Ortiz

the considered expressive DL, and a tight coNP bound for a variation of DL-Lite
[Calvanese et al. 2007].

— In Section 6 we then study different variants of planning. We define a plan as a
sequence of actions that leads a given structure into a state where some property
(either desired or not) holds. Then we study problems such as deciding the existence
of a plan, both for the case where the initial structure is fully known, and where only
a partial description of it is available, and deciding whether a given sequence of ac-
tions is always a plan for some goal. Since the existence of a plan (of unbounded
length) is undecidable in general, even for lightweight DLs and restricted actions,
we also study plans of bounded length. We provide tight complexity bounds for dif-
ferent variants of the problem, both for lightweight and for expressive DLs.

A detailed discussion of related work is given in Section 7, and conclusions in Section 8.
This paper extends the results by Ahmetaj et al. [2014] (and a preliminary informal

publication [Calvanese et al. 2013b]) with proofs, extended examples, and complete
definitions that were omitted from the conference version. We also obtain some new
complexity results. In particular, in Section 2.3 we discuss some more expressive lan-
guages to which our upper bounds apply, and in Section 2.5 we introduce a fragment
of ALCHOIQbr for which we obtain better upper bounds for the considered reason-
ing problems (namely, EXPTIME vs. (co)NEXPTIME for static verification and some
variants of planning). A new discussion of the detailed relationship between the main
DL we consider, and other better known DLs, as well as the two-variable fragment of
first-order logic with counting quantifiers, was added as an appendix to this version.

2. AN EXPRESSIVE DL FOR REASONING ABOUT EVOLVING GSD
The use of DLs in this paper is manifold. On the one hand, DLs act as constraint
languages for data instances, and describe properties of data states that are to be
ensured or avoided as data evolves. On the other hand, we employ them as the basis
of a simple action language to update data instances, and as tools for reasoning about
the evolution of data by capturing weakest pre-conditions on action sequences and
data states. The former use matches closely the typical scenario where DLs are used to
model rich domain knowledge and describe properties of data instances, and standard
DLs are suitable for this purpose. The latter uses are less standard, and call for some
expressive features not always supported by common DLs.

2.1. ALCHOIQ as a Constraint Language for GSD
To express constraints on GSD we choose the expressive DL ALCHOIQ. It is an ex-
tension of the basic DL ALC that supports role hierarchies, inverses, and number re-
strictions, all of which are useful for expressing constraints on data instances. It also
supports nominals, which additionally to allowing one to refer to specific individuals
in constraints, also play an important role in updating GSD and reasoning about the
effects of updates, as we will see below.

ALCHOIQ Syntax and Semantics. We recall the standard definition ofALCHOIQ, sum-
marized in the left column of Table I. Countably infinite sets NR of role names, NC of
concept names, and NI of individual names are used to build complex concepts and
roles. Intuitively, concepts describe classes of objects, and roles binary relations be-
tween objects. These expressions are then used in inclusions and assertions. The for-
mer express general dependencies to be satisfied by data instances, while the latter
assert the membership of specific (pairs of) individuals in concepts and roles. A knowl-

ACM Transactions on Computational Logic, Vol. 18, No. 4, Article 27, Publication date: October 2017.

Managing Change in Graph-structured Data Using Description Logics 27:5

Table I. Syntax of ALCHOIQ and ALCHOIQbr.

ALCHOIQ ALCHOIQbr

Roles r(i) and concepts C(i):

r −→ p | p−

C −→ A | > | ⊥ | {o} |
C1 u C2 | C1 t C2 | ¬C |
∃r.C | ∀r.C | 6n r.C | >n r.C

r −→ p | r− | {(t1, t2)} |
r1 ∪ r2 | r1 \ r2 | r1 ∩ r2 | r�C | r�C

C −→ A | > | ⊥ | {t} |
C1 u C2 | C1 t C2 | ¬C |
∃r.C | ∀r.C | 6n r.C | >n r.C

where p ∈ NR, A ∈ NC, o ∈ NI, {t, t1, t2} ⊆ NI ∪ NV, and n ≥ 0 is an integer.

Assertions and inclusions:
C1 v C2

r1 v r2
o : C

(o1, o2) : r

C1 v C2 concept inclusion
r1 v r2 role inclusion
t : C concept assertion
(t1, t2) : r role assertion

where C1, C2 are concepts, r1, r2 are roles, {o, o1, o2} ⊆ NI, and {t, t1, t2} ⊆ NI∪NV.
Concepts, roles, inclusions, and assertions with no variables are called ordinary.

KBs: Formulas: (KBs are formulas with no variables)
K −→ α | K1 ∧ K2 K −→ α | K1 ∧ K2 | K1 ∨ K2 | ¬̇K1

where α denotes a (concept or role) inclusion or a (concept or role) assertion.

edge base (KB) is a conjunction of inclusions and assertions.1 In the following, we use
C1 ≡ C2 as a shortcut for the conjunction (C1vC2)∧(C2vC1) of two concept inclusions;
similarly for role inclusions.

Semantics. The semantics of DL KBs is usually defined in terms of interpretations,
defined as relational structures over a (possibly infinite) non-empty domain and a sig-
nature consisting of unary predicates (the concept names), binary predicates (the role
names), and constants (the individuals). Such an interpretation is called finite if its do-
main is finite. In turn, GSD instances are often defined as relational databases where
all relations are unary or binary, that is, the same kind of relational structures as DL
interpretations. Although infinite GSD instances are sometimes of interest, here we
focus on the more common setting of finite ones, which are in direct correspondence
with finite DL interpretations. We define next the semantics of ALCHOIQ using the
standard notion of an interpretation, which in what follows we call a (GSD) instance.

Definition 2.1. An instance is a pair I = 〈∆I , ·I〉 where ∆I 6= ∅ is the domain,
AI ⊆ ∆I for each A ∈ NC, pI ⊆ ∆I ×∆I for each p ∈ NR, and oI ∈ ∆I for each o ∈ NI.
The function ·I is extended to all ALCHOIQ concepts and roles as usual, see Table II.

Consider an instance I. For an inclusion α1 v α2, I satisfies α1 v α2, written I |=
α1 v α2, if αI1 ⊆ αI2 . For an assertion β of the form o : C (resp., (o1, o2) : r), I satisfies
β, in symbols I |= β, if oI ∈ CI (resp., (oI1 , o

I
2) ∈ rI). The notion of satisfaction extends

naturally to KBs: I |= K1 ∧K2 if I |= K1 and I |= K2. If I |= K, then I is a model of K. /

1Here we depart from the standard conventions and define a KB as a single conjunction, rather than as a
pair containing a set of inclusions, called TBox, and a set of assertions, the ABox. The two definitions are
equivalent.

ACM Transactions on Computational Logic, Vol. 18, No. 4, Article 27, Publication date: October 2017.

27:6 S. Ahmetaj, D. Calvanese, M. Šimkus, and M. Ortiz

Table II. Semantics of ALCHOIQ and ALCHOIQbr.

Concept constructors in ALCHOIQ :

>I = ∆I

⊥I = ∅
(¬C1)I = ∆I \ CI1

(C1 u C2)I = CI1 ∩ CI2
(C1 t C2)I = CI1 ∪ CI2

(∃r.C)I = {e1 | for some e2 ∈ ∆I , (e1, e2) ∈ rI and e2 ∈ CI}
(∀r.C)I = {e1 | for all e2 ∈ ∆I , (e1, e2) ∈ rI implies e2 ∈ CI}

(6n r.C)I = {e1 | |{e2 | (e1, e2) ∈ rI and e2 ∈ CI}| ≤ n}
(>n r.C)I = {e1 | |{e2 | (e1, e2) ∈ rI and e2 ∈ CI}| ≥ n}

Role constructors in ALCHOIQ :

(r−)
I

= {(e1, e2) | (e2, e1) ∈ rI}

Additional role constructors in ALCHOIQbr:
{(o1, o2)}I = {(oI1 , oI2)}
(r1 ∪ r2)I = rI1 ∪ rI2
(r1 \ r2)I = rI1 \ rI2
(r1 ∩ r2)I = rI1 ∩ rI2

(r�C)I = {(e1, e2) ∈ rI | e1 ∈ CI}
(r�C)I = {(e1, e2) ∈ rI | e2 ∈ CI}

C, C1, C2 denote concepts, r, r1, r2 roles, and {o1, o2} ⊆ NI.

Next, we provide an example of useful constraints expressible in ALCHOIQ.

Example 2.2. Suppose that some institution wants to ensure the following con-
straints on its database; (1) projects and departments are disjoint; projects are active
projects or finished projects; (2) hasMember, hasHead, and hasLeader are respectively
the inverses of isMemberOf, isHeadOf, and isLeaderOf (this allows us to speak naturally
about the relations in both directions); (3) the head of a department is also a member of
it; similarly, the leader of a project also works for that project; (4) the domain of worksFor
are employees, and its range are projects; (5) similarly, the domain of hasMember are
departments, and its range are employees; (6) a project employee is an employee who
works for an active project; all employees must be project employees or members of
a department; (7) departments have exactly one department head; and (8) all active
projects must have a project leader who is a member of some department.

The constraints are captured by the KB below:

(Prj u Deptv⊥) ∧ (Prj ≡ ActivePrj t FinishedPrj) ∧ (1)

(hasMember ≡ isMemberOf−) ∧ (hasHead ≡ isHeadOf−) ∧ (hasLeader ≡ isLeaderOf−) ∧ (2)
(hasHeadv hasMember) ∧ (isLeaderOf v worksFor) ∧ (3)
(∃worksFor.>v Empl) ∧ (>v ∀worksFor.Prj) ∧ (4)
(∃hasMember.>v Dept) ∧ (>v ∀hasMember.Empl) ∧ (5)
(PrjEmpl ≡ ∃worksFor.ActivePrj) ∧ (Emplv PrjEmpl t ∃isMemberOf.Dept) ∧ (6)
(Deptv ∃hasHead.>) ∧ (Deptv 61 hasHead.>) ∧ (7)
(ActivePrjv ∃hasLeader.(∃isMemberOf.Dept)) (8)

ACM Transactions on Computational Logic, Vol. 18, No. 4, Article 27, Publication date: October 2017.

Managing Change in Graph-structured Data Using Description Logics 27:7

2.2. Extending ALCHOIQ for Reasoning About Evolving GSD
To make ALCHOIQ better suitable for reasoning about evolving GSD, we extend it
with a construct {(o1, o2)} for a singleton role, with union and difference of roles, and
with role constructs that restrict the domain and the range of a role to some concept,
sometimes called domain restriction and range restriction respectively. We also allow
for Boolean KBs, and we allow for variables to occur in the place of individuals.

Syntax. Additionally to countably infinite sets of NR, NC, and NI, we consider a count-
ably infinite set NV of variables; all these sets are pairwise disjoint. The syntax of
ALCHOIQbr is summarized in the right column of Table I.

Note that variables can occur in all places where individuals are usually allowed.
Concepts, roles, inclusions, and assertions with no variables are called ordinary. Note
that knowledge bases and formulas are defined as Boolean combinations of inclusions
and assertions, rather than just their (positive) conjunctions, as usual in the DL liter-
ature. We use the traditional DL term knowledge base for the case when no variables
occur in the expression, and the term formula for its generalization allowing also for
variables.

Semantics. We now give semantics to ALCHOIQbr KBs (that is, where no variables
occur). Formulas (with variables) will only take meaning later, when we use them in
the action language defined in Section 3.

Definition 2.3. Consider an instance I. The function ·I is extended to the additional
constructs inALCHOIQbr as given in Table II. The semantics ofALCHOIQ presented
in Definition 2.1 carries over to ALCHOIQbr ordinary inclusions and assertions and
is extended to ALCHOIQbr KBs as follows:

I |= K1 ∧ K2 if I |= K1 and I |= K2;
I |= K1 ∨ K2 if I |= K1 or I |= K2;
I |= ¬̇K if I 6|= K. /

Finite Satisfiability Problem. We are interested in the problem of effectively manag-
ing GSD satisfying the constraints given by a DL KB K, that is, finite GSD instances
(interpretations) that are models of K. Hence, the following problem is relevant.

Definition 2.4. The finite satisfiability (resp., unsatisfiability) problem is to decide,
given a KB K, if there exists (resp., doesn’t exist) a model I of K with ∆I finite. /

We note that ALCHOIQbr does not enjoy the finite model property. That is, it is
possible to write a set of infinity axioms that are satisfiable but do not have any finite
model. This applies already to weaker DLs that also support inverse roles and number
restrictions, see e.g., [Calvanese 1996; Lutz et al. 2005].

In the next sections, we will tackle a range of problems related to evolving GSD
by reducing them to finite satisfiability in ALCHOIQbr. Please keep in mind that
modelhood is only defined for KBs (that is, with no variables), and that in the finite
satisfiability problem the input is such a KB.

ALCHOIQbr and Other DLs. Although some features of ALCHOIQbr may not seem
common, it can be seen as a rather standard DL with some ‘syntactic sugar’. In fact,
KBs in ALCHOIQbr extend KBs in ALCHOIQ only with role union and role differ-
ence, two of the so called safe Boolean role constructs. We show in the appendix how
the remaining constructs can be simulated. However, we will see in the following sec-
tions that adding them explicitly to the syntax will be useful for describing actions and
reasoning about their effects.

ACM Transactions on Computational Logic, Vol. 18, No. 4, Article 27, Publication date: October 2017.

27:8 S. Ahmetaj, D. Calvanese, M. Šimkus, and M. Ortiz

2.3. ALCHOIQbr and C2

We note that we have defined ALCHOIQbr by adding to a well-known and sufficiently
expressive DL the additional features necessary for reasoning about evolving GSD.
But we could just as well use a more expressive DL that is still captured by C2, the two
variable fragment of first-order predicate logic extended with counting quantifiers. For
example, in the appendix we define ALBOQid , which adds number restrictions to the
DL ALBOid , which is known to have the same expressiveness as the two-variable
fragment of first-order logic with equality.

The crucial property of ALCHOIQbr is that there exists a polynomial translation
from KBs in ALCHOIQbr to sentences in C2 that preserves (finite) models. This is
what we use to establish Theorem 2.6 below, on which we rely for the upper bounds
that follow. We thus obtain the same upper bounds for other logics that share this
property. For example, we can use C2 itself as a constraint language, or the extension
of ALCHOIQbr with the combination of the constructs expressible in ALBOQid that
we show in the appendix (see Table IV).

Remark 2.5. All the upper bounds given in this article, hold under the assumption
that the numbers in number restrictions may be coded in binary, and apply to the
following cases:

— When ALCHOIQbr KBs, concepts, and roles are respectively replaced by KBs, con-
cepts, and roles in ALBOQid .

— When ALCHOIQbr KBs are replaced by C2 sentences, while concepts and roles are
respectively replaced by C2 formulas with one and two free variables.

2.4. Complexity of Reasoning in ALCHOIQbr
The features of ALCHOIQbr that we have added to ALCHOIQ have no impact on the
worst-case complexity of the finite satisfiability problem, which is the decision problem
we rely on in this paper. Indeed, deciding the existence of a finite model for a KB in
our extended logic has the same computational complexity as for plain ALCHOIQ, as
established by the following result.

THEOREM 2.6. Finite satisfiability of ALCHOIQbr KBs is NEXPTIME-complete.

PROOF (SKETCH). A NEXPTIME lower bound for finite satisfiability in
ALCHOIQbr follows from the work of Tobies [2000], who showed NEXPTIME-
hardness for unrestricted (not necessarily finite) satisfiability of KBs in the DL
ALCOIQ, the fragment of ALCHOIQ that disallows role inclusions. An inspection
of the proof shows that the KB used in the hardness reduction is such that if it is
satisfiable, it admits a finite model. Hence, the result holds for finite satisfiability as
well. A matching upper bound follows from the translation into C2 (see the Appendix),
and the NEXPTIME upper bound for finite satisfiability of C2 formulas established by
Pratt-Hartmann [2005].

2.5. ALCHOIbr, an EXPTIME Fragment
ALCHOIQ, the standard DL we have chosen as a basis in this paper, is known to have
a NEXPTIME-hard satisfiability problem. A natural question that arises is whether we
could obtain better upper bounds by considering suitable fragments. For instance, it is
well-known that for the DLs ALCHOI, ALCHIQ, and ALCHOQ, which are obtained
from ALCHOIQ by disallowing respectively number restrictions (Q), nominals (O),
and inverse roles (I), KB satisfiability is feasible in EXPTIME. Can we obtain better
upper bounds if we consider the extensions of these logics with the constructs from
Section 2.2?

ACM Transactions on Computational Logic, Vol. 18, No. 4, Article 27, Publication date: October 2017.

Managing Change in Graph-structured Data Using Description Logics 27:9

In the first case, the answer is positive. Let ALCHOIbr be the DL that is defined
just like ALCHOIQbr, except that concepts of the forms 6n r.C and >n r.C are not
allowed in the syntax.ALCHOQbr andALCHIQbr are defined analogously: the former
disallows roles of the form r−, and the latter concepts of the form {t} and roles of the
form {(t, t′)}. We get the following result.

PROPOSITION 2.7. Finite satisfiability of ALCHOIbr KBs is EXPTIME-complete.

PROOF. EXPTIME hardness holds already for KB satisfiability inALC [Schild 1991].
The EXPTIME membership follows from the translation of ALCHOIbr to GF2 with an
unlimited number of constants, where GF2 is the guarded fragment of first order logic
with two variables. Note that the translation in Table III of an ALCHOIbr KB yields a
GF2 sentence with constants. Indeed, deciding (unrestricted) satisfiability in this frag-
ment was shown to be in EXPTIME by ten Cate and Franceschet [2005]. Since GF2

with constants is contained in the fragment of first order logic with two variables L2

(with equality), which was shown to have the finite model property [Mortimer 1975],
it follows that finite satisfiability for ALCHOIbr KBs collapses to unrestricted satisfi-
ability.

For ALCHOQbr, EXPTIME-membership of (unrestricted) satisfiability can also be
inferred from the literature, since it is a sublogic of ZOQ [Calvanese et al. 2009]. To
our knowledge such a result for finite satisfiability has not been shown, although we
conjecture that ALCHOQbr has the finite model property. If this conjecture is correct,
all the results for static verification and planning we establish below for ALCHOIbr
would also hold for ALCHOQbr.

An analogous result to Proposition 2.7 holds for ALCHIQbr, even though it does not
enjoy the finite model property [Calvanese 1996]. Indeed, finite satisfiability in GC2,
the guarded fragment of C2, is decidable in EXPTIME [Pratt-Hartmann 2005], and the
standard translation in Table III (see the Appendix) yields a GC2 sentence when the
input is an ALCHIQbr KB (see also [Kazakov 2004]). However, this fragment of lower
complexity is of limited use to us, since it does not support all the constructs we argued
for in Section 2.2. In particular, it does not have nominals, which our techniques rely
on. Hence the results we give for ALCHOIbr do not directly extend to ALCHIQbr.

3. UPDATING GRAPH STRUCTURED DATA
We now define an action language for manipulating GSD instances. The basic actions
allow one to insert or delete all individuals from the extension of a concept, and all
pairs of individuals from the extension of a role. The candidates for additions and dele-
tions are instances of complex ALCHOIQbr concepts and roles. Since our DL supports
nominals {o} and singleton roles {(o, o′)}, our actions allow us also to add/remove a
single individual to/from a concept, or a pair of individuals to/from a role. We allow
also for action composition and conditional actions. Note that the action language in-
troduced here is a slight generalization of the one by Calvanese et al. [2013b].

Definition 3.1 (Action language). Basic actions β are defined by the grammar:

β −→ (A⊕ C) | (A	 C) | (p⊕ r) | (p	 r),

where A is a concept name, C is an arbitrary concept, p is a role name, and r is an
arbitrary role. Then (complex) actions are defined by the following grammar:

α −→ ε | β · α | (K ?αJαK) · α

where β is a basic action, K is an arbitrary ALCHOIQbr-formula, and ε denotes the
empty action.

ACM Transactions on Computational Logic, Vol. 18, No. 4, Article 27, Publication date: October 2017.

27:10 S. Ahmetaj, D. Calvanese, M. Šimkus, and M. Ortiz

A substitution is a function σ from NV to NI. For a formula, an action, or an action
sequence γ, we use σ(γ) to denote the result of replacing in γ every occurrence of a
variable x by the individual σ(x). An action α′ is ground if it has no variables, and α′

is a ground instance of an action α if α′ = σ(α) for some substitution σ. /

Intuitively, an application of an action (A⊕ C) on an instance I stands for the addi-
tion of the content of CI to AI . Similarly, (A	C) stands for the removal of CI from AI .
The two operations can also be performed on extensions of roles. Composition stands
for successive action execution, and a conditional action K ?α1Jα2K expresses that α1

is executed if the instance is a model of K, and α2 is executed otherwise. If α2 = ε then
we have an action with a simple pre-condition as in classical planning languages, and
we write it as K ?α1, omitting α2.

Formally, the semantics of actions is defined as follows:

Definition 3.2. Consider an instance I and let E be a concept or role name. If E is a
concept, let W ⊆ ∆I , and if E is a role, let W ⊆ ∆I ×∆I . Then, I ⊕EW (resp., I 	EW)
denotes the instance I ′ such that ∆I

′
= ∆I , and

- EI
′

= EI ∪W (resp., EI
′

= EI \W), and
- EI

′

1 = EI1 , for all symbols E1 6= E.
Given a ground action α, we define a mapping Sα from instances to instances as

follows:

Sε(I) = I S(A⊕C)·α(I) = Sα(I ⊕A CI)
S(A	C)·α(I) = Sα(I 	A CI)

S(p⊕r)·α(I) = Sα(I ⊕p rI)
S(p	r)·α(I) = Sα(I 	p rI)

S(K ?α1Jα2K)·α(I) =

{
Sα1·α(I), if I |= K,
Sα2·α(I), if I 6|= K. /

Example 3.3. The following instance I1 represents (part of) the project database of
some research institute. There are two active projects, and there are three employees
that work in the active projects.

PrjI1 = {p1, p2}, ActivePrjI1 = {p1, p2},
EmplI1 = {e1, e3, e7}, FinishedPrjI1 = {},

worksForI1 = {(e1, p1), (e3, p1), (e7, p1), (e7, p2)}.

We consider individuals pi with pi
I = pi for projects, and analogously individuals ei

for employees. The following action α1 captures the termination of project p1, which
is removed from the active projects and added to the finished ones. The employees
working only for this project are removed.

α1 = (ActivePrj	 {p1}) · (FinishedPrj⊕ {p1}) · (Empl	 ∀worksFor.{p1})

The instance Sα1
(I1) that reflects the status of the database after action α1 is as fol-

lows:

PrjI1 = {p1, p2}, ActivePrjI1 = {p2},
EmplI1 = {e7}, FinishedPrjI1 = {p1},

worksForI1 = {(e1, p1), (e3, p1), (e7, p1), (e7, p2)}.

Despite the apparent simplicity of the action language, it can express interesting
forms of update on the data. For instance, the presence of complex concepts in basic
actions allows us to do updates such as ’delete all employees that work only for project
p1’, as in the example above. If we did not have such complex formulas in actions, we
would need to resort to more complex constructors in the action language, such as

ACM Transactions on Computational Logic, Vol. 18, No. 4, Article 27, Publication date: October 2017.

Managing Change in Graph-structured Data Using Description Logics 27:11

while loops, as considered, e.g., by Brenas et al. [2014]. However, this would quickly
lead to the undecidability of all reasoning problems considered in this paper.

Note that we have not defined the semantics of actions with variables, i.e., of non-
ground actions. In our approach, all variables of an action are seen as parameters
whose values are given before execution by a substitution with actual individuals, i.e.,
by grounding.

Example 3.4. The following action α2 with variables x, y, z transfers the employee
x from project y to project z:

α2 = (x :Empl ∧ y :Prj ∧ z :Prj ∧ (x, y) :worksFor) ?
((worksFor 	 {(x, y)}) · (worksFor ⊕ {(x, z)}))

Under the substitution σ with σ(x) = e1, σ(y) = p1, and σ(z) = p2, the action α2 first
checks whether e1 is an (instance of) employee, p1 and p2 are projects, and e1 works for
p1. If yes, it removes the worksFor link between e1 and p1, and creates a worksFor link
between e1 and p2. If any of the checks fails, it does nothing.

Note that the execution of actions on an initial instance is allowed to modify the ex-
tensions of concept and role names, yet the domain remains fixed. In many scenarios,
we would like actions to have the ability to introduce “fresh” objects, e.g., to add new
nodes to a graph database. Intuitively, introduction of new objects can be modeled in
our setting by separating the domain of an instance I into the active domain, and the
inactive domain. The active domain consists of all objects that occur in extensions of
concept and role names, while the inactive domain contains the remaining elements,
which can be seen as a supply of fresh objects that can be introduced into the active
domain by executing actions. Since in this paper we are interested only in finite se-
quences of actions, a sufficient supply of fresh objects can always be ensured by taking
a sufficiently large yet still finite inactive domain in the initial instance. We remark
also that deletion of objects can naturally be modeled in this setting by actions that
move objects from the active domain to the inactive domain.

Example 3.5. Consider instance I1 from Example 3.3, and let ADom be a shorthand
for the concept EmpltPrjtActivePrjtFinishedPrjt∃worksFor.>t∃worksFor−.>. Intuitively,
ADom collects the active domain of the instance I1.

The following action α3 adds a new employee x to work for project p2.

α3 = (x : ¬ADom ∧ p2 :Prj)?((Empl⊕ {x}) · (worksFor ⊕ {(x, p2)}))

Under the substitution σ with σ(x) = e8, the action α3 first checks whether e8 is a
fresh object (i.e., is not in the active domain) and p2 is a project. If yes, it adds e8 to the
employees and creates a worksFor link between e8 and p2. If any of the checks fails, it
does nothing.

4. CAPTURING ACTION EFFECTS
In this section we present our core technical tool: a transformation TRα(K) that
rewrites K by incorporating the possible effects of an action α. Intuitively, the mod-
els of TRα(K) are exactly the instances I such that applying α on I leads to a model of
K. That is, TRα(K) can be seen as the weakest pre-condition of K for α. Having TRα(K)
as an ALCHOIQbr KB allows us to effectively reduce reasoning about changes in any
database that satisfies a given K, to reasoning about a single KB. We will use this
transformation to solve a wide range of data management problems by reducing them
to standard DL reasoning services, such as finite (un)satisfiability. This transforma-
tion can be seen as a form of regression [Levesque et al. 1997], which incorporates the
effects of a sequence of actions ‘backwards’, from the last one to the first one.

ACM Transactions on Computational Logic, Vol. 18, No. 4, Article 27, Publication date: October 2017.

27:12 S. Ahmetaj, D. Calvanese, M. Šimkus, and M. Ortiz

Definition 4.1. Given a KB K, we use KE←E′ to denote the KB that is obtained from
K by replacing every name E by the (possibly more complex) expression E′. Given a
KB K and an action α, we define TRα(K) as follows:

TRε(K) = K
TR(A⊕C)·α(K) = (TRα(K))A←AtC

TR(A	C)·α(K) = (TRα(K))A←Au¬C

TR(p⊕r)·α(K) = (TRα(K))p←p∪r

TR(p	r)·α(K) = (TRα(K))p←p\r

TR(K1 ?α1Jα2K)·α(K) = (¬̇K1 ∨TRα1·α(K)) ∧ (K1 ∨TRα2·α(K)). /

Note that, in the presence of conditional axioms, the size of TRα(K) might be expo-
nential in the size of α. We now show that this transformation correctly captures the
effects of complex actions.

THEOREM 4.2. Consider a ground action α and a KB K. For every instance I, we
have that Sα(I) |= K iff I |= TRα(K).

PROOF. We prove the claim by induction on `(α), defined as follows: `(ε) = 0, `(β ·
α) = 1 + `(α), and `(K ?α1Jα2K · α3) = 1 + `(α1) + `(α2) + `(α3). In the base case where
`(α) = 0 and α = ε, we have Sα(I) = I and TRα(K) = K by definition, and thus the
claim holds.

Assume α = (A ⊕ C) · α′. Let I ′ = I ⊕A CI , that is, I ′ coincides with I except that
AI
′

= AI ∪ CI . For every KB K′, I ′ |= K′ iff I |= K′A←AtC (This can be proved by
a straightforward induction on the structure of the expressions in K′). In particular,
I ′ |= TRα′(K) iff I |= (TRα′(K))A←AtC . Since (TRα′(K))A←AtC = TRα(K), we get I ′ |=
TRα′(K) iff I |= TRα(K). By the induction hypothesis, I ′ |= TRα′(K) iff Sα′(I ′) |= K,
thus I |= TRα(K) iff Sα′(I ′) |= K. Since Sα′(I ′) = Sα′(S(A⊕C)(I)) = Sα(I) by definition,
we obtain I |= TRα(K) iff Sα(I) |= K as desired.

For the cases α = (A 	 C) · α′, α = (p ⊕ r) · α′, and α = (p 	 r) · α′, the argument is
analogous.

Finally, we consider α = (K1 ?α1Jα2K) · α′, and assume an arbitrary I. We con-
sider the case where I |= K1; the case where I 6|= K1 is analogous. By defi-
nition Sα(I) = Sα1·α′(I). By the induction hypothesis we know that Sα1·α′(I) |=
K iff I |= TRα1·α′(K), so Sα(I) |= K iff I |= TRα1·α′(K). Since I |= K1 and
TR(K1 ?α1Jα2K)·α′(K) = (¬̇K1 ∨TRα1·α′(K)) ∧ (K1 ∨TRα2·α′(K)), it follows that Sα(I) |= K
iff I |= TR(K1 ?α1Jα2K)·α′(K).

This theorem will be important for solving the reasoning problems we study below.

Example 4.3. The KB K1 below expresses the following constraints on the project
database of our running example: all projects are active or finished, the domain of
worksFor are the employees, and its range the projects.

K1 = (Prjv ActivePrj t FinishedPrj) ∧ (∃worksFor.>v Empl) ∧ (∃worksFor−.>v Prj)

By applying our transformation to K1 and the action α1 from Example 3.3, i.e.,

α1 = (ActivePrj	 {p1}) · (FinishedPrj⊕ {p1}) · (Empl	 ∀worksFor.{p1})
we obtain the following KB TRα1(K1):

(Prjv (ActivePrj u ¬{p1}) t (FinishedPrj t {p1})) ∧
(∃worksFor.>v Empl u ∃worksFor.¬{p1}) ∧

(∃worksFor−.>v Prj)

ACM Transactions on Computational Logic, Vol. 18, No. 4, Article 27, Publication date: October 2017.

Managing Change in Graph-structured Data Using Description Logics 27:13

5. STATIC VERIFICATION
In this section, we consider the scenario where DL KBs are used to impose integrity
constraints on GSD. One of the most basic reasoning problems for action analysis in
this setting is the static verification problem, which consists in checking whether the
execution of an action always preserves the satisfaction of integrity constraints given
by a KB.

Definition 5.1 (Static verification). Let K be a KB. We call an action α K-preserving
if for every ground instance α′ of α and every finite instance I, we have that I |= K
implies Sα′(I) |= K. The static verification problem is defined as follows:

(SV) Given an action α and a KB K, is α K-preserving? /

Using the transformation TRα(K) above, we can reduce static verification to finite
(un)satisfiability of ALCHOIQbr KBs: An action α is not K-preserving iff some finite
model of K does not satisfy TRα∗(K), where α∗ is a ‘canonical’ grounding of α obtained
by replacing each variable with a fresh individual. Formally:

THEOREM 5.2. Assume a (complex) action α and a KB K. Then the following are
equivalent:

(i) The action α is not K-preserving.
(ii) K∧ ¬̇TRα∗(K) is finitely satisfiable, where α∗ is obtained from α by replacing each

variable with a fresh individual name not occurring in α and K.

PROOF. (i) implies (ii). Assume there exist a ground instance α′ of α and a finite
instance I such that I |= K and Sα′(I) 6|= K. Then by Theorem 4.2, I 6|= TRα′(K).
Thus I |= ¬̇TRα′(K). Suppose o1 → x1, . . . , on → xn is the substitution that transforms
α into α′. Suppose also o′1 → x1, . . . , o

′
n → xn is the substitution that transforms α

into α∗. Take the instance I∗ that coincides with I except for o′i
I∗

= oIi . Then I∗ |=
K ∧ ¬̇TRα∗(K).

(ii) implies (i). Assume K ∧ ¬̇TRα∗(K) is finitely satisfiable, i.e., there is an instance
I such that I |= K and I 6|= TRα∗(K). Then by Theorem 4.2, Sα∗(I) 6|= K.

Example 5.3. The action α1 from Example 3.3 is not K1-preserving: I1 |= K1,
but Sα1

(I1) 6|= K1 since the concept inclusion ∃worksFor.> v Empl is violated. This
is reflected in the fact that I1 6|= TRα1

(K1), as can be readily checked. Indeed,
(∃worksFor.>)I1 = {e1 , e3 , e7} while (Empl u ∃worksFor.{¬p1})I1 = {e7}, violating the
second conjunct of TRα1(K1). Intuitively, values removed from Empl should also be re-
moved from worksFor, as in the following K1-preserving action:

α′1 = (ActivePrj	 {p1}) · (FinishedPrj⊕ {p1}) ·
(Empl	 ∀worksFor.{p1}) · (worksFor 	 worksFor�{p1})

By applying α′1 to K1, we obtain the following transformed KB TRα′1(K1):

(Prjv (ActivePrj u ¬{p1}) t (FinishedPrj t {p1})) ∧
(∃(worksFor \ (worksFor�{p1})).>v Empl u ∃(worksFor \ (worksFor�{p1})).¬{p1}) ∧

(∃(worksFor \ (worksFor�{p1}))
−.>v Prj)

The above theorem provides an algorithm for static verification, which we can also
use to obtain tight bounds on the computational complexity of the problem. Indeed,
even though K ∧ ¬̇TRα∗(K) may be of size exponential in α, we can avoid to gener-
ate it all at once. More precisely, we use a non-deterministic polynomial time many-
one reduction that builds only K ∧ ¬̇TRcα∗(K) for a fragment ¬̇TRcα∗(K) of ¬̇TRα∗(K)
that corresponds to one fixed way of choosing one of α1 or α2 for each conditional ac-
tion K′ ?α1Jα2K in α (intuitively, we can view ¬̇TRcα∗(K) as one conjunct of the DNF of

ACM Transactions on Computational Logic, Vol. 18, No. 4, Article 27, Publication date: October 2017.

27:14 S. Ahmetaj, D. Calvanese, M. Šimkus, and M. Ortiz

¬̇TRα∗(K), where axioms and assertions are treated as propositions). Such a ¬̇TRcα∗(K)
has polynomial size, and it can be built non-deterministically in polynomial time. We
can then show that K∧¬̇TRα∗(K) is finitely satisfiable iff there is some choice TRcα∗(K)
such that K ∧ ¬̇TRcα∗(K) is finitely satisfiable. By Theorem 2.6, the latter test can
be done in non-deterministic exponential time, hence from Theorem 5.2 we obtain a
coNEXPTIME upper bound, which turns out to be tight. When we rule out number
restrictions from the input KB, the complexity drops to EXPTIME. The details are pro-
vided in the proof of the following theorem.

THEOREM 5.4. The problem (SV) is coNEXPTIME-complete when the input KB is
expressed in ALCHOIQbr, and EXPTIME-complete when the input KB is expressed in
ALCHOIbr.

PROOF. For the hardness, we note that for bothALCHOIQbr andALCHOIbr, finite
unsatisfiability of KBs can be reduced in polynomial time to static verification in the
presence of KBs in the same logic. Indeed, a KB K is finitely satisfiable iff (A′ ⊕{o}) is
not (K∧ (Av¬A′)∧ (o : A))-preserving, where A and A′ are fresh concept names and o
is a fresh individual. Hence hardness for ALCHOIQbr follows from Theorem 2.6, and
for ALCHOIbr from Proposition 2.7.

Obtaining a matching upper bound is slightly more involved. Theorem 5.2 es-
tablishes that verifying whether an action α is not K-preserving, where K is an
ALCHOIQbr KBs, reduces to finite satisfiability of a KBK∧¬̇TRα∗(K) inALCHOIQbr,
but unfortunately, this reduction is exponential in general. Hence we use an alter-
native reduction that allows us to build a set of KBs of exponential size, but where
each of them is of polynomial size, and can be obtained in polynomial time. Cru-
cially, K ∧ ¬̇TRα∗(K) is finitely satisfiable iff this set contains some K′ such that
K ∧ K′ is finitely satisfiable. Hence, the complement of the (SV) problem reduces to
deciding whether there is some K′ in the set for which K ∧ K′ is satisfiable. The de-
sired upper bounds can now be easily inferred. In the case of ALCHOIQbr, we non-
deterministically build the right K′ in polynomial time, and then test for finite satis-
fiability of K ∧ K′. Since the latter is an ALCHOIQbr KB whose size is bounded poly-
nomially by the input K and α, deciding its finite satisfiability is in NEXPTIME, see
Theorem 2.6. For ALCHOIbr, we can build in exponential time all the KBs K′ in the
set, which are exponentially many, but each of them is polynomial in the input K and
α. Then we iterate over the full set and, for each K′, we decide in EXPTIME whether
K ∧ K′ is finitely satisfiable (see Proposition 2.7). The upper bound then follows from
the fact that doing exponentially many EXPTIME tests is feasible in EXPTIME.

Now, to obtain the described set of KBs, it is convenient to first define a minor vari-
ation TRα(K) of the transformation TRα(K), which generates an already negated KB.

TRε(K) = ¬̇K
TR(A⊕C)·α(K) = (TRα(K))A←AtC

TR(A	C)·α(K) = (TRα(K))A←Au¬C

TR(p⊕r)·α(K) = (TRα(K))p←p∪r

TR(p	r)·α(K) = (TRα(K))p←p\r

TR(K1 ?α1Jα2K)·α(K) =
(
K1 ∧TRα1·α(K)

)
∨
(
¬̇K1 ∧TRα2·α(K)

)
It can be shown by a straightforward induction on `(α) (as defined in the proof of
Theorem 4.2) that TRα(K) is logically equivalent to ¬̇TRα(K) for every K and every α.
Hence, by Theorem 4.2, K ∧ TRα∗(K) is finitely satisfiable iff K ∧ ¬̇TRα∗(K) is finitely
satisfiable iff α is not K-preserving.

ACM Transactions on Computational Logic, Vol. 18, No. 4, Article 27, Publication date: October 2017.

Managing Change in Graph-structured Data Using Description Logics 27:15

Now, we define a translation analogous to TRα(K), but in the last case, for the con-
ditional axioms, we generate two separate KBs K1 ∧TRα1·α(K) and ¬̇K1 ∧TRα2·α(K),
rather than considering the disjunction of both. We denote by TRα(K) the set of all
the KBs obtained this way, that is:

TRε(K) = {¬̇K}
TR(A⊕C)·α(K) = {K′A←AtC | K′ ∈ TRα(K)}
TR(A	C)·α(K) = {K′A←Au¬C | K′ ∈ TRα(K)}
TR(p⊕r)·α(K) = {K′p←p∪r | K′ ∈ TRα(K)}
TR(p	r)·α(K) = {K′p←p\r | K

′ ∈ TRα(K)}

TR(K1 ?α1Jα2K)·α(K) = {K1 ∧K′ | K′ ∈ TRα1·α(K)} ∪ {¬̇K1 ∧K′ | K′ ∈ TRα2·α(K)}

It is easy to see that |TRα(K)| may be exponential in α and K, but each K′ ∈ TRα(K)
is of polynomial size and can be built in polynomial time. It is only left to show that
K ∧ TRα(K) is finitely satisfiable iff there is some K′ ∈ TRα(K) such that K ∧ K′ is
finitely satisfiable. This is a consequence of the fact that, for every instance I, we have
that I |= TRα(K) iff there is some K′ ∈ TRα(K) such that I |= K′.

We show this by induction on `(α). The base case is straightforward: if α = ε, then
TRα(K) = {TRα(K)}. For the inductive step, we first consider α′ = (A⊕C) ·α. First we
assume that I |= TRα′(K). That is, I |= (TRα(K))A←AtC , hence S(A⊕C)(I) |= TRα(K).
We can apply the induction hypothesis to S(A⊕C)(I) and TRα(K) to infer that there
exists K′ ∈ TRα(K) such that S(A⊕C)(I) |= K′, hence I |= K′A←AtC . Since TRα′(K) =

{K′A←AtC | K′ ∈ TRα(K)}, we have that K′′ = K′A←AtC is such that K′′ ∈ TRα′(K)

and I |= K′′, as desired. For the converse, if I |= K′′ for some K′′ ∈ TRα′(K), by
definition we have that there is some K′ ∈ TRα(K) such that K′′ = K′A←AtC , and
since I |= K′A←AtC we have that S(A⊕C)(I) |= K′. Using the induction hypothesis on
S(A⊕C)(I) and K′, we get S(A⊕C)(I) |= TRα(K), hence I |= (TRα(K))A←AtC , that is,
I |= TRα′(K), as desired. The cases of α′ = (A	C) ·α, α′ = (p⊕r) ·α, and α′ = (p	r) ·α
are analogous.

Finally, consider α′ = (K1 ?α1Jα2K) · α. We first show that if I |= TRα′(K), then there
is some K′ ∈ TRα′(K) such that I |= K′. By definition, TRα′(K) =

(
K1 ∧TRα1·α(K)

)
∨(

¬̇K1 ∧TRα2·α(K)
)
. So, if I |= TRα′(K), then one of I |= K1 ∧TRα1·α(K) or I |=

¬̇K1 ∧TRα2·α(K) holds. In the former case, we can use the induction hypothesis to
conclude that there exists some K′ ∈ TRα1·α(K) such that I |= K1 ∧ K′. Since
K1 ∧ K′ ∈ TRα′(K) by definition, the claim follows. The latter case is analogous. For
the converse, we assume that there exists some K′ ∈ TRα′(K) such that I |= K′. By
definition, this K′ must be of the form K1 ∧ K′′ with K′′ ∈ TRα1·α(K), or of the form
¬̇K1 ∧ K′′ with K′′ ∈ TRα2·α(K). In the former case, it follows from the induction hy-
pothesis that I |= K1∧TRα1·α(K), and hence I |=

(
K1∧TRα1·α(K)

)
∨
(
¬̇K1∧TRα2·α(K)

)
and the claim follows. The second case, where K′ is of the form ¬̇K1 ∧ K′′, is analogous
to the first one.

We note that in our definition of the (SV) problem, in addition to the action to be
verified, one has as input only one KB K expressing constraints. We can also consider
other interesting variations of the problem where, for example, we have a pair of KBs
Kpre and Kpost instead of (or in addition to) K and we want to decide whether executing

ACM Transactions on Computational Logic, Vol. 18, No. 4, Article 27, Publication date: October 2017.

27:16 S. Ahmetaj, D. Calvanese, M. Šimkus, and M. Ortiz

the action on any model of Kpre (and K) leads to a model of Kpost (and K). The reasoning
techniques and upper bounds presented above also apply to these generalized settings.

5.1. Lowering the Complexity
The goal of this section is to identify a setting for which the computational complexity
of static verification is lower. The natural way to achieve this is to consider as con-
straint language a DL with better computational properties, such as the logics of the
DL-Lite family [Calvanese et al. 2007].

Unfortunately, we cannot achieve tractability, since static verification is coNP-hard
even in a very restricted setting, as shown next.

THEOREM 5.5. The static verification problem is coNP-hard already for KBs of the
form (A1v¬A′1)∧· · ·∧ (Anv¬A′n), where each Ai, A′i is a concept name, and for ground
sequences of basic actions of the forms (A⊕C) and (A	C), where C is a concept name
or a nominal.

PROOF. We employ the 3-Coloring problem for graphs. Consider a graph G = (V,E)
with V = {1, . . . , n}. We construct in polynomial time a KB K and an action α such
that G is 3-colorable iff α is not K-preserving. For every v ∈ V , we use 3 concept names
A0
v, A

1
v, A

2
v for the 3 possible colors of the vertex v. In addition, we employ a concept

name D. Let K be the following KB:

K = (D v ¬D) ∧
∧

(v,v′)∈E ∧ 0≤c≤2

(Acv v ¬Acv′).

It remains to define the action α. For this we additionally use a nominal {o} and fresh
concept names B1, . . . , Bn. We let α := α1α

1
2 · · ·αn2α3, where

(i) α1 = (D ⊕ {o}) · (B1 ⊕ {o}) · · · (Bn ⊕ {o}),
(ii) αi2 = (Bi 	A0

i) · (Bi 	A1
i) · (Bi 	A2

i), for all i ∈ {1, . . . , n}, and
(iii) α3 = (D 	B1) · · · (D 	Bn).

Assume that I is a model of K such that Sα(I) 6|= K. We argue that then G is 3-
colorable. Indeed, since α does not modify the extensions of concepts Acv, Sα(I) 6|= K
may only hold if oI is in the extension of D after applying α on I. Due to α3, this
requires oI not to be in the extensions of any of B1, . . . , Bn after applying α1α

1
2 · · ·αn2

on I. Due to α1 and the various αi2, it must be the case that oI is in the extension in I
of one of A0

i , A1
i , or A2

i , for each i ∈ {1, . . . , n}. For every v ∈ V , let col(v) ∈ {0, 1, 2} be a
value such that oI is in the extension of Acol(v)

i in I. Since I satisfies the disjointness
axioms in K, the function col is a proper 3-coloring of G.

Suppose that G is 3-colorable and a proper coloring of G is given by a function col :
V → {0, 1, 2}. Take any instance I with ∆I = {e} and such that (i) {o}I = e, (ii) DI = ∅,
and (iii) e ∈ (Acv)

I iff col(v) = c. Since col is a proper coloring of G, I is a model of K.
As easily seen, Sα(I) 6|= K.

We next present a rich variant of DL-LiteR, which we call DL-Lite+
R, for which the

static verification problem is in coNP. It supports (restricted) Boolean combinations of
inclusions and assertions, and allows for complex concepts and roles in assertions. As
shown below, this allows us to express the effects of actions inside DL-Lite+

R KBs.

Definition 5.6. The logic DL-Lite+
R is defined as follows:

– Concept inclusions have the form C1 v C2 or C1 v ¬C2, with {C1, C2} ⊆ NC ∪ {∃p.> |
p ∈ NR} ∪ {∃p−.> | p ∈ NR}.

– Role inclusions have the form r1 v r2 with {r1, r2} ⊆ NR ∪ {p− | p ∈ NR}.

ACM Transactions on Computational Logic, Vol. 18, No. 4, Article 27, Publication date: October 2017.

Managing Change in Graph-structured Data Using Description Logics 27:17

– Role assertions are defined as for ALCHOIQbr, but in concept assertions o : C, we
require C ∈ B+, where B+ is the smallest set of concepts such that:
– NC ⊆ B+,
– {o′} ∈ B+, for all o′ ∈ NI,
– ∃r.> ∈ B+, for all roles r,
– {B1 uB2, B1 tB2,¬B1} ⊆ B+, for all B1, B2 ∈ B+.

– Formulae and KBs are defined as for ALCHOIQbr, but the operator ¬̇ may occur
only in front of assertions.

A DL-LiteR KB K is a DL-Lite+
R KB that satisfies the following restrictions:

– K is a conjunction of inclusions and assertions, and
– all assertions in K are basic assertions of the forms o : A with A ∈ NC, and (o, o′) : p

with p ∈ NR. /

We next characterize the complexity of finite satisfiability in DL-Lite+
R.

THEOREM 5.7. Finite satisfiability of DL-Lite+
R KBs is NP-complete.

PROOF. NP-hardness is immediate (e.g., by a reduction from propositional satisfia-
bility). For membership in NP, we simply show that for any satisfiable DL-Lite+

R KB
K there is a model I of K such that (i) QI = ∅ for all concept and role names Q that do
not appear in K, and (ii) |∆I | ≤ m+m · k + 2 · k, where m is the number of individuals
and k the number of (possibly complex) roles that appear in K. A non-deterministic
algorithm running in polynomial time in the size of K is then apparent: simply guess
an interpretation I with |∆I | ≤ m + m · k + 2 · k, and then check that I is a model of
K (model checking requires only polynomial time because DL-Lite+

R KBs correspond to
first-order formulas with a bounded—namely at most 2—number of variables [Vardi
1995]).

Consider a model I = 〈∆I , ·I〉 of K. Let T be the set of inclusions α1 v α2 appearing
in K such that I |= α1vα2. Similarly, let R be the set of inclusions β appearing in K of
the form r1 v r2 or r1 v¬r2, with {r1, r2} ⊆ NR ∪ {p− | p ∈ NR}, such that I |= β. Let R∗
be the closure of R under the following rules:
(a) if α1 v α2 ∈ R∗, then α1 v α1 ∈ R∗ and α2 v α2 ∈ R∗,
(b) if α1 v α2 ∈ R∗ and α2 v α3 ∈ R∗, then α1 v α3 ∈ R∗, and
(c) if α1 v α2 ∈ R∗, then α−1 v α

−
2 ∈ R∗.

W.l.o.g., we can assume for all concept and role names Q, that if Q does not appear
in K, then QI = ∅. Let ∆ = {oI | individual o appears in K}. Let ∆′ be a ⊆-minimal set
such that ∆ ⊆ ∆′, and such that the following rule is obeyed:

(*) if e ∈ ∆, and e ∈ (∃r.>)I for some (possibly complex) role r that occurs in K, then
there exists e′ ∈ ∆′ such that (e, e′) ∈ rI .

Note that |∆′| ≤ |∆| + |∆| · k. In particular, |∆′| is polynomial in the size of K. Let
N = {p | p ∈ NR occurs in K} ∪ {p− | p ∈ NR occurs in K}. For every r ∈ N such that
(∃r−.>)I \∆ 6= ∅, choose an arbitrary element sr ∈ (∃r−.>)I \∆. For a role r ∈ N for
which sr is defined, we let sink(r) denote sr.

Construct an instance J = 〈∆J , ·J 〉 as follows:

(c1) ∆J = ∆′ ∪ {sink(r) | r ∈ N and sink(r) is defined};
(c2) oJ = oI for all individuals o that appear in K;
(c3) AJ = AI ∩∆J , for all concept names A;
(c4) for all role names p, and each {e1, e2} ⊆ ∆J , we have that (e1, e2) ∈ pJ , if one of

the following holds:
(a) (e1, e2) ∈ pI ,

ACM Transactions on Computational Logic, Vol. 18, No. 4, Article 27, Publication date: October 2017.

27:18 S. Ahmetaj, D. Calvanese, M. Šimkus, and M. Ortiz

(b) e2 = sink(r) for some r ∈ N such that r v p ∈ R∗, and e1 ∈ (∃r.>)I ,
(c) e1 = sink(r) for some r ∈ N such that r v p ∈ R∗, and e2 ∈ (∃r−.>)I .

We now show that J remains a model of K. For this, it suffices to show that: (I) for
every concept inclusion C1 v C2 that appears in K, I |= C1 v C2 implies J |= C1 v C2,
(II) for every role inclusion r1 v r2 that appears in K, I |= r1 v r2 implies J |= r1 v r2,
and (III) for every assertion β that appears in K, I |= β if and only if J |= β. The
points (I)–(III) are sufficient because in K the operator ¬̇ is allowed to occur only in
front of assertions.

We first prove Claim (I). Assume C1 v C2 occurs in K, I |= C1 v C2, and there is
e ∈ CJ1 . We argue that e ∈ CJ2 . First note that C1 ∈ NC ∪ {∃p.> | p ∈ NR} ∪ {∃p−.> |
p ∈ NR}. In case C1 ∈ NC, due to condition (c3), e ∈ CI1 . In case C1 ∈ {∃p.> | p ∈ NR},
due to conditions (c4.a) and (c4.b), e ∈ CI1 . In case C1 ∈ {∃p−.> | p ∈ NR}, due to
conditions (c4.a) and (c4.c), e ∈ CI1 . Thus, e ∈ CI1 irrespectively of the shape of C1.
Since I |= C1 v C2, we have e ∈ CI2 . There are 6 cases:

— C2 ∈ NC. Then e ∈ CJ2 due to condition (c3).
— C2 ∈ {∃p.> | p ∈ NR}. Then e ∈ CJ2 due to condition (c4.b).
— C2 ∈ {∃p−.> | p ∈ NR}. Then e ∈ CJ2 due to condition (c4.c).
— C2 = ¬A for some A ∈ NC. Then e ∈ CJ2 due to condition (c3).
— C2 = ¬(∃p.>) for some p ∈ NR. Towards a contradiction, suppose e /∈ (¬∃p.>)J , i.e.,

there is e′ ∈ ∆J such that (e, e′) ∈ pJ . Then, due to conditions (c4.a) and (c4.b) we
obtain that e ∈ (∃p.>)I , i.e., e /∈ CI2 .

— C2 = ¬(∃p−.>) for some p ∈ NR. Similar to the point above, due to conditions (c4.a)
and (c4.c), we obtain that e ∈ C2.

Next, we prove Claim (II). Suppose there exist e, e′ in ∆J such that (e, e′) ∈ rJ1 .
There are two cases:

— (e, e′) ∈ rI1 . Then (e, e′) ∈ rJ2 due to condition (c4.a) and the fact that (e, e′) ∈ rI2 .
— (e, e′) 6∈ rI1 . Suppose r1 ∈ NR. Then it must be the case that e′ = sink(r) for some
r such that (e, e′) ∈ rI , e′ is anonymous and r v r1 ∈ R∗. Since r v r2 ∈ R∗, due to
condition (c4.b) it must be the case that (e, sink(r)) ∈ rJ2 , i.e., (e, e′) ∈ rJ2 . Showing
(e, e′) ∈ rJ2 in case r1 ∈ {p− | p ∈ NR} is analogous (the condition (c4.c) must be used
instead of (c4.b)).

Finally, we prove Claim (III). First note that due to the construction of J , we have
that J |= (o, o′) : r iff I |= (o, o′) : r holds for all role names r and all individuals o, o′
that occur in K. Thus Claim (III) trivially holds in case β in the claim is a role member-
ship assertion. Suppose β is an assertion o : C with C ∈ B+ (recall Definition 5.6). Due
to conditions (c2) and (c3), it only remains to make sure that for any invidual o and any
(possibly complex) role r that occur in K, we have oI ∈ (∃r.>)I iff oJ ∈ (∃r.>)J . The
“if” direction follows direction from condition (c4) in the construction of J . The “only
if” direction follows from the fact that ∆′ satisfies the rule (*).

To define the restricted setting, we also slightly limit the action language by impos-
ing that the condition K in actions of the form K ?α1Jα2K can be a Boolean combination
of assertions only. We observe that most of the examples presented in this paper use
the latter type of actions.

Definition 5.8. A (complex) action α is called simple if (i) no (concept or role) inclu-
sions occur in α, and (ii) all concepts of α are from B+. /

ACM Transactions on Computational Logic, Vol. 18, No. 4, Article 27, Publication date: October 2017.

Managing Change in Graph-structured Data Using Description Logics 27:19

DL-Lite+
R is expressive enough to allow us to reduce static verification for simple ac-

tions to finite unsatisfiability, and similarly as above, we can use a non-deterministic
polynomial time many-one reduction (from the complement of static verification to
finite unsatisfiability) to obtain a coNP upper bound on the complexity of static verifi-
cation, which is tight.

THEOREM 5.9. The static verification problem for DL-Lite+
R KBs and simple actions

is coNP-complete.

PROOF. The lower bound follows from Theorem 5.5. Alternatively, it can be proved
by a reduction from finite unsatisfiability in DL-Lite+

R, employing the same reduction
as in the proof of Theorem 5.4.

For the upper bound, consider a DL-Lite+
R KB K and a simple action α. We proceed

analogously to the proof of Theorem 5.4. From Theorem 5.2 we know that α is not
K-preserving iff K ∧ ¬̇TRα∗(K) is finitely satisfiable. Moreover, we have shown that
K ∧ ¬̇TRα∗(K) is finitely satisfiable iff there exists a K′ ∈ TRα∗(K) such that K ∧ K′
is finitely satisfiable, and K′ can be obtained non-deterministically in polynomial time
and is of size polynomial in α and K. The KB K′ is not a DL-Lite+

R KB, but it can be
transformed into an equisatisfiable DL-Lite+

R KB in linear time. To this end, turn K′
into negation normal form, i.e., push ¬̇ inside so that ¬̇ occurs in front of inclusions and
assertions only. Then, in the resulting KB K′, replace every occurrence of ¬̇(B1 v B2)
by o : B1 u ¬B2 and every occurrence of ¬̇(r1 v r2) by (o, o′) : r1 \ r2, where o, o′ are
fresh individuals. Clearly, the above transformations preserve satisfiability. Moreover,
since in K the operator ¬̇ may occur only in front of assertions, and α is simple, every
inclusion in the resulting K′ already appears in K. This implies that K′ is a DL-Lite+

R
KB, as desired.

6. PLANNING
We have focused so far on ensuring that the satisfaction of constraints is preserved
when we evolve GSD. But additionally to these constraints, there may be desirable
states of the GSD that we want to achieve, or undesirable ones that we want to avoid.
For instance, one may want to ensure that a finished project is never made active
again, or that an employee that is removed from the table recording active employees is
stored as a former employee, and not eliminated from the database. This raises several
problems, such as deciding if there exists a sequence of actions to reach a state with
certain properties, or whether a given sequence of actions always ensures that a state
with certain properties is reached. In this section, we consider these problems and
formalize them by means of automated planning, which is a major topic in artificial
intelligence.

We use DLs to describe states of KBs, which may act as goals or pre-conditions. A
plan is a sequence of actions taken from a given finite set, whose execution leads an
agent from the current state to a state that satisfies a given goal.

Definition 6.1. Let I = 〈∆I , ·I〉 be a finite instance, Act a finite set of actions, and
K a KB (the goal KB). A finite sequence 〈α1, . . . , αn〉 of ground instances of actions
from Act is called a plan for K from I (of length n), if there exists a finite instance
I∗ = 〈∆I∗ , ·I∗〉 such that Sα1···αn(I∗) |= K, where ∆I ⊆ ∆I

∗
and AI = AI

∗
for each

A ∈ NC, pI = pI
∗

for each p ∈ NR, and oI = oI
∗

for each o ∈ NI that occurs in Act and
K. /

Recall that actions in our setting do not modify the domain of an instance. To support
unbounded introduction of values in the data, the definition of planning above allows
for the domain to be expanded a-priori with a finite set of fresh domain elements.

ACM Transactions on Computational Logic, Vol. 18, No. 4, Article 27, Publication date: October 2017.

27:20 S. Ahmetaj, D. Calvanese, M. Šimkus, and M. Ortiz

We can now define the first planning problems that we study:

(P1) Given a finite set Act of actions, a finite instance I, and a goal KB K, does there
exist a plan for K from I?

(P2) Given a finite set Act of actions and a pair Kpre , K of formulae, does there exist a
substitution σ and a plan for σ(K) from some finite instance I with I |= σ(Kpre)?

(P1) is the classic plan existence problem, formulated in the setting of GSD. Prob-
lem (P2) also aims at deciding plan existence, but rather than the full actual state of
the data, we have as an input a pre-condition KB, and we are interested in deciding the
existence of a plan from some of its models. To see the relevance of (P2), consider the
complementary problem: a ‘no’ instance of (P2) means that, from every relevant initial
state, (undesired) goals cannot be reached. For instance, Kpre = Kic ∧ (x : FinishedPrj)
and K = x : ActivePrj may be used to check whether starting with GSD that satisfy
the integrity constraints and contain some finished project p, it is possible to make p
an active project again. The following simple example illustrates the plan existence
problems (P1) and (P2).

Example 6.2. Recall again the instance I1, and consider the following goal KB,
which requires that p1 is not an active project, and that e1 is an employee.

K = ¬̇(p1 :ActivePrj) ∧ (e1 :Empl)

Assume that Act consists of the action α2 from Example 3.4 (which we recall for con-
venience), and of the following α3:

α2 = (x :Empl ∧ y :Prj ∧ z :Prj ∧ (x, y) :worksFor) ?
((worksFor 	 {(x, y)}) · (worksFor ⊕ {(x, z)}))

α3 = (ActivePrj	 {y}) · (FinishedPrj⊕ {y}) · (Empl	 ∀worksFor.{y}) ·
(worksFor 	 worksFor�{y})

A plan for K from I1 is the sequence of actions 〈σ(α2), σ(α3)〉, where σ is the substitu-
tion from Example 3.4, which maps x to e1, y to p1, and z to p2. To obtain Sσ(α2)·σ(α3)(I1),
we first apply σ(α2) to I1. The resulting instance Sσ(α2)(I1) is as follows:

PrjSσ(α2)(I1) = {p1, p2}
ActivePrjSσ(α2)(I1) = {p1, p2}

EmplSσ(α2)(I1) = {e1, e3, e7}
FinishedPrjSσ(α2)(I1) = {}
worksForSσ(α2)(I1) = {(e1, p2), (e3, p1), (e7, p1), (e7, p2)}

Finally, we apply σ(α3) to Sσ(α2)(I1), and obtain the instance Sσ(α3)(Sσ(α2)(I1)) =
Sσ(α2)·σ(α3)(I1) below, which reflects the status of the data after applying 〈σ(α2), σ(α3)〉
to I1:

PrjSσ(α2)·σ(α3)(I1) = {p1, p2}
ActivePrjSσ(α2)·σ(α3)(I1) = {p2}

EmplSσ(α2)·σ(α3)(I1) = {e1, e7}
FinishedPrjSσ(α2)·σ(α3)(I1) = {p1}
worksForSσ(α2)·σ(α3)(I1) = {(e1, p2), (e7, p2)}

Clearly, Sσ(α2)·σ(α3)(I1) satisfies the goal KB as desired, that is, in Sσ(α2)·σ(α3)(I1), p1 is
not an active project and e1 is an employee.

For (P2), assume that additionally the following formula Kpre is given as input:

Kpre = (x :Empl) ∧ (y :ActivePrj) ∧ ((x, y) :worksFor)

ACM Transactions on Computational Logic, Vol. 18, No. 4, Article 27, Publication date: October 2017.

Managing Change in Graph-structured Data Using Description Logics 27:21

The above σ and 〈σ(α2), σ(α3)〉 are the desired substitution and plan. Indeed, I1 |=
σ(Kpre), and 〈σ(α2), σ(α3)〉 is a plan for σ(K) from I1. Note that in this case σ(K) = K,
but this does not need to happen in general. Indeed, 〈σ(α2), σ(α3)〉 would also be an
answer if we were given as input goal K′ = ¬̇(y :ActivePrj) ∧ (x :Empl) instead of K.

Unfortunately, the above problems are undecidable in general, which we show by a
reduction from the Word problem for Turing machines. We note that this undecidabil-
ity result, and all lower bounds in this section, hold for the restricted case of actions
with pre-conditions of the form K ?α1, rather than full conditional actions of the form
K ?α1Jα2K.

THEOREM 6.3. The problems (P1) and (P2) are undecidable, already for DL-LiteR
KBs and simple actions.

PROOF. The proof is by a reduction from the Word problem. We reduce to (P1) and
to (P2) the problem of deciding whether a deterministic Turing machine M accepts a
word w ∈ {0, 1}∗.

For (P1), assume that M is given by a tuple M = (Q, δ, q0, qa, qr), where Q is a set of
states, δ : {0, 1, b}×Q→ {0, 1, b}×Q×{+1,−1} is the transition function, b is the blank
symbol, q0 ∈ Q is the initial state, and qa ∈ Q is the accepting state. We can assume
w.l.o.g. that before accepting the input the machine returns the read/write head to the
initial position.

Intuitively, we define an action that implements the effects of each possible transi-
tion from δ. We also have a pair of actions that “extend” the tape with blank symbols as
needed. For the reduction we use the role next , and concept names Sym0, Sym1, Symb,
and Stq for each q ∈ Q.

The set Act of actions is defined as follows. For every (σ, q) ∈ {0, 1, b}×Qwith δ(σ, q) =
(σ′, q′, D) we have the action

ασ,q = ((x1, x2) :next ∧ x2 :Symσ ∧ x2 :Stq ∧ (x2, x3) :next) ?
((Symσ 	 {x2}) · (Symσ′ ⊕ {x2}) · (Stq 	 {x2}) · (Stq′ ⊕ {x2+D})).

To extend the tape with blank symbols, we have the actions αr and α`. In particular,

αr = (x : (Sym0 t Sym1 t Symb) ∧ y :¬(Sym0 t Sym1 t Symb)) ?
((next ⊕ {(x, y)}) · (Symb ⊕ {y})).

The action α` is obtained from αr by replacing (next ⊕ {(x, y)}) with (next ⊕ {(y, x)}).
Finally, we have an initialization action αinit, which stores the initial configuration of
M in the database. In particular,

αinit = (
∧

1≤i 6=j≤m ai : ¬{aj} ∧ a1 :¬(Sym0 t Sym1 t Symb)) ?
((Stq0 ⊕ {a1}) · (Symσ1

⊕ {a1}) · (Symσ2
⊕ {a2}) · · · (Symσm ⊕ {am}) ·

(next ⊕ {(a1, a2)}) · (next ⊕ {(a2, a3)}) · · · (next ⊕ {(am−1, am)}))

where w = σ1 · · ·σm. We let K = a1 :Stqa and the initial database I be empty, i.e., no
domain element participates in a concept or a role.

It can be easily seen that the reduction is correct. If K has a plan, then M accepts w.
Conversely, if M accepts w, then it accepts w within some number s of steps. One can
verify that expanding the domain of I with s fresh elements is sufficient to find a plan
for K using the actions in Act .

The above reduction also applies to (P2). It suffices to define a pre-condition KB Kpre

that describes the above I. Simply let Kpre be the conjunction of (Sym0tSym1tSymbt
∃next .> t ∃next−.>v⊥) and

⊔
q∈Q Stq v⊥.

ACM Transactions on Computational Logic, Vol. 18, No. 4, Article 27, Publication date: October 2017.

27:22 S. Ahmetaj, D. Calvanese, M. Šimkus, and M. Ortiz

We observe that the proof above works for DL-LiteR KBs, that is K and Kpre are
DL-LiteR KBs, but we use DL-Lite+

R assertions in preconditions of the simple actions.
Intuitively, problem (P1) is undecidable because we cannot know how many fresh

objects need to be added to the domain of I, but it becomes decidable if the size of ∆
in Definition 6.1 is bounded. It is not difficult to see that problem (P2) remains unde-
cidable even if the domain is assumed to be fixed (as the problem definition quantifies
existentially over instances, one can choose instances with sufficiently large domains).
However, also (P2) becomes decidable if we place a bound on the length of plans. More
precisely, the following problems are decidable.

(P1b) Given a finite set Act of actions, a finite instance I, a goal KB K, and a positive
integer `, does there exist a plan for K from I where |∆I∗ | ≤ `?

(P2b) Given a finite set Act of actions, a pair Kpre , K of formulae, and a positive integer
`, does there exist a substitution σ and a plan of length at most ` for σ(K) from
some finite instance I with I |= σ(Kpre)?

Example 6.4. Recall Example 6.2. For ` ≥ 2, the substitution σ and the plan
〈σ(α2), σ(α3)〉 are still the desired solutions for the problems (P1b) and (P2b). How-
ever there does not exist a plan for ` = 1. Now assume the goal KB is as follows:

K1 = ¬̇(p1 :ActivePrj) ∧ (e7 :Empl)

Then, 〈σ′(α3)〉 would be a plan of length one for σ(K1) from instance I1, where σ′ is the
substitution with σ′(x) = e7 and σ′(y) = p1 and is such that I1 |= σ′(Kpre).

We now study the complexity of these problems, assuming that the input bounds `
are coded in unary. The problem (P1b) can be solved in polynomial space, and thus
is not harder than deciding the existence of a plan in standard automated planning
formalisms such as propositional STRIPS [Bylander 1994], as established by the fol-
lowing result.

THEOREM 6.5. The problem (P1b) is PSPACE-complete for ALCHOIQbr and
ALCHOIbr KBs.

PROOF. It suffices to prove the lower bound for ALCHOIbr and the upper bound
for ALCHOIQbr. To prove the PSPACE lower bound for ALCHOIbr, we can adapt the
Turing Machine encoding that we used to show undecidability in Theorem 6.3, but for
Turing machines whose space is bounded by a polynomial function p. Intuitively if the
domain of an instance in the planning problem is bounded by ` then one can easily
simulate Turing machines that use space bounded by `. For a Turing machine M and
a word w, we define the set Act of actions, the input instance I and the goal KB K as
in the proof of Theorem 6.3 and we let the integer ` = p(|w|). Then M accepts w using
p(|w|) tape cells if and only if there exists a plan from an instance whose domain is
bounded by p(|w|).

For the upper bound we employ a non-deterministic polynomial space procedure that
stores in memory a finite instance and non-deterministically applies actions until the
goal is satisfied. Since the domain of each candidate instance is fixed and of size linear
in the input, each of them can be represented in polynomial space. The number of pos-
sible instances is bounded by s = 2r·d

2+c·d, where r and c are respectively the number
of roles and concepts appearing in the input set of actions, and d is the cardinality of
the domain of the initial instance. Thus the procedure can be terminated after s many
steps, without loss of completeness. We note that a counter that counts up to s can be
implemented in polynomial space, and that model checking ALCHOIQbr-formulae is
feasible in polynomial space.

ACM Transactions on Computational Logic, Vol. 18, No. 4, Article 27, Publication date: October 2017.

Managing Change in Graph-structured Data Using Description Logics 27:23

We note that we could make the reduction even simpler by removing the actions αr
and α` that are used to extend the tape if we assume that the machine only uses the m
cells where the input word w is written. The Word problem for such machines is also
known to be PSPACE-hard.

Now we establish the complexity of (P2b), both in the general setting (i.e., when Kpre

and K are in ALCHOIQbr or ALCHOIbr), and for the restricted case of DL-Lite+
R KBs

and simple actions. For (SV), considering the latter setting allowed us to reduce the
complexity from coNEXPTIME and EXPTIME, respectively, to coNP. Here we obtain
an analogous result.

THEOREM 6.6. The problem (P2b) is NEXPTIME-complete for ALCHOIQbr KBs
and EXPTIME-complete for ALCHOIbr KBs. It is NP-complete if Kpre and K are ex-
pressed in DL-Lite+

R and all actions in Act are simple.

PROOF. The lower bounds can be inferred immediately from the complexity of static
verification with KBs in ALCHOIQbr and ALCHOIbr (Theorem 5.4) and DL-Lite+

R
(Theorem 5.5).

For the upper bound for ALCHOIQbr, we first guess a variable substitution σ and
a sequence P = 〈α1, . . . , αm〉 of at most ` actions. By Theorem 4.2, it follows that P is
a plan as desired iff σ(Kpre) ∧ TRα1···αm(σ(K)) is finitely satisfiable. Note that the core
difference between this case and the one of Theorem 5.4 (and of Theorem 5.9) is that
now the formula TRα1···αm(σ(K)) is not negated and hence, intuitively, we need to de-
cide the existence of an instance that satisfies the negation of all formulas in TRα(K),
rather than satisfying just one of them. To be able to check the finite satisfiability of
σ(Kpre) ∧ TRα1···αm(σ(K)) within the desired bounds, we proceed similarly as above,
and consider a procedure that non-deterministically builds a polynomial KB K′ such
that σ(Kpre) ∧ K′ is finitely satisfiable iff σ(Kpre) ∧ TRα1···αm(σ(K)) is so.

More in detail, we define a set TR∧α(K) of KBs that is similar to TRα(K), except that
it contains the negation of the formulas in the latter, and uses conjunctions rather than
implications for the conditional axioms.

TR∧ε (K) = {K}
TR∧(A⊕C)·α(K) = {K′A←AtC | K′ ∈ TR∧α(K)}
TR∧(A	C)·α(K) = {K′A←Au¬C | K′ ∈ TR∧α(K)}
TR∧(p⊕r)·α(K) = {K′p←p∪r | K′ ∈ TR∧α(K)}
TR∧(p	r)·α(K) = {K′p←p\r | K

′ ∈ TR∧α(K)}
TR∧(K1 ?α1Jα2K)·α(K) = {K1 ∧K′ | K′ ∈ TR∧α1·α(K)} ∪ {¬̇K1 ∧K′ | K′ ∈ TR∧α2·α(K)}

Similarly as above, |TR∧α(K)|may be exponential but each K′ ∈ TR∧α(K) is polynomial
and can be built in polynomial time. We show below the following claim:
(‡) For every I and every K, we have that I |= TRα(K) iff there exists some K′ ∈

TR∧α(K) such that I |= K′.
With (‡) we can easily show that σ(Kpre) ∧ TRα1···αm(σ(K)) is finitely satisfiable iff
there exists some K′ ∈ TR∧α1···αm(σ(K)) such that σ(Kpre) ∧ K′ is finitely satisfiable.
For the ‘only if ’ direction, assume that σ(Kpre) ∧ TRα1···αm(σ(K)) is finitely satisfiable.
Then there exists some finite I such that I |= σ(Kpre) and I |= TRα1···αm(σ(K)). By
(‡), for this I we have that I |= TRα1···αm(σ(K)) iff there is some K′ ∈ TR∧α1···αm(σ(K))
such that I |= K′. We choose this K′. It follows that I |= K′ and, since I |= σ(Kpre),
we can conclude that σ(Kpre) ∧ K′ is finitely satisfiable. For the other direction, let
K′ ∈ TR∧α1···αm(σ(K)) be such that σ(Kpre) ∧K′ is finitely satisfiable. Then there exists

ACM Transactions on Computational Logic, Vol. 18, No. 4, Article 27, Publication date: October 2017.

27:24 S. Ahmetaj, D. Calvanese, M. Šimkus, and M. Ortiz

some finite I such that I |= σ(Kpre) and I |= K′. By (‡), for this I it follows that
I |= TRα(σ(K)), and since I |= σ(Kpre), we have that σ(Kpre)∧TRα1···αm(σ(K)) is finitely
satisfiable. Having shown this, the upper bound follows directly from the complexity
of deciding finite satisfiability of σ(Kpre)∧K′, and the fact that K′ is of polynomial size
and can be obtained non-deterministically in polynomial time.

It is only left to show (‡), which we do by induction on `(α) (as defined in the proof
of Theorem 4.2). The base case is trivial, since for α = ε we have TR∧α(K) = {K} and
TRα(K) = K, so we can set K′ = K and the claim follows.

For the cases of α′ = (A⊕C) · α, α′ = (A	C) · α, α′ = (p⊕ r) · α, and α′ = (p	 r) · α,
we can proceed exactly as in the proof of Theorem 5.4. The remaining case is when
α′ = (K1 ?α1Jα2K) · α. For the ’only if ’ direction, assume that I |= TRα′(K). In this case
the choice of K′ depends on I. We distinguish two cases:
— If I |= K1, since TRα′(K) = (¬̇K1 ∨ TRα1·α(K)) ∧ (K1 ∨ TRα2·α(K)), we have that
I |= TRα1·α(K). By induction hypothesis, there exists K′′ ∈ TR∧α1·α(K) such that
I |= K′′. We set K′ = K1 ∧ K′′, and since we have that K′ ∈ TR∧α′(K) by definition,
the claim follows.

— Otherwise, if I |= ¬̇K1, we have that I |= TRα2·α(K). By induction hypothesis, there
exists K′′ ∈ TR∧α2·α(K) such that I |= K′′. We set K′ = ¬̇K1 ∧ K′′, and since we have
again that K′ ∈ TR∧α′(K) by definition, the claim follows.

For the ’if ’ direction, assume that there exists some K′ ∈ TR∧α′(K) such that I |= K′.
We distinguish again two cases:
— If K′ = K1 ∧ K′′, for some K′′ ∈ TR∧α1·α(K), then I |= K1, and by induction hypoth-

esis, I |= TRα1·α(K). Hence, I |= (¬̇K1 ∨ TRα1·α(K)) ∧ (K1 ∨ TRα2·α(K)), and since
TRα′(K) = (¬̇K1 ∨ TRα1·α(K)) ∧ (K1 ∨ TRα2·α(K)), the claim follows.

— Otherwise, if K′ = ¬̇K1∧K′′, for some K′′ ∈ TR∧α2·α(K), then I |= ¬̇K1, and by induc-
tion hypothesis, I |= TRα2·α(K). Hence, I |= (¬̇K1 ∨ TRα1·α(K)) ∧ (K1 ∨ TRα2·α(K)),
and again the claim follows.

This concludes the proof of the upper bound for ALCHOIQbr.
For the upper bound for ALCHOIbr, one can build in exponential time all possible

sequences of actions of length `, and for each such sequence of actions there are expo-
nentially many substitutions σ (up to renaming of fresh individuals). Then we iterate
over the full set of such instantiated sequences of actions, which are exponentially
many, and for each of them, reason as above.

For the NP upper bound for DL-Lite+
R formulas and when all actions in Act are

simple, we can proceed analogously to the proof of Theorem 5.9, and show that the
formula K′ can be transformed in linear time into an equisatisfiable DL-Lite+

R one.

Now we consider three problems that are related to ensuring plans that always
achieve a given goal, no matter what the initial data is. They are variants of so-called
conformant planning, which deals with planning under various forms of incomplete
information. In our case, we assume that we have an incomplete description of the
initial state, since we only know it satisfies a given pre-condition, but have no concrete
instance.

The first of such problems is to certify that a candidate plan is indeed a plan for the
goal, for every possible database satisfying the pre-condition.

(C) Given a sequence P = 〈α1, . . . , αn〉 of actions, and formulae Kpre and K, is σ(P) a
plan for σ(K) from every finite instance I such that I |= σ(Kpre), for every possible
substitution σ?

ACM Transactions on Computational Logic, Vol. 18, No. 4, Article 27, Publication date: October 2017.

Managing Change in Graph-structured Data Using Description Logics 27:25

Example 6.7. Consider the sequence 〈α3〉 with the single action α3 from Exam-
ple 6.2, and the pre-condition Kpre and the goal K2 given as follows:

Kpre = x :Empl ∧ y :ActivePrj ∧ x :>2worksFor.>
K2 = x :Empl ∧ ¬̇(y :ActivePrj)

The sequence σ〈α3〉 is a plan for K2 for every substitution σ and for every input in-
stance I with I |= σ(Kpre). Indeed, the pre-condition Kpre ensures that every such
input instance I contains an active project σ(y) and an employee σ(x) that works for
at least 2 projects. Then σ(α3) removes σ(y) from the active projects and removes all
employees working only for σ(y); the pre-condition makes sure that σ(x) is not removed
and remains an employee.

Finally, we are interested in the existence of a plan that always achieves the goal,
for every possible state satisfying the pre-condition. Solving this problem corresponds
to the automated synthesis of a program for reaching a certain condition. We formulate
the problem with and without a bound on the length of the plans we are looking for.

(S) Given a finite set Act of actions and formulae Kpre and K, does there exist a
sequence P of actions such that σ(P) is a plan for σ(K) from every finite instance
I with I |= σ(Kpre), for every possible substitution σ?

(Sb) Given a finite set Act of actions, formulae Kpre and K, and a positive integer `,
does there exist a sequence P of actions such that σ(P) is of length at most ` and
is a plan for σ(K) from every finite instance I with I |= σ(Kpre), for every possible
substitution σ?

We observe that, although similar in appearance, there is a crucial difference between
problems (P2) and (S), since the former asks for the existence of a plan for some substi-
tution from some input instance, while the latter asks for the existence of a “universal”
plan that reaches the goal for every substitution and for every instance that satisfies
the pre-condition. The same holds for (P2b) and (Sb).

Example 6.8. Following Example 6.7, 〈α3〉 is the desired sequence for the formulas
Kpre and K2 and the set Act = {α2, α3} of actions from Example 6.2.

We conclude with the complexity of these problems:

THEOREM 6.9. The following hold:

— Problem (S) is undecidable, already for DL-LiteR KBs and simple actions.
— Problems (C) and (Sb) are coNEXPTIME-complete for ALCHOIQbr and EXPTIME-

complete for ALCHOIbr.
— If Kpre and K are expressed in DL-Lite+

R and all actions in Act are simple, then (C)
is coNP-complete and (Sb) is NPNP-complete.

PROOF. Problem (S) can be shown to be undecidable by employing the same re-
duction as for (P2) in Theorem 6.3. The coNEXPTIME and EXPTIME lower bounds
for (C) and (Sb) trivially follow from those for finite satisfiability in ALCHOIQbr and
ALCHOIbr, respectively.

For the upper bounds, we first observe that (C) reduces to validity testing in
ALCHOIQbr and ALCHOIbr, respectively: an instance of (C) (as described above) is
positive iff the formula σ(¬̇K′pre) ∨ TRα1···αn(σ(K′)) is valid, where K′pre and K′ are re-
spectively obtained from Kpre and K by replacing every variable by a fresh individual.
Deciding validity of σ(¬̇K′pre) ∨ TRα1···αn(σ(K′)) in turn reduces to deciding whether
σ(K′pre) ∧ ¬̇TRα1···αn(σ(K′)) is finitely unsatisfiable. The upper bounds for (C) then fol-

ACM Transactions on Computational Logic, Vol. 18, No. 4, Article 27, Publication date: October 2017.

27:26 S. Ahmetaj, D. Calvanese, M. Šimkus, and M. Ortiz

low from the NEXPTIME, EXPTIME, and NP upper bounds for the satisfiability of KBs
of the form K′ ∧ ¬̇TRα(K) shown in the proofs of Theorems 5.4 and 5.9.

Negative instances of (Sb), where Kpre is the pre-condition and K is the goal, can
be recognized in NEXPTIME for ALCHOIQbr and in EXPTIME for ALCHOIbr. Such
a test comprises building an exponentially large set of all candidate action sequences
of length at most `, and then making sure that each candidate is invalidated. That
is, each candidate action sequence P induces an instance of (C), which can be shown
negative in NEXPTIME for ALCHOIQbr and EXPTIME for ALCHOIbr. In the case of
DL-Lite+

R and simple actions, we can guess non-deterministically a sequence of actions
of length at most ` and then check that the induced instance of (C) is positive, which is
a test in coNP.

To show that the NPNP upper bound is tight, we use a polynomial time reduction
from evaluating QBFs of the form γ = ∃p1 . . . ∃pn∀q1 . . . ∀qm.ψ, where ψ is a Boolean
combination over propositional variables V = {p1, . . . , pn, q1, . . . , qm}. We can assume
that negation in ψ occurs in front of propositional variables only. For the reduction to
(Sb), we employ concept names T and F , and individual names ov for each propositional
variable v ∈ V . We let Kpre =

(∧
1≤i≤n opi :¬(T tF)

)
∧
(∧

1≤i≤m oqi : (T tF)u(¬T t¬F)
)
.

Intuitively, each initial instance encodes an assignment for the variables q1, . . . , qm,
but does not say anything about p1, . . . , pn. The latter is determined by choosing a
candidate plan. To this end, for each i ∈ {1, . . . , n}, we define the following actions:

αi = (opi :¬F) ? (T ⊕ {opi}), α′i = (opi :¬T) ? (F ⊕ {opi}).

We finally let ` = n and let K be the KB obtained from ψ by replacing each negative
literal ¬v by (ov :F) and each positive literal v by (ov :T). It is not difficult to see that
γ evaluates to true iff the constructed instance of (Sb) is positive.

7. RELATED WORK
We discuss separately related work from the databases and verification communities,
and from the knowledge representation and reasoning community.

7.1. Databases and Automated Verification
In recent years, there has been an increasing body of work on verification of dynamic
systems that access and modify databases [Calvanese et al. 2013a; Deutsch et al.
2014]. These systems analyze dynamic processes, while taking into account a data
component, which can be a fully-fledged relational database that may evolve via ac-
tions that perform insertions, deletions, and that allow one to introduce fresh values
[De Giacomo et al. 2012; Bagheri Hariri et al. 2013a]. The vast majority of works view
the database modification as an encapsulated process defined declaratively in terms
of pre- and post-conditions (see the aforementioned works and references therein). In
practice, however, the actual data manipulation that leads the database from a state
where the pre-condition holds to one ensuring the post-condition, needs to be realized
by a procedural program, script, or transaction. Our work focuses on ensuring the cor-
rectness of the concrete actions manipulating the database. In that sense, it can be
seen as a tool for verifying the correctness of the actual procedural implementation of
an action description, or for automatically synthesizing such an implementation from
a given set of basic actions. Another common feature of most existing works is that
they employ modified model checking techniques to verify complex temporal proper-
ties, written in temporal logics or in the µ-calculus. In contrast, we only consider sim-
pler formulas that state that some goal state will possibly or necessarily be reached.
However, in several of the works the verification tasks are performed on a single initial
data instance, while we quantify globally over all input databases.

ACM Transactions on Computational Logic, Vol. 18, No. 4, Article 27, Publication date: October 2017.

Managing Change in Graph-structured Data Using Description Logics 27:27

Of the aforementioned works, the most similar to ours is the one by De Giacomo et al.
[2012], who consider a similar setting that allows for inserting and deleting tuples dur-
ing the database evolution. However, there are some crucial differences. For example,
they consider conjunctive queries as basis for their action language, orthogonally to
our C2-based formalism. Also, in our work we only modify those parts of the database
that are explicitly changed by the actions. In contrast, in their setting, at every time
instant, the whole data instance is substituted with a totally new one, provided that
it satisfies the desired effects. That is, they do not guarantee inertia, and one instead
faces the frame problem and needs to explicitely enumerate all tuples that should re-
main unchanged. In this sense, and despite the syntactic similarity, their actions are
more in the declarative pre-/post-condition style described above.

A work that is close in spirit to ours is the one by Brenas et al. [2014], although
their formalism is described as a programming language tailored for graph transfor-
mations, rather than an action language for database updates. Their language also
allows one to manipulate graphs via additions and removals of individual edges or
nodes, possibly also using the usual if and while constructs. The authors present a
Hoare-style program verification calculus that relates their programming language
with the DL SROIQσ (an extension of the standard DL SROIQ with substitutions,
used to express weakest pre-conditions). Unfortunately, their work does not establish
any complexity results, and correctness can only be verified under the assumption that
programs terminate.

Very recently, an approach related to ours was presented by Itzhaky et al. [2016],
who propose a scripting language that allows one to modify databases via embedded
SQL statements. They use a logic closely related to FO2, the two-variable fragment of
first-order logic (without counting quantifiers) to express pre- and post-conditions, and
tackle the problem of verifying a Hoare triple {ϕpre}α{ϕpost} (which is defined anal-
ogously to our static verification, but allowing for different constraints to be verified
before and after the program execution, as discussed in Section 5). Despite the differ-
ent appearance, it is not hard to see that their scripting language is closely related,
although orthogonal, to our action language. The authors reduce the mentioned veri-
fication problem to the satisfiability of a sentence in FO2, by capturing weakest pre-
conditions in a similar way as we have done in this paper, and in our previous works
[Ahmetaj et al. 2014; Calvanese et al. 2016]. An interesting contribution of their work
is that they have implemented this style of verification using a dedicated FO2 solver,
and have conducted preliminary experiments on selected use cases that suggest that
this approach is actually feasible in practice.

Our work provides a tool for a-priori verification of updates on GSD, and is hence
closely related to verifying consistency of transactions, a crucial problem that has been
studied extensively in Databases. It has been considered for different kinds of trans-
actions and constraints, over traditional relational databases [Sheard and Stemple
1989], object-oriented databases [Spelt and Balsters 1998; Bonner and Kifer 1994], and
deductive databases [Kowalski et al. 1987], to name a few. Most of these works adopt
expressive formalisms like (extensions of) first or higher order predicate logic [Bonner
and Kifer 1994], or undecidable tailored languages [Sheard and Stemple 1989] to ex-
press the constraints and the operations on the data. Verification systems are often
implemented using theorem provers, and complete algorithms cannot be devised.

7.2. Knowledge Representation and Reasoning About Change
Using DLs to understand the properties of systems while fully taking into account both
structural and dynamic aspects is very challenging [Wolter and Zakharyaschev 1999].
Reasoning in DLs extended with a temporal dimension becomes quickly undecidable
[Artale 2006], unless severe restrictions on the expressive power of the DL are imposed

ACM Transactions on Computational Logic, Vol. 18, No. 4, Article 27, Publication date: October 2017.

27:28 S. Ahmetaj, D. Calvanese, M. Šimkus, and M. Ortiz

[Artale et al. 2011]. An alternative approach to achieve decidability is to take a so-
called “functional view of KBs” [Levesque 1984], according to which each state of the
KB can be queried via logical implication, and the KB is progressed from one state
to the next through forms of update [Calvanese et al. 2011]. This makes it possible
(under suitable conditions) to statically verify (temporal) integrity constraints over the
evolution of a system [Baader et al. 2012; Bagheri Hariri et al. 2013b].

Updating knowledge bases, and logic theories in general, is a classic topic in knowl-
edge representation, discussed extensively in the literature, cf. [Fagin et al. 1986; Kat-
suno and Mendelzon 1991]. The updates described by our action language are similar
in spirit to the knowledge base updates studied in other works, and in particular, the
ABox updates considered by Liu et al. [2011] and Kharlamov et al. [2013]. As our up-
dates are done directly on instances rather than on (the instance level of) knowledge
bases, we do not encounter the expressibility and succinctness problems faced there.

As mentioned, the problems studied in Section 6 are closely related to automated
planning, a topic extensively studied in AI. DLs have been employed to reason about
actions, goals, and plans, as well as about the application domains in which planning
is deployed, see the work by Gil [2005] and the references therein. Most relevant to
us is the significant body of work on DL-based action languages [Baader et al. 2005;
Milicic 2008; Baader et al. 2010; Liu et al. 2011; Baader and Zarrieß 2013]. In these
formalisms, DL constructs are used to give conditions on the effects of action execu-
tion, which are often non-deterministic. A central problem considered is the projection
problem, which consists in deciding whether every possible execution of an action se-
quence on a possibly incomplete state will lead to a state that satisfies a given prop-
erty. Clearly, our certification problem (C), which involves an incomplete initial state,
is a variation of the projection problem. However, we do not face the challenge of hav-
ing to consider different possible executions of non-deterministic actions. Many of our
other reasoning problems are similar to problems considered in these works, in differ-
ent forms and contexts. A crucial difference is that our well-behaved action language
allows us to obtain decidability even when we employ full-fledged TBoxes for specify-
ing goals, pre-conditions, and domain constraints. For instance, the work by Liu et al.
[2006] deals with general TBoxes, but strong consistency—a reasoning task close in
spirit to static verification here—was shown to be undecidable in the proposed formal-
ism.

8. CONCLUSIONS AND OUTLOOK
We have considered graph structured data that evolve as a result of updates expressed
in a powerful yet well-behaved action language. We have studied several reasoning
problems that support the static analysis of actions and their effects on the state of
the data, for any possible input data instance. We have shown the decidability of most
problems, and have characterized their computational complexity. In the cases where
the general problem is undecidable, we have identified decidable restrictions. For the
expressive DLs we have considered, most problems have a relatively high worst-case
complexity. This is not surprising, given that we are considering static analysis tasks in
which we reason about all possible data instances. However, to improve these bounds,
we have also considered a suitable variant of DL-Lite. We believe this work provides
powerful tools for the static analysis of the effects of executing complex actions on
databases, possibly in the presence of integrity constraints expressed in rich DLs. Our
upper bounds rely on a novel KB transformation technique, which enables us to reduce
most of the reasoning tasks to finite (un)satisfiability in a DL. This calls for developing
finite model reasoners for DLs (we note that ALCHOIQbr does not have the finite
model property). It also remains to better understand the complexity of finite model

ACM Transactions on Computational Logic, Vol. 18, No. 4, Article 27, Publication date: October 2017.

Managing Change in Graph-structured Data Using Description Logics 27:29

reasoning in different variations of DL-Lite. E.g., extensions of DL-Lite+
R with role

functionality would be very useful in the context of graph structured data.
In this paper, we have used DLs for describing constraints on GSD, data states, and

queries in basic actions. As explained in Section 2.3, all our results hold ifALCHOIQbr
is replaced by C2. However, we chose to use DLs instead of C2, mainly because this al-
lowed us to identify cases where reasoning has a lower worst-case complexity. Apart
from illustrating how interesting forms of constraints on GSD can be expressed suc-
cinctly in the DL syntax, the role of DLs in this work provides further evidence of their
suitability for data management tasks. We hope this will contribute to ongoing efforts
to bring the knowledge representation and the data management communities closer
to each other.

Many other challenges remain for future work. For example, generalizing the pos-
itive results on decidability to logics that can express more expressive constraints on
the data, and richer languages for describing the updates. In the former direction,
some of the authors have recently obtained analogous results for the case where both
the constraints and the updates are written in a DL that supports regular expressions
over roles as a role constructor [Calvanese et al. 2016]. This allows one, for exam-
ple, to capture some variants of regular path constraints [Abiteboul and Vianu 1999;
Grahne and Thomo 2003]. Unfortunately, allowing regular path queries in the basic
action makes the formalism undecidable in general, but decidability is preserved if
their use is restricted to act as tests in the concepts occurring in basic actions. Logics
with powerful identification constraints, like the ones considered by Calvanese et al.
[2014], would also be of practical importance. Given that the considered problems are
intractable even for weak fragments of the core DL-Lite and very restricted forms of
actions, it remains to explore how feasible these tasks are in practice, and whether
there are meaningful restrictions that make them tractable. Another interesting ad-
dition to the basic actions that we are exploring, is to allow for conjunctive queries in
the place of complex concepts and roles, similarly to the tasks considered by De Gia-
como et al. [2012]. We note, however, that tree-shaped conjunctive queries (over unary
and binary predicates) are readily expressible as DL concepts (even in very weak frag-
ments of ALCHOIQbr, such as EL), and thus covered already by our results. Apart
from other forms of basic actions, also a more expressive language for complex actions
could be considered. Our results naturally extend, for example, to the parallel appli-
cation of basic actions. But other natural extensions, such as ‘while’ loops in actions,
would easily yield an undecidable formalism. Finally, towards the spirit of verifica-
tion of data-centric systems, a natural next step would be to allow for more complex
temporal properties in the goal formulas.

ACM Transactions on Computational Logic, Vol. 18, No. 4, Article 27, Publication date: October 2017.

27:30 S. Ahmetaj, D. Calvanese, M. Šimkus, and M. Ortiz

REFERENCES
Serge Abiteboul and Paris Kanellakis. 1989. Object Identity as a Query Language Primitive. In Proc. of the

ACM SIGMOD Int. Conf. on Management of Data. 159–173.
Serge Abiteboul and Victor Vianu. 1999. Regular Path Queries with Constraints. J. of Computer and System

Sciences 58, 3 (1999), 428–452. DOI:http://dx.doi.org/10.1006/jcss.1999.1627
Shqiponja Ahmetaj, Diego Calvanese, Magdalena Ortiz, and Mantas Šimkus. 2014. Managing Change in

Graph-structured Data Using Description Logics. In Proc. of the 28th AAAI Conf. on Artificial Intelli-
gence (AAAI). AAAI Press, 966–973.

Marcelo Arenas, Richard Hull, Wim Marten, Tova Milo, and Thomas Schwentick. 2016. Foundations of
Data Management (Dagstuhl Perspectives Workshop 16151). Dagstuhl Reports 6, 4 (2016), 39–56.
DOI:http://dx.doi.org/10.4230/DagRep.6.4.39

Alessandro Artale. 2006. Reasoning on Temporal Class Diagrams: Undecidability Results. Ann. of Mathe-
matics and Artificial Intelligence 46, 3 (2006), 265–288.

Alessandro Artale, Diego Calvanese, Roman Kontchakov, Vladislav Ryzhikov, and Michael Zakharyaschev.
2007. Reasoning over Extended ER Models. In Proc. of the 26th Int. Conf. on Conceptual Modeling (ER)
(Lecture Notes in Computer Science), Vol. 4801. Springer, 277–292.

Alessandro Artale, Roman Kontchakov, Vladislav Ryzhikov, and Michael Zakharyaschev. 2011. Tailoring
Temporal Description Logics for Reasoning over Temporal Conceptual Models. In Proc. of the 8th Int.
Symp. on Frontiers of Combining Systems (FroCoS). Springer, 1–11.

Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter F. Patel-Schneider (Eds.).
2003. The Description Logic Handbook: Theory, Implementation and Applications. Cambridge Univer-
sity Press.

Franz Baader, Silvio Ghilardi, and Carsten Lutz. 2012. LTL over Description Logic Axioms. ACM Trans. on
Computational Logic 13, 3 (2012), 21:1–21:32.

Franz Baader, Marcel Lippmann, and Hongkai Liu. 2010. Using Causal Relationships to Deal with the
Ramification Problem in Action Formalisms Based on Description Logics. In Proc. of the 17th Int. Conf.
on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR). Lecture Notes in Computer
Science, Vol. 6397. Springer, 82–96.

Franz Baader, Carsten Lutz, Maja Milicic, Ulrike Sattler, and Frank Wolter. 2005. Integrating Description
Logics and Action Formalisms: First Results. In Proc. of the 20th Nat. Conf. on Artificial Intelligence
(AAAI). 572–577.

Franz Baader and Benjamin Zarrieß. 2013. Verification of Golog Programs over Description Logic Actions.
In Proc. of the 9th Int. Symp. on Frontiers of Combining Systems (FroCoS). Lecture Notes in Computer
Science, Vol. 8152. Springer, 181–196.

Babak Bagheri Hariri, Diego Calvanese, Giuseppe De Giacomo, Alin Deutsch, and Marco Montali. 2013a.
Verification of Relational Data-Centric Dynamic Systems with External Services. In Proc. of the 32nd
ACM SIGACT SIGMOD SIGAI Symp. on Principles of Database Systems (PODS). 163–174.

Babak Bagheri Hariri, Diego Calvanese, Marco Montali, Giuseppe De Giacomo, Riccardo De Masellis, and
Paolo Felli. 2013b. Description Logic Knowledge and Action Bases. J. of Artificial Intelligence Research
46 (2013), 651–686.

Mira Balaban and Azzam Maraee. 2013. Finite Satisfiability of UML Class Diagrams with Con-
strained Class Hierarchy. ACM Trans. on Software Engineering and Methodology 22, 3 (2013), 24.
DOI:http://dx.doi.org/10.1145/2491509.2491518

Daniela Berardi, Diego Calvanese, and Giuseppe De Giacomo. 2005. Reasoning on UML Class Diagrams.
Artificial Intelligence 168, 1–2 (2005), 70–118.

Anthony J. Bonner and Michael Kifer. 1994. An Overview of Transaction Logic. Theoretical Computer Sci-
ence 133, 2 (1994), 205–265.

Alex Borgida. 1996. On the Relative Expressiveness of Description Logics and Predicate Logics. Artificial
Intelligence 82, 1–2 (1996), 353–367.

Tim Bray, Jean Paoli, and C. M. Sperberg-McQueen. 1998. Extensible Markup Language (XML) 1.0.
W3C Recommendation. World Wide Web Consortium. Available at http://www.w3.org/TR/1998/
REC-xml-19980210.

Jon Haël Brenas, Rachid Echahed, and Martin Strecker. 2014. A Hoare-Like Calculus Using the SROIQσ
Logic on Transformations of Graphs. In Proc. of the 8th IFIP TC 1/WG 2.2 Int. Conf. on Theo-
retical Computer Science (TCS) (Lecture Notes in Computer Science), Vol. 8705. Springer, 164–178.
DOI:http://dx.doi.org/10.1007/978-3-662-44602-7 14

Dan Brickley and R. V. Guha. 2004. RDF Vocabulary Description Language 1.0: RDF Schema. W3C Recom-
mendation. World Wide Web Consortium. Available at http://www.w3.org/TR/rdf-schema/.

ACM Transactions on Computational Logic, Vol. 18, No. 4, Article 27, Publication date: October 2017.

http://dx.doi.org/10.1006/jcss.1999.1627
http://dx.doi.org/10.4230/DagRep.6.4.39
http://dx.doi.org/10.1145/2491509.2491518
http://www.w3.org/TR/1998/REC-xml-19980210
http://www.w3.org/TR/1998/REC-xml-19980210
http://dx.doi.org/10.1007/978-3-662-44602-7_14

Managing Change in Graph-structured Data Using Description Logics 27:31

Tom Bylander. 1994. The Computational Complexity of Propositional STRIPS Planning. Artificial Intelli-
gence 69 (1994), 165–204.

Diego Calvanese. 1996. Finite Model Reasoning in Description Logics. In Proc. of the 5th Int. Conf. on the
Principles of Knowledge Representation and Reasoning (KR). 292–303.

Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Riccardo Rosati. 2007.
Tractable Reasoning and Efficient Query Answering in Description Logics: The DL-Lite Family. J. of
Automated Reasoning 39, 3 (2007), 385–429.

Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Riccardo Rosati. 2011. Actions and Pro-
grams over Description Logic Knowledge Bases: A Functional Approach. In Knowing, Reasoning, and
Acting: Essays in Honour of Hector Levesque, Gerhard Lakemeyer and Sheila A. McIlraith (Eds.). Col-
lege Publications.

Diego Calvanese, Giuseppe De Giacomo, and Marco Montali. 2013. Foundations of Data-Aware Process
Analysis: A Database Theory Perspective. In Proc. of the 32nd ACM SIGACT SIGMOD SIGAI Symp. on
Principles of Database Systems (PODS). 1–12.

Diego Calvanese, Thomas Eiter, and Magdalena Ortiz. 2009. Regular Path Queries in Expressive Descrip-
tion Logics with Nominals. In Proc. of the 21st Int. Joint Conf. on Artificial Intelligence (IJCAI). 714–720.

Diego Calvanese, Wolfgang Fischl, Reinhard Pichler, Emanuel Sallinger, and Mantas Šimkus. 2014. Cap-
turing Relational Schemas and Functional Dependencies in RDFS. In Proc. of the 28th AAAI Conf. on
Artificial Intelligence (AAAI). AAAI Press, 1003–1011.

Diego Calvanese, Maurizio Lenzerini, and Daniele Nardi. 1999. Unifying Class-Based Representation For-
malisms. J. of Artificial Intelligence Research 11 (1999), 199–240.

Diego Calvanese, Magdalena Ortiz, and Mantas Simkus. 2016. Verification of Evolving Graph-structured
Data under Expressive Path Constraints. In Proc. of the 19th Int. Conf. on Database Theory (ICDT)
(Leibniz International Proceedings in Informatics (LIPIcs)), Vol. 48. Schloss Dagstuhl–Leibniz-Zentrum
für Informatik, Dagstuhl, Germany, 15:1–15:19. DOI:http://dx.doi.org/10.4230/LIPIcs.ICDT.2016.15

Diego Calvanese, Magdalena Ortiz, and Mantas Šimkus. 2013. Evolving Graph Databases under Descrip-
tion Logic Constraints. In Proc. of the 26th Int. Workshop on Description Logics (DL) (CEUR Workshop
Proceedings), Vol. 1014. 120–131.

Mariano P. Consens and Alberto O. Mendelzon. 1990. GraphLog: a Visual Formalism for Real Life Recursion.
In Proc. of the 9th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS).
404–416.

Giuseppe De Giacomo, Riccardo De Masellis, and Riccardo Rosati. 2012. Verification of Conjunctive Artifact-
Centric Services. Int. J. of Cooperative Information Systems 21, 2 (2012), 111–140.

Alin Deutsch, Richard Hull, and Victor Vianu. 2014. Automatic Verification of Database-Centric Systems.
SIGMOD Record 43, 3 (2014), 5–17.

Ronald Fagin, Gabriel M. Kuper, Jeffrey D. Ullman, and Moshe Y. Vardi. 1986. Updating logical databases.
In Advances in Computing Research. JAI Press, 1–18.

Yolanda Gil. 2005. Description Logics and Planning. AI Magazine 26, 2 (2005), 73–84.
Gösta Grahne and Alex Thomo. 2003. Query Containment and Rewriting Using Views for Regular Path

Queries Under Constraints. In Proc. of the 22nd ACM SIGACT SIGMOD SIGART Symp. on Principles
of Database Systems (PODS). 111–122. DOI:http://dx.doi.org/10.1145/773153.773165

Richard B. Hull and Roger King. 1987. Semantic Database Modelling: Survey, Applications and Research
Issues. Comput. Surveys 19, 3 (Sept. 1987), 201–260.

Ullrich Hustadt, Renate A. Schmidt, and Lilie Georgieva. 2004. A Survey of Decidable First-Order Frag-
ments and Description Logics. J. on Relational Methods in Computer Science 1 (2004), 251–276.

Shachar Itzhaky, Tomer Kotek, Noam Rinetzky, Mooly Sagiv, Orr Tamir, Helmut Veith, and Florian
Zuleger. 2016. On the Automated Verification of Web Applications With Embedded SQL. CoRR Tech-
nical Report arXiv:1610.02101. arXiv.org e-Print archive. http://arxiv.org/abs/1610.02101 Available at
http://arxiv.org/abs/1610.02101.

Hirofumi Katsuno and Alberto O. Mendelzon. 1991. On the Difference between Updating a Knowledge Base
and Revising It. In Proc. of the 2nd Int. Conf. on the Principles of Knowledge Representation and Rea-
soning (KR). 387–394.

Yevgeny Kazakov. 2004. A Polynomial Translation from the Two-Variable Guarded Fragment with Number
Restrictions to the Guarded Fragment. In Proc. of the 9th Eur. Conf. on Logics in Artificial Intelligence
(JELIA) (Lecture Notes in Computer Science), Vol. 3229. Springer, 372–384.

Evgeny Kharlamov, Dmitriy Zheleznyakov, and Diego Calvanese. 2013. Capturing Model-Based Ontology
Evolution at the Instance Level: The Case of DL-Lite. J. of Computer and System Sciences 79, 6 (2013),
835–872.

ACM Transactions on Computational Logic, Vol. 18, No. 4, Article 27, Publication date: October 2017.

http://dx.doi.org/10.4230/LIPIcs.ICDT.2016.15
http://dx.doi.org/10.1145/773153.773165
http://arxiv.org/abs/1610.02101
http://arxiv.org/abs/1610.02101

27:32 S. Ahmetaj, D. Calvanese, M. Šimkus, and M. Ortiz

Robert A. Kowalski, Fariba Sadri, and Paul Soper. 1987. Integrity Checking in Deductive Databases. In
Proc. of the 13th Int. Conf. on Very Large Data Bases (VLDB). 61–69.

Maurizio Lenzerini. 2011. Ontology-based Data Management. In Proc. of the 20th Int. Conf. on Information
and Knowledge Management (CIKM). 5–6.

Hector J. Levesque. 1984. Foundations of a Functional Approach to Knowledge Representation. Artificial
Intelligence 23 (1984), 155–212.

H. J. Levesque, R. Reiter, Y. Lesperance, F. Lin, and R. Scherl. 1997. GOLOG: A Logic Programming Lan-
guage for Dynamic Domains. J. of Logic Programming 31 (1997), 59–84.

Hongkai Liu, Carsten Lutz, Maja Milicic, and Frank Wolter. 2006. Reasoning About Actions Us-
ing Description Logics with General TBoxes. In Proc. of the 10th Eur. Conf. on Logics in Ar-
tificial Intelligence (JELIA) (Lecture Notes in Computer Science), Vol. 4160. Springer, 266–279.
DOI:http://dx.doi.org/10.1007/11853886 23

Hongkai Liu, Carsten Lutz, Maja Milicic, and Frank Wolter. 2011. Foundations of Instance Level Updates
in Expressive Description Logics. Artificial Intelligence 175, 18 (2011), 2170–2197.

Carsten Lutz, Ulrike Sattler, and Lidia Tendera. 2005. The Complexity of Finite Model Reasoning in De-
scription Logics. Information and Computation 199, 1–2 (2005), 132–171.

Carsten Lutz, Ulrike Sattler, and Frank Wolter. 2001. Description Logics and the Two-Variable Fragment.
In Proc. of the 14th Int. Workshop on Description Logics (DL) (CEUR Electronic Workshop Proceedings,
http://ceur-ws.org/), Vol. 49. 66–75. http://CEUR-WS.org/Vol-49/LutzSattlerWolter-66start.ps

Maja Milicic. 2008. Action, Time and Space in Description Logics. Ph.D. Dissertation. TU Dresden.
Michael Mortimer. 1975. On Languages with Two Variables. Mathematical Logic Quarterly (formerly:

Zeitschrift für Mathematische Logik und Grundlagen der Mathematik) 21, 1 (1975), 135–140.
Pablo Muñoz, Nils Vortmeier, and Thomas Zeume. 2016. Dynamic Graph Queries. In Proc. of the 19th Int.

Conf. on Database Theory (ICDT) (Leibniz International Proceedings in Informatics (LIPIcs)), Vol. 48.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 14:1–14:18.

Ian Pratt-Hartmann. 2005. Complexity of the Two-Variable Fragment with Counting Quantifiers. J. of Logic,
Language and Information 14, 3 (2005), 369–395.

Sherif Sakr and Eric Pardede (Eds.). 2011. Graph Data Management: Techniques and Applications. IGI
Global.

Klaus Schild. 1991. A Correspondence Theory for Terminological Logics: Preliminary Report. In Proc. of the
12th Int. Joint Conf. on Artificial Intelligence (IJCAI). Morgan Kaufmann, 466–471.

Renate A. Schmidt and Dmitry Tishkovsky. 2014. Using Tableau to Decide Description Logics With Full
Role Negation and Identity. ACM Trans. on Computational Logic 15, 1 (2014), 7:1–7:31.

Tim Sheard and David Stemple. 1989. Automatic Verification of Database Transaction Safety. ACM Trans.
on Database Systems 14, 3 (1989), 322–368.

David Spelt and Herman Balsters. 1998. Automatic Verification of Transactions on an Object-Oriented
Database. In Proc. of the 6th Int. Workshop on Database Programming Languages (DBPL) (Lecture
Notes in Computer Science), Vol. 1369. Springer, 396–412.

Balder ten Cate and Massimo Franceschet. 2005. Guarded Fragments with Constants. J. of Logic, Language
and Information 14, 3 (2005), 281–288.

Stephan Tobies. 2000. The Complexity of Reasoning with Cardinality Restrictions and Nominals in Expres-
sive Description Logics. J. of Artificial Intelligence Research 12 (2000), 199–217.

Moshe Y. Vardi. 1995. On the Complexity of Bounded-variable Queries (Extended Abstract). In Proc. of
the 14th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS). 266–276.
DOI:http://dx.doi.org/10.1145/212433.212474

Frank Wolter and Michael Zakharyaschev. 1999. Temporalizing Description Logic. In Frontiers of Combining
Systems, D. Gabbay and M. de Rijke (Eds.). Studies Press/Wiley, 379–402.

ACM Transactions on Computational Logic, Vol. 18, No. 4, Article 27, Publication date: October 2017.

http://dx.doi.org/10.1007/11853886_23
http://ceur-ws.org/
http://CEUR-WS.org/Vol-49/LutzSattlerWolter-66start.ps
http://dx.doi.org/10.1145/212433.212474

Managing Change in Graph-structured Data Using Description Logics 27:33

A. APPENDIX
We first show that KBs in ALCHOIQbr can be seen as KBs in a standard DL and
that many of the added features are only syntactic sugar. Let ALCHOIQ∪,\ be the
extension of ALCHOIQ with the role constructors of union and difference. That is,
ALCHOIQ∪,\ is defined as in the left column of Table I, except that roles r are defined
as follows:

r −→ p | r− | r1 ∪ r2 | r1 \ r2

PROPOSITION A.1. For every ALCHOIQbr KB K, there is an ALCHOIQ∪,\ KB K′
such that the following hold:
(1) every model of K′ is a model of K, and
(2) every model of K can be transformed into a model of K′, by possibly modifying the

interpretation of symbols in K′ not mentioned in K.

PROOF. Let K be an ALCHOIQbr KB. It suffices to prove that, except for role union
and role difference, every added construct inALCHOIQbr (namely singleton roles, role
intersection, role restriction, disjunction and negation of KBs), can be simulated in an
ALCHOIQ∪,\ KB K′. We show this as follows:
— Singleton role {(o1, o2)}: this constructor can be simulated in K′ by introducing a

fresh role name po1o2 , replacing every occurrence of {(o1, o2)} in K with po1o2 , and
adding to K′ the following three inclusions:

{o1} v ∃po1o2 .> ∃po1o2 .> v {o1} ∃p−o1o2 .> v {o2}

One can verify that every model I of K can be transformed into a model of K′ by
additionally interpreting the role name po1o2 as pIo1,o2 = {(oI1 , oI2)} = {(o1, o2)}I .
Also, every model of K′, when restricted to the symbols in K, is also a model of K.

— Role intersection: r1 ∩ r2 can be equivalently replaced by r1 \ (r1 \ r2).
— Domain and range restrictions r�C and r�C : first we note that, by using role inverse,

each of the two constructs can be expressed in terms of the other one. Specifically,
r�C can be equivalently replaced with (r−�C)−. Hence, we can assume that K con-
tains no occurrences of r�C . To simulate r�C inK′, we introduce two fresh role names
rC and rC̄ , substitute every occurrence of r�C in K with rC , and add to K′ the follow-
ing inclusions:

r v rC ∪ rC̄ rC ∪ rC̄ v r ∃r−C .> v C ∃r−
C̄
.> v ¬C

One can verify that every model I of K can be transformed into a model of K′ by
additionally interpreting the role name rC as rCI = r�C

I and the role name and rC̄
as rC̄I = rI \ r�C

I . Also, every model of K′, when restricted to the symbols in K, is
also a model of K.

— Boolean KBs: we assume without loss of generality that only concept and role in-
clusions occur in K. Indeed, every assertion o : C can be equivalently expressed as
the inclusion {o} vC, and every assertion (o1, o2) : r as the inclusion {o1} v ∃r.{o2}.
Let α1, . . . , αn be all the concept and role inclusions that occur in K (note that the
same αi can occur in K several times, possibly negated). For each αi, let Ai be a
new concept name. We define Conc(K) as theALCHOIQ concept obtained from K by
replacing each αi byAi, each ∨ by t, each ∧ by u, and each ¬̇ by ¬. TheALCHOIQ∪,\
KB K′ is then defined as the conjunction of the following inclusions, where o is a

ACM Transactions on Computational Logic, Vol. 18, No. 4, Article 27, Publication date: October 2017.

27:34 S. Ahmetaj, D. Calvanese, M. Šimkus, and M. Ortiz

fresh individual name and s is a fresh role name:

{o} v Conc(K)
> v ∃s−.{o}

{o} uAi v ∀s.(¬C1 t C2), for all αi = C1 v C2

{o} u ¬Ai v ∃s.(C1 u ¬C2), for all αi = C1 v C2

{o} uAi v ∀s.Ai, for all αi = r1 v r2

r1�Ai v r2, for all αi = r1 v r2

{o} u ¬Ai v ∃s.(∃(r1 \ r2).>), for all αi = r1 v r2.

Note that the fresh role s connects o with every element of the domain. The under-
lying intuition of the above encoding is the following: whenever an inclusion αi in K
is set to true then o satisfies the corresponding Ai in K′, and the role s ensures that
every element of the domain satisfies the inclusion αi. Conversely, if the inclusion αi
in K is set to false, i.e., ¬̇αi is set to true, then o does not belong to the corresponding
Ai in K′ and in this case the s role makes sure that there exists an element of the
domain that does not satisfy αi.
More formally, let I be a model of K. We construct a model I ′ of K′ as follows:
— for all αi = C1 v C2 set:

AI
′

i = {oI}, if I |= αi, and
AI
′

i = ∅, if I 6|= αi

— for all αi = r1 v r2 set:

AI
′

i = ∆I , if I |= αi, and
AI
′

i = ∅, if I 6|= αi

— sI
′

= {oI} ×∆I

— I ′ coincides with I in the interpretation of all other individual names, concept
names, and role names.

One can easily check that I ′ is indeed a model of K′. Moreover, by construction we
have that every model of K′ is also a model of K.

A.1. ALCHOIQbr and C2

The so-called standard translation from DLs to C2 can be found in several works, e.g.,
[Borgida 1996; Schmidt and Tishkovsky 2014; Hustadt et al. 2004], and is summarized
in Table III. It uses a unary predicate Â for each concept name A, a binary predicate
p̂ for each role name p, and a constant ô for each individual o. Complex concepts are
translated into formulas with one free variable using two translation functions: STx

translates a concept C into a formula with x as free variable, and ST y into a formula
with y as free variable. Note that, since the translation is to C2, the only variables it
uses are x and y, which may be reused as quantified variables inside the translated
formulas STx(C) and ST y(C). Complex roles are translated into formulae with two
free variables. Again, we have two analogous translation functions: STxy produces a
C2 formula with the pair (x, y) as free variables, while ST yx produces a C2 formula
with the pair (y, x). Each assertion, inclusion, and knowledge base α is translated into
a C2 sentence ST (α). If α is an assertion, then ST (α) is obtained by substituting free
variables with constants. For α an inclusion, we quantify universally over the free
variables. Finally, KBs are translated into the Boolean combinations of the sentences
translating their inclusions and assertions.

As mentioned, all the upper bounds in this paper would still hold if we use as our
constraint language a more expressive DL that is still captured by C2 (or even C2 itself).
This means that we can add to ALCHOIQbr (any combination of) the constructors in

ACM Transactions on Computational Logic, Vol. 18, No. 4, Article 27, Publication date: October 2017.

Managing Change in Graph-structured Data Using Description Logics 27:35

Table III. The standard translation from ALCHOIQbr to C2.

Translating concepts
STx(>) = (x = x)

STx(⊥) = ¬(x = x)

STx(A) = Â(x)

STx({o}) = (x = ô)

STx(¬C) = ¬STx(C)

STx(C1 u C2) = STx(C1) ∧ STx(C2)

STx(C1 t C2) = STx(C1) ∨ STx(C2)

STx(∃r.C) = ∃y.(STxy(r) ∧ ST y(C))

STx(∀r.C) = ∀y.(STxy(r)→ ST y(C))

STx(6n r.C) = ∃≤ny.(STxy(r) ∧ ST y(C))

STx(>n r.C) = ∃≥ny.(STxy(r) ∧ ST y(C))

ST y(>) = (y = y)

ST y(⊥) = ¬(y = y)

ST y(A) = Â(y)

ST y({o}) = (y = ô)

ST y(¬C) = ¬ST y(C)

ST y(C1 u C2) = ST y(C1) ∧ ST y(C2)

ST y(C1 t C2) = ST y(C1) ∨ ST y(C2)

ST y(∃r.C) = ∃x.(ST yx(r) ∧ STx(C))

ST y(∀r.C) = ∀x.(ST yx(r)→ STx(C))

ST y(6n r.C) = ∃≤nx.(ST yx(r) ∧ STx(C))

ST y(>n r.C) = ∃≥nx.(ST yx(r) ∧ STx(C))

Translating roles
STxy(p) = p̂(x, y)

STxy({o, o′}) = (x = ô) ∧ (y = ô′)

STxy(r−) = ST yx(r)

STxy(r1 ∪ r2) = STxy(r1) ∨ STxy(r2)

STxy(r1 \ r2) = STxy(r1) ∧ ¬STxy(r2)

STxy(r1 ∩ r2) = STxy(r1) ∧ STxy(r2)

STxy(r�C) = STxy(r) ∧ STx(C)

STxy(r�C) = STxy(r) ∧ ST y(C)

ST yx(p) = p̂(y, x)

ST yx({o, o′}) = (y = ô) ∧ (x = ô′)

ST yx(r−) = STxy(r)

ST yx(r1 ∪ r2) = ST yx(r1) ∨ ST yx(r2)

ST yx(r1 \ r2) = ST yx(r1) ∧ ¬ST yx(r2)

ST yx(r1 ∩ r2) = ST yx(r1) ∧ ST yx(r2)

ST yx(r�C) = ST yx(r) ∧ ST y(C)

ST yx(r�C) = ST yx(r) ∧ STx(C)

Translating assertions, inclusions, and KBs
ST (o :C) = STx(C)[x 7→ ô]

ST ((o1, o2) : r) = STxy(r)[x 7→ ô1, y 7→ ô2]

ST (K1 ∧ K2) = ST (K1) ∧ ST (K2)

ST (¬̇K) = ¬ST (K)

ST (C1 v C2) = ∀x.(STx(C1)→ STx(C2))

ST (r1 v r2) = ∀x∀y.(STxy(r1)→ STxy(r2))

ST (K1 ∨ K2) = ST (K1) ∨ ST (K2)

C, C1, C2 are ordinary concepts, r, r1, r2 ordinary roles, K, K1, K2 KBs, A ∈ NC, p ∈ NR, {o, o1, o2} ⊆ NI.

the upper part of Table IV, since they are all expressible in C2. In particular, our results
hold for ALBOQid , which adds number restrictions to ALBOid . ALBOid is known to
have the same expressiveness as the two-variable fragment of first-order predicate
logic with equality. The additional concept and role constructors supported in these
logics are given in Table IV. For a more detailed discussion of the relationship between
the two-variable fragment and these expressive DLs, as well as the interdefinability
of the different constructors, we refer the reader to the literature, e.g., [Borgida 1996;
Lutz et al. 2001; Hustadt et al. 2004; Schmidt and Tishkovsky 2014] and references
therein.

ACM Transactions on Computational Logic, Vol. 18, No. 4, Article 27, Publication date: October 2017.

27:36 S. Ahmetaj, D. Calvanese, M. Šimkus, and M. Ortiz

Table IV. Additional constructors in ALBOQid

Syntax Semantics Translation to C2

role negation ¬r (¬r)I = (∆I ×∆I) \ rI STxy(¬r) = ¬STxy(r)
identity role id (id)I = {(e, e) | e ∈ ∆I} STxy(id(C)) = STx(C) ∧ x = y

Definable constructors
Syntax Definition

Role constructors
Top role O O ≡ p ∪ ¬p for some role name p
Bottom role 4 4 ≡ ¬O
Left cylindrification Dc Dc ≡ O�D
Right cylindrification cD cD ≡ O�D
Cross product C ×D C ×D ≡ Cc ∩ cD
Test C? C? ≡ id�D

Concept constructors
Universal modality �C �C ≡ ∀O.C
Sufficiency (or window) ∀R.C ∀R.C ≡ ¬∃¬R.C

ACM Transactions on Computational Logic, Vol. 18, No. 4, Article 27, Publication date: October 2017.

	Introduction
	An Expressive DL for Reasoning About Evolving GSD
	ALCHOIQ as a Constraint Language for GSD
	Extending ALCHOIQ for Reasoning About Evolving GSD
	ALCHOIQbr and C 2
	Complexity of Reasoning in ALCHOIQbr
	ALCHOIbr, an ExpTime Fragment

	Updating Graph Structured Data
	Capturing Action Effects
	Static Verification
	Lowering the Complexity

	Planning
	Related Work
	Databases and Automated Verification
	Knowledge Representation and Reasoning About Change

	Conclusions and Outlook
	Appendix
	ALCHOIQbr and C 2

