
Structural Constraints for Dynamic
Operators in Abstract Argumentation

Johannes P. Wallner
TU Wien, Austria

Abstract. Many recent studies of dynamics of formal argumentation in AI focus on
the well-known formalism of argumentation frameworks (AFs). Despite their use-
fulness in many areas of argumentation, their abstract notion of arguments creates a
barrier for operators that modify a given AF, namely in the case that dependencies
between arguments have been abstracted away that might be subsequently missed.
In this paper we aim to support development of dynamic operators on formal mod-
els in abstract argumentation by providing constraints imposed on the modifica-
tion of the structure that can be used to incorporate information that has been ab-
stracted away. Towards a broad reach, we base our results on the general formalism
of abstract dialectical frameworks (ADFs) in abstract argumentation, and study the
complexity of the proposed structural constraints. To show applicability, we adapt
an extension enforcement operator on AFs to ADFs that is allowed to only add
support relations between arguments. We show feasibility of our approach by an
experimental evaluation of an implementation of this operator.

1. Introduction

In the last decades there has been a steady stream of advances in formal approaches to
argumentation in artificial intelligence (AI) [1]. Central to many formal models in ar-
gumentation are argumentation frameworks (AFs) [13], a formalism that is both foun-
dational and simple: AFs consist of abstract arguments and directed attacks (conflicts)
between these arguments. The simplicity of AFs is an appealing quality, which can be
seen by the fact that several approaches use AFs as their core reasoning engine [5,19].

Since AFs are, in a sense, “easy to handle” from a conceptual point of view, they
have also been prominent as a formal basis in studies of dynamics of argumentation [3,
7,8,10]. This topic naturally arose in this research community since argumentation is
an inherently dynamic process. However, in contrast to forms of “static” reasoning, i.e.,
reasoning on AFs that do not change, dynamic operations, if solely done on AFs, may
miss certain dependencies between arguments. For instance, there can be dependencies
in the internal structures of arguments, which are hidden in the arguments in AFs whose
structure was abstracted away during their instantiation.

Example 1. Consider two arguments, a1 and a2, and assume that a1 is a sub argument of
a2, e.g., because a1 concludes a premise of a2. When both arguments are part of an AF
then a modification of that AF may add an attack on a1, say by a counter to a1’s premise.
In many cases such a counter is deemed to, also, attack the super argument a2, since its
premise is attacked. However, if no further information than the AF is available, then this
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Figure 1. (a) Three layers for dynamic operators and (b) outcomes that satisfy constraints of each layer.

interdependency might be missed, which may lead to unintended results, like rejecting
a1 but finding a2 to be acceptable, even though one is the premise of the other.

In this paper we argue that despite these drawbacks of AFs when utilizing them
in dynamic operations, abstract formalisms, with AFs being the most famous ones, are
still a very useful notion for studying dynamics of argumentation. We argue that exist-
ing dynamic operators, and new ones, can be augmented to incorporate vital structural
constraints. Our goal in this paper is to provide means with which dynamic operations
on abstract arguments can be extended so that (i) structural constraints are taken into
account and (ii) operators can still work on a convenient and (partial) abstract level.

Towards our goal, we view dynamic operations on abstract arguments (and their re-
lations) as operators working in three layers: a semantic layer, a structural layer, and a
syntax layer. In the first layer, a semantical change is specified by an operator. As a con-
crete example, consider extension enforcement as defined in [3]: given an AF and a set
of arguments, the output is an AF whose semantics contains the given set of arguments
as an extension. That is, the operator defines certain conditions on the semantics of the
output (or, equivalently, constraints on the semantics of an output AF). On the struc-
tural side, extension enforcement specifies that the output AF shall be close to the input
AF (via a defined notion of distance between input and output AF structures). Finally,
syntactically, the operator requires that the output is, again, an AF.

More broadly, we find that the semantical layer of a dynamic operator defines se-
mantical constraints on the output, the structural layer specifies constraints on the struc-
ture of the output, and the syntax layer specifies the concrete syntax an output shall have.
We illustrate this “workflow” in Figure 1(a). Analogously, one can view each layer of an
operator as (a set of) constraints, each constraining the possible candidate solutions, see
Figure 1(b). In the case of the extension enforcement operator, the first layer constrains
the set of solution candidate AFs to be those that satisfy the semantical constraint, then
constrains to choose, among those satisfying the first layer, those structures that are close
to the input, and, finally, choose a particular AF.

With this paper, we contribute to the second layer, the structural layer, by giving
several properties that can be required by an output structurally, with the aim of giving
developers of dynamic operators an additional handle to extend operators. Since dynamic
operators are themselves, even without further constraints, often computationally hard to
solve [8,25], we study the complexity of the constraints we consider in this paper.

As the formal foundation, we use abstract dialectical frameworks (ADFs) [6] as the
formal model that undergoes a change in this paper. Although ADFs are more complex
than AFs, in the sense that arguments’ acceptance conditions can be specified in a liberal
manner, they are still an abstract formalism with abstract arguments, and, importantly,



have been shown to capture several abstract formalisms in argumentation in AI [21],
and, thus, extend the reach of our contributions to also other formalisms than AFs. Last,
but not least, using ADFs has also the important by-product that it allows to generalize
existing dynamic operators on AFs to the more general setting of ADFs. Indeed, many
dynamic approaches are currently restricted to AFs only. By using ADFs, and apply-
ing suitable structural constraints, one can lift current operators on AFs to ADFs, while
keeping the intuitions of the operators. Our main contributions are as follows.

• To make our proposal concrete, we adapt two dynamic operators for AFs to ADFs:
non-strict extension enforcement [3,2,8] and revision [10].

• We give a list of structural constraints on ADFs, i.e., constraints on the structure
of ADFs, exemplify their use for dynamics, and study some of their properties.

• To demonstrate feasibility, we show the complexity of checking whether an ADF
satisfies the constraints, which is decidable in polynomial time in many cases.

• We show a case study on how the given structural constraints can be utilized, by
adapting enforcement to allow only to add support to arguments.

• We implemented a prototype of this new operation of enforcement with supports
based on the goDiamond system [23], and performed an experimental evaluation.

Our prototype, instances, and proof details, are available at dbai.tuwien.ac.at/
proj/embarg/supp-enf. We recall background in Section 2, present the constraints in
Sect. 3, case study in Sect. 4, and our complexity results and our experiments in Sect. 5.

2. Background

Argumentation Frameworks We recall basics of argumentation frameworks (AFs) [13].

Definition 1. An argumentation framework (AF) is a pair F = (A,R), where A is a finite
set of arguments and R ⊆ A×A is the attack relation. The pair (a,b) ∈ R means that a
attacks b. An argument a ∈ A is defended (in F) by a set S ⊆ A if, for each b ∈ A such
that (b,a) ∈ R, there exists a c ∈ S such that (c,b) ∈ R.

Semantics for argumentation frameworks are defined through a function σ which
assigns to each AF F = (A,R) a set σ(F) ⊆ 2A of extensions. We consider for σ the
functions adm, com, grd, and prf, which stand for admissible, complete, grounded, and
preferred, respectively. Towards the definition we make use of the characteristic function
of AFs, defined for an AF F = (A,R), by FF(S) = {x ∈ A | x is defended by S}.

Definition 2. Let F = (A,R) be an AF. An S ⊆ A is conflict-free (in F), if there are no
a,b ∈ S, s.t. (a,b) ∈ R. We denote conflict-free sets by cf(F). For an S ∈ cf(F), it holds
that S ∈ adm(F) iff S ⊆FF(S); S ∈ com(F) iff S = FF(S); S ∈ grd(F) iff S is the least
fixed-point of FF ; and S∈ prf(F) iff S∈ adm(F) and there is no T ∈ adm(F) with S⊂ T .
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Figure 2. Illustrations of AF and corresponding ADF from Example 2 and Example 3.



Example 2. Let F = ({a,b,c,d},R) be an AF with R = {(a,b), (b,a), (a,c), (b,c),
(c,d)} (Figure 2(a)). We have adm(F)= { /0,{a}, {b}, {a,d}, {b,d}}, and grd(F)= { /0}.

Abstract Dialectical Frameworks We recall the syntax and semantics of ADFs
from [6]. Let A be a finite set of arguments A. An interpretation is a function I mapping
arguments to one of the three truth values I : A→{t, f,u}. That is, an interpretation maps
each argument to either true (t), false (f), or undefined (u). An interpretation I is two-
valued if I(a) ∈ {t, f} for all a ∈ A, and trivial, denoted as Iu, if I(a) = u for all a ∈ A.
For a two-valued interpretation I, I(ϕ) extends to the evaluation of a Boolean formula
ϕ under I as usual. An interpretation I is equally or more informative than J, denoted
by J ≤i I, if J(a) ∈ {t, f} implies J(a) = I(a) for all a ∈ A. We denote by <i the strict
version of ≤i, i.e., J <i I if J ≤i I and ∃a ∈ A s.t. J(a) = u and I(a) ∈ {t, f}.

An ADF is a tuple D = (A,L,C) where A is a set of arguments, L⊆ A×A is a set of
links, and C = {ϕa}a∈A is a collection of acceptance conditions, each given by a formula
over the parents of an argument: parD(a) = {b ∈ A | (b,a) ∈ L}.

Example 3. Figure 2 shows an ADF D = ({a,b,c,d},L,C) with L = {(a,b), (b,a),
(a,c), (b,c), (c,d)}. The acceptance conditions are shown close to the arguments.

The semantics of ADFs are based on the characteristic function ΓD mapping in-
terpretations to updated interpretations and defined for an ADF D as ΓD(I) = J with
J(a) = t if ϕa[I] is a tautology, J(a) = f if ϕa[I] is unsatisfiable, and J(a) = u otherwise,
where ϕ[I] is the formula obtained from ϕ with each argument that I assigns to either
true or false being replaced by the corresponding truth constant, i.e., ϕ[I] = ϕ[x 7→ > |
I(x) = t][x 7→ ⊥ | I(x) = f]; arguments assigned to undefined are not modified.

Definition 3. Given an ADF D, an interpretation I is admissible in D iff I ≤i ΓD(I); is
complete in D iff I = ΓD(I); is grounded in D iff I is the lfp(ΓD); and is preferred in D
iff I is ≤i-max. admissible in D.

We refer to the set of all admissible, grounded, and preferred interpretations of an
ADF D as adm(D), grd(D), and prf(D), respectively.

We denote the update of an interpretation I with truth value x∈ {t, f,u} for argument
b by I|bx, i.e., I|bx(b) = x and I|bx(a) = I(a) for a 6= b. In an ADF D = (A,L,C), a link
(b,a) ∈ L is supporting (in D) if for every two-valued interpretation I, I(ϕa) = t implies
I|bt (ϕa) = t; attacking (in D) if for every two-valued interpretation I, I(ϕa) = f implies
I|bt (ϕa) = f. An ADF D is called bipolar if each link (b,a)∈ L is attacking or supporting.

Example 4. For the ADF from Example 3, we have prf(D) = {{a 7→ t,b 7→ f,c 7→ f,d 7→
f}, {a 7→ f,b 7→ t,c 7→ f,d 7→ f}} and grd(D) = {{a 7→ u,b 7→ u,c 7→ u,d 7→ u}}.

An AF F = (A,R) can be translated to an ADF by defining DF = (A,R,C) with
ϕa =

∧
(b,a)∈R¬b (see also Figure 2). The semantics of an AF and its corresponding ADF

coincide (by relating an extension E with interpretation I via E = {a | I(a) = t} [6]).

Enforcement Intuitively, enforcement on AFs [3,2,9,8,25] deals with the question how
to modify an AF s.t. the semantics of the modified AF satisfies certain constraints, and,
typically, also the number of modifications has to be minimum.

We consider here the enforcement variant called non-strict enforcement under strong
expansions with a bounded number of expanded arguments [8]. That is, formally, we



are given an AF F = (A,R), a semantics σ , expanded arguments A′, and a subset of the
arguments E ⊆ A as input. Now, an AF F ′ = (A∪A′,R′) non-strictly enforces E under σ

if R⊆ R′, for any (a,b) ∈ R′ \R we have a ∈ A′ and b ∈ A, and ∃E ′ ∈ σ(F ′) with E ⊆ E ′.
Thus, one needs to find a modified AF F ′ that has the new arguments A′, newly added
attacks coming from these arguments in A′ onto arguments in A, and that E ′ is part of a
σ -extension of F ′. Among all candidates, typically, one further restricts solution AFs to
be optimal w.r.t. the modifications to the attacks. This is specified by finding an optimal
AF F∗= (A∪A′,R∗) that non-strictly enforces E under σ and there is no F ′= (A∪A′,R′)
that non-strictly enforces E under σ and |(R∆R′)|< |(R∆R∗)|.

Example 5. Consider the AF from Example 2. Say we want to enforce {a,d} to part of
the grounded extension in an expanded AF that can add argument e (i.e. A′ = {e}). This
can be achieved by adding attack (e,b), resulting in F∗= (A∗,R∗) with A∗= {a,b,c,d,e}
and R∗ = {(a,b), (b,a), (a,c), (b,c), (c,d),(e,b)}. We have grd(F∗) = {e,a,d}, imply-
ing that {a,d} is non-strictly enforced under grounded semantics.

Revision We recall the revision operator ◦can
F [10, Definition 6] that revises a given AF

F = (A,R) by a given propositional formula φ under the preferred semantics. In [10]
more sophisticated operators are defined, as well, but, for illustrative reasons, we give
the (simple) canonical operator as an example. The idea behind the operator is to revise
the given AF s.t. the extensions of the revised AF are a subset of the models of the
formula, and satisfy certain postulates of revision. This operator is based on a ranking of
extensions (models). The intuition of the ranking is to prefer smaller extensions (w.r.t.
set cardinality). Ties (extension of the same size) are broken by a lexicographic ordering
on extensions based on an ordering over the arguments.

Towards the exact definition, assume an ordering over the set of arguments, i.e.,
(a1, . . . ,an), ai ∈ A. Given a set of extensions S , define the ordering on (non-)extensions
E1, E2 ∈S : E1≤S E2 iff |E1|< |E2| or |E1|= |E2|∧~E#

1 ≤lex ~E#
2 where ~E#

1 is the ordered
tuple (x1, . . . ,x|E1|−1) obtained from E1 by ordering the arguments in E1 according the
argument ordering, but excluding the argument ordered least. The comparison by ≤lex is
then a lexicographic ordering of the tuples in the standard way (i.e. (a,b)≤lex (a,c) if a is
ordered lower than b and b is ordered lower than c). Based on this ordering, the canonical
preorder ≤can

F is defined by E1 ≤can
F E2 iff E1 ∈ σ(F) or E1,E2 /∈ σ(F)∧E1 ≤2A\σ(F)

E2. Finally, given an AF F = (A,R), and a propositional formula φ , define [F ◦can
F φ ] =

min≤can
F
{E ∈ Mod(φ)}. That is, [F ◦can

F φ ] defines the extensions of the revised AF. In
other words, an outcome would be an AF F ′ s.t. σ(F ′) = [F ◦can

F φ ].

Example 6. Let F = (A,R) be an AF with A = {a,b,c} and R = {(a,b),(b,a)}.
This yields prf(F) = {{a,c},{b,c}}. Say, we revise by φ = a ∧ c, i.e. Mod(φ) =
{{a,c},{a,b,c}}. The ordering ≤X orders four different levels as follows: /0 ≤X

{a},{b},{c}≤X {a,b}≤X {a,b,c} for X = 2A\prf(F). We get {a,b},{b,c}≤can
F /0≤can

F
{a},{b},{c} ≤can

F {a,c} ≤can
F {a,b,c}. Finally, the (in this case unique) model of φ

ordered least, w.r.t. ≤prf(F) is {a,c}. Thus, [F ◦can
F φ ] = {{a,c}}.

3. Structural Constraints for Dynamic Operators

This section introduces several constraints that can be used to extend current dynamic
operators, and support development of new operators.



From a principled point of view, we consider dynamic operators that take an ADF
D as input, with possibly further information, and produce a modified ADF D∗ as out-
put. These operators then define certain constrains on on the output, namely on (i) the
semantics, (ii) the structure, and (iii) the concrete syntax. We exemplify the semantical
constraints on the two operators from Section 2 when lifted from AFs to ADFs.

Example 7. Let D = (A,L,C) be an ADF, σ a semantics, and S⊆ A a set of arguments.
We now present a straightforward generalization of non-strict extension enforcement for
AFs to the case of ADFs. That is, we want to enforce that S is part of a σ -interpretation
by modifying D. An output ADF D∗ then satisfies the constraint imposed by non-strict
extension enforcement if ∃I′ ∈ σ(D∗) s.t. I ≤i I′ with I = {s 7→ t | s ∈ S} ∪ {x 7→ u |
x ∈ A \ S}. Intuitively, there has to be a σ -interpretation I′ in the modified D∗ s.t. all
arguments in S are assigned true (the status of other arguments is not constrained).

For the revision operator, the semantical constraint is such that the output AF shall
have as its semantics a specified set of extension Σ = {E1, . . . ,En}. Translated to ADFs,
we have Σ = {It | I ∈ σ(D∗) with It = {x | I(x) = t}.

The structural constraints we introduce refine the possible ADFs (those that satisfy
the semantical constraints) further. Formally, a constraint c is specified in such a way that
one can decide whether an ADF satisfies the constraint.

Boolean combinations of constraints In the following, when K = {c1, . . . ,cn} is a set of
(structural) constraints, we consider also the a constraint that is a Boolean combination
of these constraints. That is, a Boolean formula Φ that has as its variables constraints in
K. Satisfaction, for an ADF D, of Φ is then defined in a standard way: if D satisfies a
ci ∈K, then Φ= ci is satisfied by D; if Φ=¬ci, then D satisfies Φ if it does not satisfy ci;
the connectives of conjunction and disjunction are defined in the standard way, as well.

General constraints We start with basic constraints, namely ones that specify limits of
arguments and links. That is, for a given ADF D∗ = (A∗,L∗,C∗) (a potential output ADF)
and A, A′, L, and L′, we define the following constraints, with L|A∗ = L∩ (A∗×A∗).

(G1) A⊆ A∗ ⊆ A′ (G2) L|A∗ ⊆ L∗ ⊆ L′|A∗

These constraints specify which arguments may be in the output (G1) and which links
may be present (G2). For instance, via (G1), one can specify for enforcement under
expansions how many arguments the expansion may add to the original framework.

Argument constraints The next basic constraint gives a concrete handle which argu-
ments are present in the output. For an ADF D∗ = (A∗,L∗,C∗) and argument a we define:

(A1) a ∈ A∗

Example 8. Assume an enforcement operator under strong expansions and, say, that
we can expand by arguments a1, a2, and a3. Suppose further that by adding a1 to the
original framework we can enforce the given interpretation (e.g. a1 is the only argument
permitted to have a link onto an argument c that we want to be true in an admissible
interpretation and adding a support from a1 onto c gives a solution). However, consider
now the case that a1 is a super argument of a2, which, in turn, is a super argument of a3.
Simple addition of a1 might be reasonable, in certain cases, but it is likewise adequate
to require that all sub arguments have to be present, as well. This can be specified by



stating that ((a1 ∈ A∗)→ (a2 ∈ A∗))∧ ((a2 ∈ A∗)→ (a3 ∈ A∗)). These specify simple
implications: if a1 is present, so must be a2 (and in turn a3).

Constraints on links Next, we consider constraint on links. In the ADF D∗ L+ are
supporting links and L− are attacking links. For a link l define:

(L1) l ∈ L∗

(L3) l ∈ L−
(L2) l ∈ L+

(L4) (A∗,L∗) forms a directed acyclic graph

Example 9. Constraining the type of links can directly imply that the output ADF actu-
ally belongs to a proper sub family of ADFs: if we require each link to be either attacking
or supporting (via (l ∈ L)→ ((l ∈ L+)∨ (l ∈ L−))), the output ADF is a BADF. Simi-
larly, if each link is constrained to be attacking, then the output ADF, in fact, belongs to
the family of frameworks defined in [20], which we call SETAFs here. These SETAFs
are similar to AFs, but sets of arguments attack an argument.

Proposition 1. If an ADF D∗ = (A∗,L∗,C∗) satisfies constraint K =
∧

l∈L∗((l ∈ L−)∧
¬(l ∈ L+)), then each acceptance condition ϕa ∈ C∗ can be expressed as a Boolean
formula in conjunctive normal form (CNF) with only negative literals.

Proof. If I(ϕa) is unsat. with only attacking parents, then switching the truth value of any
parent to true does not change the outcome. Now, take each interpretation I s.t. (i) I(ϕa)
is unsat. and (ii) there is no I′ with I′(ϕa) unsat. and {x | I′(x) = t} ⊆ {x | I(x) = t}. Let
I all such interpretations. Define ϕ ′a =

∧
I∈I (

∨
I(x)=t¬x). It follows that ϕa ≡ ϕ ′a.

From the previous result it can be inferred, via [18, Section 3.3], that if each acceptance
condition is a CNF with negative literals, the ADF in question can be written as a SETAF.

Example 10. Constraining that the output D∗ belongs to a proper sub family of ADFs
also may lead to the case that there is no ADF (of that sub family) that satisfies the
given structural constraints and semantical constraints. Consider constraining the output
to have three arguments {a,b}, and the output shall have as its admissible semantics
com(D∗) the correspondence Σ = {It | I ∈ com(D∗) with Σ = { /0,{a},{b},{a,b}} (simi-
larly as for the revision operator recalled above). Requiring that each link in the output is
attacking leads to non-existence of solution ADFs. To see that, consider any (set-)attack.
Such an attack cannot exist, since {a 7→ t,b 7→ t} is complete. Thus, ϕa ≡ ϕb ≡>, which
is a contradiction that there is an interpretation corresponding to {a}. To have Σ as the
semantical result under complete semantics on AFs, one needs more arguments (this fol-
lows from [4,14]). On general ADFs, such a correspondence is possible, however, only
with use of supports.

Constraints on acceptance conditions We proceed to constraints on acceptance condi-
tions. Given an ADF D∗ = (A∗,L∗,C∗), a ϕa ∈C∗, v∈ {t, f}, a three-valued interpretation
I, a two-valued interpretation I′, and a formula ψ , we define the following constraints.

(Ac1) I′(ϕs) = v
(Ac3) ϕs = ψ

(Ac2) I(ϕs) satisfiable (refutable, taut., unsat.)
(Ac4) ϕs ≡ ψ

Example 11. Constraints of type (Ac2) can be used, e.g., to require the output ADF to
belong to the subclass of AFs. Let If be an interpretation with all arguments assigned to



false. Now, one can require that (b ∈ A∗→ If(ϕb) tautological) ∧ ((a,b) ∈ L→ Iu|at (ϕb)
unsatisfiable), or, in other words, each argument is acceptable if all parents are false, and
not acceptable if one parent is true. If two arguments’ structures are logically inconsis-
tent, and this is to be expressed directly in acceptance condition, the preceding attack-like
constraint can be used as well.

Similarly, notions of support can also be further constraints. For instance, one can
specify that certain supporting links are a kind of necessary support: ((a,b) ∈ L+)→
(I|af ϕb unsatisfiable). Intuitively, this specifies that if a parent is false (rejected) then the
child argument cannot be acceptable.

Another type of constraint that can be expressed is to require no change between
certain argument’s dependencies. For instance, say an argument a has several parents and
among them is b and that we want to state that in the output ADF all dependencies from
parents, except b, are unchanged if b is false. This can be written as Iu|bf (ϕs)≡ ϕs (Ac4).

Constraints on characteristic functions Next we introduce a different type of constraint
on the characteristic functions of ADFs ΓD∗ . Let v,v′ ∈ {t, f,u}, and s and s′ arguments.

(Char) ∀I.ΓD∗(I)(s) = v implies ΓD∗(I)(s′) = v′

Example 12. A use case for this constraint is to state that two arguments cannot be
both acceptable at the same time, even if there is no link between them. Consider
∀I.ΓD∗(I)(s) = t implies ΓD∗(I)(s′) = f, which implies that if s accepted, in a scenario
encoded by an interpretation I, then s′ cannot be accepted. Similarly, one may encode
positive relations. Note that it is not required that s is a parent of s′ or vice versa.

Weights and optimization Finally, we consider constraints that embody optimizations.
Towards optimization constraints, define the cost of an ADF D via, cost(D). A standard
model of costs of objects is to define a set of weighted constraints that, if violated, con-
tribute their weight to the total cost. For this paper, we let the cost function be abstract.

(O1) cost(D∗)≤ k (O2) cost(D∗) minimum over all ADFs

Example 13. A straightforward way to define weights, and costs, is exemplified by
the extension enforcement operation, where a modified attack contributes unit weight
to the overall cost. An adaption to ADFs would be then to consider for an input ADF
D = (A,L,C) and output ADF D∗ = (A∗,L∗,C∗) the cost |L∆L∗|, i.e., the cost being the
cardinality of the symmetric difference between the input and output links.

4. Case study: an enforcement operator for ADFs based on supports

In this section we use the constraints to adapt the existing non-strict extension enforce-
ment operator on ADFs to allow for only supporting links to be added. In this way, via
this case study, we aim to show that our approach can be used to both add new features
to existing operators and to lift them to more general settings.

We adapt non-strict enforcement under strong expansions of ADFs (as defined in the
previous section): given an ADF D = (A,L,C), a semantics σ , an interpretation I, and
arguments to expand A′, it holds that D∗ = (A∗,L∗,C∗) is a solution if two conditions
hold. First (A∗,L∗) is to be a strong expansion of (A,L). The second condition is that



∃I′ ∈ σ(D∗) s.t. I ≤i I′. The cost of a solution D∗ is |L∆L∗|. Further, a solution D∗ is
optimal if there is no other solution with less cost. Finally, new arguments a′ have ϕa′ ≡>

We utilize the structural constraints to specify certain permissible changes. (In the
above definition we used basic constraints, constraints on links, and optimization.)

1. acceptance conditions unchanged if new arguments rejected: Iu|A
′

f ≡ φa ∀a ∈ A
2. new links supporting: ((a′,b) ∈ L∗)→ (a′,b) ∈ L+ for each b ∈ A and a′ ∈ A′.

Example 14. Consider an ADF D = ({a,b,c},L,C) with ϕa = b, ϕb = c, and ϕc = ⊥.
Further, assume that we may expand with an argument d and that we want to enforce
{a} to be true in an admissible interpretation. One way to enforce this goal is to add a
supporting link (d,c) via changing ϕc to ϕ ′c = d (simulating that d now supports accep-
tance of c). Then, {a 7→ t,b 7→ t,c 7→ t,d 7→ t} is admissible, if we choose d’s acceptance
condition accordingly (e.g. ϕd =>).

Support enforcement can lead to rejection of arguments. Assume two arguments, a
and b with ϕa = ¬b and ϕb = ⊥. Enforcing a to be false in an admissible interpretation
can be achieved via supporting b (e.g. via modification ϕb = c for a supporter c).

Support enforcement, however, is not always possible: assume that we want to en-
force that a is false in an admissible interpretation. If ϕa ≡ >, then supporting enforce-
ment fails (support cannot make a modification to a, or any other part of an ADF, that
leads to a being false in an admissible interpretation).

5. Computational Aspects and Evaluation

Complexity In this section we investigate the feasibility of the constraints. More con-
cretely, we first show the complexity of the task of verifying whether a given ADF satis-
fies certain constraints. This insight is important for developing dynamic operators that
use such constraints. For instance, if we now that a certain constraint c can be checked in
polynomial time, then a dynamic operator that constructs a candidate solution ADF can
verify the constraint in polynomial time. If this algorithm is non-deterministic, then the
complexity of the overall algorithm is likely to stay the same even if constraint c has to be
considered (since a non-deterministic algorithm that runs in polynomial time can check
a polynomial number of constraints that can be checked in polynomial time for a non-
deterministically guessed object). There is evidence that dynamic operators in abstract
argumentation are likely to be NP hard, e.g. extension enforcement on AFs is in many
cases NP hard [25]. That is, for these kind of operators augmentation with any of the
polynomial-time decidable constraints comes at not additional cost (complexity-wise).
We begin with basic constraints where polynomial-time decidability is immediate.

Proposition 2. Verifying whether a given ADF satisfies constraints of type (G1), (G1),
(A1), (L1), (L4), (Ac1), or (Ac3) is decidable in polynomial time.

We proceed to more sophisticated constraints. We distinguish by (Ac2) those cases
where we ask satisfiability (refut.) and by (Ac2)’ the cases when we ask for tautology
(unsat.). (Proofs can be found at the URL from the introduction; several rely on [24].)

Proposition 3. Verifying whether a given ADF satisfies a constraint of type (Ac2) is NP-
complete, and a constraint of type (L2), (L3), (Ac2)’, (Ac4), or (Char) is coNP-complete.



While some of these useful constraints have relatively high complexity, if we restrict
an output ADF D∗ to be a bipolar ADF with known link types, we can infer the following.

Proposition 4. Verifying whether a BADF satisfies a constraint of type (L2), (L3), or
(Ac2) is decidable in P, and a constraint of type (Ac4) is coNP-complete.

If one imposes the condition that each argument has at most k parents, for a given
and fixed k (i.e. k is a constant), we can infer that all constraints can be checked in
polynomial time, except for the optimization constraints.

Proposition 5. Let k be a constant integer. Satisfaction of any constraint defined in Sec-
tion 3, except (O1) and (O2), for a given ADF, where each argument has at most k par-
ents, is decidable in polynomial time.

We now show that the novel enforcement operator defined in Section 4 has the same
complexity as the non-strict extension enforcement operator on AFs, under certain re-
strictions. We investigate the decision problem of the new enforcement operator, where
we ask whether there exists a solution ADF s.t. its cost is at most a given integer. As a
further condition we require the number of parents and A′ to be bounded a constant.

Proposition 6. Support enforcement under admissible semantics on ADFs is NP-
complete, if both the number of parents of each argument and the set of expanded argu-
ments are bounded by a constant.

We note that, due to Proposition 5, any constraint defined in Section 3, except for
further optimization statements, can be added to the support enforcement operator, with
the mentioned restrictions, without increasing its complexity. For instance, adding con-
straints that whenever a support to an argument is added, all the super arguments of that
argument have to be supported, as well, can be done without increased complexity.

Implementation and Experimentation We have implemented a prototype for the sup-
port enforcement operator on ADFs, and give some details on it and a first empirical
assessment on the practical feasibility of this operator. All experiments were run on a
machine with two AMD Opteron Processor 6308, 12 x 16GB RAM, and Debian 8. For
our prototype implementation, we consider the case that the expanded arguments are a
singleton set, i.e., A′ = {x} is a distinguished argument.

We adapted the answer-set programming (ASP) based goDiamond [23,15] 0.6.6 to
implement support enforcement. Due to space constraints, we only highlight the main
changes made. Briefly put, goDiamond can expand given acceptance conditions to a truth
table. Then, changing the acceptance condition amounts to adding another parent to the
truth table and modifying the outcome. We first make a non-deterministic guess whether
to change an existing acceptance condition or not (i.e. whether to add a link). Since we
require that the original acceptance conditions are equivalent to the modified ones when
the new argument is false, we only need to consider the case when the new argument
is true. We make a non-deterministic choice for each entry in the truth table whether it
should be true or false. We implemented this via choice rules. Requiring that the new
links are supporting can be done via ASP constraints. Finally, optimization is achieved
via ASP optimization statements. We used clingo, v4.4.0 [17] as the ASP engine.

We performed experiments with this new prototype using instances from www.

dbai.tuwien.ac.at/proj/adf/yadf/, which are ADFs that were generated from the



instance set # # w/o errors opt. found 0-cost unsat. timeout median # (# w/o errors)
ABA2AF 600 261 214 57 47 0 27.82 (0.51)
Planning 600 585 211 4 367 7 2.415 (2.23)
Traffic 600 591 341 49 250 0 0.18 (0.17)

all 1800 1437 766 110 664 7 1.67 (0.79)
Table 1. Summary of experimental results.

AFs of domains ABA2AF, Planning2AF, and Traffic from ICCMA 2017 [16]. From the
whole set, we selected the most challenging instances, resulting in 200 ADFs per do-
main (600 total). For each ADF we created three enforcement requests, as follows. We
selected, at random, a subset of the arguments in the ADF with probability 1

5 to include
an argument. For each such subset, we selected, again randomly, which argument shall
be enforced to be true and which to be false, with a probability of p ∈ { 1

5 ,
1
10 ,

1
20} that an

argument is false (thus having more arguments to be enforced to be true). This resulted
in 600 enforcements per domain, and 1800 enforcements overall. We used a timeout of
600 seconds on each individual query (enforcement).

The results are summarized in Table 1. The columns show instance set, number
of queries, number of errors, number of instances where an optima was found, number
of instances with optimum cost equal to 0 (trivial solutions), number of unsatisfiable
queries, number of timeouts, and the median overall queries (overall instances that did
not report an error). The errors are queries that clingo could not solve and reported an
error message. We did not yet pinpoint a cause for this error. We speculate that they are
due to large truth tables. Nevertheless, clingo did not report an error on many queries
(1437 out of 1800).

From the results shown in Table 1, we see that many instances were solved within
a reasonable amount of time (e.g. median is a few seconds). Out of those runs that did
not report an error and were solved within timeout, 62 runs had a running time of at least
100 seconds and 1368 had a running time of less than 100 seconds.

6. Conclusions and Related Work

We have proposed to extend current (and future) dynamic operators on abstract argu-
mentation frameworks by constraints to suit conditions “abstracted away” during instan-
tiation. Towards feasibility of doing so, we have both showed complexity results and an
empirical evaluation of an operator arising from usage of said constraints.

Related to our approach is a recent framework by [11], called control argumenta-
tion frameworks. In this framework, one can specify known, unknown, and controllable
arguments by an agent, the last category being those arguments the agent can use in a
debate. Similarities to our work are that a dynamic process is formally modelled and
constrained (via, e.g., an encoding for using controllable arguments), differences are that
we aim at general constraints for ADFs (instead of AFs as in their work). In [9,12], they
encode allowed (desired) changes, and dynamic goals, in a logical language. In that way,
similarly as in our work, they give constraints (as formulas) to encode allowed changes.
Differently to their work, we based our results on ADFs and showed complexity results
of classes of constraints. Furthermore, there are papers dealing with dynamics of AFs
in a formalized way (i.e. presenting a framework for AF dynamics) such as [22], from
which we differ in our work by presenting general constraints to be used for dynamic
operators, but not focusing on details of a dynamic operation itself.
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