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Abstract

Abstract solvers are a quite recent method to uniformly describe algorithms in
a rigorous formal way via graphs. Compared to traditional methods like pseudo-
code descriptions, abstract solvers have several advantages. In particular, they pro-
vide a uniform formal representation that allows for precise comparisons of differ-
ent algorithms. Recently, this new methodology has proven successful in declara-
tive paradigms such as Propositional Satisfiability and Answer Set Programming.
In this paper, we apply this machinery to Dung’s abstract argumentation frame-
works. We first provide descriptions of several advanced algorithms for the pre-
ferred semantics in terms of abstract solvers. We also show how it is possible to
obtain new abstract solutions by “combining” concepts of existing algorithms by
means of combining abstract solvers. Then, we implemented a new solving pro-
cedure based on our findings in CEGARTIX, and call it CEGARTIX+. We finally
show that CEGARTIX+ is competitive and complementary in its performance to
CEGARTIX on benchmarks of the first and second argumentation competition.

1 Introduction
Dung’s concept of abstract argumentation [1] is nowadays a core formalism in Artificial
Intelligence [2, 3]. The problem of solving certain reasoning tasks on such frameworks
is the centerpiece of many advanced higher-level argumentation systems. The problems
to be solved can however be intractable and might even be hard for the second level
of the polynomial hierarchy [4, 5]. Thus, efficient and advanced algorithms have to
be developed in order to deal with real-world size data within reasonable performance
bounds. The argumentation community is currently facing this challenge [6]: Already
the second edition [7] of the solver competition [8, 9] was held in 2017. Thus, the
number of new algorithms and systems is steadily increasing, and we expect this to
continue in the (near) future. Being able to precisely analyze and compare already
developed and new algorithms is a fundamental step in order to understand the ideas
behind such high-performance systems, and to build a new generation of more efficient
algorithms and solvers.
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Usually, algorithms are presented by means of pseudo-code descriptions, but other
communities have experienced that analyzing such algorithms on this basis may not
be fruitful. More formal descriptions, which allow, e.g. for a uniform representation,
and are more amenable to comparison and to state formal results, have thus been de-
veloped: a successful approach in this direction is the concept of abstract solvers [10].
Hereby, one characterizes the possible states of computation as nodes of a graph, and
the techniques (i.e., the computation steps in the algorithms) as arcs between nodes.
In this way, the whole solving process amounts to a path in the graph. This concept
proved successful for SAT [10], and also has been applied to several variants of Answer
Set Programming [11, 12, 13].

In this paper, we apply abstract solvers to certain problems in Dung’s argumen-
tation frameworks. In order to understand whether abstract solvers are well suited
also for this domain, we consider quite advanced algorithms for solving problems that
are hard for the second level of the polynomial hierarchy – the considered algorithms
range from dedicated [14] to reduction-based [15, 16] approaches (see [17] for a sur-
vey). We show that abstract solvers allow for convenient algorithms design resulting
in a clear and mathematically precise description. Moreover, formal properties of the
algorithms (i.e. correctness) are easily specified by means of related graph properties
(i.e. reachability). We then illustrate how abstract solvers allow to highlight in a more
clear way similarities and differences among solving algorithms: This paves the way
for a uniform view of the three solving algorithms mentioned above, thus simplifying
the combination of concepts implemented in different solvers in order to define new
abstract solutions. We propose one such combination and, in order to test its viability,
we implemented the outcome of this combination inside the well-known CEGARTIX
solver [16] and show that the resulting solver CEGARTIX+ is complementary in terms
of performance w.r.t. CEGARTIX for certain tasks under the preferred semantics. We
do so by using benchmarks of the first and second argumentation competition, as well
as instances from earlier work. This is an interesting result which shows that a com-
bination based on abstract solvers is proven to be also useful in practice (for similar
observations, see [10, 12]). We finally show (with focus on CEGARTIX), how reasoning
tasks under further semantics, other than preferred, can be solved with this framework,
and demonstrate how optimizations are easily added to our abstract solvers in a modu-
lar way. .

To sum up, our main contributions are as follows:

• We provide a full formal description of recent algorithms [15, 16, 14] for reason-
ing tasks under the preferred semantics in terms of abstract solvers, thus enabling
a comparison of these approaches at a formal level.

• We outline how our formal descriptions can be used to gain more insight into the
algorithms, and how certain combinations can pave the way for new solutions.

• We implement such a new solution inside CEGARTIX and analyze its perfor-
mance.

• We show how other semantics and optimizations can be incorporated to our ab-
stract solvers.
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The paper is structured as follows. Section 2 introduces the required preliminaries
about abstract argumentation frameworks and abstract solvers. Then, Section 3 shows
how our target algorithms are reformulated in terms of abstract solvers and introduces
a new solving algorithm obtained from combining concepts from the target algorithms.
Implementation and experimental analysis of the combined algorithm can be found in
Section 4. Section 5 presents abstract solver representations of algorithms for reasoning
tasks under other semantics, and indicates how shortcuts can be easily and modularly
added. Section 6 provides a discussion of related research and Section 7 closes the
paper with final remarks. We only include the full proofs of representative lemmata
and theorems in the main body of the paper. The remaining proofs can be found in
Appendix A.

The current paper extends and differs from an earlier version [18] as follows: (i)
a new combination of abstract solvers is presented, which is easier to understand and
more amenable to be implemented than the one in [18], (ii) an implementation and
experimental evaluation of the newly proposed algorithm are discussed, (iii) we apply
additional and modified transition rules of algorithms for other semantics and optimiza-
tions (i.e. short-cuts) to the algorithms, with related formal results, and (iv) a detailed
analysis of related work is provided.

2 Preliminaries
In this section we first review (abstract) argumentation frameworks [1] and their seman-
tics (see [19] for an overview), and then introduce abstract solvers [10] on the concrete
instance describing the Davis-Putnam-Logemann-Loveland (DPLL) procedure for SAT
solving [20].

2.1 Abstract Argumentation Frameworks
An argumentation framework (AF) is a pair F = (A,R) where A is a finite1 set of
arguments and R ⊆ A× A is the attack relation. Semantics for argumentation frame-
works assign to each AF F = (A,R) a set σ(F ) ⊆ 2A of extensions. We consider
here for σ the functions adm, com, and prf, which stand for admissible, complete, and
preferred semantics. Towards the definitions of the semantics we need some formal
concepts. For an AF F = (A,R), an argument a ∈ A is defended (in F ) by a set
S ⊆ A if for each b ∈ A such that (b, a) ∈ R, there is a c ∈ S, such that (c, b) ∈ R
holds.

Definition 1. Let F = (A,R) be an AF. A set S ⊆ A is conflict-free (in F ), denoted
S ∈ cf(F ), if there are no a, b ∈ S such that (a, b) ∈ R. For S ∈ cf(F ), it holds that

• S ∈ adm(F ) iff each a ∈ S is defended by S;

• S ∈ com(F ) iff S ∈ adm(F ) and for each a ∈ A defended by S, a ∈ S holds;

1In the literature also infinite AFs have been considered. We refer to [21] for the effects this has on
semantics.
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Figure 1: AF F with prf(F ) = {{a, c}, {a, d}}.

• S ∈ prf(F ) iff S ∈ adm(F ) and there is no T ∈ adm(F ) with T ⊃ S, or
equivalently,

• S ∈ prf(F ) iff S ∈ com(F ) and there is no T ∈ com(F ) with T ⊃ S.

Example 1. Consider the AF F = ({a, b, c, d}, {(a, b), (b, c), (b, d), (c, d), (d, c)})
depicted in Figure 1 where nodes of the graph represent arguments and edges represent
attacks. The extensions of F under admissible, complete, and preferred semantics are
as follows: adm(F ) = {∅, {a}, {a, c}, {a, d}}, com(F ) = {{a}, {a, c}, {a, d}}, and
prf(F ) = {{a, c}, {a, d}}.

Given an AF F = (A,R), an argument a ∈ A, and a semantics σ, the problem
of skeptical acceptance (Skeptσ) asks whether it is the case that a is contained in all
σ-extensions of F ; the problem of credulous acceptance (Credσ) asks if a is contained
in at least one σ-extension. While skeptical acceptance is trivial for adm and decidable
in polynomial time for com, it is ΠP

2 -complete2 for prf, see [22, 1, 4].

2.2 Abstract Solvers for SAT
Most SAT solvers are based on the Davis-Putnam-Logemann-Loveland (DPLL) proce-
dure [20]. We give an abstract solver for DPLL following the work of Nieuwenhuis
et al. [10]. The abstract solver is described by assigning a graph to each instance of the
problem, where nodes and edges represent states and transitions of the actual solver,
respectively. We start with basic notation for Boolean logic.

For a Conjunctive Normal Form (CNF) formula ϕ (resp. a set of literals M ), we
denote the set of atoms occurring in ϕ (resp. in M ) by atoms(ϕ) (resp. atoms(M)).
A literal is an atom a or its negation ¬a. The complement l of literal l is defined as
a = ¬a and ¬a = a. We identify a consistent set E of literals (i.e. a set that does not
contain a literal and its complement) with an assignment to atoms(E) as follows: if
a ∈ E then a maps to true , while if ¬a ∈ E then a maps to false . By Sat(ϕ) we refer
to the set of satisfying assignments of ϕ.

We now introduce an abstract procedure for deciding whether a CNF formula is
satisfiable. A decision literal is a literal annotated by d, as in ld. An annotated literal
is a literal, a decision literal or the false constant ⊥. For a set X of atoms, a record
relative to X is a string E composed of annotated literals over X without repetitions.

2The class ΠP2 = coNPNP denotes the class of problemsP , such that the complementary problemP can
be decided by a nondeterministic polynomial time algorithm that has (unrestricted) access to an NP-oracle.
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Oracle rules

Backtrack EldE′′ ⇒ El if
{

EldE′′ is inconsistent and
E′′ contains no decision literal

UnitPropagate E ⇒ El if


l does not occur in E and
C ∨ l is a clause in ϕ and
all the literals of C occur in E

Decide E ⇒ Eld if
{

E is consistent and
neither l nor l occur in E

Failing rule
Fail E ⇒ Reject if

{
E is inconsistent and decision-free

Succeeding rule
Succeed E ⇒ Accept if

{
no other rule applies

Figure 2: The transition rules of DPϕ.

For instance, ∅, ¬ad and a ¬ad are records relative to the set {a}. We say that a
record E is inconsistent if it contains ⊥ or both a literal l and its complement l, and
consistent otherwise. Moreover, by unsat we represent an inconsistent and decision-
free record. We sometimes identify a record with the set containing all its elements
without annotations, i.e. with an assignment to the atoms. For example, we identify
the consistent record bd ¬a with the consistent set {¬a, b} of literals, and so with the
assignment which maps a to false and b to true . Finally, |E| denotes the number of
literals in record E.

Each CNF formula ϕ determines its DPLL graph DPϕ. The set of nodes (states) of
DPϕ consists of the records relative to atoms(ϕ) and two distinguished states Accept
and Reject . The edges of the graph DPϕ are specified by the transition rules presented
in Figure 2. A node in the graph is terminal if no edge originates from it; in practice,
the terminal nodes are Accept and Reject . The initial state of the abstract solver is the
empty record ∅. In solvers, generally the oracle rules are chosen with the preference
order according to the order in which they are stated in Figure 2. An exception is the
failing rule, which has a higher priority than all the oracle rules.

Intuitively, every state of the DPLL graph represents some hypothetical state of the
DPLL computation whereas a path in the graph is a description of a process of search
for a satisfying assignment of a given CNF formula. The rule Decide asserts that we
make an arbitrary decision to add a literal or, in other words, to assign a value to an
atom. Since this decision is arbitrary, we are allowed to backtrack at a later point. The
rule UnitPropagate asserts that we can add a literal that is a logical consequence of our
previous decisions and the given formula. The rule Backtrack asserts that the present
state of computation is failing but can be fixed: at some point in the past we added a
decision literal whose value we can now reverse. The rule Fail asserts that the current
state of computation has failed and cannot be fixed. The rule Succeed asserts that the
current state of computation corresponds to a successful outcome.

To decide the satisfiability of a CNF formula it is enough to find a path in DPϕ
leading from state ∅ to a terminal state. If it is Accept , then the formula is satisfiable,
and if it is Reject , then it is unsatisfiable. Since there is no infinite path, a terminal
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Initial state : ∅
Decide ⇒ ad

UnitPropagate ⇒ ad c
Decide ⇒ ad c bd

Succeed ⇒ Accept

Initial state : ∅
Decide ⇒ ad

Decide ⇒ ad cd (∗)
UnitPropagate ⇒ ad cd c
Backtrack ⇒ ad c
Decide ⇒ ad c bd

Succeed ⇒ Accept

Figure 3: Examples of paths in DP{a∨b,a∨c}.

state is always reached. The following result states this observation formally.

Theorem 2.1. For any CNF formula ϕ, the graph DPϕ is finite and acyclic; any
terminal state of DPϕ reachable from the initial state other than Reject is Accept; the
record in the state preceding Accept corresponds to satisfying assignment of ϕ; and
Reject is reachable if and only if ϕ is unsatisfiable.

A proof of this theorem can be found in [12, Prop. 1] and (using a slightly different
statement) in [10, Lemma 2.9]. The fact that Accept is reachable from the initial state
iff ϕ is satisfiable follows directly.

Figure 3 presents two paths in DPϕ from the initial state ∅ to the terminal state
Accept . Every edge is annotated on the left by the name of the transition rule that gives
rise to this edge in DPϕ. Thus, Theorem 2.1 asserts that ϕ is satisfiable; moreover, the
record where the Succeed rule is applied corresponds to a satisfying assignment of ϕ,
i.e. {a, c, b}.

The difference between the paths in Figure 3 is that only the path on the left will be
indeed followed by SAT solvers, given it adheres with the ordering followed by SAT
solvers, while the path on the right applies Decide (see (*)) where UnitPropagate is
applicable.

2.3 Abstract Solvers for Computing Maximal Satisfying Assign-
ments

We now define a modification of the graph presented in the previous sub-section that
will be useful in the definition of a new solving algorithm in Section 3.4.

The goal of this graph is to compute a maximal satisfying assignment of a CNF
formula in the sense that the set of atoms mapped to true is ⊆-maximal among all
satisfying assignments. In order to do this it is enough to modify the graph DPϕ such
that Decide always assigns the decision literal to true by default, i.e. to substitute
rule Decide in Figure 2 with the following rule Decide≺, where a represents an atom
instead of a literal:

Decide≺ E ⇒ Ead if
{
E is consistent and
neither a nor ¬a occur in E
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Let us call the resulting graph DP≺ϕ , whose nodes correspond to the nodes of DPϕ
graph. We can state the following theorem.

Theorem 2.2. For any CNF formula ϕ, the graph DP≺ϕ is finite and acyclic; any
terminal state of DP≺ϕ reachable from the initial state is either Reject or Accept; the
record in the state preceding Accept corresponds to a maximal satisfying assignment
of ϕ, and Reject is reachable if and only if ϕ is unsatisfiable.

Proofs of this theorem can be found in [23, Theorem 2] and in [24, Prop. 1].

3 Algorithms for Preferred Semantics
In this section we first abstract two SAT-based algorithms for preferred semantics,
namely PrefSat [15] (implemented in the tool ARGSEMSAT [25]) for extension enu-
meration, and an algorithm for deciding skeptical acceptance of CEGARTIX [16]. More-
over, we abstract the dedicated approach for enumeration of [14]. Finally, in Sec-
tion 3.4 we show how our graph representations can be used to develop a novel algo-
rithm, by combining parts of CEGARTIX and DP≺.

A key insight of the SAT-based algorithms is that preferred extensions can be found
by iterative computation of certain extensions of a base semantics (admissible or com-
plete): first, any extension of the base semantics is computed, and then, in each step,
a strictly bigger (w.r.t. subset) one is computed. As these subproblems are in NP, each
step is delegated to a SAT solver. The direct approach from [14], on the other hand,
does not rely on external SAT solvers but uses a genuine procedure to compute pre-
ferred extensions. What the algorithms have in common is that they maintain a list of
already found preferred extensions by which they constrain the search for new ones.
All algorithms continue the search for new extensions until none can be found, the
algorithm for skeptical acceptance just adds the constraint that the queried argument
must not be contained.

We will present these algorithms in a uniform way via abstract solvers, abstracting
from some minor tool-specific details. By presenting algorithms in such a uniform
way, the relation among these algorithms becomes much clearer than by using, e.g.
pseudo-code-based descriptions. In fact, common to all algorithms is a conceptual
two-level architecture of computation, similar to Answer Set Programming solvers for
disjunctive logic programs [11]. The lower level corresponds to a DPLL-like search
subprocedure, while the higher level part takes care of the specific theory and drives the
overall algorithm. For PrefSat and CEGARTIX, the subprocedures actually are delegated
to a SAT solver, while the dedicated approach carries out a tailored search procedure.
Such common architecture is difficult to spot by looking at the related pseudo-code
descriptions, while it will be clear by employing abstract solvers.

Each algorithm uses its own data structures, and, by slight abuse of notation, for a
given AF F = (A,R), the variables they use are denoted by atoms(F ). For this set it
holds that A ⊆ atoms(F ), i.e. there is an atom for each argument. The states of all the
graph representations we will define are either
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1. an annotated triple (ε, E′, E)i where i ∈ {out , base,max}, ε ⊆ 2A is a set of
sets of arguments, and both E′ and E are records over atoms(F ); or

2. Ok(ε) for ε ⊆ 2A; or

3. a distinguished state Accept or Reject .

The intended meaning of a state (ε, E′, E)i is that ε is the set of already found
preferred extensions of F (visited part of the search space), E′ is a record representing
the current candidate extension (which is admissible or complete in F and, for the SAT-
based algorithms, has to be extended in the next iteration), E is a record that may be
currently modified, and i refers to the current level of computation. Note that both E
and E′ are records, and they will be modified in the course of the computation; on the
other hand found preferred extensions will be translated to a set of arguments before
being stored in ε, and permanently left there unmodified. The annotation i denotes
the current level of computation the procedure is in. Both annotations base and max
correspond to different lower level computations, typically SAT calls, while out is used
for states in which (simple) checks outside such procedures have to be made. Transition
rules reflecting the higher level of computation shift these annotations, e.g. a shift from
a out to base means that the algorithm is starting a call to a SAT solver. Transition
rules mirroring rules “inside” a SAT solver do not modify i. A path through a graph
made up of such states, representing a run of an algorithm, will then usually start in an
out state, contain several subpaths consisting exclusively of either base states or max
states, and finally end in the state Ok(ε) (for enumeration algorithms) or in one of the
states Accept or Reject (for acceptance algorithms).

The remaining states denote terminated computation: Ok(ε) contains all solutions
to the enumeration problem, while Accept or Reject denote an answer to a decision
problem.

The SAT-based algorithms construct formulas by a function f s.t.A ⊆ atoms(f(ε, E, F, α)) ⊆
atoms(F ) for all possible arguments of f . The formulas f(ε, E, F, α) are adapted
from [26]. The argument α is relevant only for CEGARTIX to decide skeptical accep-
tance of α. Finally, we use e(E) = E ∩A to project the arguments from a record E on
the set of arguments A.

We now define a strict partial order on states, that will be used to show acyclicity of
graphs later in this section. First, we define a particular representation of records used
for lexicographic comparison.

Definition 2. LetE be a record. E can be written asL0l1L1 . . . lpLp whereL0, . . . , Lp

are strings of non-decision literals and l1, . . . , lp are all the decision literals of E. We
define the sequence representation of E as s(E) = |L0| |L1| . . . |Lp|. For two se-
quence representations of records s(E1) = x1 x2 . . . xk1 and s(E2) = y1 y2 . . . yk2 ,
we say that s(E1) is lexicographically smaller than s(E2), s(E1) <lex s(E2), if
xn < yn for the first index n where xn and yn differ with n ≤ min(k1, k2), or if
k1 < k2 and for all n ≤ min(k1, k2) we have xn = yn.

Example 2. Consider the records E1 = ¬bcd, E2 = ¬bcddd, and E1 = bcd¬d. The
sequence representations of these records are given by s(E1) = 1 0, s(E2) = 1 0 0,
and s(E3) = 1 1. The lexicographic ordering is s(E1) <lex s(E2) <lex s(E3).
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The orders on states are now defined in a way that the graphs produced by the
abstract solvers presented in this section only feature edges between states ς1 and ς2
such that ς1 < ς2.

Definition 3. Let ε1, ε2 be sets of sets of arguments, E1, E2, E
′
1, E

′
2 be records, and

i1, i2 ∈ {base,max , out}. We define the following strict partial orders (i.e. irreflexive
and transitive binary relations):

<ε: ε1 <ε ε2 iff ε1 ⊂ ε2.

<E′ : E′1 <E′ E′2 iff e(E′1) ⊂ e(E′2).

<E : E1 <E E2 iff s(E1) <lex s(E2), where <lex is the lexicographic order.

<i: base <i max <i out .

The strict partial order < on states is defined such that for any two states ς1 =
(ε1, E

′
1, E1)i1 and ς2 = (ε2, E

′
2, E2)i2 , ς1 < ς2 iff

(i) ε1 <ε ε2, or

(ii) ε1 = ε2 and i1 <i i2, or

(iii) ε1 = ε2 and i1 = i2 and E′1 <E′ E′2, or

(iv) ε1 = ε2 and i1 = i2 and E′1 = E′2 and E1 <E E2.

Example 3. Consider the states ς1 = (∅, out , cd, bd¬d), ς2 = ({{a}}, base, cd, bd¬d),
ς3 = ({{a}},max , b¬c, bd¬d), ς4 = ({{a}},max , bdd,¬bcd), and ς5 = ({{a}},max , bdd,¬bcddd).
It holds that ς1 < ς2 < ς3 < ς4 < ς5. First, ς1 < ς2 holds due to ∅ ⊂ {{a}}.
Moreover, ς2 < ς3 is because of base <i max . Furthermore, ς3 < ς4 holds since
e(b¬c) = {b} ⊂ {b, d} = e(bdd). Finally, observe that ¬bcddd can be written, in
the spirit of Definition 2, as ¬b cd ∅ dd ∅, where ∅ denotes the empty string. Hence
we obtain s(¬bcddd) = 1 0 0 and similarly s(¬bcd) = 1 0. We get ς4 < ς5 since
s(¬bcd) = 1 0 <lex 1 0 0 = s(¬bcddd).

One can check that all orders on elements are transitive and irreflexive. Therefore
the construction of < also ensures these properties for the order on states.

3.1 SAT-based Algorithm for Enumeration
PrefSat (Algorithm 1 of [15]) is a SAT-based algorithm for finding all preferred ex-
tensions of a given AF. The algorithm maintains a list of visited preferred extensions.
It first searches for a complete extension not contained in previously found preferred
extensions. If such an extension is found, it is iteratively extended until we reach a
subset-maximal complete extension, which is a preferred extension by definition. This
preferred extension is stored, and we repeat the process.

This algorithm is realized by two subprocedures that are delegated to a SAT solver.
The first has to generate a complete extension not contained in one of the enumerated
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i-oracle rules (i ∈ {base,max})

Backtrack i (ε, E′, EldE′′)i ⇒ (ε, E′, El)i if
{
EldE′′ is inconsistent and
E′′ contains no decision literal

UnitPropagatei (ε, E′, E)i ⇒ (ε, E′, El)i if


l does not occur in E and
C ∨ l is a clause in f com

i (ε, E′, F, α) and
all the literals of C occur in E

Decidei (ε, E′, E)i ⇒ (ε, E′, Eld)i if
{
E is consistent and
neither l nor l occur in E

Failing rules
Failbase (ε, E′, E)base ⇒ Ok(ε) if

{
E is inconsistent and decision-free

Failmax (ε, E′, E)max ⇒ (ε ∪ {e(E′)}, ∅, ∅)base if
{
E is inconsistent and decision-free

Succeeding rules
Succeedbase (ε, E′, E)base ⇒ (ε, E, ∅)max if

{
no other rule applies

Succeedmax (ε, E′, E)max ⇒ (ε, E, ∅)max if
{

no other rule applies

Figure 4: The rules of ENUMF
f

.

preferred extensions, and the second searches for a complete extension that is a strict
superset of a given one.

We now represent PrefSat as an abstract solver. The graph ENUMF
f

for an AF F

and a vector of functions f = (f com
base , f

com
max ) is defined by the states over atoms(F ) and

the transition rules presented in Figure 4. Its initial state is (∅, ∅, ∅)base . We assume
the functions f com

base and f com
max that generate CNF formulas for ε ⊆ 2A, a record E, and

an argument α ∈ A such that:

{e(M) |M ∈ Sat(f com
base(ε, E, F, α))} = {S ∈ com(F ) | ¬∃S′ ∈ ε : S ⊆ S′};

{e(M) |M ∈ Sat(f com
max (ε, E, F, α))} = {S ∈ com(F ) | e(E) ⊂ S}.

In words, the models of the formula f com
base(ε, E, F, α) represent the complete exten-

sions ofF such that no superset is contained in ε. Moreover, the models of f com
max (ε, E, F, α)

represent the complete extensions of F strictly extending the extension represented by
E. Hence, these are the formulas that are handed to a SAT solver in PrefSat in order to
solve the necessary subprocedures.

We remark that α is not relevant for enumeration of extensions and only used for ac-
ceptance later on. In the interest of uniformity we keep it as parameter of the functions
throughout the paper. Recall that in a state (ε, E′, E)i the set ε represents preferred
extensions found as of now, E′ is a record for the complete extension found in the pre-
vious oracle run and E is a record for the complete extension that the current oracle is
trying to build. The annotation i ∈ {base,max} corresponds to different kinds of SAT
calls.

As the oracle rules with annotation i ∈ {base,max} coincide with the ones of
DPϕ (cf. Figure 2), their role is to search for a satisfying assignment of f com

i . That is,
if a Fail i rule is applied to the state (ε, E′, E)i for i, the formula f com

i (ε, E′, F, α) is
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Initial state : (∅, ∅, ∅)base
base-oracle : (∅, ∅, E1 ⊇ {a,¬b,¬c,¬d})base
Succeedbase : (∅, E1, ∅)max

max -oracle : (∅, E1, E2 ⊇ {a,¬b,¬c, d})max

Succeedmax : (∅, E2, ∅)max

max -oracle : (∅, E2, unsat)max

Failmax : ({{a, d}}, ∅, ∅)base
base-oracle : ({{a, d}}, ∅, E3 ⊇ {a,¬b, c,¬d})base
Succeedbase : ({{a, d}}, E3, ∅)max

max -oracle : ({{a, d}}, E3, unsat)max

Failmax : ({{a, d}, {a, c}}, ∅, ∅)base
base-oracle : ({{a, d}, {a, c}}, ∅, unsat)base
Failbase : Ok({{a, d}, {a, c}})

Figure 5: Path in ENUMF
f

where F is the AF from Figure 1.

unsatisfiable. Conversely, when a Succeed i rule is applied from that state, the formula
f com
i (ε, E′, F, α) is satisfied by E. Notice that Fail i and Succeed i might shift i to

reflect a change of type of SAT calls. When i = base, the oracle searches for a complete
extension that is not contained in a preferred extension that has been found before. In
case of failure all the preferred extensions have been found. In case of success, it
is necessary to search whether there are strictly larger complete extensions than the
one found. This is handled by the computation within states annotated by max . In
case of success, Succeedmax is applied and the procedure is repeated, since the current
complete extension might still not be maximal. Failure by Failmax means we have
found a preferred extension.

Example 4. Again consider the AF F depicted in Figure 1. We have seen in Exam-
ple 1 that F has two preferred extensions, namely {a, c} and {a, d}. Figure 5 shows
a possible path in the graph ENUMF

f
. As expected, the computation terminates in the

state Ok({{a, d}, {a, c}}). Note that we abbreviate the parts of the path where we are
“inside” the SAT-solver. Also, we only show literals over arguments of F , and do not
state the extra literals that may have been assigned during the call to the SAT-solver.
Recall that by unsat we represent an inconsistent and decision-free record.

It remains to show correctness of ENUMF
f

by showing that we reach a terminal
state containing all preferred extensions of F . First observe that the oracle rules are
exactly taken from DPϕ of Figure 2, working on the third element of the state-triple.
Moreover, this working record is always initialized with ∅when a transition rule outside
the oracle rules is applied. Therefore, we can immediately follow from Theorem 2.1:

Lemma 3.1. For any AF F and i ∈ {base,max}, if Succeed i is applied from state
(ε, E′, E)i in the graph ENUMF

(f com
base ,f

com
max )

then E ∈ Sat(f com
i (ε, E′, F, α)); if Fail i is

applied then f com
i (ε, E′, F, α) is unsatisfiable.

We continue with a lemma stating that only preferred extensions which have not
been found at this point are added to ε.
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Lemma 3.2. For any AF F , if the rule Failmax is applied from state (ε, E′, E)max in
the graph ENUMF

(f com
base ,f

com
max )

then e(E′) ∈ prf(F ) and e(E′) /∈ ε.

Proof. Let (ε1, E
′
1, E1)max be the state from which Failmax is applied. This means,

by Lemma 3.1, that f com
max (ε1, E

′
1, F, α) is unsatisfiable, hence, by the definition of

formula f com
max , there is no S ∈ com(F ) with S ⊃ e(E′1). To get e(E′1) ∈ prf(F )

it remains to show that e(E′1) ∈ com(F ). Observe that Succeedbase is applied at
least once, since every AF has a complete extension. Moreover, the value of E′1 is
only updated by applications of Succeedbase or Succeedmax . In both cases e(E′1)
corresponds to a complete extension of F , due to the definitions of the formula f com

base

or f com
max , respectively, and Lemma 3.1. Therefore e(E′1) is a complete extension of F .
Since the initial state is (∅, ∅, ∅)base , an application of Succeedbase must precede

Failmax . From this application of Succeedbase it follows from Lemma 3.1 that there
is a record E′ such that ¬∃S ∈ ε : e(E′) ⊆ S. Moreover every application of
Succeedmax updates E′ by a proper superset of itself. Therefore e(E′1) ⊇ e(E′) and
also ¬∃S ∈ ε : e(E′1) ⊆ S, in particular e(E′1) /∈ ε.

Now we are ready to show correctness of ENUMF
f

.

Theorem 3.3. For any AF F , the graph ENUMF
(f com

base ,f
com
max )

is finite, acyclic and the only
terminal state reachable from the initial state is Ok(ε) where ε = prf(F ).

Proof. In order to show that ENUMF
f

is finite, consider some state (ε, E′, E)i of ENUMF
f

.
Since bothE andE′ are records over atoms(F ), and F is finite by definition, the num-
ber of possible recordsE andE′ is finite. Similarly, there is only a finite number of sets
of sets of arguments ε. Finally, ENUMF

f
only contains states with i ∈ {base,max}.

Thus the number of states is finite in the graph ENUMF
f

.
In order to show that it is acyclic recall the strict partial order< on states from Defi-

nition 3. We show that each transition rule is increasing w.r.t.< by referring to the con-
ditions (i) to (iv) from Definition 3. To this end consider two states ς1 = (ε1, E

′
1, E1)i1

and ς2 = (ε2, E
′
2, E2)i2 representing the states before and after the application of a

rule. First of all, the i-oracle rules (i.e. Backtrack i, UnitPropagatei, and Decidei)
fulfill ς1 < ς2 because of (iv). For all of these rules ε1 = ε2, E′1 = E′2 and i1 = i2,
but s(E1) is lexicographically smaller than s(E2), therefore E1 <E E2. Moreover,
Failmax fulfills ς1 < ς2 due to (i) since e(E′1) /∈ ε1 by Lemma 3.2. Succeedbase guar-
antees ς1 < ς2 because of (ii). Finally, Succeedmax fulfills ς1 < ς2 due to (iii), since
the max -oracle rules work on the formula f com

max and the extension associated with a
satisfying assignment E1 = E′2 of that formula must be a proper superset of e(E′1).
Therefore, by transitivity of <, or any two states ς1 and ςn such that ςn is reachable
from ς1 in ENUMF

f
it holds that ς1 < ςn, showing that the graph is acyclic.

The only terminal state reachable from the initial state is Ok(ε) (via rule Failbase )
for some ε ⊆ 2A since all states (ε, E,E′)i of ENUMF

f
have i ∈ {base,max} and for

each i ∈ {base,max} there is a rule Succeed i with the condition “no other rule ap-
plies”. It remains to show that, when state Ok(ε) is reached, ε coincides with prf(F ).
Since elements are only added to ε by application of the rule Failmax we know from
Lemma 3.2 that for each T ∈ ε it holds that T ∈ prf(F ). To reach Ok(ε), the rule
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Failing rules
Failbase (ε, E′, E)base ⇒ Accept if

{
E is inconsistent and decision-free

Failmax (ε, E′, E)max ⇒ (ε, E′, ∅)out if
{
E is inconsistent and decision-free

Failout (ε, E′, E)out ⇒ (ε ∪ {e(E′)}, ∅, ∅)base if
{
α ∈ e(E′)

Succeeding rules
Succeedout (ε, E′, E)out ⇒ Reject if

{
α /∈ e(E′)

Figure 6: Changed transition rules for SKEPT-PRFF,α
f

.

Failbase must have been applied from a state (ε, E′, E)base . This means, by the defi-
nition of f com

base and Lemma 3.1, that for each complete extension S of F there is some
T ∈ ε such that S ⊆ T . Hence ε = prf(F ).

3.2 SAT-based Algorithm for Acceptance
CEGARTIX [16] is a SAT-based tool for deciding several acceptance questions for AFs.
Here we focus on Algorithm 1 of [16] for deciding skeptical acceptance w.r.t. preferred
semantics of an argument α. Similarly to PrefSat, CEGARTIX traverses the search
space of a certain semantics, generates candidate extensions not contained in already
visited preferred extensions, and maximizes the candidate until a preferred extension is
found. The main differences to PrefSat are (1) the parametrized use of base semantics
σ (the search space), which can be either admissible or complete semantics, and (2)
the incorporation of the queried argument α. To prune the search space, α must not
be contained in the candidate σ-extension before maximization. Again, we have two
kinds of SAT-calls.

The graph SKEPT-PRFF,α
f

for an AF F , an argument α and a vector of func-

tions f = (fσbase , f
σ
max ) is defined by the states over atoms(F ) and the rules in

Figure 4 replacing the rules Fail i for i ∈ {base,max} and adding the rules Failout
and Succeedout as depicted in Figure 6. The initial state is (∅, ∅, ∅)base . For σ ∈
{adm, com} we assume the functions fσbase and fσmax such that:

{e(M) |M ∈ Sat(fσbase(ε, E, F, α))} = {S ∈ σ(F ) | α /∈ S ∧ ¬∃S′ ∈ ε : S ⊆ S′};
{e(M) |M ∈ Sat(fσmax (ε, E, F, α))} = {S ∈ σ(F ) | e(E) ⊂ S}.

The graph SKEPT-PRFF,α
f

is similar to ENUMF
f

. Again, the models of the formulas
f com
base(ε, E, F, α) and f com

max (ε, E, F, α) represent the complete extensions of F which
are not contained in any element of ε and extending the extension represented by E,
respectively. In addition, the query argument α is required not to be contained in the
extensions represented by the models of f com

base(ε, E, F, α). The graph differs in case of
failure in a state annotated by base or max . When all the preferred extensions have
been enumerated, i.e. the base-oracle ends with an application of Failbase , we can
report a positive outcome with Accept , since we have ensured that α belongs to all of
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Inital state : (∅, ∅, ∅)base
base-oracle : (∅, ∅, E1 ⊇ {a,¬b,¬c,¬d})base
Succeedbase : (∅, E1, ∅)max

max -oracle : (∅, E1, E2 ⊇ {a,¬b, c,¬d})max

Succeedmax : (∅, E2, ∅)max

max -oracle : (∅, E2, unsat)max

Failmax : (∅, E2, ∅)out
Failout : ({{a, c}}, ∅, ∅)base
base-oracle : ({{a, c}}, ∅, E3 ⊇ {a,¬b,¬c, d})base
Succeedbase : ({{a, c}}, E3, ∅)max

max -oracle : ({{a, c}}, E3, unsat)max

Failmax : ({{a, c}}, E3, ∅)out
Succeedout : Reject

Figure 7: Reject-path for argument c in SKEPT-PRFF,c
f

.

Initial state : (∅, ∅, ∅)base
base-oracle : (∅, ∅, E1 ⊇ {¬a,¬b,¬c,¬d})base
Succeedbase : (∅, E1, ∅)max

max -oracle : (∅, E1, E2 ⊇ {a,¬b,¬c,¬d})max

Succeedmax : (∅, E2, ∅)max

max -oracle : (∅, E2, E3 ⊇ {a,¬b,¬c, d})max

Succeedmax : (∅, E3, ∅)max

max -oracle : (∅, E3, unsat)max

Failmax : (∅, E3, ∅)out
Failout : ({{a, d}}, ∅, ∅)base
base-oracle : ({{a, d}}, ∅, unsat)base
Failbase : Accept

Figure 8: Accept-path for argument a in SKEPT-PRFF,a
f

.

them. If we arrive at Failmax , i.e. when a preferred extension has been found, it is
necessary to check whether α belongs to it, and this is done via rules Succeedout and
Failout that either lead to Reject or give the control to the base level.

Example 5. Again consider the AF F from Figure 1 and note that skeptical acceptance
of argument c is rejected as c is not contained in the preferred extension {a, d} of F .
Accordingly, the possible path of the graph SKEPT-PRFF,c

f
which is depicted in Figure 7

(with base semantics adm) terminates in the Reject-state.
On the other hand, argument a is skeptically accepted w.r.t. preferred semantics in

F as it belongs to all preferred extensions enumerated in {{a, d}, {a, c}}. For checking
whether a is skeptically accepted in F , a possible path in the graph SKEPT-PRFF,a

f

(again with base semantics adm) is shown in Figure 8. As expected, the path terminates
in the state Accept .

Again, we get the following from Theorem 2.1:
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Lemma 3.4. For any AF F = (A,R), argument α ∈ A, σ ∈ {adm, com}, and i ∈
{base,max}, if Succeed i is applied from state (ε, E′, E)i in the graph SKEPT-PRFF,α

f

then E ∈ Sat(fσi (ε, E′, F, α)); if Fail i is applied then fσi (ε, E′, F, α) is unsatisfiable.

The proof of the following results is almost identical to the ones of Lemma 3.2 and
Theorem 3.3 and can be found in Appendix A.

Lemma 3.5. For any AF F , if the rule Failout is applied from state (ε, E′, E)out in the
graph SKEPT-PRFF,α(fσ

base ,f
σ
max )

with σ ∈ {adm, com} then e(E′) ∈ prf(F ) and e(E′) /∈ ε.

Theorem 3.6. For any AF F = (A,R), argument α ∈ A, and σ ∈ {adm, com}, the
graph SKEPT-PRFF,α(fσ

base ,f
σ
max )

is finite, acyclic and any terminal state reachable from
the initial state is either Accept or Reject; Reject is reachable iff α is not skeptically
accepted in F w.r.t. prf.

Finally note that from Theorem 3.6 it follows that Accept is reachable from the ini-
tial state if and only if α is skeptically accepted by F , which completes the correctness
statement for SKEPT-PRFF,α

f
.

3.3 Dedicated Approach for Enumeration
Algorithm 1 of [14] presents a direct approach for enumerating preferred extensions.
One function is important for this algorithm, which is called IN-TRANS. Given an AF
F = (A,R), it marks an argument a ∈ A as belonging to the currently built extension,
and marks all attackers {b | (b, a) ∈ R} and all attacked arguments {b | (a, b) ∈ R}
as outside of this extension. Intuitively, IN-TRANS decides to accept a, and then
propagates the immediate consequences to the neighboring nodes. It actually does an
additional task. It labels the attacked arguments as “attacked”, and the attackers that
are not yet labelled as attacked as “to be attacked”: this allows later to easily check
the admissibility of the extension by just looking whether there is any argument “to be
attacked”.

The algorithm is recursive, and stores the admissible extensions in a global variable.
First, it checks whether all the arguments are marked as either belonging to or being
outside the extension, and if so it returns after adding the extension to the global vari-
able if the extension is actually admissible. Second, it applies the function IN-TRANS
to some unmarked argument and calls itself recursively. Third, it reverts the effects of
IN-TRANS, marks the argument it chose as outside of this extension, and calls itself
recursively.

We have defined an equivalent representation of this algorithm that follows the
framework of abstract solvers with binary logics as previously used in this article. Bi-
nary truth values are sufficient to represent the arguments marked, but we see the labels
“attacked” and “to be attacked” as an optimization as they can be easily recovered at
the end of the algorithm. Indeed, they correspond to the condition “there is an argument
a such that e(E) does not attack a and a attacks e(E)” of the rule Failout.

The graph DIRECTF for an AF F is defined by the states over atoms(F ) and the
transition rules presented in Figure 9. Its initial state is (∅, ∅, ∅)max . The structure of
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Oracle rules

Backtrack ′max (ε, ∅, EadE′′)max ⇒ (ε, ∅, E¬a)max if
{
EadE′′ is inconsistent and
E′′ contains no decision literal

Propagate′max (ε, ∅, E)max ⇒ (ε, ∅, E¬a)max if
{
e(E) attacks a or a attacks e(E) and
¬a does not occur in E

Decide ′max (ε, ∅, E)max ⇒ (ε, ∅, Ead)max if


E is consistent and
neither a nor ¬a occur in E and
Propagate ′max does not apply

Succeeding and failing rules
Failmax (ε, ∅, E)max ⇒ Ok(ε) if

{
E is incons. and decision-free

Succeedmax (ε, ∅, E)max ⇒ (ε, ∅, E)out if
{

no other rule applies

Failout (ε, ∅, E)out ⇒ (ε, ∅, E⊥)max if


∃E′ ∈ ε : E ⊆ E′ or
there is an argument a s.t.
e(E) does not attack a and a attacks e(E)

Succeedout (ε, ∅, E)out ⇒ (ε ∪ {e(E)}, ∅, E⊥)max if
{

no other rule applies

Figure 9: The rules of the graph DIRECTF .

the graph is similar to that of ENUMF
f

. It differs from this graph in two ways. First,
it has only one lower level of computation. Second, the rules of the oracle differ from
the previous oracle rules since they are not a call to a SAT solver; we primed them to
emphasize the difference.

More precisely, among the oracle rules, propagation (through Propagate′max rule)
now only occurs so as to negatively add an atom if it attacks or is attacked by an atom
of the extension being built. The Decide ′max rule only adds atoms positively, which
is useful in Algorithm 2 of [14] as it ensures maximality of final assignments. When
a record assigning all arguments is found, the rule Succeedmax is applied so as to al-
low the test of the outer rules to be carried on. Differently to the algorithms presented
so far, the extension associated to this record is only guaranteed to be conflict-free at
this point and not admissible (or complete, depending on the chosen base semantics).
When the record corresponds to a preferred extension, it is stored through Succeedout ,
and the process continues. In both Succeedout and Failout , the use of one of the rules
Backtrack ′max or Failmax is forced by making the record inconsistent. This way the
process of browsing records is forced to continue.

A final comment is related to one of the main advantages of using abstract solvers,
i.e. the fact that they allow to highlight in a more clear way similarities and differences
among solving algorithms, as mentioned in Section 1. It is evident that our reformula-
tion of the direct approach has allowed to present this algorithm by modification of the
previous two solving procedures, by explicitly viewing it in the light of a backtrack-
search process in a search space, more similar to a SAT-based procedure. This would
not be obvious by considering, e.g. the pseudo-code description of the direct approach.

Example 6. A possible path in the graph DIRECTF for the AF F in Figure 1 is shown
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Initial state : (∅, ∅, ∅)max

Decide ′max : (∅, ∅, cd)max

Propagate′max : (∅, ∅, cd¬b¬d)max

Decide ′max : (∅, ∅, cd¬b¬dad)max

Succeedmax : (∅, ∅, cd¬b¬dad)out
Succeedout : ({{a, c}}, ∅, cd¬b¬dad⊥)max

Backtrack ′max : ({{a, c}}, ∅, cd¬b¬d¬a)max

Succeedmax : ({{a, c}}, ∅, cd¬b¬d¬a)out
Failout : ({{a, c}}, ∅, cd¬b¬d¬a⊥)max

Backtrack ′max : ({{a, c}}, ∅,¬c)max

Decide ′max : ({{a, c}}, ∅,¬cad)max

Propagate′max : ({{a, c}}, ∅,¬cad¬b)max

Decide ′max : ({{a, c}}, ∅,¬cad¬bdd)max

Succeedmax : ({{a, c}}, ∅,¬cad¬bdd)out
Succeedout : ({{a, c}, {a, d}}, ∅,¬cad¬bdd⊥)max

Backtrack ′max : ({{a, c}, {a, d}}, ∅,¬cad¬b¬d)max

Succeedmax : ({{a, c}, {a, d}}, ∅,¬cad¬b¬d)out
Failout : ({{a, c}, {a, d}}, ∅,¬cad¬b¬d⊥)max

Backtrack ′max : ({{a, c}, {a, d}}, ∅,¬c¬a)max

Decide ′max : ({{a, c}, {a, d}}, ∅,¬c¬abd)max

Propagate′max : ({{a, c}, {a, d}}, ∅,¬c¬abd¬d)max

Succeedmax : ({{a, c}, {a, d}}, ∅,¬c¬abd¬d)out
Failout : ({{a, c}, {a, d}}, ∅,¬c¬abd¬d⊥)max

Backtrack ′max : ({{a, c}, {a, d}}, ∅,¬c¬a¬b)max

Decide ′max : ({{a, c}, {a, d}}, ∅,¬c¬a¬bdd)max

Succeedmax : ({{a, c}, {a, d}}, ∅,¬c¬a¬bdd)out
Failout : ({{a, c}, {a, d}}, ∅,¬c¬a¬bdd⊥)max

Backtrack ′max : ({{a, c}, {a, d}}, ∅,¬c¬a¬b¬d)max

Succeedmax : ({{a, c}, {a, d}}, ∅,¬c¬a¬b¬d)out
Failout : ({{a, c}, {a, d}}, ∅,¬c¬a¬b¬d⊥)max

Failmax : Ok({{a, d}, {a, c}})

Figure 10: Path in DIRECTF where F is the AF from Figure 1.

in Figure 10. One difference can be seen by the fact that the result of the modified
oracle rules may be contained in an already found preferred extension. Then ⊥ is
added to the current record by Failout , followed by backtracking to the last decision
literal, if any. Moreover note that in Figure 10 we explicitly write the state transitions
due to modified oracle rules, in order to emphasize the diffence to the SAT oracle rules
used in the previous graphs.

We give the correctness statement of the abstract solver representing the direct
approach after providing an intermediate lemma; proofs can again be found in Ap-
pendix A.

Lemma 3.7. For any AF F , if the rule Succeedout is applied from state (ε, ∅, E)out in
the graph DIRECTF then e(E) ∈ prf(F ) and e(E) /∈ ε.
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Theorem 3.8. For any AF F , the graph DIRECTF is finite, acyclic and the only termi-
nal state reachable from its initial state is Ok(ε) where ε = prf(F ).

3.4 Combining Algorithms
We now use the insights gained by the graph representations of the algorithms from the
literature to define a new algorithm for skeptical acceptance w.r.t. preferred semantics.
We do so by defining a new abstract solver which incorporates the modified DPLL (cf.
Section 2.3) into the graph representation of CEGARTIX (cf. Section 3.2). This gives
rise to a new algorithm which is not only of theoretical interest, but also leads to a more
efficient solving procedure, as we will show in Section 4.

Now recall that, in PrefSat and CEGARTIX, the two SAT calls annotated with
i ∈ {base,max} basically amount to finding a maximal satisfying assignment, i.e.
a preferred extension. This is done by iteratively extending the satisfying assignment
found by the SAT call annotated with base (which must not contain the queried argu-
ment), by means of a series of further SAT calls annotated with max .

But, given our result in Section 2.3, the “inner loop” of SAT calls for maximization
is not strictly needed, and the two types of SAT calls can be substituted by a single
modified call. More specifically, we replace base by base ′ by abstaining from the
condition that the queried argument must not be contained in the σ-extension. Hence,
a single modified SAT call to base ′ returns a preferred extension which has not been
found already.

Given an AF F , an argument α and a base semantics σ ∈ {adm, com}, the graph
MIX-PRFF,αfσ

base′
representing the new algorithm for deciding skeptical acceptance of α

in F w.r.t. prf is defined by the states of atoms(F ) and the transition rules presented
in Figure 11. Its initial state is (∅, ∅, ∅)base′ . As we can see, the graph describes
exactly the intuition behind the new proposal. A new label base ′ is employed to clearly
differentiate with the other two-level architectures. Of course, in order to guarantee
that the outcome of the modified SAT call is a preferred extension, we must assume the
function fσbase′(ε, E, F, α) such that:

{e(M) |M ∈ Sat(fσbase′(ε, E, F, α))} = {S ∈ σ(F ) | ¬∃S′ ∈ ε : S ⊆ S′}.

Then, the outcome of the base ′ rules is treated similarly, through the out rules, to
the graph SKEPT-PRFF,α

f
presented in Section 3.2.

Considering the fact that the new solution always adds positive atoms to the current
assignment, it looks similar to the direct approach; but there is a notable difference
between the new algorithm and the direct approach. The outcome of the oracle-rules of
the direct approach (cf. Figure 9) is a conflict-free set which is not necessarily maximal
(and in other rules admissibility and maximality is checked), whereas the outcome of
the oracle-rules in the new algorithm modifying SKEPT-PRFF,α

f
is guaranteed to be an

admissible (and preferred) set.
From Theorem 2.2 we know that the base ′-oracle rules give a maximal satisfying

assignment of fσbase′(ε, E′, F, α):
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base ′-oracle rules

Backtrackbase′ (ε, ∅, EldE′′)base′ ⇒ (ε, ∅, El)base′ if
{
EldE′′ is inconsistent and
E′′ contains no decision literal

UnitPropagatebase′ (ε, ∅, E)base′ ⇒ (ε, ∅, El)base′ if


l does not occur in E and
C ∨ l is a clause in fσbase′(ε, E

′, F, α) and
all the literals of C occur in E

Decide≺base′ (ε, ∅, E)base′ ⇒ (ε, ∅, Ead)base′ if
{
E is consistent and
neither a nor ¬a occur in E

Failing rules
Failbase′ (ε, ∅, E)base′ ⇒ Accept if

{
E is inconsistent and decision-free

Failout (ε, E′, E)out ⇒ (ε ∪ {e(E′)}, ∅, ∅)base′ if
{
α ∈ e(E′)

Succeeding rules
Succeedbase′ (ε, ∅, E)base′ ⇒ (ε, E, ∅)out if

{
no other rule applies

Succeedout (ε, E′, E)out ⇒ Reject if
{
α /∈ e(E′)

Figure 11: The rules of MIX-PRFF,α
f

.

Lemma 3.9. For any AF F = (A,R), argument α ∈ A, and σ ∈ {adm, com},
if Succeedbase′ is applied from state (ε, E′, E)base′ in the graph MIX-PRFF,αfσ

base′
then

E ∈ Sat(fσbase′(ε, E′, F, α)) and ¬∃M ∈ Sat(fσmax (ε, E′, F, α)) with M ⊃ E; if
Failbase′ is applied then fσbase′(ε, E′, F, α) is unsatisfiable.

To be sure that maximal satisfying assignments correspond to preferred extensions,
it has to hold that the atoms occurring in fσbase′ which do not correspond to arguments
of the AF do not affect maximality. To this end we make the following assumption.

Assumption 1. Given an AF F = (A,R), a set of sets of arguments ε, a recordE rela-
tive to atoms(F ), and an argument α ∈ A, for each M1,M2 ∈ Sat(fσbase(ε, E, F, α)),
where σ ∈ {adm, com}, it holds that M1 ⊆M2 iff e(M1) ⊆ e(M2).

It is important to note that the concrete formulas used in CEGARTIX fulfill Assump-
tion 1. Taking the assumption for granted in the rest of the paper, we are able to show
correctness of the abstract solver representing the combined approach.

Lemma 3.10. For any AF F , if the rule Failout is applied from state (ε, E′, E)out in
the graph MIX-PRFF,αfσ

base′
with σ ∈ {adm, com} then e(E′) ∈ prf(F ) and e(E′) /∈ ε.

Theorem 3.11. For any AF F = (A,R), argument α ∈ A, and σ ∈ {adm, com}, the
graph MIX-PRFF,αfσ

base′
is finite, acyclic and any terminal state reachable from the initial

state is either Accept or Reject; Reject is reachable iff α is not skeptically accepted
in F w.r.t. prf.

Proof. (1) MIX-PRFF,αfσ
base′

is finite and acyclic: Finiteness follows in the same way as in
Theorem 3.3. In order to show acyclicity we show that each transition rule is increas-
ing w.r.t. the strict partial order < from Definition 3 (with base replaced by base ′).
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Consider two states ς1 = (ε1, E
′
1, E1)i1 and ς2 = (ε2, E

′
2, E2)i2 representing the

states before and after the application of a rule. First of all, the base ′-oracle rules (i.e.
Backtrackbase′ , UnitPropagatebase′ , and Decide≺base′ ) fulfill ς1 < ς2 because of (iv).
For all of these rules ε1 = ε2, E′1 = E′2 and i1 = i2, but s(E1) is lexicographically
smaller than s(E2), therefore E1 <E E2. Moreover, Failout fulfills ς1 < ς2 due to
(i) since e(E′1) /∈ ε1 by Lemma 3.10. Succeedbase guarantees ς1 < ς2 because of (ii).
Finally, Succeedbase′ fulfills ς1 < ς2 due to (ii), since base <i out , and Succeedout

and Failbase′ result in terminal states. Therefore, by transitivity of <, or any two states
ς1 and ςn such that ςn is reachable from ς1 in ENUMF

f
it holds that ς1 < ςn, showing

that the graph is acyclic.
(2) Any terminal state of MIX-PRFF,αfσ

base′
reachable from the initial state is either

Reject or Accept : This is immediate by the existence of the rule Succeedbase′ with
condition “no other rule applied” and the fact that the rules Failout and Succeedout

are complete in the sense that if one rule does not apply the other rule applies and vice
versa.

(3) Reject is reachable from the initial state iff α is not skeptically accepted by F
w.r.t. prf.

(⇒): Assume Reject is reachable. Hence also (ε, E′, E)out with α /∈ e(E′) is reach-
able. Moreover Succeedbase′ was applied at a state (ε, E′′, E′)base′ , meaning, by
Lemma 3.9, thatE′ ∈ Sat(fσbase′(ε, E′′, F, α)) and¬∃E′′′ ∈ Sat(fσmax (ε, E′′, F, α))
with E′′′ ⊃ E′. Taking into account Assumption 1 this means, by the defini-
tion of fσbase′ , that e(E′) is a ⊆-maximal σ-extension, i.e. a preferred extension.
Since α /∈ e(E′) we get that α is not skeptically accepted.

(⇐): Assume α is not skeptically accepted by F w.r.t. prf. Hence there is some
T ∈ prf(F ) with α /∈ T . Now assume, towards a contradiction, that Reject
is not reachable. This means by (1) and (2), that Accept is reachable. Hence
Failbase′ is applicable from a state (ε, E′, E)base′ . By the definition of fσbase′

and Lemma 3.9, this means that there is no σ-extension S of F such that ¬∃S′ ∈
ε : S ⊆ S′. Now note that Failout is the only rule where elements are added to
ε. Moreover, by Lemma 3.10, we know that elements added are preferred exten-
sions of F . But therefore for each S ∈ σ(F ) it holds that ∃T ∈ prf(F ) : S ⊆
T ∧ α ∈ T , a contradiction.

Again it is important to note that from Theorem 3.11 it follows that Accept is reach-
able from the initial state if and only if α is skeptically accepted by F , which completes
the correctness statement for MIX-PRFF,αfσ

base′
.

Example 7. For the AF F from Figure 1, a possible path in MIX-PRFF,cfσ
base′

is depicted
in Figure 12. It correctly results in Reject , as c is not skeptically accepted in F w.r.t.
prf. Figure 13, on the other hand, shows a possible path in MIX-PRFF,afσ

base′
. Note that

both paths are shorter than the ones of SKEPT-PRFF,α
f

in Figures 7 and 8, respectively.
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Inital state : (∅, ∅, ∅)base′
base ′-oracle : (∅, ∅, E1 ⊇ {a,¬b, c,¬d})base′
Succeedbase′ : (∅, E1, ∅)out
Failout : ({{a, c}}, ∅, ∅)base′
base ′-oracle : ({{a, c}}, ∅, E2 ⊇ {a,¬b,¬c, d})base′
Succeedbase′ : ({{a, c}}, E2, ∅)out
Succeedout : Reject

Figure 12: Reject-path for argument c in MIX-PRFF,cfσ
base′

.

Initial state : (∅, ∅, ∅)base′
base ′-oracle : (∅, ∅, E1 ⊇ {a,¬b,¬c, d})base′
Succeedbase′ : (∅, E1, ∅)out
Failout : ({{a, d}}, ∅, ∅)base′
base ′-oracle : ({{a, d}}, ∅, E2 ⊇ {a,¬b, c,¬d})base′
Succeedbase′ : ({{a, d}}, E2, ∅)out
Failout : ({{a, d}, {a, c}}, ∅, ∅)base′
base ′-oracle : ({{a, d}, {a, c}}, ∅, unsat)base′
Failbase′ : Accept

Figure 13: Accept-path for argument a in MIX-PRFF,afσ
base′

.

Of course, in principle it is not clear whether the new abstract solution leads to
computational advantages (see, e.g. [27, 28] for a related discussion); however, the
experimental analysis in Section 4 shows that this is the case.

4 Experiments
In order to test the viability of our proposed combination as introduced in Section 3.4,
we have implemented an alternative version of CEGARTIX following the new approach.
The choice of CEGARTIX is motivated by the fact that it has been one of the best AF
solvers in both editions of the argumentation competition (http://argumentationcompetition.
org). In particular, in the reasoning task of interest (skeptical acceptance under pre-
ferred semantics as in Section 3.2), CEGARTIX was 2nd out of 11 solvers entering the
track in the first competition, and highly competitive also in the second event.3

4.1 Implementation
The main change done in CEGARTIX was thus replacing the two inner SAT calls with a
single call to a SAT solver with modified heuristics, and we obtained this by changing
the internal heuristics of the CLASP solver used by CEGARTIX in the 2015 compe-
tition. CLASP [30] is an ASP solver, but can act also as SAT solver with excellent

3Comparisons of the performance of CEGARTIX and other solvers can be found in [29, 9].
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results as shown in past SAT competitions, starting from 2009 to the most recent edi-
tions (see, e.g. http://www.satcompetition.org/). Moreover, for efficiency
reasons, the implementation of CEGARTIX slightly differs from the algorithm in Sec-
tion 3.2, given that the condition α /∈ S is conjunctively added to e(E) ⊂ S for
fσmax (ε, E, F, α), with the idea of guiding the search through counterexamples. Con-
sequently, for comparing the two alternatives on the same implementation basis, the
same is done for fσbase′(ε, E, F, α).
The variants of CEGARTIX considered in our experiments are:

1. ceg: version with com as a base semantics, which was the setting employed in
both editions of the competition. Past experiments ([16], on different benchmark
graphs) overall showed simlar or better performance of this version compared to
that with adm as a base semantics.

2. ceg+-com: new version implementing the combination in Section 3.4 with com
as a base semantics.

3. ceg+-adm: new version implementing the combination in Section 3.4 with adm
as a base semantics.

In our experiments, these three variants of CEGARTIX were run with the same parame-
ters.

The version of CEGARTIX entering the competition included shortcuts, i.e. specific
conditions that can lead the solver to find solutions earlier, before entering the main
solving algorithm. Details for shortcuts will be presented in the next section. For
this analysis, given the main goal is to test the new solution which applies to the core
part of the algorithm and shortcuts could obfuscate the differences between algorithms,
shortcuts have been disabled. Note, however, that the new variants can make use of the
very same shortcuts. Therefore, it has to be noted that final implementations of the
respective algorithms might show smaller gaps in performance, since they will all use
the same shortcuts in the first place.

4.2 Benchmarks
For benchmarks, i.e., instances comprising of an AF and an argument for which one has
to check skeptical acceptance under preferred semantics, we considered the following
three benchmark sets4

• ICCMA’15: These are 192 AFs with three arguments to be queried for, from the
competition in the year 2015 [9]. After cleaning this dataset from trivial queries
(queried arguments not among the set of arguments in the AF), this resulted in
537 instances.

4Archives of the benchmark sets can be found at http://argumentationcompetition.
org/2015/iccma2015_benchmarks.zip, http://www.dbai.tuwien.ac.at/iccma17/
benchmarks/A.tar.gz, and http://www.dbai.tuwien.ac.at/research/project/
argumentation/cegartix/files/clima.zip.
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Table 1: General runtime statistics from experiments.

median runtime timeouts uniquely solved
benchmark ceg ceg+-com ceg+-adm ceg ceg+-com ceg+-adm by ceg by ceg+-com or ceg+-adm

all 1.01 1.14 1.28 57 61 71 6 11
ICCMA’15 0.77 0.93 0.76 0 0 0 0 0
ICCMA’17 9.75 7.96 23.30 45 47 60 5 8

CLIMA 1.04 1.1 0.99 12 14 11 1 3

• ICCMA’17: In this dataset, from the competition in the year 2017 [7], we have
300 AFs, divided into four categories (according to expected difficulty), which
were used to compare solvers for the task of checking skeptical acceptance un-
der preferred semantics (this set is called set “A” in the competition). The hardest
category has two arguments to be queried for per AF, while all other three cate-
gories have one query argument. This results in 350 instances.

• CLIMA: This is a set of AFs from our earlier work [31], which we included
since it comprises of several AFs that were hard to solve by an earlier version of
CEGARTIX. Here we have 320 AFs and one query argument per AF. The AFs
F = (A,R) were created as randomly generated digraphs, with a fixed set of
arguments A ∈ {100, 150, 200, 225, 250, 300, 325, 350} and a probability to in-
clude an attack (a, b) for each a, b ∈ A with probability p ∈ {0.1, 0.2, 0.3, 0.4}.
For each parameter choice 10 AFs were created.

For each of the three benchmark sets, the AFs were given in the original dataset, while
the arguments to be queried for were only given for ICCMA’15 and ICCMA’17. For
the set CLIMA, we chose one argument in the AF to query at random, with uniform
probability for each argument. Overall, this resulted in 1207 instances (AF and query).

4.3 Results
Experiments have been run on an AMD Opteron Processor 6308 3.5GHz with 2 pro-
cessors with each 2 physical cores; every of these cores puts at disposal 2 logical cores,
for a sum of 192 GB (12 x 16GB) of RAM. In our experiments we set a per-instance
timeout of 600 sec.

We first show general runtime statistics in Table 1. More concretely, the table
depicts median runtimes over the considered benchmark sets, as well as timeouts en-
countered in the runs. The last two columns list the number of instances that were
uniquely solved by ceg or by the union of solved instances of ceg+-com and ceg+-
adm, i.e., whether the original approach or the new approaches could contribute to
uniquely solved instances.

This table indicates that, regarding median runtime and timeouts, the new ap-
proaches generally do not fare (much) better than the original version of CEGARTIX. In
fact, median runtimes and timeouts overall increased when comparing new and original
approaches, except for median running time of ceg+-com on benchmark ICCMA’17
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and, to a small extent, ceg+-adm on benchmark CLIMA. A further observation is that
the instances from benchmark ICCMA’15 are rather easy to solve.

Nevertheless, the uniquely solved instances indicate differences of the approaches
w.r.t. runtime performance. Looking closer at these uniquely solved instances, when
ceg+-com or ceg+-adm could solve an instance within the timeout limit and ceg could
not, it was always the case that ceg+-adm solved the instance, while this was only
sometimes the case for ceg+-com. That is, ceg+-adm contributes to all of the uniquely
solved instances, while ceg+-com only to five of the eleven instances.

We next illustrate, via Figure 14, the different runtime behaviors of the three CE-
GARTIX implementations via scatter plots. In Figure 14(a), the scatter plot between
ceg and ceg+-adm is shown, while in Figure 14(b), ceg is compared to ceg+-com and,
finally, in Figure 14(c), the scatter plot of the two new solvers is shown. Such plots
show the running time of two solvers (on x and y axes) on each individual instance.
A runtime directly on the diagonal implies the same runtime for both solvers on that
instance.

Closer inspection of the figures suggests that the solver ceg and the two solvers
ceg+-com and ceg+-adm are rather complementary in their runtime behavior on many
(non-easy) instances. That is, apart from the uniquely solved instances (these are the
ones on the “timeout” lines for one of the solvers), also several further instances showed
different runtime behavior: in both Figure 14(a) and Figure 14(b) several instances can
be seen below or above the diagonal.

We hypothesize that a reason for the different runtimes, for original ceg and novel
ceg+-com and ceg+-adm, stems from difficulties of ceg to find non-trivial (i.e., non-
empty) admissible sets. To investigate towards this end, we have marked each instance
of each scatter plot, in Figures 14(a-c), whether the corresponding AF has a non-empty
grounded extension or not. When an AF has an empty grounded extension the corre-
sponding symbol in the figure is a black circle, otherwise a red cross. An AF having
a non-empty grounded extension can be seen as a kind of approximation of whether
one can (easily) find a non-trivial admissible set. In Figure 14(a) and Figure 14(b),
this categorization of the instances is, to some extent, reflected in the runtimes: many
times when a novel solver outperformed ceg it is the case when the grounded extension
is empty. When looking at Figure 14(c), comparing running times of ceg+-com and
ceg+-adm, the results suggest that on AFs with an empty grounded extension, ceg+-
adm tends to be better w.r.t. running time, yet on AFs with a non-empty grounded
extension, many instances, on that figure, are either in the diagonal or, in fact, trivial
for ceg+-com, but not for ceg+-adm.

Although further research is needed, the characteristic of an AF having a (non-
)empty grounded extension gives an indicator whether ceg or ceg+-com and ceg+-
adm might be better to use for solving. This insight can be used, for instance, when
compiling an algorithm selection for CEGARTIX, in line with techniques studied in [32],
to first compute the grounded extension, and then choose which heuristic to apply.
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(a) ceg vs. ceg+-adm.
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(b) ceg vs. ceg+-com.
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(c) ceg+-com vs. ceg+-adm.

Figure 14: Scatter plots of our experimental analysis. Black circles indicate instances
with an AF that has an empty grounded extension, while a red cross indicates a non-
empty grounded extension.

5 Extensions to the Framework
In Section 3 we have analyzed three prominent algorithms from the literature dealing
with preferred semantics. In this section we show that the modularity of the abstract
solver approach allows us to give the graph representation of related algorithms with
little effort. First, we abstract the algorithms from [16] deciding skeptical (resp. cred-
ulous) acceptance w.r.t. other, namely stage [33] and semi-stable [34], semantics, and
then we exemplify how to incorporate shortcuts into the graph-representations for the
algorithms of the same paper.
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Table 2: Complexity of decision problems for AFs.

σ Credσ Skeptσ
prf NP-c ΠP

2 -c
sem ΣP2 -c ΠP

2 -c
stg ΣP2 -c ΠP

2 -c

5.1 Core Algorithms for Semi-Stable and Stage Semantics
Other semantics involving reasoning tasks lying in the second level of the polynomial
hierarchy are stage and semi-stable (cf. Table 2). Their definitions make use of the
concept of the range of a set of arguments S ⊆ A in an AF F = (A,R), defined as
S+
F = S ∪ {a ∈ A | ∃b ∈ S : (b, a) ∈ R}, i.e. S together with all arguments it attacks.

Stage (stg) and semi-stable (sem) semantics are then defined as follows:

Definition 4. Given an AF F ,

• S ∈ stg(F ), if S ∈ cf(F ) and there is no T ∈ cf(F ) such that T+
F ⊃ S

+
F ;

• S ∈ sem(F ), if S ∈ adm(F ) and there is no T ∈ adm(F ) such that T+
F ⊃ S+

F ,
or equivalently,

• S ∈ sem(F ), if S ∈ com(F ) and there is no T ∈ com(F ) such that T+
F ⊃ S

+
F .

For semi-stable semantics the possible base semantics coincide with the ones for
preferred semantics, that is admissible and complete, while stage semantics (yielding
range-maximal conflict-free sets) uses conflict-free as base semantics. In other words,
for the pairs (σ, θ) ∈ {(adm, sem), (com, sem), (cf, stg)}, a uniform characterization
of θ is as follows: Given an AF F , S ∈ θ(F ) iff S ∈ σ(F ) and there is no T ∈ σ(F )
such that T+

F ⊃ S
+
F .

Algorithms for skeptical (resp. credulous) acceptance w.r.t. these semantics are pre-
sented in Algorithms 2 and 3 of [16] by adaptation of the algorithm for skeptical ac-
ceptance w.r.t. preferred semantics described in Section 3.2. Similar to the algorithm
for preferred semantics, the general skeptical acceptance procedure for semantics θ
and base semantics σ first makes use of two SAT oracles to find a range-maximal
σ-extension. The main difference to the algorithm for preferred semantics is that the
maximization is concerned with the range of extensions instead of the extensions them-
selves. Moreover, since there can be different σ-extensions with the same range, an-
other oracle has to be consulted in order to check whether there is a σ-extension with a
range equal to the maximal one found before, which does not contain the queried argu-
ment. If such an extension exists, the algorithm returns with a negative answer to the
skeptical acceptance problem w.r.t. θ. For credulous acceptance, the algorithm returns
with a positive answer if the oracle call finds such a σ-extension which does contain
the queried argument.

The graph SKEPT-θF,α
f

for a semantics θ ∈ {sem, stg}, an AF F , and argument α,

and a vector of functions f is defined by states over atoms(F ) and the transition rules
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Failing rules
Failout (ε, E′, E)out ⇒ (ε ∪ {(e(E′))+F }, ∅, ∅)base if

{
E is inconsistent and decision-free

Succeeding rules
Succeedout (ε, E′, E)out ⇒ Reject if

{
no other rule applies

Figure 15: The transition rules of the graph SKEPT-θF,α
f

that differ from

SKEPT-PRFF,α
f

.

of SKEPT-PRFF,α
f

(Figures 4 and 6) with additional oracle rules for index out (i.e. we
have i ∈ {base,max , out} for Backtrack i, UnitPropagatei, and Decidei now) and
the rules Failout and Succeedout changed according to Figure 15. In contrast to the
graphs presented so far, ε now contains the ranges of the extensions already found.
Moreover, the decision whether to add the range of the current extension and continue
the search or to reject the given instance is based on another set of oracle rules – the
ones indexed by out .

The initial state of SKEPT-θF,α
f

is (∅, ∅, ∅)base . For σ ∈ {adm, com, cf} we assume
functions fσbase , fσmax and fσout such that:

{e(M) |M ∈ Sat(fσbase(ε, E, F, α))} = {S ∈ σ(F ) | α /∈ S ∧ ¬∃S′ ∈ ε : S+
F ⊆ S

′};
{e(M) |M ∈ Sat(fσmax (ε, E, F, α))} = {S ∈ σ(F ) | (e(E))

+
F ⊂ S

+
F };

{e(M) |M ∈ Sat(fσout(ε, E, F, α))} = {S ∈ σ(F ) | (e(E))
+
F = S+

F ∧ α /∈ S}.

Functions fσbase and fσmax coincide with the ones for preferred semantics, except
that they compare ranges of extensions. The new function fσout does the additional
check described above.

Likewise, the graph CRED-θF,α
f

abstracting the CEGARTIX-algorithm for credulous

acceptance w.r.t. semi-stable and stage semantics coincides with SKEPT-θF,α
f

with the
exception that the outcomes of the rules Failbase and Succeedout are swapped, i.e.
the application of Failbase leads to Reject and the application of Succeedout leads to
Accept . That is since a found witness (a θ-extension containing α) means that α is
credulously accepted, while if exhaustive search does not reveal such a witness, it α
is not credulously accepted. As the algorithm searches for extensions containing the
queried argument α, two functions have to differ; we assume gσbase and gσout , which
contain the condition α ∈ S instead of α /∈ S compared to the functions fθbase and fθout
for skeptical acceptance:

{e(M) |M ∈ Sat(gσbase(ε, E, F, α))} = {S ∈ σ(F ) | α ∈ S ∧ ¬∃S′ ∈ ε : S+
F ⊆ S

′};
{e(M) |M ∈ Sat(gσout(ε, E, F, α))} = {S ∈ σ(F ) | (e(E))

+
F = S+

F ∧ α ∈ S}.

The following results show correctness of the abstract solvers for acceptance prob-
lems w.r.t. semi-stable and stage semantics described in this section. The proofs, which
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follow the same structure as previous proofs, can be found in Appendix A.

Lemma 5.1. For (σ, θ) ∈ {(adm, sem), (com, sem), (cf, stg)}, any AF F = (A,R)
and an argument α ∈ A, if one of the rules Failout or Succeedout is applied from
state (ε, E′, E)out in the graph SKEPT-θF,α(fσ

out ,f
σ
max ,f

σ
base)

(resp. CRED-θF,α(gσout ,f
σ
max ,g

σ
base)

)

then e(E′) ∈ θ(F ) and (e(E′))+F /∈ ε.

Theorem 5.2. For (σ, θ) ∈ {(adm, sem), (com, sem), (cf, stg)}, any AF F = (A,R)

and α ∈ A, the graph SKEPT-θF,α(fσ
out ,f

σ
max ,f

σ
base)

(resp. CRED-θF,α(gσout ,f
σ
max ,g

σ
base)

) is finite,
acyclic and any terminal state reachable from the initial state is either Accept or
Reject; Reject is reachable from the initial state iff α is not skeptically accepted (resp.
not credulously accepted) in F w.r.t. prf.

Finally note again that from Theorem 5.2 it follows that Accept is reachable from
the initial state if and only if α is skeptically accepted (resp. credulously accepted) in
F , which completes the correctness statement for SKEPT-θF,α

f
(resp. CRED-θF,αg ).

5.2 Shortcuts for CEGARTIX-algorithms
When defining abstract solvers for the algorithms of CEGARTIX in previous sections
we restricted our attention to the core of the algorithm. In this section we show that
the graphs presented so far can be easily extended in a modular way to capture the full
algorithms.

We do so by abstracting the full Algorithm 1 of [16] for skeptical acceptance w.r.t.
preferred semantics, including the shortcut computation performed at the beginning
of the algorithm. By this shortcut, the algorithm immediately returns with a negative
answer for the skeptical acceptance problem w.r.t. preferred semantics, if there is a σ-
extension (σ ∈ {adm, com}) attacking the queried argument. To this end we define
FULL-SKEPT-PRFF,α

f
for a given AF F = (A,R), an argument α ∈ A and a vector

of oracle functions f as the graph SKEPT-PRFF,α
f

from Section 3.2 with the following
modifications:

• We add the transition rules presented in Figure 16.

• Moreover, there is a set of oracle rules with index pre. For σ ∈ {adm, com} we
assume a function fσpre such that

{e(M) |M ∈ Sat(fσpre(ε, E, F, α))} = {S ∈ σ(F ) | S attacks α}.

• The initial state is (∅, ∅, ∅)pre .

To represent the shortcut, a third level has been added, which precedes levels base
and max , so that we call this level pre. Note that ε and E′ are always ∅ at level
pre. If the oracle rules with index pre lead to a record corresponding to a satisfying
assignment of fσpre (i.e. a σ-extension attacking α), the application of Succeedpre leads
to rejection; otherwise Failpre leads to the state (∅, ∅, ∅)base , which means we have
arrived at SKEPT-PRFF,α

f
. The resulting graph represents the full Algorithm 1 of [16].
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Failing rules
Failpre (ε, E′, E)pre ⇒ (∅, ∅, ∅)base if

{
E is inconsistent and decision-free

Succeeding rules
Succeedpre (ε, E′, E)pre ⇒ Reject if

{
no other rule applies

Figure 16: The transition rules of the graph FULL-SKEPT-PRFF,α
f

added to

SKEPT-PRFF,α
f

Theorem 5.3. For any AF F = (A,R), argument α ∈ A, and σ ∈ {adm, com}, the
graph FULL-SKEPT-PRFF,α(fσ

base ,f
σ
max ,f

σ
pre)

is finite, acyclic and any terminal state reach-
able from the initial state is either Accept or Reject; Accept is reachable iff α is
skeptically accepted in F w.r.t. prf.

6 Related Work
The use of abstract solvers was initiated by Nieuwenhuis et al. [10]. In that work the
authors first presented an abstract solver for SAT, similar to our introduction of ab-
stract solvers in Section 2.2. Then, they presented two extensions: (i) a description of
Conflict-Driven Clause Learning SAT solving, i.e. involving backjumping and learning
techniques, by means of modular addition of transition rules, but also by changing the
definition of states to account for learned clauses, and (ii) they considered also Satisfi-
ability Modulo Theories (SMT) problems with certain logics via a lazy approach [35],
i.e. where the SAT calls are made to provide satisfying assignments of the Boolean
abstraction of the SMT problem that are then checked for “SMT consistency”. Lierler
[36] imported this methodology to Answer Set Programming (ASP), by first design-
ing abstract solvers for some backtracking-based ASP solvers for non-disjunctive ASP
solving, and then enhancing her approach to include backjumping and learning tech-
niques [12]. Another extension for describing CASP solvers, i.e. systems able to deal
with a combination of ASP and constraint programming, a language useful to represent
and reason on hybrid domains, has been put forward in [13]. Other works on abstract
solvers are [37], where solvers for different formalisms, e.g. ASP and SAT with In-
ductive Definitions, are compared by means of comparison of the related graphs, and
the following series of papers where, starting from a developed concept of modularity
in answer set solving [38], abstract modeling of solvers for multi-logic systems are
presented [39, 40, 41].

If we turn our attention to the usage of abstract solvers for dealing with reason-
ing tasks beyond NP, the situation is less developed and only very recently few works
have been put forward. Abstract solvers for certain disjunctive answer set solvers im-
plementing basic backtracking have been introduced by Brochenin et al. [11] and are
studied in a more general way in [42]. Even more recently, abstract solvers for satisfi-
ability of Quantified Boolean Formulas [43] and cautious reasoning in ASP [44] have
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been presented.
Only few of the aforementioned works [10, 12] have already aimed for the imple-

mentation of combinations of algorithms based on abstract solvers; thus, our practical
results are particularly remarkable.

As far as other algorithms for the preferred semantics in the literature are con-
cerned, we mention [45, 46], where a labelling-based approach is employed. These
algorithms differ in the initial labellings and how transitions are applied to argument
labels. Moreover, [46] includes other semantics than preferred and also argument-
based proof theories, another way to characterize an algorithm’s behavior but whose
goal is not to be the basis for an implementation.

The argumentation solver competition 2015 [8] had eleven participating systems
in the task of deciding skeptical acceptance of an argument w.r.t. preferred semantics.
The first two places were taken by ArgSemSAT and CEGARTIX, whose algorithms are
described in terms of abstract solvers in Sections 3.1 and 3.2, respectively. The other
solvers in the top five were LabSATSolver, ASPARTIX-V [47] and CoQuiAAS [48]
(system descriptions of all participating solvers can be found in [49]). While LabSAT-
Solver uses the same algorithm as ArgSemSAT for this particular task, ASPARTIX-V
and CoQuiAAS are reduction-based approaches, using translations to ASP and a par-
ticular variant of Max-SAT, respectively. Thus, being based on reduction, their mod-
eling via abstract solvers is less interesting for the abstract argumentation community,
given that this would boil down to modeling, respectively, ASP and Max-SAT search
algorithms. For this reason, they have not been considered in this paper.

7 Conclusions
In this paper we have shown the applicability and the advantages of using a rigorous
formal way for describing certain algorithms for solving decision problems for ab-
stract argumentation frameworks through graph-based abstract solvers instead of, e.g.
pseudo-code-based descriptions. Both SAT-based and dedicated approaches for solv-
ing hard problems have been analyzed and compared, with focus on algorithms for
the preferred semantics. Moreover, by combining abstract solvers, we have obtained
a novel algorithm for skeptical acceptance. The algorithm has been implemented tak-
ing CEGARTIX [16] as a starting point. An experimental analysis on the benchmark
graphs of the first and second argumentation competition, as well as on graphs from
earlier work, shows that the new algorithm is complementary to an existing algorithm
in CEGARTIX. The above analysis has focused, as said, on the well-studied preferred
semantics, and on core algorithms. We have then shown how the machinery can be
employed to describe algorithms for different semantics, e.g. semi-stable and stage se-
mantics, as employed in CEGARTIX, and for taking into account specific optimization
techniques by means of modular addition of transition rules to the graphs describing
the core parts of the algorithms.

As future work, we want to apply the concept of abstract solvers to other promising
algorithms and optimization techniques for reasoning tasks in abstract argumentation.
In particular, we plan to study certain approaches to the decomposition of AFs [50, 51,
52, 53]. Moreover, we plan to extend our experimental analysis for the new version of
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CEGARTIX by studying on which classes of AFs the new version is performing better
than existing algorithms.
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A Proofs
Proof of Lemma 3.5. Let Sout = (ε, E′, E)out be the state from which Failout is ap-
plied. The state Sout must have been achieved by the application of Failmax from a
state (ε, E′, ∅)max . This means, by the definition of formula fσmax and Lemma 3.4, that
there is no S ∈ σ(F ) with S ⊃ e(E′). For e(E′) ∈ prf(F ) it remains to show that
e(E′) ∈ σ(F ). Observe that an update of the value ofE′ is only done by an application
of Succeedbase or Succeedmax . In both cases e(E′) corresponds to a σ-extension of F ,
since it is a satisfying assignment of one of the formulas fσbase and fσmax and therefore
guaranteed to be a σ-extension of F .

Since the initial state is (∅, ∅, ∅)base , an application of Succeedbase must precede
Failout . From this application of Succeedbase it follows that there is some record E′′

such that ¬∃S ∈ ε : e(E′′) ⊆ S holds. Moreover every application of Succeedmax

updates E′′ by a proper superset of itself. Therefore e(E′) ⊇ e(E′′) and also ¬∃S ∈
ε : e(E′) ⊆ S, in particular e(E′) /∈ ε.

Proof of Theorem 3.6. (1) SKEPT-PRFF,α
f

is finite and acyclic: In order to show finite-

ness note that the states (ε, E′, E)i of SKEPT-PRFF,α
f

coincide with the states of ENUMF
f

,
there is just an additional option out for i. Hence finiteness follows from Theorem 3.3.
In order to show that SKEPT-PRFF,α

f
is acyclic we have to show that the rules that

differ in SKEPT-PRFF,α
f

from ENUMF
f

(i.e. the ones listed in Figure 6) are increasing
with respect to the ordering < from Definition 3: Failout fulfills ς1 < ς2 due to (i) by
Lemma 3.5, Failmax guarantees ς1 < ς2 because of (ii), and Failbase and Succeedout

end in terminal states.
(2) Any terminal state of SKEPT-PRFF,α

f
reachable from the initial state is either

Reject or Accept : Consider the state ς = (ε, E,E′)i. If i ∈ {base,max} then there is
a rule Succeed i with the condition “no other rule applies”, hence ς cannot be a terminal
state. If i = out , the rules Failout and Succeedout are complete in the sense that if one
rule does not apply the other rule applies and vice versa. Therefore only Reject and
Accept can be terminal states.

(3) Reject is reachable from the initial state iff α is not skeptically accepted in F
w.r.t. prf: (⇒): Assume Reject is reachable. Hence also (ε, E′, E)out with α /∈ e(E′)
is reachable. Moreover Failmax was applied at a state (ε, E′, E′′)max , meaning, by
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Lemma 3.4, that fσmax (ε, E′, F, α) is unsatisfiable, i.e. there is no σ-extension S with
S ⊃ e(E′). It remains to show that e(E′) ∈ σ(F ). That is by the fact that there must
be a preceding application of the rule Succeedbase from some state (ε, E′′′, E′)base
with e(E′) being a σ-extension of F by the definition of fσbase and Lemma 3.4. Now
as e(E′) ∈ σ(F ), ¬∃S ⊃ e(E′) : S ∈ σ(F ), and α /∈ e(E′), we have that α is not
skeptically accepted by F w.r.t. prf. (⇐): Assume α is not skeptically accepted by
F w.r.t. prf. Hence there is some T ∈ prf(F ) with α /∈ T . Now assume, towards a
contradiction, that Reject is not reachable. This means by (1) and (2), that Accept is
reachable. Hence Failbase is applicable from a state (ε, E′, E)base . By the definition
of fσbase and Lemma 3.4, this means that there is no σ-extension S of F with α /∈ S and
¬∃S′ ∈ ε : S ⊆ S′. Now note that Failout is the only rule where elements are added
to ε. Moreover, by Lemma 3.5, we know that elements added are preferred extensions
of F . But therefore for each S ∈ σ(F ) with α /∈ S it holds that ∃T ∈ prf(F ) : S ⊆
T ∧ α ∈ T , a contradiction.

Proof of Lemma 3.7. The application of Succeedout from state ςout = (ε, ∅, E)out
must have been preceded by Succeedmax from the state ςmax = (ε, ∅, E)max which
only differs from ςout in i. We now analyze the record E as it is constructed by the
rules Decide ′max , Propagate ′max and Backtrack ′max . The application of Decide ′max

adds literal a, literal ¬b is added by Propagate ′max for all b being in conflict with a in
F . Therefore e(E) is conflict-free in F . Moreover e(E) is admissible since if “there
is an argument α such that e(E) does not attack α and α attacks e(E)”, then Failout
is applied instead of Succeedout . To get e(E) ∈ prf(F ) it remains to show that there
is no S ∈ adm(F ) with S ⊃ e(E). Assume there is such an S ∈ adm(F ). Then there
must be some a ∈ S with a /∈ e(E). Now observe that the graph first adds a to the
record and afterwards ¬a. Therefore S must have been discovered in advance. But
then ∃S ∈ ε : e(E) ⊆ S, hence Failout is applied instead of Succeedout .

Proof of Theorem 3.8. Since states of DIRECTF consist of the same elements as states
of ENUMF

f
, finiteness of DIRECTF follows in the same way as in Theorem 3.3.

To show that DIRECTF is acyclic we will, again as in the proof of Theorem 3.3,
show that each transition rule of DIRECTF is increasing w.r.t. a strict partial order on
states. To this end we define the strict partial order <D such that for any two states
ς1 = (ε1, ∅, E1)i1 and ς2 = (ε2, ∅, E2)i2 , ς1 <D ς2 iff

(i) ε1 <ε ε2, or

(ii) ε1 = ε2 and E1 <E E2, or

(iii) ε1 = ε2 and E1 = E2 and i1 <i i2,

where <ε, <E and <i are the orderings from Definition 3. First of all, the oracle rules
(i.e. Backtrack ′max , UnitPropagate ′max , and Decide ′max ) and Failout fulfill ς1 <D ς2
because of (ii). For all of these rules ε1 = ε2, but s(E1) is lexicographically smaller
than s(E2), therefore E1 <E E2. Moreover, Succeedout fulfills ς1 <D ς2 due to (i)
since e(E1) /∈ ε1 by Lemma 3.7. Succeedmax guarantees ς1 <D ς2 because of (iii).

The only terminal state reachable from the initial state is Ok(ε) since all states
(ε, ∅, E′)i of DIRECTF have i ∈ {max , out} and for each i ∈ {max , out} there is a

37



rule Succeed i with the condition “no other rule applies”. It remains to show that, when
state Ok(ε) is reached, ε is the set of preferred extensions of F . Since elements are only
added to ε by rule Succeedout we know from Lemma 3.7 that for each T ∈ ε it holds
that T ∈ prf(F ). On the other hand, the oracle rules guarantee that each conflict-free
set S of F a set (ε, ∅, E)out with e(E) = S is reached. If S is then admissible and
maximal w.r.t. ε (which contains only preferred extensions of F as observed before), S
is added to ε. Therefore each T ∈ prf(F ) is contained in ε.

Proof of Lemma 3.10. Let Sout = (ε, E′, E)out be the state from which Failout is ap-
plied. The state Sout must have been achieved by the application of Succeedbase′ from
a state (ε, E′′, E′)base′ This means, by the definition of formula fσbase′ , Assumption 1,
and Lemma 3.9, that e(E′) ∈ σ(F ), ¬∃S ∈ ε : e(E′) ⊆ S, and e(E′) is maximal with
these properties. Since ε is initially empty and, as we argue, only preferred extensions
of F are added, it follows that e(E′) ∈ prf(F ) and e(E′) /∈ ε.

Proof of Lemma 5.1. Let (ε, E′, E0)out be the state from which Failout or Succeedout

is applied. Other rules of index out have not changed E0, hence (ε, E′, ∅)out was
the outcome of the application of Failmax . By definition of fσmax this means that
¬∃S ∈ σ(F ) : S+

F ⊃ (e(E′))+F . To get e(E′) ∈ θ(F ) it remains to show that
e(E′) ∈ σ(F ). Observe that Succeedbase is applied at least once, since every AF has a
σ-extension. Moreover, the value of E′ is only updated by applications of Succeedbase

or Succeedmax . In both cases e(E′) corresponds to a σ-extension of F , since E′ is a
satisfying assignment of the formula fσbase or fσmax , respectively. Therefore e(E′) ∈
σ(F ).

Since the initial state is (∅, ∅, ∅)base , an application of Succeedbase must precede
Failout . From this application of Succeedbase it follows that there is a record E′′ such
that ¬∃S ∈ ε : (e(E′′))+F ⊆ S. Moreover every application of Succeedmax updates
E′′ by a proper superset of itself. At some point, Failmax must be applied, leading to
a state (ε, E′, ∅)out with E′ ⊇ E′′, hence again ¬∃S ∈ ε : (e(E′))+F ⊆ S. Finally,
oracle rules with index out do not change E′′, hence when Failout is applied from
state (ε, E′, E)out it holds that (e(E′))+F /∈ ε.

Proof of Theorem 5.2. We show the result for SKEPT-θF,α
f

, the proof for CRED-θF,αg

very similar.
(1) SKEPT-θF,α

f
is finite and acyclic: Finiteness is immediate by Theorem 3.6,

since SKEPT-θF,α
f

is defined over the same states as SKEPT-PRFF,α
f

– with the only
exception of containing a set of extension-ranges instead of extensions, which makes
no difference in this matter. For acyclicity all rules have to be increasing w.r.t. <. This
was already shown for the rules in Figures 4 and 6. It also follows for the oracle rules
for index out as the fact that oracle rules are increasing w.r.t. < is independent from
the index. Finally, the rule Failout is increasing due to condition (i) in Definition 3 by
Lemma 5.1 and Succeedout leads to a terminal state.

(2) Any terminal state of SKEPT-θF,α
f

reachable from the initial state is either
Reject or Accept : For any possible state ς = (ε, E,E′)i with i ∈ {base,max , out}
there is a rule Succeed i with the condition “no other rule applies”, hence ς cannot be a
terminal state. Therefore only Reject and Accept can be terminal states.

38



(3) Reject is reachable from the initial state iff α is not skeptically accepted in F
w.r.t. θ: (⇒): Assume Reject is reachable. It must have been reached by application
of Succeedout from a state (ε, E′, E)out . By definition of fσout this means that e(E) ∈
σ(F ), α /∈ e(E) and (e(E))+F = (e(E′))+F . Moreover we know from Lemma 5.1 that
e(E′) ∈ θ(F ), i.e. that there is no S ∈ σ(F ) with S+

F ⊃ (e(E′))+F and therefore also
not with S+

F ⊃ (e(E))+F . Hence E ∈ θ(F ) and since α /∈ E, we conclude that α is not
skeptically accepted in F w.r.t. θ. (⇐): Assume α is not skeptically accepted in F w.r.t.
θ. Hence there is some T ∈ θ(F ) with α /∈ T . Now assume, towards a contradiction,
that Reject is not reachable, meaning, by (1) and (2), that Accept is reachable. Hence
Failbase is applicable from a state (ε, E′, E)base . By the definition of fσbase , this means
that there is no σ-extension S of F such that α /∈ S and ¬∃S′ ∈ ε : S+

F ⊆ S′. Now
note that Failout is the only rule where elements are added to ε. By Lemma 5.1, such
elements are ranges of θ-extensions of F . But therefore for each S ∈ σ(F ) with α /∈ S
it holds that ∃T ∈ θ(F ) : S+

F ⊆ T
+
F ∧α ∈ T , a contradiction to α not being skeptically

accepted in F w.r.t. θ.

Proof of Theorem 5.3. Finiteness is inherited from SKEPT-PRFF,α
f

. For acyclicity we
consider< from Definition 3, but extending<i by adding pre <i j for j ∈ {base,max , out}.
With this, Failpre is increasing due to (ii) as the set of extensions ε will stay empty
during the application of rules of index pre. Succeedpre results in a terminal state and
finally, also the oracle rules are increasing, as this is independent from the index.

A pre-state cannot be terminal since if “no other rule applies”, Succeedpre is ap-
plied, resulting in Reject . Hence any terminal state reachable from the initial state is
either Accept or Reject .

Since the shortcut can only reject instances it follows from Theorem 3.6 that if
Accept is reachable then α is skeptically accepted in F w.r.t. prf. If, on the other hand,
Accept is not reachable, then Reject is reached either by application of Succeedout or
by application of Succeedpre . In the first case we again know from Theorem 3.6 that
α is not skeptically accepted (note that Failpre leads to state (∅, ∅, ∅)base , which is just
the initial state of SKEPT-PRFF,α

f
). In the second case there is some S ∈ σ(F ) which

attacks α, therefore also a T ∈ prf(F ) which attacks α, hence α /∈ T . Again α is not
skeptically accepted in F w.r.t. prf.
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