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Abstract. This paper describes a generic approach to implement propositional ar-
gumentation frameworks by means of quantified Boolean formulas (QBFs). The
motivation to this work is based on the following observations: Firstly, depending
on the underlying deductive system and the chosen semantics(i.e., the kind of ex-
tension under consideration), reasoning in argumentationframeworks can become
computationally involving up to the fourth level of the polynomial hierarchy. This
makes the language of QBFs a suitable target formalism sincedecision problems
from the polynomial hierarchy can be efficiently represented in terms of QBF. Sec-
ondly, several practicably efficient solvers for QBFs are currently available, and
thus can be used as black-box engines in potential implementations of argumenta-
tion frameworks. Finally, the definition of suitable QBF modules provides us with
a tool box in order to capture a broad range of reasoning tasksassociated to formal
argumentation.

1. Introduction

In daily life, we use arguments and counter-arguments in discussions in order to “con-
vince” our opponent to our point of view. Argumentation frameworks [7] have been used
to formalize the reasoning underlying argumentation. Theyprovide what “convince”
means and how arguments may be defeated by counter-arguments.

Reasoning underlying argumentation is a general principle. Many of the well-known
non-monotonic reasoning formalisms [21,23] can be faithfully interpreted within argu-
mentation frameworks [3]. Consequently, these frameworksformalize not only the men-
tioned reasoning underlying argumentation, but can be usedto interpret, compare, and
implement a wide range of different reasoning principles. Since the main difference be-
tween two distinct reasoning principles is the underlying derivability operator, the inter-
pretation of both principles is generic except the definition of this operator. Therefore,
argumentation frameworks provide not only a theoretical setting for studying different
reasoning mechanisms, but also can be used as a practical underpinning for implemen-
tations. However, as shown by Dimopoulos, Nebel, and Toni [5] some combinations of
derivability operators and notions of extensions make reasoning in such argumentation
frameworks computationally involving as witnessed by hardness results up to the fourth
level of the polynomial hierarchy.
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In this paper, we propose an implementation of argumentation frameworks which
is based on the satisfiability problem of quantified Boolean formulas (QBFs), an exten-
sion of classical propositional logic in which formulas maycontain quantifications over
propositional atoms. The motivation to consider QBFs for argumentation frameworks is
as follows:

First, in recent years we observed a parallel and mutually influencing development
of QBF solvers on the one hand, and design of applications, onthe other hand. This sit-
uation is similar to the emerge of the success of satisfiability solvers in the mid nineties,
where first impressive results have been achieved by employing SAT solvers in the area
of planning [17,18]. Since QBFs are a more expressive language than propositional logic,
their range of application is naturally larger than that of SAT (under the reasonable as-
sumption that reductions are computable in polynomial time). In fact, various problems
from different areas have been considered as applications for QBF, including conformant
planning problems [24], reasoning from inconsistent knowledge bases [1,2], nonmono-
tonic reasoning [8,13,25], verification [16,20], and theorem proving [9]. Moreover, there
has been made a significant progress in the development of QBFsolvers in the last few
years [19].

Second, the different semantics captured by argumentationframeworks are all uni-
formly represented in our QBF setting. Our aim is, not at least, to illustrate how basic
QBF modules can be used as building blocks for assembling realizations of numerous
reasoning tasks in different instantiations of the framework. Notably, the different com-
plexity behavior does not prohibit a uniform implementation method due to the power
of QBFs and their solvers. In fact, the high complexity of some variants together with
our encodings provide highly complex but structured problems for benchmarking QBF
solvers. Currently, such structured problems are barely going beyond the second level of
the polynomial hierarchy.

The outline of the paper is as follows. After some formal preliminaries, we start
with the description of abstract argumentation frameworks. The terminology is due to
the fact that the underlying derivability operator remainsabstractin the sense that only
some necessary criteria have to be satisfied, but the operator is not specified in a concrete
way. Then we provide corresponding abstract translation schemes by means of QBFs.
Finally, we briefly describe some case studies, which instantiate the generic framework
to propositional reasoning principles. In terms of the QBF framework, this is obtained
by plugging in a QBF module which concretely describes the derivability operator of
the respective formalism. Due to space restrictions, we shall only sketch these concrete
realizations, which may serve as a basis for implementationby invoking QBF systems.

2. Formal Preliminaries

2.1. Quantified Boolean Formulas

Quantified Boolean formulas (QBFs) generalize ordinary propositional formulas by the
admission of quantifications over propositional variables. In particular, the language of
QBFs contains, for any atomp, unary operators of form∀p and∃p, calleduniversaland
existential quantifiers, respectively. Informally, a QBF of form∀p ∃q Φ means that for
all truth assignments ofp there is a truth assignment ofq such thatΦ is true.
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An occurrence of a propositional variablep in a QBFΦ is free iff it does not appear
in the scope of a quantifierQp (Q ∈ {∀, ∃}), otherwise the occurrence ofp is bound. If
Φ contains no free variable occurrences, thenΦ is closed, otherwiseΦ is open. Further-
more, we writeΦ[p/φ] to denote the result of uniformly substituting each free occurrence
of the variablep in Φ by a formulaφ.

By an interpretation, I, we understand a set of atoms. Informally, an atomp is true
underI iff p ∈ I. In general, the truth value,νI(Φ), of a QBFΦ under an interpretation
I is recursively defined as follows:

1. if Φ = ⊤, thenνI(Φ) = 1;
2. if Φ = p is an atom, thenνI(Φ) = 1 if p ∈ I, andνI(Φ) = 0 otherwise;
3. if Φ = ¬Ψ, thenνI(Φ) = 1 − νI(Ψ);
4. if Φ = (Φ1 ∧ Φ2), thenνI(Φ) = min({νI(Φ1), νI(Φ2)});
5. if Φ = ∀p Ψ, thenνI(Φ) = νI(Ψ[p/⊤] ∧ Ψ[p/⊥]);
6. if Φ = ∃p Ψ, thenνI(Φ) = νI(Ψ[p/⊤] ∨ Ψ[p/⊥]).

The truth conditions for⊥, ∨, →, and↔ follow from the above in the usual way. We
say thatΦ is true underI iff νI(Φ) = 1, otherwiseΦ is false underI. If νI(Φ) = 1,
thenI is a modelof Φ. If Φ has some model, thenΦ is said to besatisfiable. If Φ is
true under any interpretation, thenΦ is valid. Observe that a closed QBF is either valid
or unsatisfiable, because closed QBFs are either true under each interpretation or false
under each interpretation. Hence, for closed QBFs, there isno need to refer to particular
interpretations. Two sets of QBFs (or ordinary boolean formulas) arelogically equivalent
iff they possess the same models. In the sequel, we use the following abbreviation in the
context of QBFs: For a setP = {p1, . . . , pn} of propositional variables and a quantifier
Q ∈ {∀, ∃}, we letQP Φ stand for the formulaQp1Qp2 · · ·Qpn Φ.

In the same way as the satisfiability problem of classical propositional logic is the
“prototypical” problem ofNP, i.e., being anNP-complete problem, the satisfiability
problem of QBFs inprenex formpossessingk−1 quantifier alternations is the “prototyp-
ical” problem of thek-th level of the polynomial hierarchy, as expressed by the following
well-known result taken from [26].

Proposition 1 Given a propositional formulaφ with its atoms partitioned intoi ≥ 1
pairwise distinct setsP1, . . . , Pi, deciding whether∃P1∀P2 . . . QiPiφ is true is Σp

i -
complete, whereQi = ∃ if i is odd andQi = ∀ if i is even, Dually, deciding whether
∀P1∃P2 . . . Q′

iPiφ is true isΠp
i -complete, whereQ′

i = ∀ if i is odd andQi = ∃ if i is
even.

This complexity landscape can be extended to arbitrary closed QBFs if the maximal
number of quantifier alternations along a path in the QBF’s formula tree is taken into
account. In turn, an arbitrary QBF can be transformed into anequivalent QBF in prenex
form, although this transformation is not deterministic and crucial for the performance
of QBF solvers requiring the input formula being in prenex conjunctive normal form (for
details, see [10,11]).

Finally, we highlight the used reduction approach. Given a decision problemΠ, we
aim at finding a translation schemeTΠ into closed QBFs, such that

1. TΠ(·) is faithful, i.e.,TΠ(K) is true iff K is a yes-instance ofΠ;
2. For each instanceK, TΠ(K) is computable in polynomial time with respect to

the size ofK; and
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3. determining the truth of the QBFs resulting fromTΠ(·) is not computationally
harder (by means of Proposition 1) than the computational complexity ofΠ.

2.2. Abstract Argumentation Frameworks

In this section, we introduce the notions around argumentation frameworks, where we
basically follow the definitions in [5]. Abstract argumentation frameworks are defined on
top of a deductive system(LA,R), whereLA is some formal language over an alphabet
A andR is a set of inference rules inducing a monotonic derivability relation⊢. For a
theoryT ⊆ LA, we identify, as usual, its deductive closure by

Th(T ) = {α ∈ LA | T ⊢ α}.

An abstract (assumption-based) frameworkis a triple(T, A, (·)), whereT, A ⊆ LA,
with A being the set ofassumptions, and(·) is a mapping fromA to LA. For anα ∈ A,
α is thecontraryof α. An extensionof a framework(T, A, (·)) is a theoryTh(T ∪ S)
with S ⊆ A. If no confusion can arise, an extension is often referred toasS alone. A set
S ⊆ A attacksanα ∈ A iff T ∪S ⊢ α, andS attacks anS′ ⊆ A iff S attacks anα ∈ S′.
Consequently,S attacksitself iff there exists anα ∈ S, such thatS attacksα.

A setS ⊆ A is closediff S = A∩Th(T ∪S). Frameworks, in which it is guaranteed
that each suchS is closed, are calledflat. Given a framework(T, A, (·)), a setS ⊆ A is
stableiff

1. S is closed,
2. S does not attack itself, and
3. S attacks eachα ∈ A \ S.

A setS ⊆ A is admissibleiff

1. S is closed,
2. S does not attack itself, and
3. for all closedS′ ⊆ A, it holds that ifS′ attacksS, thenS attacksS′.

Finally, S is preferredif it is admissible and maximal with respect to set inclusion. For
a setS ⊆ A, which is stable (resp. admissible, preferred), the extension Th(T ∪ S) is
called stable (resp. admissible, preferred).

A framework(T, A, (·)) is callednormal, iff every maximal closed set not attacking
itself is stable. Finally, a framework issimple, iff, for inconsistentT , there is no admis-
sible extension, and otherwise there exists a least admissible extensionS = A∩Th(T ).

Given a framework(T, A, (·)), thecredulous reasoning problemis to decide whether
a givenϕ ∈ LA is contained inTh(T∪S) for someextensionS. Theskeptical reasoning
problemis to decide whetherϕ ∈ LA is contained inTh(T ∪ S) for all extensionsS.

The attentive reader might have observed that we did not define what kind of deriv-
ability operator is associated with the abstract argumentation framework. This is not an
error but a feature. In the next section, we will continue with a translation of abstract
argumentation frameworks to QBFs. These translations willagain be independent from
a concrete derivability operator which will come into the play when we instantiate the
framework.
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3. Abstract Translation Schemes to QBFs

In this section we discuss the general encodings, leaving the concrete check for the deriv-
ability operator⊢ unresolved. Afterwards we shall present some concrete realizations in
detail.

Given the propositional languageLA underlying an argumentation framework, we
assume the language of QBFs,LQBF, implicitly as defined over a sufficiently large al-
phabet, consisting of all propositional atomsA in LA plus a set of additional mutual
disjoint guessing variablesG = {gα | α ∈ LA} which we duplicate whenever needed,
i.e.,G′ = {g′α | α ∈ LA}, G′′ = {g′′α | α ∈ LA}, etc. Indeed, we shall use subsets of
the guessing variables to guess subsetsS ⊆ LA. Given an interpretationI and a subset
S ⊆ LA, we say thatI characterizesS via G iff it holds thatgα ∈ I iff α ∈ S.

First, we define an abstract QBF module for encodings of⊢, which is later replaced
by concrete instantiations. Then we provide the general encodings for checking closure,
the notion of attacking, and for characterizing stable, admissible, and preferred exten-
sions. Afterwards, we briefly discuss simplifications for frameworks which are flat, nor-
mal, or simple.

Definition 1 Let(LA,R) be a deductive system with an induced derivability relation⊢,
let T, A ⊆ LA, andα ∈ LA. Moreover, let2LA denote the power set ofLA. Then a
function

fG : 2LA × 2LA × LA 7→ LQBF

is called anencodingfor ⊢, iff

1. fG(T, A, α) has free variablesG = {ga | a ∈ A}, and,
2. for each interpretationI characterizingS via G, it holds thatfG(T, A, α) is true

underI iff T ∪ S ⊢ α .

As an example, consider some theoryT , a setA = {β, γ}, and an encodingfG for
⊢ with free variablesgβ, gγ . Now consider,fG(T, A, α) is true only under the following
interpretations (over{gβ, gγ}): I1 = {gβ}, I2 = {gγ}, andI3 = {gβ, gγ}. Now since
fG is an encoding, we derive from these models that

(i) T ∪ {β} ⊢ α,
(ii) T ∪ {γ} ⊢ α, and
(iii) T ∪ {β, γ} ⊢ α

hold, whileT ⊢ α does not hold sincefG(T, A, α) is not true underI4 = ∅.
We are now well prepared to characterize all necessary ingredients for characterizing

reasoning in argumentation frameworks via QBFs.

Theorem 1 Let F = (T, A, (·)) be a framework over a deductive system inducing⊢,
fG an encoding of⊢ with free variablesG = {ga | a ∈ A}, andI an interpretation
characterizingS ⊆ A via G. Then the following holds.

1. S is closed iffI is a model of

closedG
F :=

∧

a∈A

(

ga ↔ fG(T, A, a)
)

. (1)
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2. S does not attack itself iffI is a model of

noattack
G
F :=

∧

a∈A

(

ga → ¬fG(T, A, a)
)

. (2)

3. S is stable iffI is a model of

stableG
F := closedG

F ∧ noattackG
F ∧

∧

a∈A

(

¬ga → fG(T, A, a)
)

(3)

:= closedG
F ∧

∧

a∈A

(

ga ↔ ¬fG(T, A, a)
)

. (4)

4. S is admissible iffI is a model of

admG
F := closedG

F ∧ noattackG
F ∧ ∀G′

[

closedG′

F ∧

(

∨

a∈A

(

ga ∧ fG′

(T, A, a)
)

)

→
(

∨

a∈A

(

g′a ∧ fG(T, A, a)
)

)]

. (5)

Observe that the third arguments in the functionsfG in closedG
F andstableG

F are
different, i.e., we havea in (1) buta in (4). However, in some cases and in particular for
a flat framework, the test for closure (i.e., the conjunctclosedG

F ) can be removed from
(4), resulting in

stableG
F :=

∧

a∈A

(

ga ↔ ¬fG(T, A, a)
)

. (6)

Concerning admissible extensions, by applying Theorem 2 in[4], the encoding can
now be considerably simplified for flat frameworks.

Proposition 2 A setS ⊆ A is admissible for a flat framework(T, A, (·)), iff S does not
attack itself, and for the setS′ = {α ∈ A \ S | S does not attackα} ∪ S, it holds that
S′ does not attackS.

Theorem 2 Let F = (T, A, (·)) be a flat framework over a deductive system inducing
⊢, fG an encoding of⊢ with free variablesG = {ga | a ∈ A}, andI an interpretation
characterizingS ⊆ A via G. ThenS is admissible iff

admG
F := noattackG

F ∧

∃G′
[

∧

a∈A

(

g′a ↔
(

ga ∨ ¬fG(T, A, a)
)

)

∧
∧

a∈A

(

ga → ¬fG′

(T, A, a)
)

])

(7)

is true underI.

It remains to discuss the notion of preferred extensions. Inorder to encode the max-
imality test, which is employed to characterize preferred sets, we use the following con-
cept.
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Definition 2 Let G = {ga | a ∈ A} andG′ = {g′a | a ∈ A} be disjoint indexed sets of
atoms with the same cardinality. Define

G < G′ :=
∧

a∈A

(

ga → g′a

)

∧ ¬
∧

a∈A

(

g′a → ga

)

.

Theorem 3 Let F = (T, A, (·)) be a framework over a deductive system inducing⊢,
fG an encoding of⊢ with free variablesG = {ga | a ∈ A}, andI an interpretation
characterizingS ⊆ A via G. ThenS is preferred iff

pref G
F := admG

F ∧ ¬∃G′
(

(G < G′) ∧ admG′

F

)

is true underI.

Observe that the entire encoding now uses three copies of guessing variables, namely
G, G′, and alsoG′′ which occurs inadmG′

F . Also note that we can choose between two
realizations ofadmG

F to be used inpref G
F depending whetherF is flat (Theorem 2) or

not (3. in Theorem 1). This leads to a different quantifier structure inpref G
F mirroring

the different generic complexity results for the preferability semantics as reported in
Theorem 8 in [5].

To conclude this section, we turn our attention to the basic scheme to encode the
reasoning problems. We denote bystable(F ) (resp.adm(F ), pref (F )) the set of stable
(resp. admissible, preferred) extensions of a frameworkF .

Theorem 4 LetF = (T, A, (·)) be a framework over a deductive system(LA,R), ϕ ∈
LA, andE ∈ {stable, adm , pref }. Then

1. ϕ is contained in someE ∈ E(F ) iff ∃G(EG
F ∧ fG(T, A, ϕ)) is true;

2. ϕ is contained in allE ∈ E(F ) iff ∀G(EG
F → fG(T, A, ϕ)) is true.

Recall that we have already discussed that, for flat frameworks, these encodings
can be simplified accordingly. Moreover, there exist also shortcuts with respect to the
encoded reasoning tasks. For instance, since any preferredextension is also admissible
and any admissible extension is a subset of preferred extension, deciding whetherϕ is
contained in some preferred extension is the same as deciding whetherϕ is contained
in some admissible extension, which provides an easier encoding (i.e., an encoding with
less quantifier alternations). As well, we can apply the (easier) stable encodings in order
to deal with preferred extensions in the context of normal frameworks .

Generally speaking, after translating the encodings of thereasoning tasks into prenex
normal form, we claim that our encodings are adequate with respect to the generic com-
plexity results of abstract frameworks derived in Theorem 8in [5], whenever an adequate
encoding for the derivability operator⊢ is provided.

4. Examples for Encodings

In this section, we instantiate our abstract translation framework to concrete translations.
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4.1. Basic Frameworks

First, we analyze the simple framework as treated, for instance, in [6,2]. In particular,
we show that our generic approach coincides with the encodings to propositional logic
given by Besnard and Doutre in [2] and thus generalizes theirmethodology.

We recall the definition of this basic framework.

Definition 3 A basic argumentation frameworkis a pair (A, R) whereA is a set of
argumentsandR ⊆ A × A. If (a, b) ∈ R then we say thata attacksb. A setS ⊆ A
attacks an argumentb if somea ∈ S attacksb.

The attentive reader might have observed that we used the letter A for denoting the set
of assumptions in the abstract framework as well as for denoting the set of arguments
in basic frameworks in Definition 3. We will see that this usage is not misleading be-
cause the arguments in the basic framework play the role of assumptions in the abstract
framework.

How can we represent a basic framework in our general abstract setting? We sim-
ply consider the logical system(A, ∅), that is, the arguments are our basic vocabulary
LA (i.e., a set of atomic formulas) and the set of (additional) inference rules is empty.
This choice immediately implies that (i)A ⊢ a iff a ∈ A and (ii) Th(A) = A. With
a slight abuse of notation, we usefG(∅, A, a) := ga and, for any set of arguments
B, fG(∅, A, B) :=

∨

b∈B gb in the encodings. Then a basic argumentation framework

(A, R) is simulated by the general framework(∅, A, (·)) with a = {b | (b, a) ∈ R}.
Obviously, the framework is flat, and thus we can avoid the check for closure within our
encodings.

We start with stable extensions, where our encoding (6) reduces to

stableG
F :=

∧

a∈A

(

ga ↔ ¬fG(∅, A, a)
)

:=
∧

a∈A

(

ga ↔ (¬
∨

b∈a

gb)
)

:=
∧

a∈A

(

ga ↔ (
∧

b:(b,a)∈R

¬gb)
)

.

The latter formula coincides with the encoding from Proposition 5 in [2] by replacing
the guessing atomsga with the corresponding atomsa, for eacha ∈ A.

Admissible extensions for(A, R) are characterized using (7) from Theorem 2. By
evaluatingfG(∅, A, a) andfG′

(∅, A, a), we get

admG
F :=

∧

a∈A

(

ga → (¬
∨

b:(b,a)∈R

gb)
)

∧

∃G′
[

∧

a∈A

(

g′a ↔
(

ga ∨ ¬
∨

b:(b,a)∈R

gb

)

)

∧
∧

a∈A

(

ga → ¬
∨

b:(b,a)∈R

g′b
)

)]

.

Now we “plug in” the definition of theg′a’s from the first conjunct in the second line to
the second conjunct. We then can omit these definitions and the existential quantifiers
and get
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admG
F :=

∧

a∈A

(

ga → ¬
∨

b:(b,a)∈R

gb

)

∧
∧

a∈A

(

ga → ¬
∨

b:(b,a)∈R

(

gb ∨ ¬
∨

c:(c,b)∈R

gc

)

)

We rewrite the second conjunct ofadmG
F , viz.

∧

a∈A

(

ga → ¬
∨

b:(b,a)∈R

(

gb ∨ ¬
∨

c:(c,b)∈R

gc

)

)

to
∧

a∈A

(

ga → ¬
∨

b:(b,a)∈R

gb

)

∧
∧

a∈A

(

ga → ¬
∨

b:(b,a)∈R

∧

c:(c,b)∈R

¬gc

)

. (8)

The first conjunct of this expression absorbs the first conjunct in admG
F , and thusadmG

F

is equivalent to (8), which itself is equivalent (module variable renaming as in the case
of stable extensions above) to the encoding presented in [2].

Finally, for the encoding of the preferred extensions, we use a different concept as
in [2], where the preferred extensions are characterized via maximalmodels of proposi-
tional formulas. Since we have the full power of QBFs, we can characterize these exten-
sions via ordinary models using our encoding schema from above. Maximality is checked
on the object level (i.e., within the resulting QBF). In particular, we get the following
theorem.

Theorem 5 Let(A, R) be an argumentation framework,F = (∅, A, (·)) the correspond-
ing abstract framework, andadmF

G as reduced above. Moreover, letS ⊆ A, I ⊆ G, such
thata ∈ S iff ga ∈ I for eacha ∈ A. ThenS is preferred iff

pref G
F := admG

F ∧ ¬∃G′
(

(G < G′) ∧ admG′

F

)

is true underI.

Using our generic scheme, we additionally get immediately the encodings for the
reasoning problems as discussed in Theorem 4.

4.2. Abductive Framework

We proceed with another simple framework, namely Theorist [22], which has been
shown to be captured by abstract frameworks as follows. We use (T, A, (·)), with T and
A being sets of propositional formulas. For eacha ∈ A, ā is just¬a, and⊢ is the classical
derivability operator. We first have to encode⊢.

Proposition 3 For any propositional theoriesT andA, and for any formulaϕ, let V be
the set of atoms occurring inT , A, or ϕ, andG = {ga | a ∈ A} be new atoms. Then,

fG(T, A, ϕ) := ∀V
(

(

∧

t∈T

t ∧
∧

a∈A

(ga → a)
)

→ ϕ
)

is an encoding of classical derivability in the sense of Definition 1.
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With this instantiation, we can encode all reasoning tasks under consideration. In partic-
ular, we can characterizeextensionsin the sense of [22]. Such an extension is defined as
Th(T ∪ S), whereS ⊆ A andS is a maximal subset ofA (with respect to set inclu-
sion), such thatT ∪ S remains consistent. The relation to argumentation frameworks is
as follows.

Proposition 4 ([3]) Given a Theorist abductive framework(T, A), E is an extension of
(T, A) iff E is a stable extension of the corresponding argumentation framework.

Hence, using the concrete realization of the derivability operator from Proposition 3,
we immediately obtain an encoding for Theorist-like extensions by pluggingfG into the
abstract encodings for stable expansions given in Theorem 1.

4.3. Auto-epistemic Logic

We consider auto-epistemic logic (AEL) [21] in the context of argumentation frame-
works. Then AEL has as the underlying languageLA a modal logic with the modal op-
eratorL, butR are the classical inference rules. As assumptions we have propositional
atomsLα and¬Lα. The contrary of¬Lα is α, and the contrary ofLα is¬Lα.

We instantiate our encodings for stable extensions following this framework. There-
fore, considerF = (T, A, (·)), with T a modal theory,A containing literalsLα and
¬Lα, for each subformulaLα in T , and(·) as above. Since⊢ is the classical inference
operator, we usefG as defined in Proposition 3. The exact relation between stable exten-
sions of the framework and stable expansions of an auto-epistemic theory (cf. [21]) is as
follows, see Theorem 3.11 in [3].

Proposition 5 A theoryE is a stable extension of the framework corresponding to a
modal theoryT iff E is a consistent stable expansion ofT .

Hence, our abstract encodings (together with the concrete realization forfG as de-
fined in Proposition 3) capture stable expansions ofT . Moreover, one can show that these
encodings reduce (after some simplifications) to the ones presented in [13].

However, AEL provides argumentation frameworks which are neither normal, sim-
ple, or flat. Thus, none of the previously mentioned shortcuts in the encodings can be
applied and we end up, in the worst case, with QBFs possessingup to three quantifier
alternations. In fact, this holds in the case of skeptical reasoning under preferred exten-
sions, i.e., deciding whether a given formulaϕ is contained in all preferred extensions
of a given argumentation framework. This problem was shown to beΠp

4-complete [5]
and our encodings match this intrinsic complexity. For illustration, we briefly sketch the
structure of quantifier dependencies for the QBFs which encode this particular problem.
According to Theorem 4, we have formulas of the form∀G(pref G

F → fG(T, A, ϕ)).
Observe thatpref G

F has negative polarity in this formula. By inspecting the quantifiers in
pref G

F (according to Theorem 3), we get additional quantifiers∃G′∀G′′ the latter from
the subformulaadmG′

F . The final quantifier∃V stems from the occurrences of the en-
codings of the classical derivability (which are present inboth polarities withinadmG′

F ),
Hence, we end up here with quantifier dependencies∀G∃G′∀G′′∃V .
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5. Discussion

Due to the lack of space, we just mention briefly some further potentials of our trans-
lation framework based on QBFs. As shown in [3], non-monotonic modal logics, espe-
cially auto-epistemic logic [21] can be captured via argumentation frameworks. More-
over, by the notions of admissible and preferred extensions, additional semantics for such
logics are obtained. All of these semantics in turn can then be computed via QBFs using
our generic framework. For some non-monotonic modal logicssuch as auto-epistemic
logic, this is more or less straight forward since the corresponding argumentation frame-
work relies on classical derivability, which we already encoded sufficiently in Proposi-
tion 3. With the obtained encodings at hand, we may also provide an answer to a ques-
tion raised in [5] where the authors ask how the preferred andadmissible semantics of
auto-epistemic logic relate to the semantics of parsimonious and moderately grounded
expansions [12]. Since the latter have been reduced to QBFs in [13], we thus have a
uniform axiomatization of all the formal systems in question.

A further application is to encode different tasks for default logic [23], which is also
an instantiation of the abstract framework as shown in [3]. In this case, we have to express
a different derivability operator, namely classical logicaugmented with monotonic rules.
Such an encoding has already been used in the literature, seefor instance [8].

Finally, we briefly discuss an important question towards the concrete implementa-
tion of argumentation frameworks using QBF solvers. As is apparent by the presented
encodings, the resulting QBFs are not in any specific normal form. However, most of
the available QBF solvers require the input to be inprenex conjunctive normal form.
Thus, a further transformation is necessary. This transformation is usually performed in
two steps, namelyprenexingand a transformation of the resulting purely propositional
matrix into conjunctive normal form. The drawbacks of this transformation are an in-
crease in both formula size and variable number, or, even worse, the formula’s structure
is disrupted. Moreover, prenexing cannot be carried out deterministically and the chosen
normalization strategy crucially influences the runtimes (also depending on the concrete
solver used), see e.g., [10]. However, there are a few solvers which are able to handle
arbitrary QBFs (e.g., [11,14]) and recent results [15,11] show that non-normal form ap-
proaches are highly beneficial on certain instances. Futurework thus includes a careful
evaluation how QBF solvers of different types behave on encodings from our framework.
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