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Abstract. This paper describes a generic approach to implement ptimmad ar-
gumentation frameworks by means of quantified Boolean ftam(QBFs). The
motivation to this work is based on the following observiasioFirstly, depending
on the underlying deductive system and the chosen seméingicghe kind of ex-
tension under consideration), reasoning in argumentdtioneworks can become
computationally involving up to the fourth level of the pobmial hierarchy. This
makes the language of QBFs a suitable target formalism siacision problems
from the polynomial hierarchy can be efficiently represénteterms of QBF. Sec-
ondly, several practicably efficient solvers for QBFs arerently available, and
thus can be used as black-box engines in potential impletiens of argumenta-
tion frameworks. Finally, the definition of suitable QBF nubek provides us with
a tool box in order to capture a broad range of reasoning t&ssaciated to formal
argumentation.

1. Introduction

In daily life, we use arguments and counter-arguments ioudisions in order to “con-
vince” our opponent to our point of view. Argumentation franorks [7] have been used
to formalize the reasoning underlying argumentation. Thewide what “convince”
means and how arguments may be defeated by counter-arggiment

Reasoning underlying argumentation is a general prindipéay of the well-known
non-monotonic reasoning formalisms [21,23] can be falthfinterpreted within argu-
mentation frameworks [3]. Consequently, these framewfmkmalize not only the men-
tioned reasoning underlying argumentation, but can be tes@derpret, compare, and
implement a wide range of different reasoning principlésc&the main difference be-
tween two distinct reasoning principles is the underlyierg\hbility operator, the inter-
pretation of both principles is generic except the definitid this operator. Therefore,
argumentation frameworks provide not only a theoreticttlreg for studying different
reasoning mechanisms, but also can be used as a practi@pimmdng for implemen-
tations. However, as shown by Dimopoulos, Nebel, and Taré¢Bne combinations of
derivability operators and notions of extensions makeamiag in such argumentation
frameworks computationally involving as witnessed by Inasb results up to the fourth
level of the polynomial hierarchy.
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In this paper, we propose an implementation of argumemtdtameworks which
is based on the satisfiability problem of quantified Booleammiulas (QBFs), an exten-
sion of classical propositional logic in which formulas nm@ntain quantifications over
propositional atoms. The motivation to consider QBFs fguanentation frameworks is
as follows:

First, in recent years we observed a parallel and mutuallyencing development
of QBF solvers on the one hand, and design of applicationth@other hand. This sit-
uation is similar to the emerge of the success of satisfiglsitilvers in the mid nineties,
where first impressive results have been achieved by ermg§AT solvers in the area
of planning [17,18]. Since QBFs are a more expressive laggtiean propositional logic,
their range of application is naturally larger than that &fTSunder the reasonable as-
sumption that reductions are computable in polynomial Yirtrefact, various problems
from different areas have been considered as applicatimi@BF, including conformant
planning problems [24], reasoning from inconsistent krealge bases [1,2], nonmono-
tonic reasoning [8,13,25], verification [16,20], and threramproving [9]. Moreover, there
has been made a significant progress in the development ofSQBErs in the last few
years [19].

Second, the different semantics captured by argumentidoreworks are all uni-
formly represented in our QBF setting. Our aim is, not attletasillustrate how basic
QBF modules can be used as building blocks for assemblingatans of numerous
reasoning tasks in different instantiations of the framwhblotably, the different com-
plexity behavior does not prohibit a uniform implementatinethod due to the power
of QBFs and their solvers. In fact, the high complexity of gowariants together with
our encodings provide highly complex but structured protddéor benchmarking QBF
solvers. Currently, such structured problems are bardlygpmeyond the second level of
the polynomial hierarchy.

The outline of the paper is as follows. After some formal ipn@laries, we start
with the description of abstract argumentation framewoilkee terminology is due to
the fact that the underlying derivability operator remabstractin the sense that only
some necessary criteria have to be satisfied, but the operatat specified in a concrete
way. Then we provide corresponding abstract translatiberses by means of QBFs.
Finally, we briefly describe some case studies, which inistenthe generic framework
to propositional reasoning principles. In terms of the QBdnfework, this is obtained
by plugging in a QBF module which concretely describes thevakility operator of
the respective formalism. Due to space restrictions, wé shly sketch these concrete
realizations, which may serve as a basis for implementdétyanvoking QBF systems.

2. Formal Preliminaries
2.1. Quantified Boolean Formulas

Quantified Boolean formulas (QBFs) generalize ordinarypsitional formulas by the
admission of quantifications over propositional variablagarticular, the language of
QBFs contains, for any atom unary operators of forip anddp, calleduniversaland
existential quantifiersrespectively. Informally, a QBF of fordp 3¢ ® means that for
all truth assignments gfthere is a truth assignment @such thatd is true.
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An occurrence of a propositional variahién a QBF® is freeiff it does not appear
in the scope of a quantifi@p (Q € {V,3}), otherwise the occurrence pfis bound If
® contains no free variable occurrences, tleis closed otherwise® is open Further-
more, we writeP[p/¢] to denote the result of uniformly substituting each freeunnce
of the variablep in ® by a formulag.

By aninterpretation I, we understand a set of atoms. Informally, an ajpimtrue
underT iff p € I. In general, the truth valuey (), of a QBF® under an interpretation
1 is recursively defined as follows:

if ® =T, theny;(®) = 1;

if & = pis an atom, themw;(®) = 1if p € I, andy;(P) = 0 otherwise;
if ® = -0, thenv;(®) =1 — v (P);

if = ((1)1 A\ (1)2), thenu1(<1>) = min({l/f((l)l), I/]((I)g)});

if ® =Vp ¥, thenv; (®) = v (V[p/T] A Tp/L]);

if ® = 3Ip ¥, thenv; (®) = v (V[p/T]V Tp/L]).

The truth conditions forl, v, —, and« follow from the above in the usual way. We
say that® is true under! iff v;(®) = 1, otherwised is false underl. If v;(®) = 1,
thenI is amodelof ®. If ® has some model, thed is said to besatisfiable If ® is
true under any interpretation, thénis valid. Observe that a closed QBF is either valid
or unsatisfiable, because closed QBFs are either true uadRrieterpretation or false
under each interpretation. Hence, for closed QBFs, thete iteed to refer to particular
interpretations. Two sets of QBFs (or ordinary boolean fdas) ardogically equivalent

iff they possess the same models. In the sequel, we use thwifad abbreviation in the
context of QBFs: For a sét = {p1, ..., p,} of propositional variables and a quantifier
Q € {v,3}, we letQP @ stand for the formul&@p; Qps - - - Qp,, P.

In the same way as the satisfiability problem of classicappsdional logic is the
“prototypical” problem ofNP, i.e., being anNP-complete problem, the satisfiability
problem of QBFs iprenex formpossessing — 1 quantifier alternations is the “prototyp-
ical” problem of thek-th level of the polynomial hierarchy, as expressed by thieviong
well-known result taken from [26].

curLdPE

Proposition 1 Given a propositional formula with its atoms partitioned inte > 1
pairwise distinct sets”, ..., P;, deciding whetheBP,VP,...Q;P;¢ is true is X-
complete, wher®, = 3 if ¢ is odd andQ; = V if i is even, Dually, deciding whether
VP3P ... Q;P¢ is true isII?-complete, wher€ = Vif 7 is odd andQ; = Jif i is
even.

This complexity landscape can be extended to arbitranedi6BFs if the maximal
number of quantifier alternations along a path in the QBF'sfda tree is taken into
account. In turn, an arbitrary QBF can be transformed integuivalent QBF in prenex
form, although this transformation is not deterministid amucial for the performance
of QBF solvers requiring the input formula being in prenerjoactive normal form (for
details, see [10,11]).

Finally, we highlight the used reduction approach. Givereislon problenil, we
aim at finding a translation scherfig into closed QBFs, such that

1. Tr () is faithful, i.e., 7 (K) is true iff K is a yes-instance df;
2. For each instanc&’, Tr1(K) is computable in polynomial time with respect to
the size ofK; and
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3. determining the truth of the QBFs resulting fram(-) is not computationally
harder (by means of Proposition 1) than the computatiormajpdexity of I1.

2.2. Abstract Argumentation Frameworks

In this section, we introduce the notions around argumemtdtameworks, where we
basically follow the definitions in [5]. Abstract argumetida frameworks are defined on
top of a deductive systefiC 4, R), whereL 4 is some formal language over an alphabet
A andR is a set of inference rules inducing a monotonic derivabitiationt-. For a
theoryT C L 4, we identify, as usual, its deductive closure by

Th(T) ={a € L4 | T+ a}.

An abstract (assumption-based) framewisla triple(7', A, (-)), whereT', A C L 4,
with A being the set oissumptionsand(-) is a mapping fromd to £ 4. For ana € A,
@ is thecontrary of a. An extensiorof a framework(T’, A, (-)) is a theoryTh(T U S)
with S C A. If no confusion can arise, an extension is often referreasi® alone. A set
S C Aattacksana € Aiff TUS F @, andsS attacks art” C A iff S attacks anv € 5.
ConsequentlyS attackstself iff there exists amv € S, such thatS attackso.

AsetS C Aisclosediff S = AN Th(TUS). Frameworks, in which itis guaranteed

that each suchy' is closed, are calleffat. Given a frameworKT, A, (-)), asetS C A is
stableiff

1. Sis closed,
2. S does not attack itself, and
3. Sattackseach € A\ S.

A setS C A is admissiblgff

1. Sisclosed,
2. S does not attack itself, and
3. for all closedS’ C A, it holds that if S’ attacksS, thenS attacksS’.

Finally, S is preferredif it is admissible and maximal with respect to set inclusibar
a setS C A, which is stable (resp. admissible, preferred), the exden®h(T U S) is
called stable (resp. admissible, preferred).

A framework(T, A, ()) is callednormal iff every maximal closed set not attacking
itself is stable. Finally, a framework &@mple iff, for inconsistentl’, there is no admis-
sible extension, and otherwise there exists a least ad@ssitensiort = AN Th(T).

Given a frameworkT’, A, (-)), thecredulous reasoning probleismto decide whether
agiveny € L 4 is contained i’ (T'US) for someextensionS. Theskeptical reasoning
problemis to decide whethep € L 4 is contained inTh(T U S) for all extensionss.

The attentive reader might have observed that we did notelefirat kind of deriv-
ability operator is associated with the abstract arguntieméramework. This is not an
error but a feature. In the next section, we will continuehvattranslation of abstract
argumentation frameworks to QBFs. These translationsaggiin be independent from
a concrete derivability operator which will come into theypWwhen we instantiate the
framework.
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3. Abstract Translation Schemes to QBFs

In this section we discuss the general encodings, leavingdhcrete check for the deriv-
ability operatort unresolved. Afterwards we shall present some concretizagiahs in
detail.

Given the propositional languagk, underlying an argumentation framework, we
assume the language of QBF&ysr, implicitly as defined over a sufficiently large al-
phabet, consisting of all propositional atomdsin £ 4 plus a set of additional mutual
disjointguessing variable& = {g. | « € L4} which we duplicate whenever needed,
e, G ={g, | o€ La},G" ={gl | « € La}, etc. Indeed, we shall use subsets of
the guessing variables to guess subsets L 4. Given an interpretatiof and a subset
S C L 4, we say thaf characterizesS via G iff it holds thatg, € I'iff a € S.

First, we define an abstract QBF module for encodings,afhich is later replaced
by concrete instantiations. Then we provide the general@ings for checking closure,
the notion of attacking, and for characterizing stable, iadiile, and preferred exten-
sions. Afterwards, we briefly discuss simplifications farfreworks which are flat, nor-
mal, or simple.

Definition 1 Let(L£ 4, R) be a deductive system with an induced derivability relation
let T, A C L4, anda € L£4. Moreover, let2“4 denote the power set a@f4. Then a
function

fG: QLA 5 2FA X L4 LqBF

is called anencodingor I, iff

1. f9(T, A, @) has free variables: = {g, | a € A}, and,
2. for each interpretatiorf characterizingS via G, it holds thatf“ (T, A, a) is true
under/ iff TUS F «.

As an example, consider some thedtya setA = {3,~}, and an encoding® for
+ with free variablegs, g-. Now considerf“ (T, A, «) is true only under the following
interpretations (ovefgs, g4 }): 1 = {93}, I = {9}, andls = {gs, g5 }. Now since
f€ is an encoding, we derive from these models that

(i) TU{B}Fa,
(i) TU{y}+Fa,and

(i) TU{B,7}F«

hold, whileT I~ a does not hold sincé¢® (T, A, a) is not true undef; = ().
We are now well prepared to characterize all necessarydimgts for characterizing
reasoning in argumentation frameworks via QBFs.

Theorem1Let FF = (T, A,(-)) be a framework over a deductive system induding
f¢ an encoding of- with free variablesG = {g, | a € A}, andI an interpretation
characterizingS C A viaG. Then the following holds.

1. Sis closed iffl is a model of

closed$ := /\ (ga < fG(T,A,a)). Q)
acA
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2. S does not attack itself iff is a model of

noattack$ = /\ (90 — ~f(T, A,q)). 2
acA

3. Sis stable iffI is a model of

stable$ := closed%. A noattack$ A /\ (=ga — fG(T,A,E)) 3)
acA
= closedG A /\ (9a < ﬁfG(T,Aﬁ)). 4)
acA

4. S is admissible iff is a model of

admg = closedg A noattack% A VG'[closedg,/\

(V ansé@am) - (V @aré@man))). ©

acA acA

Observe that the third arguments in the functigifsin closed$ and stable$ are
different, i.e., we have in (1) buta in (4). However, in some cases and in particular for
a flat framework, the test for closure (i.e., the conjuﬂotsedgf) can be removed from
(4), resulting in

stable$ = /\ (ga < ﬁfG(T7A,E)). (6)
a€cA

Concerning admissible extensions, by applying Theorem[2]jrthe encoding can
now be considerably simplified for flat frameworks.

Proposition 2 A setS C A is admissible for a flat framewor’, A4, (-)), iff S does not
attack itself, and for the st = {« € A\ S | S does not attack} U S, it holds that
S’ does not attacls.

Theorem 2 Let F = (T, A, (-)) be a flat framework over a deductive system inducing
I, £¢ an encoding of- with free variablesz = {g, | a € A}, and[ an interpretation
characterizingS C A viaG. ThenS is admissible iff

admg = noattackg A

36| A (00 = gV -£S@AD)) AN (90—~ T AD)]) @)

acA acA
is true under!.

It remains to discuss the notion of preferred extensionsrdier to encode the max-
imality test, which is employed to characterize preferretd,swe use the following con-
cept.
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Definition 2 LetG = {g, | a € A} andG’ = {g,, | a € A} be disjoint indexed sets of
atoms with the same cardinality. Define

G<G = )\ (ga_’g;)/\ﬁ/\ (g;%ga).

acA acA
Theorem 3 Let F = (T, A, (-)) be a framework over a deductive system induding
f¢ an encoding of- with free variablesG = {g, | a € A}, andI an interpretation
characterizingS C A viaG. ThenS is preferred iff

pref$ = adm& A —EIG’((G <G A admg/)

is true under!.

Observe that the entire encoding now uses three copies s&iggevariables, namely
G, G', and alsaG” which occurs inadmg/. Also note that we can choose between two
realizations ofadmg to be used irprefg depending whetheF is flat (Theorem 2) or
not (3. in Theorem 1). This leads to a different quantifiencture inpreflGD mirroring
the different generic complexity results for the prefelifbsemantics as reported in
Theorem 8 in [5].

To conclude this section, we turn our attention to the basieme to encode the
reasoning problems. We denote syible(F') (resp.adm(F), pref (F)) the set of stable
(resp. admissible, preferred) extensions of a frameviiork

Theorem 4 Let F' = (T, A, (-)) be a framework over a deductive systefiy, R), ¢ €
L4, and€ € {stable, adm, pref }. Then

1. ¢ is contained in som& € £(F) iff 3G(EE A fE(T, A, p)) is true;
2. piscontainedin allE € £(F) iff VG(ES — fO(T, A, p)) is true.

Recall that we have already discussed that, for flat framiesydhese encodings
can be simplified accordingly. Moreover, there exist alsorsluts with respect to the
encoded reasoning tasks. For instance, since any prefextedsion is also admissible
and any admissible extension is a subset of preferred eaterdeciding whethep is
contained in some preferred extension is the same as dgaidiathery is contained
in some admissible extension, which provides an easierdémgdi.e., an encoding with
less quantifier alternations). As well, we can apply theiégpstable encodings in order
to deal with preferred extensions in the context of normeatfeworks .

Generally speaking, after translating the encodings of¢hsoning tasks into prenex
normal form, we claim that our encodings are adequate wiheaet to the generic com-
plexity results of abstract frameworks derived in Theorem[8], whenever an adequate
encoding for the derivability operatéris provided.

4. Examples for Encodings

In this section, we instantiate our abstract translatiam&work to concrete translations.
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4.1. Basic Frameworks

First, we analyze the simple framework as treated, for im&ain [6,2]. In particular,
we show that our generic approach coincides with the engsdim propositional logic
given by Besnard and Doutre in [2] and thus generalizes thethodology.

We recall the definition of this basic framework.

Definition 3 A basic argumentation framework a pair (4, R) where A is a set of
argumentand R C A x A. If (a,b) € R then we say that attacksb. A setS C A
attacks an argumeritif somea € S attacksb.

The attentive reader might have observed that we used tiee fefor denoting the set
of assumptions in the abstract framework as well as for diegohe set of arguments
in basic frameworks in Definition 3. We will see that this usag not misleading be-
cause the arguments in the basic framework play the rolesofnagtions in the abstract
framework.

How can we represent a basic framework in our general albvstesting? We sim-
ply consider the logical systeif¥, 0), that is, the arguments are our basic vocabulary
L 4 (i.e., a set of atomic formulas) and the set of (additiona@iience rules is empty.
This choice immediately implies that (3 - « iff a € A and (i) Th(A) = A. With
a slight abuse of notation, we ugé (), A,a) := g, and, for any set of arguments
B, f¢(0,A,B) := Ve 9 in the encodings. Then a basic argumentation framework

(A, R) is simulated by the general framewa(k A, (-)) witha = {b | (b,a) € R}.
Obviously, the framework is flat, and thus we can avoid theklier closure within our
encodings.

We start with stable extensions, where our encoding (6)aesito

stableg — /\ (ga “— ﬁfG(@,A,a)) = /\ (ga = (ﬁ \/ gb))

a€A a€A bea
=N A )
a€A b:(b,a)ER

The latter formula coincides with the encoding from Proposi5 in [2] by replacing
the guessing atoms, with the corresponding atoms for eacha € A.

Admissible extensions fafA, R) are characterized using (7) from Theorem 2. By
evaluatingf© (0, A,a) andf<' (0, A, @), we get

admg = /\ (ga — (= \/ gb))/\

acA b:(b,a)ER

A (= av= VA A (== V)]

acA b:(b,a)ER acA b:(b,a)€ER

Now we “plug in” the definition of they/,’s from the first conjunct in the second line to
the second conjunct. We then can omit these definitions am@xistential quantifiers
and get
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adm?::/\(ga—*_' \/ gb)/\/\(ga_’_‘ \/ (g0 V = \/ gc))

a€A b:(b,a)eR a€A b:(b,a)ER c:(c,b)eR

We rewrite the second conjunct afim$., viz.

A==V (@v-V o)

acA b:(b,a)€ER c:(c,b)ER

to

/\(ga—ﬁ \V gb)A/\(ga—H V A ﬁgc)- (8)

a€A b:(b,a)€ER a€A b:(b,a)€R c:(c,b)eR

The first conjunct of this expression absorbs the first ccntjlmadmg, and thumdmg
is equivalent to (8), which itself is equivalent (moduleighte renaming as in the case
of stable extensions above) to the encoding presented.in [2]

Finally, for the encoding of the preferred extensions, we aiglifferent concept as
in [2], where the preferred extensions are characterizachaiximalmodels of proposi-
tional formulas. Since we have the full power of QBFs, we daaracterize these exten-
sions via ordinary models using our encoding schema fromethdaximality is checked
on the object level (i.e., within the resulting QBF). In peutar, we get the following
theorem.

Theorem 5 Let(A, R) be an argumentation framework, = (0, A, (-)) the correspond-
ing abstract framework, anddm{; as reduced above. Moreover, I8tC A, I C G, such
thata € S'iff g, € I for eacha € A. ThenS is preferred iff

pref$ = adm& A ﬁHG’((G <G)A adm?)

is true under!.

Using our generic scheme, we additionally get immediatieéy@éncodings for the
reasoning problems as discussed in Theorem 4.

4.2. Abductive Framework

We proceed with another simple framework, namely Theo@&{,[which has been
shown to be captured by abstract frameworks as follows. \WéTsA, (-)), with T and
A being sets of propositional formulas. For each A, a is just—a, and- is the classical
derivability operator. We first have to encadde

Proposition 3 For any propositional theorieg’ and A, and for any formulap, let V be
the set of atoms occurring ifil, A4, or ¢, andG = {g, | a € A} be new atoms. Then,

FO(T, A, p) = vv(( AtA N (ga—a) — <p)

teT acA

is an encoding of classical derivability in the sense of D&din 1.
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With this instantiation, we can encode all reasoning taskieuconsideration. In partic-
ular, we can characterizxtensionin the sense of [22]. Such an extension is defined as
Th(T U S), whereS C A andS is a maximal subset ofl (with respect to set inclu-
sion), such thaf’ U S remains consistent. The relation to argumentation framiesvis

as follows.

Proposition 4 ([3]) Given a Theorist abductive framewofK, A), E is an extension of
(T, A) iff FE is a stable extension of the corresponding argumentat@améwork.

Hence, using the concrete realization of the derivabiligrator from Proposition 3,
we immediately obtain an encoding for Theorist-like extens by pluggingf© into the
abstract encodings for stable expansions given in Theorem 1

4.3. Auto-epistemic Logic

We consider auto-epistemic logic (AEL) [21] in the contektamgumentation frame-
works. Then AEL has as the underlying langud@iyea modal logic with the modal op-
eratorL, butR are the classical inference rules. As assumptions we haymgitional
atomsLa and—La. The contrary of-L« is «, and the contrary of.« is —La.

We instantiate our encodings for stable extensions fotigutiis framework. There-

fore, considerr” = (T, A, (+)), with 7' a modal theoryA containing literalsL« and
- La, for each subformulda in T, and(-) as above. Sinck is the classical inference
operator, we us¢g; as defined in Proposition 3. The exact relation betweenestatien-
sions of the framework and stable expansions of an autdeepistheory (cf. [21]) is as

follows, see Theorem 3.11in [3].

Proposition 5 A theory E is a stable extension of the framework corresponding to a
modal theoryT iff E is a consistent stable expansioniof

Hence, our abstract encodings (together with the conceelezation forf“ as de-
fined in Proposition 3) capture stable expansioriB.dfloreover, one can show that these
encodings reduce (after some simplifications) to the onesemted in [13].

However, AEL provides argumentation frameworks which agher normal, sim-
ple, or flat. Thus, none of the previously mentioned shostauthe encodings can be
applied and we end up, in the worst case, with QBFs posseagitig three quantifier
alternations. In fact, this holds in the case of skepticaboming under preferred exten-
sions, i.e., deciding whether a given formylds contained in all preferred extensions
of a given argumentation framework. This problem was shawhelI};-complete [5]
and our encodings match this intrinsic complexity. Forsitation, we briefly sketch the
structure of quantifier dependencies for the QBFs which éathis particular problem.
According to Theorem 4, we have formulas of the fovd(pref G — fC(T), A, ©)).
Observe tha;breflGD has negative polarity in this formula. By inspecting themfiféers in
pref& (according to Theorem 3), we get additional quantifi&vG” the latter from
the subformulaadm?. The final quantifie8V stems from the occurrences of the en-
codings of the classical derivability (which are presertidth polarities withimdmg,),
Hence, we end up here with quantifier dependeriesG’'vG” 3V .
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5. Discussion

Due to the lack of space, we just mention briefly some furtletemtials of our trans-
lation framework based on QBFs. As shown in [3], non-monigtamodal logics, espe-
cially auto-epistemic logic [21] can be captured via argntaton frameworks. More-
over, by the notions of admissible and preferred extensamditional semantics for such
logics are obtained. All of these semantics in turn can tleeadmputed via QBFs using
our generic framework. For some non-monotonic modal logiagsh as auto-epistemic
logic, this is more or less straight forward since the cqrogsling argumentation frame-
work relies on classical derivability, which we already eded sufficiently in Proposi-
tion 3. With the obtained encodings at hand, we may also geoan answer to a ques-
tion raised in [5] where the authors ask how the preferredaaimdissible semantics of
auto-epistemic logic relate to the semantics of parsimsand moderately grounded
expansions [12]. Since the latter have been reduced to QBFs3], we thus have a
uniform axiomatization of all the formal systems in questio

A further application is to encode different tasks for déffagic [23], which is also
an instantiation of the abstract framework as shown in [8fhis case, we have to express
a different derivability operator, namely classical logigmented with monotonic rules.
Such an encoding has already been used in the literaturfgrsestance [8].

Finally, we briefly discuss an important question towara@sdbncrete implementa-
tion of argumentation frameworks using QBF solvers. As igampnt by the presented
encodings, the resulting QBFs are not in any specific norovahf However, most of
the available QBF solvers require the input to bgenex conjunctive normal form
Thus, a further transformation is necessary. This transition is usually performed in
two steps, namelprenexingand a transformation of the resulting purely propositional
matrix into conjunctive normal form. The drawbacks of thignisformation are an in-
crease in both formula size and variable number, or, evesaytine formula’s structure
is disrupted. Moreover, prenexing cannot be carried owrdghistically and the chosen
normalization strategy crucially influences the runtimesq depending on the concrete
solver used), see e.g., [10]. However, there are a few solvbich are able to handle
arbitrary QBFs (e.g., [11,14]) and recent results [15, htpsthat non-normal form ap-
proaches are highly beneficial on certain instances. Futark thus includes a careful
evaluation how QBF solvers of different types behave on dimgs from our framework.
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