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Kurzfassung

Die Technik der modellbasierten Diagnose wurde bereits fiir eine breite Palette
an Diagnoseproblemen, die von der Diagnose rein physikalischer Systeme bis hin
zur Fehlersuche in Computersoftware reichen, erfolgreich eingesetzt. In dieser
Arbeit wird modellbasierte Diagnose dazu verwendet, Fehler im Quellcode von
Java Programmen zu lokalisieren. Auf Basis des Diagnoseprozesses wird ein
weiterreichender Debugging-Ansatz entwickelt, der den Benutzer wihrend des
Debuggings moglichst automatisiert unterstiitzt und so die Anzahl der Benutzer-
interaktionen, die benotigt werden um einen Fehler eindeutig zu lokalisieren, min-
imiert.

Da ein Modell des analysierten Systems die Voraussetzung fiir die Verwen-
dung modellbasierter Ansitze ist, behandeln Teile dieser Arbeit die Model-
lierung von Java Programmen. Im Einzelnen werden drei verschiedene Mod-
ellklassen definiert, die alle auf den funktionalen Abhangigkeiten des zugrun-
deliegenden Java Programms basieren (funktionale Abhéngigkeitsmodelle). Die
unterschiedlichen Modellklassen unterscheiden sich unter anderem in den Daten,
die wahrend der Modellierung verwendet werden, und ihrem jeweiligen Ab-
straktionsgrad. Es wird gezeigt, wie Java Systeme automatisch in funktionale
Abhéangigkeitsmodelle transformiert werden konnen und welche Eigenschaften
und Unterschiede die einzelnen Modellklassen aufweisen.

In Folge wird im Detail beschrieben, wie funktionale Abhéngigkeitsmodelle
zusammen mit modellbasierten Diagnosealgorithmen dazu verwendet werden
konnen, einerseits mogliche Fehlerstellen in Java Programmen zu berechnen
(Diagnose) und andererseits einen bestimmten Quellcodefehler eindeutig zu
lokalisieren (Debugging). Es wird die JADE Debugging-Umgebung vorgestellt.
Dabei handelt es sich um eine Prototypentwicklung, die die in dieser Arbeit un-
tersuchten Modellierungs- und Debugging-Ansatze realisiert. Dies beinhaltet eine
Beschreibung davon, welche Benutzerinteraktionen notwendig sind und wie Quell-
codefehler mit diesem Softwareentwicklungswerkzeug lokalisiert werden konnen.

Der JADE Debugger wurde anhand mehrerer Java Methoden getestet und
auf seine Diagnose- und Debugging- Fahigkeit im Zusammenhang mit mehreren
Quellcodestrukturen, unterschiedlichen Fehlerklassen und verwendeten Modellen
untersucht. Alle erzielten Resultate sind ebenso Bestandteil dieser Arbeit, wie
eine Diskussion iiber die Vor- und Nachteile der vorgestellten Ansitze. Weiters
werden Moglichkeiten prasentiert, wie die JADE Debugging-Umgebung in ihrer
Diagnose- und Debugging-Leistung in zukiinftigen Versionen verbessert werden
kann. Den Abschlufi dieser Arbeit bilden eine Analyse der zukiinftigen Rolle
modellbasierter Debugging-Werkzeuge und eine Diskussion dariiber, wie diese
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in bestehende Softwareentwicklungssysteme integriert werden konnen. Erst die
Verbindung zu einem Gesamtkonzept garantiert eine optimale Unterstiitzung des
Benutzers in allen Phasen des Softwareentwicklungsprozesses.



Abstract

Model-based diagnosis has successfully been applied to a wide variety of diag-
nosis problems, ranging from purely physical systems to the software domain.
In this work we use model-based diagnosis techniques to compute possible fault
locations of buggy Java programs. Based on this diagnosis process, we present
an iterative debugging approach, which is designed to guide a user through a
debugging session in a maximum automatic way which minimizes the amount of
user interaction needed to non-ambiguously localize a given source code bug.

Since the model-based approach is based on the existence of a model of the
analyzed target system, part of this work deals with the creation of models of
Java programs, which are suitable for debugging. In particular, we define three
different model types, which make use of the functional dependencies of the un-
derlying Java program (functional dependency models). The models differ in the
amount of information used during their creation and their respective level of
abstraction. We show how Java systems can automatically be transformed into
a functional dependency model and discuss the various properties and differences
of the resulting models.

We describe in detail how functional dependency models, together with stan-
dard model-based diagnosis techniques, can be used to compute bug candidates
(diagnosis) and non-ambiguously identify individual bug locations in Java pro-
grams (debugging). We present the JADE debugging environment, a prototype
debugger, which implements the modeling and debugging principles described
in this work. We describe the various types of user interaction performed by
the JADE system and show how it can be used to efficiently locate bugs in Java
programs.

We test the JADE debugger on various Java methods in order to evaluate the
diagnosis and debugging performance of the tool in the context of different source
code structures, fault classes, and underlying model types. The results of all per-
formed tests are stated and various advantages and drawbacks of our approaches
are discussed. We present ideas how the JADE debugging environment can be
improved in future versions in both, its diagnosis and debugging performance.
Finally, we analyze the future role of model-based debugging tools and show how
they could be incorporated into existing software development tools in order to
provide an optimal support for the user during the whole software engineering
process.
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Chapter 1

Introduction

Faults in software systems pose a serious problem to software engineers and users
at the same time. Whereas users have to deal with an unexpected system behav-
ior, for a software developer faults constitute unpredictable costs as far as both,
money and development time, is concerned. Although there exists a variety of
beliefs underestimating the crucial role of bugs in software projects, most of these
beliefs do not hold in reality (see [2]). Therefore, efficient techniques and tools for
an optimal detection, localization, and correction of software faults are important
fields of research within the software engineering discipline.

Traditional debugging tools have been in use for the last couple of decades
in order to exactly locate faults detected in one of the various test phases per-
formed during the software development process. However, due to a lack of used
information traditional debugging tools have only partly been able to serve their
designated purpose. As a consequence, various approaches to build automatic
debugging tools have been proposed. The majority of these approaches tries to
improve the debugger’s performance by the use of additional information and can
therefore be named intelligent debugging techniques.

One approach to automatic software debugging is the application of techniques
taken from model-based diagnosis. The model-based approach [38, 11] is based
on the availability of a logical representation, i.e., a model, of at least the correct
behavior of a technical system. By describing the structure of the system and
the function of its components, it is possible to ask for sets of components, whose
malfunction explains the detected misbehavior of the whole system. These sets
can be seen as diagnoses of the system. Whereas model-based diagnosis has
mainly been used to diagnose physical systems, its application to the software
debugging domain has been proposed and tested on various occasions (see [8, 4,
5, 15, 43]).

The Java Diagnosis Experiments (JADE) project is a research project carried
out by the Database and Artificial Intelligence Group of the Vienna University of
Technology. The project has been funded by the Austrian Science Fund (FWF)
under grant P12344-INF. It brings together the practical problem of creating
an efficient debugging tool and the theoretically well-founded theories and algo-
rithms of model-based diagnosis. Its goals are to extend the knowledge about
the applicability of model-based techniques to the debugging of object-oriented
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software systems and to implement a debugging prototype for the project’s target
programming language Java. Most practical descriptions and theoretical consid-
erations discussed in this work are based on the JADE project. They are either
direct results of the JADE project or have emerged during an intensive research
of the abovementioned topics.

As every model-based approach is based on the existence of an appropriate
model of the system to be analyzed, the main part of this work is dedicated to the
creation of software models for debugging. In Part II of this work we show how
different kinds of functional dependency models can automatically be derived
from a given source code by making use of the underlying programming language
semantics. In particular, we define the following three functional dependency
model classes and discuss their respective properties:

e The Evaluation Trace Functional Dependency Model (ETFDM) computes
all functional dependencies of a particular program run by making use of
an evaluation trace. By doing so all data and control dependencies as they
occur during run-time are known and can directly be incorporated into the
resulting model. However, a single ETFDM is only valid for an individual
program run, i.e., for a single test-case.

e The Detailed Functional Dependency Model (DFDM) is a static approxi-
mation of a model covering all functional dependencies as they might occur
during run-time in all possible scenarios. Because the DFDM does not
make use of evaluation traces, not all source code structures can be mod-
eled using a purely static analysis. Therefore, as will be described in detail,
the DFDM implies a higher level of abstraction than the ETFDM.

e The Simplified Functional Dependency Model (SFDM) is based on either
the ETFDM or the DFDM and can be interpreted as a more abstract view
of the underlying model. Whereas it is easier to read and understand due
to its simpler structure, it is less exact and detailed than its underlying
model.

The automatic creation of software models of a given source code system
requires the transformation algorithm to be able to handle all source code struc-
tures defined by the target programming language. In particular, the system
must be able to handle variable assignments, method calls, and conditional ex-
pressions at expression level, selection and loop statements at statement level,
other source code structures, such as strings and arrays, and finally the transfor-
mation of whole methods and source code systems. Part II of this work discusses
the transformation process of these source code structures in detail and highlights
the potential advantages and drawbacks of the resulting model fragments.

The created models can then be applied to the debugging of Java programs.
This is done by transforming the model into an internal logical system descrip-
tion, which together with a standard theorem prover and model-based diagnosis
algorithms is used to compute diagnoses, i.e., bug candidates, for a faulty Java
method. Part III of this work shows how our debugger prototype is constructed



building on the models and techniques described in previous chapters. In com-
bination with modern GUI design such a tool can automatically highlight all
potential bug positions in a Java method, which is known to be malfunctioning.

Furthermore, the debugging process can be improved by using a measurement
selection algorithm, which automatically computes a particular point within the
analyzed method. The evaluation of this point by the user eliminates an optimal
number of incorrect diagnoses. In the software debugging case the user is asked to
specify the value of a certain variable at a particular source code position, which
helps the debugging tool to further reduce the number of bug candidates and
thus more exactly focus the user on the parts of the program possibly containing
the bug. We show how an interactive debugging tool is created, which aims at
locating the exact source code position of a detected bug in a minimum of user
interactions and thus in a maximal automatic fashion.

In the course of the JADE project an interactive debugging environment has
been implemented and used to debug Java programs. In this work we briefly de-
scribe the architecture and functioning of the JADE system. We show the GUISs,
which are needed in each step of the debugging process, and describe all user inter-
actions performed by the system. Furthermore, we present two enhancements to
the debugging process, which have both been incorporated into the JADE debug-
ging environment. The first improvement deals with the concurrent application
of multiple test-cases, which increases the debugger’s diagnosis performance. The
second enhancement is the design and implementation of an assertion language.
This concept allows the user to specify observations in a clear way and further
increases the debugging potential of the JADE tool.

Finally, we evaluate the performance of the JADE debugging prototype on all
three underlying models. This is done by testing both, the debugger’s diagnosis
and debugging performance. Detailed results of all experiments with the debug-
ging tool are presented and compared with each other. We show how well the
debugger performs on various source code structures and discuss problems and
weaknesses of the individual models. We also elaborate on different fault classes,
which are covered by our approach and others, which are not. Building on the
empirical results we present various possibilities of enhancing the performance of
the JADE debugger. We conclude this work with a general discussion about the
applicability of the JADE debugging tool to real-world debugging problems and
the future role of model-based debugging approaches in the context of an efficient
software development process.

More precisely, this work is organized as follows:

e Part I of this work deals with the principles of debugging and model-based
diagnosis. Moreover, the JADE project is introduced. Part I includes the
following chapters:

— Chapter 2 discusses the technical and economic need for efficient de-
bugging tools in the context of the software engineering process. It
also gives a brief overview of existing (automatic) debugging strate-
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gies. Furthermore, general thoughts about software faults and error
classes are given.

— Chapter 3 explains the basic concepts of model-based diagnosis and
shows how they can be applied to the debugging of computer programs.

— In Chapter 4 the JADE project is introduced, which aims at combining
standard model-based techniques with traditional software engineering
approaches by creating an debugging tool. An overview of the activi-
ties within the JADE project and the current project state is described.

e Part II of this work is dedicated to the modeling of Java programs for de-
bugging. Format, properties, and creation of three different model types are
discussed. Various examples are included in the text to highlight strengths
and weaknesses of the individual models.

— Chapter 5 discusses general properties of software models and Java
systems. It shows how a Java system can be specified at compile-time
and at run-time. Basic definitions for the following chapters are given.
Furthermore, different model views are presented.

— Chapter 6 deals with various forms and properties of functional de-
pendency models in general. The different kinds of dependencies and
modeling levels are discussed.

— In Chapter 7 we introduce a first dependency-based model, i.e., the
ETFDM, which makes use of run-time information in form of concrete
evaluation traces. Its exact format and its creation are specified in
detail.

— Another dependency-based model is introduced in Chapter 8, i.e., the
DFDM. In contrast to the ETFDM it is a purely static model, which
is created without using any run-time information. Again, format and
creation of the model are described in detail.

— Chapter 9 is dedicated to the modeling of expressions. It shows how

variable assignments, method calls, and conditional expressions can be
incorporated into both models, the ETFDM and the DFDM.

— In Chapter 10 we show how to model statements. The most de-
tailed sections deal with the transformation of selection and loop state-
ments, which constitute an essential part of any imperative and object-
oriented computer program.

— Chapter 11 is dedicated to the modeling of arrays and strings.

— In Chapter 12 we explain how whole methods and Java systems can
be modeled and how they can be represented in a concrete implemen-
tation. Further on, the use of default models and the modeling of
system classes is discussed.

— Chapter 13 is dedicated to the more complex issues arising from re-
cursive programs. A fix-point algorithm is presented, which handles
recursive method calls in a static analysis. A detailed example is given,
which highlights the main properties of the fix-point modeling process.



— Chapter 14 deals with a third model type, i.e., the SFDM. The SFDM
is based on either the ETFDM or the DFDM and represents a simpler

and more abstract model type than the underlying model. Format and
creation of the SFDM are described.

e Part III of this work deals with the application of the models created in
Part II to several debugging problems. The transformation of software
models to logical system descriptions and their usage in a debugging tool
is described. Further on, Part III contains empirical results obtained from
concrete debugging experiments. Finally, a discussion about advantages
and drawbacks of the used techniques and the quality of the obtained results
rounds off this work. Part III contains the following chapters:

— Chapter 15 describes how the models from Part II can be used to
automatically create a system description of the analyzed Java system.
This includes the creation of diagnosis components, which are then
linked together by system connections to define the structure of the
system to be diagnosed.

— In Chapter 16 we show how a system description and observations of
the system’s behavior can be expressed in logical sentences. These
sentences are then used together with a standard theorem prover and
model-based diagnosis algorithms to compute diagnoses.

— Chapter 17 is dedicated to the creation of a debugging tool making
use of the models and techniques described in previous chapters. We
describe the interactive process of locating the exact source code po-
sition of a certain bug by applying efficient measurement selection
algorithms, variable queries and hierarchical debugging strategies.

— In Chapter 18 we present two enhancements to the diagnosis perfor-
mance of the JADE debugging environment. The concurrent use of mul-
tiple test-cases makes it possible to compute less diagnoses for a buggy
Java method. The application of an assertion language supports the
user in the efficient specification of observations. By incorporating as-
sertions into the debugging process the debugging performance of the
JADE tool is further improved.

— The current version of the JADE debugging environment is briefly de-
scribed in Chapter 19. We deal with the individual types of user
interactions performed by the system during a debugging session and
present the most important GUIs.

— Chapter 20 deals with experiments carried out with the JADE proto-
type debugger and presents empirical results obtained from these tests.
We discuss the diagnosis and debugging performance of the system in
combination with all model types described in Part II of this work
and analyze the strengths and weaknesses of the approaches presented
herein.

— Chapter 21 is dedicated to a detailed discussion about the approaches
and empirical results presented in this work. We show, which fault
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classes can be handled by the JADE debugging environment and which
cannot, and present a variety of possible enhancements to the tech-
niques described herein. Furthermore, we discuss the future role of
model-based debugging systems in the context of an integrated soft-
ware development tool.

In Chapter 22 we conclude this work with a brief summary of the

main issues raised in previous chapters. Finally, we list the main
contributions of this work to the research area of model-based software

debugging.



Chapter 2

Software Debugging

Errors, faults, and bugs in software systems seem to be clear and well-defined con-
cepts, which on second sight turns out to be a misunderstanding in most cases.
This chapter therefore starts with a discussion about the different concepts of
software anomalies and shows in which forms and phases during the software de-
velopment process these anomalies occur. We then motivate the need for efficient
debugging tools, which possibly allow for an automatic fault localization. Finally,
we discuss various approaches to automatic software debugging.

2.1 Terminology of software anomalies

When one speaks about finding an error or detecting a fault location in a software
system, the terms error and fault are often used quite loosely. A first step in
any work about testing, debugging, and automatic code correction has therefore
to define the different meanings of these terms. In the IEEE Standard Glossary
of Software Engineering [19] the following, more precise definitions, which stem
primarily from the fault tolerance discipline, are given:

Mistake: A human action that produces an incorrect result. For example, an
incorrect action on the part of a programmer or operator.

Fault: An incorrect step, process, or data definition. For example, an incorrect
nstruction in a computer program.

Failure: An incorrect result. For example, a computed result of 12 when the
correct result is 10.

Error: The difference between a computed, observed, or measured value or con-
dition and the true, specified, or theoretically correct value or condition.
For example, a difference of 30 meters between a computed result and the
correct result.

Mistake: As we see from the first definition, almost every misbehavior of a
software system origins in an incorrect human action, i.e., a mistake. Assume
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one wants to access the fifth element of an array, whose indices start with 0.
Clearly, the mere intention to access the element with index five is a mistake.
Unfortunately, the term mistake is not very useful in combination with well-
defined technical problems, such as debugging or automatic testing. A wrong
comment, thus, constitutes a mistake following the above definition, but definitely
has no effect on the program’s behavior.

Fault: Often a mistake results in a fault. In our example a fault is created by
adding anArray[5] to the source code. When speaking about debugging, we are
normally interested in exactly these program faults. Note that often the terms
error and bug are used in a similar meaning.

Failure: Once a fault has been introduced into a software system, a failure is
likely to occur. In our example a memory violation or the computation of an
incorrect value might be the result of the abovementioned fault.

Error: An error in the strictest meaning of the word denotes the difference
between a computed and a specified result. Assume that the fifth element of
our example array stores the integer value 8. If we access anArray[5], i.e., the
sixth element, and get a value of 5, the difference between the expected and
observed behavior represents an error. In this case the error can be defined as
the arithmetic value of 3.

It should be mentioned that there exists a variety of further terms for describ-
ing the anomalies of software systems. Some of these are briefly discussed in the
following list. However, it should be noted that in this work we try to adhere to
the IEEE definitions given above.

Anomaly: In [19] the term anomaly is defined as anything observed in the doc-
umentation or operation of software that deviates from expectations based
on previously verified software products or reference documentation. The
definition given in the IEEE Standard Classification for Software Anoma-
lies [18] expands upon this definition by including deviations from the user’s
perception or experiences. Therefore, anomalies may be found during, but
not limited to, the review, test, analysis, compilation, or use of software
products or applicable documentation. It is easy to spot that in both def-
initions the term anomaly is used very widely and comprises the concepts
of errors, faults, and failures.

Defect: Some works (e.g., [7]) distinguish between the static component of a
fault, i.e., a defect, and its dynamic component, i.e., a fault. By using
these definitions a defect is an incorrect piece of source code (e.g., an incor-
rect assignment statement), whereas a fault can be seen as an improper or
unacceptable software state resulting from a defect. Note that this distinc-
tion does not conform to the IEEE definitions as defined above. Therefore,
we herein forgo to make this distinction and only use the term fault.
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As mentioned above, in this work we use the IEEE standard definitions for
the terms fault, failure, and error as described above. The term bug is used in
the same meaning as the term fault. Other terms are avoided as much as possible
in order to make this work more precise. In the following sections we will focus
on software faults as they appear in a system’s source code.

2.2 Classifying software faults

In scientific literature there exists a variety of different criteria, which can be

applied to the classification of software faults. Some of these criteria are (taken
from [7]):

Software constituent: Faults can be found in programs, data structures, and
documents. In this work we mainly focus on the debugging of programs,
i.e., the detection of program faults (bugs). This, however, should in no
way underestimate the problems and costs associated with incorrect data
structures and documentations.

Life cycle: Faults can be introduced into a software system during any phase
of its life cycle. We can therefore classify faults by their accruement, e.g.,
requirement, design, coding, testing, etc...

Manifestation: Faults can manifest themselves as purely textual faults (e.g.,
spelling faults) or conceptual faults (incorrect method calls). Further on,
faults may be classified into grammar faults or faults in the semantics of
the respective target language.

Cause: Faults can be classified according to the nature of the human mistake,
which originally introduced the fault. There are multiple reasons for the
existence of software faults, such as technical, organizational, historical,
group dynamic, individual, and other reasons (see [7]).

Consequence: Faults can be classified according to the nature of failures which
are the fault’s consequence.

As an example classification of software faults by their consequences we define
the following classes. Note that following the IEEE definitions given in Section 2.1
these classes denote failures or error classes, rather than fault classes.

Compile-time errors: A certain fault may result in a compile-time error. Usu-
ally, these faults can be located quite efficiently through the use of compiler
error messages and warnings.

Run-time errors: Dynamically, a certain fault may cause a run-time error.
These faults can sometimes be located very easily (e.g., in the case of proper
exception handling), but in the general case pose a difficult problem for a
debugger, e.g., memory violations and core dumps.
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Output errors: If a program does not terminate abruptly, i.e., with a run-time
error, there is still the possibility to obtain an incorrect result, i.e., an
error. This observable error can then be used to locate the exact position
of a fault in the source code. Note that herein we focus mainly on locating
faults resulting in an observable output error.

No output errors: Finally, a certain fault may not cause an error for a par-
ticular test-case at all. In this case debugging is very hard, especially as
there seems to be no need for fault locating. In the following chapters we
rely on a successful test-case, i.e., on the fact that a fault has already been
detected. Source code faults, which stay undetected during testing, are not
discussed herein.

As an example classification of software faults by their manifestation we define
the following fault classes:

Syntax errors are software faults, which are not consistent with the specified
grammar of a certain computer language. These faults are always detected
at compile-time.

Semantic errors are faults in contradiction to a language’s semantics. Whereas
errors of the static semantics, e.g., incorrect types, are detected at compile-
time, errors of the dynamic semantics generally cause run-time errors, e.g.,
division by zero or (in some programming languages) method calls on ob-
jects, whose class does not implement the method.

Logical errors are software faults resulting from logical mistakes made by the
programmer, e.g., wrong data structures, use of an incorrect variable, etc...
These faults might cause an observable output error, but may as well stay
undetected for a certain program input. Once logical errors become observ-
able, they constitute the primary target of most debuggers.

Note that the above anomalies are all called errors. Strictly speaking, they are
failures and faults, respectively, following the definitions in Section 2.1. Table 2.1
shows both classifications (by the manifestation and effect of a particular fault,
respectively) and highlights the relationship between these two classifications.
As already mentioned in this work we focus on source code bugs, which manifest
themselves as logical faults resulting in an output error. In order to further divide
this class into sub-classes, which are used in the following sections of this work,
we define:

Functional faults are source code faults, which result in a certain variable stor-
ing an incorrect value in at least one possible evaluation trace. Nevertheless,
functional faults do not alter the structure of the program, which means
that the dependency graph [14] of the buggy program is equivalent to the
dependency graph of the correct program. Examples of these faults are the
specification of incorrect operators or incorrect literals.
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Manifestation Effect

compile-time | run-time | error | no error
Syntax error X
Semantic error (stat.) X
Semantic error (dynam.) X X
Logical error X X

Table 2.1: Fault classes by their manifestations and effects

Structural faults are source code bugs, which alter the dependency graph of
the program. Examples of this fault class are the access of an incorrect
variable or missing and superfluous source code structures.

The basic fault classification schemes introduced in this chapter are quite
coarse and not specific to certain computer languages. In the following section
we present a more detailed fault taxonomy together with some fault statistics.

2.3 Fault taxonomies & statistics

Standard fault taxonomies can mostly be found in scientific literature about soft-
ware engineering and software testing. Generally, they are used to keep track
of all faults appearing in a particular software system during all phases of the
system’s software life cycle. The main reason for such classifications is to gain as
much knowledge about potential bugs as possible in order to make the software
development process more efficient and thus less expensive. To give an impres-
sion of the plurality and heterogeneity of software faults the following list of faults
(taken from [2]) shows a sample fault taxonomy. Table 2.2 shows a breakdown
of software bugs. A more detailed breakdown can be found in [2].

Requirements and specification: This class includes all faults in system re-
quirements and specifications, such as incomplete, ambiguous, or (self) con-
tradicting documents. Clearly, these faults pose a serious problem for soft-
ware engineers, especially if they appear early in the software development
process and are only detected in late phases of the software life cycle.

Features and Functionality: This class includes all wrong, missing, and su-
perfluous features and functionalities of a given system. Whereas missing
features are normally easy to detect, superfluous functionality is more prob-
lematic as it increases the probability of faults in following phases.

Structural bugs: This class can be further divided into:

e Control flow and sequence faults, e.g., paths left out, improper nesting
of loops, etc...

e Logic fault, e.g., wrong use of switch statements or logical opera-
tors, etc...
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Fault class Total %
Requirements 1,317 | 8.1%
Features and functionality 2,624 | 16.2%
Structural bugs 4,082 | 25.2%
Data 3,638 | 22.4%
Implementation and coding 1,601 | 9.9%
Integration 1,455 | 9.0%
System, software architecture 282 | 1.7%
Test definition and execution 447 | 2.8%
Other, unspecified 763 | 4.7%

Table 2.2: Sample bug statistics

e Processing faults, e.g., arithmetic bugs, algorithm selection, general
processing, etc...

e Initialization bugs, e.g., improper or superfluous initialization, etc...

Note that this definition is not equivalent with the definition of structural
faults given in Section 2.2, which we are using throughout this work.

Data: This fault class comprises all bugs arising from incorrect data objects,
their numbers, initial values, etc...

Coding bugs: typographical bugs, misunderstanding of the operation of a par-
ticular statement, documentation errors.

Interface and integration faults: interfaces to other systems, hardware, etc...

System faults: These faults result from the interaction between many compo-
nents, such as programs, data, hardware, operating system.

Test: This class includes all faults arising during the test phase, i.e., incorrect
test-cases, incorrect testing algorithms, etc...

[2] also gives a brief overview of some fault statistics. The tested program
had a total of 6,877,000 statements including comments. The total amount of
bugs reported was 16,209, which on average amounts to 2.36 faults per 1000
statements. Table 2.2 shows a detailed breakdown of the number of reported
faults and the percental share in all reported faults for each class.

As mentioned above a fault classification scheme as presented above can be
very important for a company’s software engineering process in the way that
it increases its efficiency and helps reducing costs. Furthermore, it is a handy
concept for demonstrating the plurality and variety of existing faults in software
systems. On the other hand, fault classification schemes seem to be of little use
for a theoretical task, such as measuring the performance of a debugger. This is
because of the incompleteness and ambiguity of these schemes. For instance, the
distinction between certain structural bugs and data faults does not seem to be
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clear. Given a particular fault, there seem to be more than one possible classes,
which can be assigned to this fault.

More interesting from the debugging point of view is the statistical analysis of
concrete faults presented above. As the different fault classes need different test-
ing and debugging techniques, the individual percentages tell us how many faults
we will likely be able to handle with a certain testing or debugging technique.
In the following we briefly discuss the individual fault classes in the context of
debugging potentials:

Structural bugs (25.2%): Together with data faults this class represents the
largest fault class. Locating faults belonging to this class is the primary
goal of traditional debugging tools, e.g., detecting the execution of incorrect
paths, the computation of incorrect values, etc... Therefore, the goal of this
work is to locate structural bugs in the first place. It should again be noted
that in the following chapters we use the definition of structural faults as
given in Section 2.2 instead of the more general definition used by [2].

Data faults (22.4%): Although often not considered as faults, data faults are
as unpleasant and almost as frequent as structural bugs. Incorrect data
objects, faulty formats, and buggy initial values should be located by any
debugging tool. Thus they are within the scope of this work, too.

Features & functionality (16.2%): Missing or incorrect features of a certain
software system represent a large class of software faults. Often they are
introduced by problems in human-to-human communication and require
very specific solutions, such as high-level, formal specification languages.
Both, traditional debuggers and the debugger constructed herein are not
designed to locate and correct feature bugs.

Implementation & coding (9.9%): Coding faults, although quite frequent,
are not within the scope of this work. Whereas we assume that purely ty-
pographical faults are detected and repaired by the programmer at compile-
time, we are not interested in documentation faults or violations of style
conventions and programming standards. This, however, should not deny
the importance of proper documentations and the adherence to software
standards, especially as these concepts help reducing the amount of faults
during maintenance phases.

Integration (9.0%): Integration faults seem to be an important fault class,
too. As far as all interfaces between certain system components are clearly
defined and testable, integration faults are a common target of traditional
debugging approaches.

Requirement faults (8.1%): The class of faults in requirements is quite large
and therefore not to be underestimated. Nevertheless, these faults require
special testing and debugging techniques, which are not part of this work.

Test definition & execution (2.8%): In this work we assume that all test
specifications and test-cases are correct. We therefore ignore the possibility
of such faults.
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System, software architecture (1.7%): Here the same is true as for the test
definition and execution fault class. It is assumed that no problems with
the hardware system, operating system, etc... occur.

Therefore, this work focuses on structural, data, and parts of the integration
faults of a given software system. If all these faults could be found, over 50% of all
software anomalies appearing throughout the software life cycle could be handled
more efficiently. The economic gain of such a system seems to be evident. All
other faults (mainly feature, coding, and requirement faults) are either easy to
locate, e.g., typographical faults, or require special-purpose tools and techniques.
The location of these faults is beyond the scope of this work.

2.4 Software debugging

As Section 2.3 indicates, software faults appear in almost every software system
from medium-size stand-alone applications to large distributed software systems.
Clearly, these faults pose a lot of problems to the users and software engineers,
which can be summarized as follows:

e From a user’s point of view faulty software systems produce an incorrect
output for at least some input combinations. This seems to be especially
problematic, if we talk about security critical systems, e.g., airplanes or
nuclear plant controllers, which not only affect a small number of users,
but large parts of the population.

e From a software engineering point of view, software faults can cause enor-
mous costs. Interestingly, the cost of a software fault increases in later
stages of the software development process, i.e., the later a certain bug is
detected and corrected the higher the costs for the software engineer.

As a consequence, it has to be one of the primary goals of every software en-
gineer to either produce fault free software in the first place, or to detect, locate,
and correct an existing bug as soon as possible in order to reduce the overall de-
velopment and maintenance costs. In practice it showed that the first approach
is a very limited one. Although there exists a variety of techniques and tools,
which help to avoid the introduction of software faults in the first place (e.g., au-
tomatic software generation, formal verification, programming standards, etc...),
bugs can still be found in almost all software systems. An efficient localization
and correction of these faults is therefore one of the most important stages during
the whole software development project. This is exactly the point where software
debugging (SD) enters the scene. In a broad definition SD comprises the detec-
tion, localization, and correction of software faults. The IEEE give the following
definition in their Standard Glossary of Software Engineering [19]:

Definition 2.4.1 (Debug) To detect, locate, and correct faults in a computer
program. Techniques include use of breakpoints, desk checking, dumps, inspection,
reversible execution, single-step operation, and traces.
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In a more narrow definition SD can be seen as the process, which takes place
after a certain failure or error has been detected, i.e., after the execution of a
successful test-case. Using this definition (see [33]) SD only includes two phases,
i.e., (1) fault localization and (2) fault correction. Regardless of the exact defi-
nition and software engineering paradigms the following three steps have to be
performed during the course of all software development processes:

Fault detection: As already mentioned, software faults should be detected and
fixed as soon in the software development process as possible. Whereas
earlier software engineering concepts relied on test phases at the end of the
development process, other concepts are based on a continuous evaluation
and testing of the current system. The main technique for detecting faults
is software testing (see [33, 2]), but there exist other approaches like formal
verification. The detection of software faults is out of the scope of this
work. In the following chapters we rely on the fact that a misbehavior of
the system has already been detected in form of a successful test-case.

Fault localization: Once a misbehavior of the system under consideration is
detected, the fault should be located as soon and precisely as possible.
It can be said that fault localization is the key problem in an efficient
debugging strategy. Therefore, the efficient localization of software faults
is the primary goal in this work. Note that when talking about debugging
in most cases we mean the exact localization of a detected software bug.

Fault correction: Finally, a located fault has to be corrected in order to adapt
the system’s behavior to its specification. Interestingly, this does not nec-
essarily have to be a trivial task, which can be demonstrated with the fact
that quite often new software faults are introduced during the correction
of an existing bug. Nevertheless, the main problem in SD is the fault lo-
calization, which accounts for most of the time and thus costs during the
debugging process. In this work we do not deal with fault correction tech-
niques (see [43]).

Following the definitions in Section 2.1, the process of testing and debugging
can be described as follows:

1. Representative test-cases are created in to test the correctness of a par-
ticular piece of code. If there exists no explicit knowledge about possible
mistakes made by the programmer or faults in the source code, the goal of
testing is to produce failures or errors.

2. When running the tested piece of code on the specified test-cases, all errors
are observed.

3. In a next step one tries to find faults, starting with the observed errors.

4. Once a fault is located it is corrected, hopefully without making any mis-
takes.
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Therefore, the goal of software debugging is to locate faults in a program’s
source code. Errors and failures have to be seen as external effects of these faults,
which in contrast to faults are directly observable. Only via the observation
of errors and failures software faults can be found. Interestingly, SD is one of
the most difficult part of the software development process, which most of the
software developers dislike. The following reasons for this are given in [33]:

e Programmers often tend to rule out the possibility of making mistakes dur-
ing the design and implementation of a certain software project.

e SD seems to be the most mentally challenging activity of all software de-
velopment activities. In many cases during debugging a software engineer
faces a high amount of organizational and self induced pressure.

e SD itself seems to be an inherently complex task. This becomes clear, if we
look at the fact that generally the location of a given bug can be potentially
any statement or expression of the program. Unlike physical systems an
early ruling out of certain sub-systems is in most cases not possible.

e Compared to all other software development activities, comparatively little
research, literature, and formal instruction exists on the process of SD.

In the end debugging seems to be one of the most important software engi-
neering disciplines and the most underestimated and unpopular activity as far as
both, programmers and researchers, are concerned. This work is therefore dedi-
cated to (1) extending our knowledge about software debugging, (2) making the
debugging process easier and cheaper for software engineers, and (3) guaranteeing
a higher standard of the resulting software products for all users.

2.5 Debugging techniques

Traditional debugging techniques are mainly based on the idea of stepping
through code, which is known to contain at least one buggy statement or ex-
pression, step by step and manually monitoring the current variable environment
until any deviations from its expected state can be observed. Clearly, this is not a
very efficient approach, because (1) it does not make use of any information other
than the current evaluation trace and (2) can be seen as a random (extensive)
search in the universe of all potential bug candidates, which in the worst case
finds the bug only in its very last step. Additional techniques have been proposed
and used in practice to overcome these drawbacks and make the debugging pro-
cess more efficient. Among others, breakpoints, dumps, reversible execution, and
assertions have been used together with powerful visualizing tools supporting the
user in locating source code faults. Nevertheless, traditional debugging tools still
seem to be far from being effective and satisfying in practice.

This is why over the years automatic software debugging has become a lively
area of research and a wide variety of different approaches and systems have
emerged. [13] gives an overview of some of the existing automatic debugging
approaches and divides them into the following three categories:
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Verification with respect to specifications is based on the idea of compar-
ing a program with an existing formal specification. All parts of the pro-
gram, which are not equivalent to the given specification, have to be deemed
as suspect. However, a number of difficulties come with this approach: (1)
Complete and accurate formal specifications are needed. The creation of
these specifications is a difficult and costly task, which in many cases is
simply impossible. (2) Any detected inconsistencies can be due to both,
faults in the source code or faults in the specification. Therefore, both
systems have to be checked in the case of deviations. (3) Specifications
and implementations might be so different that a convincing comparison
is not possible. In this case the whole part of the program covered by the
specification might look suspect.

Checking with respect to language knowledge systematically parses pro-
grams and searches for language dependent faults. If a language structure
does not conform to a positive rule or conforms to a negative rule, the
structure is seen to be suspect. This is a very powerful tool, which elimi-
nates certain faults very efficiently. The problem is that certain fault classes
cannot be detected by a system, which only relies on knowledge about the
programming language.

Filtering with respect to a symptom successively reduces the search space
by filtering all source code structures, which cannot have produced the given
fault symptom. This technique relies on the existence of an appropriate
filtering criterion, which must not move a bug out of the search space.

In the following we concentrate on the last category of fault localization ap-
proaches, i.e., on filtering techniques. As already mentioned, these techniques
remove parts of the source code, which can be proven not to account for a given
fault, from the debugging scope and so try to narrow the remaining search space
as much as possible. The following approaches can be seen as example filtering
techniques:

Algorithmic Debugging: The idea of a software tool, which automatically lo-
cates and repairs software faults, was originally proposed by Shapiro in his
dissertation [39]. Shapiro’s approach is based on locating faults at the level
of method calls, which is done by distinguishing between several algorithms
handling incorrect and missing method calls separately. [39] also shows how
a bug can be repaired once its exact location has been detected. However,
his approach has several drawbacks, such as a high amount of required
user interaction and the fact that the proposed algorithms cannot easily be
applied to a large class of programming languages.

Program Slicing: (see [48, 49, 46]) computes a subset of a given program, which
produces the same output as the original program for a set of variables at
a certain position in the source code. For example, a slice on the slicing
criterion (10, {z}) contains all statements, which are needed to compute the
value of variable z in statement line 10. This can be achieved by deleting all
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statements, which are not needed for the computation of the values of the
specified variables. Program slicing can be used to limit the search space
by only looking at the slices of the variables, whose values are known to be
incorrect.

Probabilistic Debugging: [6] introduces the notion of probability values into

automatic software debugging. The approach is based on (1) computing all
potential fault locations and (2) determining the statements, which most
likely include the fault by using a belief network (Bayesian Network). How-
ever, this approach relies on the existence of a priori fault probabilities of
different types of statements and expressions. It is thus doubtful, whether
satisfying results can be obtained in the general case.

Model-Based Diagnosis: (MBD) [38, 11] makes use of a logical representation

of the software system under consideration. This representation describes
the whole system as a set of interconnected components, which may or may
not account for a given error. By using information about the programming
language semantics and possibly additional information one can make state-
ments about which components might contain the bug and which do not
have to be considered for further debugging. So far several authors have
proposed the use of MBD for software debugging (see [8, 4, 5, 15, 43]).

Another field of research within the automated debugging community is the
creation of efficient automatic tutoring tools. The main differences between soft-
ware debugging of real-world applications and program tutoring are given in the
following list. Note that in this work we focus on the task of locating bugs in real-
world applications. Topics arising in the context of tutoring, training of novice
programmers, or E-learning are not within the scope of this work.

Whereas tutoring normally aims at small, simple, and well-known toy pro-
grams, general debugging environments are faced with sometimes large,
very complex, and unique applications.

In case of tutoring, a reference implementation either exists or can easily
be generated. This is by no means the case in general debugging projects.

The amounts and types of bugs vary between novice programmers and expe-
rienced programmers. Whereas in the general case it can be assumed that a
correct program can be obtained by slightly altering the buggy source code,
the tutoring task has to deal with program parts and data structures, which
are completely incorrect and cannot be corrected by simple modifications.

Tutoring systems are normally used to help novice programmers developing
their first programs. In a general debugging scenario, on the other hand,
a professional software developer faces a mostly new, real-world debugging
problem under a high organizational pressure and strict time constraints.

Failures in tutoring systems are mostly detected by looking at a reference
solution. In the general case software testing is performed in order to eval-
uate the performance of a given software system.
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In the following chapter we describe the principles of model-based diagnosis
in more detail and show how this approach can be used for software debugging.
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Chapter 3

Model-Based Diagnosis &
Debugging

Model-based diagnosis (MBD) is a well-known AI technique for the localization
of malfunctioning parts in (mostly physical) systems. In this section we briefly
recall the basic definitions of MBD as given by [38] and show how this approach
can be used to locate faulty components in a given system. We then discuss how
MBD can be applied to the software domain by using standard MBD techniques
to debug computer programs. The resulting approach of model-based software
debugging (MBSD) serves as a basis for the debugging of Java systems, which is
described in the following chapters of this work.

3.1 Model-based diagnosis

As mentioned above, the goal of MBD [38, 11] is to efficiently locate faulty com-
ponents of a given technical system. The basic idea behind MBD is to have a
logical representation of at least the correct behavior of the analyzed system, i.e.,
a model of the system, and a set of observations of the system’s behavior. The
used model must consist of components, which individually might be responsible
for a misbehavior of the whole system. Such a misbehavior is detected when-
ever the observed behavior contradicts the behavior that is derived directly from
the model. Figure 3.1 shows the basic process of diagnosing a given system using
MBD. A set of inputs to the system and the system description are used to derive
the expected (correct) behavior of the system, i.e., the resulting correct outputs.
If the system to be diagnosed is not working correctly, the outputs produced by
it do not agree with the expected values. The task of the diagnosis engine is to
conclude, from the discrepancies between expected and observed values, which
components in the system must have malfunctioned to produce the observed
outputs.

In the last decade MBD has achieved wide recognition in the diagnosis com-
munity and has been applied to a wide variety of diagnosis problems, mainly the
fault localization in technical systems, e.g., digital circuits (see [9, 10]) or power
transmission networks (see [3]). This is due to the following advantages of MBD:
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System Description Diagnosis Physical System
(Model)

Derived Behavior — Discrepancy <+ Observed Behavior

Figure 3.1: Diagnosis process in MBD

Diagnosis is performed without explicit knowledge about how to locate
faulty components. As a consequence, MBD can be seen as a domain
independent technique.

The used model only has to represent the correct behavior of components
and the correct behavior of systems. A priori knowledge about the incorrect
behavior of a given system and fault modes of its components can but does
not have to be incorporated into the model.

Once an adequate model has been developed for a particular domain, it can
be used to diagnose different systems of that domain without changing the
underlying modeling principles.

The model can be used to search for single or multiple faults without alter-
ation.

The model does not depend on the underlying diagnosis algorithms and
vice versa. This means that different diagnosis algorithms can be used for
a given model and multiple models can be used with the same diagnosis
algorithm.

The existence of a clear formal basis for judging and computing diagnoses.

Let us now briefly recapitulate the basic definitions of model-based diagnosis

as given by [38]. In the following SD is a logical model describing the (correct)
behavior of a system, i.e., the system description, COMP a set of components,
and OBS a set of observations. We further assume SD and OBS to be sentences
in first-order-logic. The system description makes use of the predicate AB(C)
(mAB(C)) to specify the incorrectness (correctness) of a component C € COM P.
The term AB(C) (—AB(C)) says that component C' behaves abnormally (nor-
mally). More formally, we define:

Definition 3.1.1 A diagnosis system is a pair (SD, COMP) where

e SD, the system description, is a set of first-order sentences;

e COMP, the system components, is a finite set of constants.
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Figure 3.2: Physical system

Definition 3.1.2 An observation of a system is a finite set of first-order sen-
tences. The triple (SD, COMP, OBS) is called a diagnosis problem for the
system (SD,COMP) with observations OBS.

Example 3.1.1 Consider, for instance, an integrated circuit, which consists of
logical AND gates as its components (see Figure 8.2). We can create a logical model
(system description) by specifying the AND gate behavior and a set of formulae that
describe the interconnections of the components, i.e., of the gates in the circuit.
This could read as follows:

and_gate(x) A —ab(z) D out(z) = and(inl(z),in2(z))
and_gate(al) & and_gate(a2) & out(al) = inl(a2)

If we now specify observations of the system, we get a diagnosis problem. Con-
sider, for instance, the following set of observations, which describe the behavior
of the system depicted in Figure 3.2:

If we take a certain diagnosis problem, i.e., a diagnosis system (SD, COM PS)
together with a set of observations OBS, there are two cases to be considered:

e SDU{-AB(C)|C € COMP} UOBS is consistent: in this case no mal-
function of the system can be observed with the set of observations OBS.
Note that this does not necessarily mean that all components of the system
exhibit a correct behavior.

e SDU{-AB(C)|C € COMP} UOBS is inconsistent: in this case there
exists at least one component in the system, whose behavior differs from its
expected behavior, i.e., 3C € COMP | AB(C). Of course, the number of
incorrect components is not limited to just one component. If a malfunc-
tion of the system is spotted, we are interested in all components, whose
malfunction explains the incorrect behavior of the whole system. In other
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words, it is the goal of the diagnosis process to compute all sets of compo-
nents, whose malfunction explains the incorrect behavior of the system.

Definition 3.1.3 A diagnosis for (SD, COMP, OBS) is a set A C COMP
such that SDUOBSU{AB(C) | C € A}U{=-AB(C) | C € COMP \ A} is
consistent.

A diagnosis is said to be minimal if no proper subset is itself a diagnosis. From
Definition 3.1.3 it follows that every superset of a diagnosis is also a diagnosis. In
practice, one is generally interested in finding minimal diagnoses, i.e., a minimal
set, of components whose malfunction explains the misbehavior of the system.
Otherwise, one could explain every error by simply assuming every component
to be malfunctioning.

Example 3.1.2 Let us come back to the above diagnosis problem for the inte-
grated circuit depicted in Figure 3.2. The assumption that all components behave
correctly leads to a contradiction, since then, according to the behavior model, the
correct value of out(a2) would be 0. Therefore, some non-empty set of components
must exist whose malfunction explains the misbehavior. In this case, AB(a2) is
the only minimal diagnosis, since assuming that AB(al) and —AB(a2) still re-
sults in a contradiction.

The dual concept of a diagnosis, which is used for computing diagnoses, is
a conflict. A conflict specifies a set of components, which given the model and
observations cannot all work correctly at the same time. In other words, a conflict
always contains at least one component, which does not exhibit the expected
behavior. More formally, we write:

Definition 3.1.4 A conflict set for (SD, COMP, OBS) is a set CO C COMP
such that SDUOBSU{-AB(C) | C € CO} is contradictory.

Example 3.1.3 Looking at our integrated circuit ezample (see Figure 3.2), we
find two conflicts. Whereas the set {al, a2} is a trivial solution, {a2} constitutes
a conflict on its own, because AB(a2) is part of all possible explanations of the
incorrect behavior of the whole system.

Generally, the computation of diagnoses from conflicts makes use of the con-
cept of hitting sets. Formally, we write

Definition 3.1.5 (Hitting Set, Reiter [38]) Let C be a collection of sets. A
hitting set for C is a set H C Uge S such that HN'S # 0 for each S € C. A
hitting set is minimal if no proper subset of it is a hitting set.

Example 3.1.4 For example, all minimal hitting sets for {{1,2},{1,4}} are {1}
and {2,4}. {1,2,4} is also a hitting set but it is not minimal.

In [38] Reiter introduces the hitting set algorithm for computing diagnoses
using a set of conflicts. This algorithm was improved by [17]. The relationship
between diagnoses and conflicts is stated by the following theorem:
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Theorem 3.1.1 (Reiter [38]) The set A C COMP is a (minimal) diagno-
sis for (SD,COMP,OBS) iff A is a (minimal) hitting set for the collection of
conflict sets.

3.2 Model-based debugging

Whereas MBD research mainly focuses on diagnosing physical systems, several
authors [8, 4, 5, 15, 43| have proposed the use of model-based techniques in soft-
ware debugging. Console et al. [8] introduce a model for debugging Prolog-like
languages. The authors claim that their approach improves Shapiro’s algorithmic
debugging [39] by reducing the required user interaction necessary for locating a
bug. Bond et al. [4, 5] critically analyze the work done by Console et al. [8] and
show that the exception form for diagnoses is not canonical, leading to an incom-
plete diagnosis computation procedure. To overcome this problem Bond et al.
propose an improved algorithm for debugging which also generalizes the declara-
tive error diagnosis approach from Shapiro [39]. Friedrich et al. [15] introduce a
system for debugging hardware designs written in the hardware description lan-
guage VHDL. The authors use a dependency-based model for debugging. Because
of the simplicity of the model a prototype implementation is able to debug even
very large programs. Stumptner and Wotawa [43] discuss the use of model-based
diagnosis in debugging more theoretically. The debugging of functional programs
using MBD techniques was proposed in [42, 43] and eventually the debugging
of object oriented systems was tackled by [44] (Java) and [37] (C++). In this
section we how the standard MBD approach can be applied to the debugging of
computer programs in general. Parts II and III of this work deal with modeling
and debugging of Java systems.

The basic idea behind model-based software debugging (MBSD) is to derive a
model directly from the program and the programming language semantics. This
model has to distinguish components, describe their behavior, and the struc-
ture of the program under examination. The principles of MBSD are depicted
in Figure 3.3. The program, in our case written in Java, is compiled into an
internal representation. From this representation (together with a set of model
fragments) a converter computes logical models for diagnosis. Model fragments
represent a logical description of parts of a model, e.g., the behavior description
of functions. This knowledge has to be derived from the programming language
semantics. A model of Java programs, for instance, requires the model frag-
ments of all basic functions and types of statements of the Java programming
language. For example, the behavior of the “4” operator must be defined as
—AB(C) — out(C) = iny (C) + iny(C).

After building the model, which is done automatically, the model together
with the specified behavior of the program, e.g., test-cases, is used by the diag-
nosis engine to find bug candidates. The candidates can be further discriminated
by adding additional knowledge, i.e., values of variables at specific points within
the program. The selection of the variable and location is done by a measurement
selection algorithm. The information about the value must be delivered by the
user (or another oracle). The remaining candidates provide a link back to the
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Figure 3.3: Combining MBD and Debugging

original source code.

When applying MBD to the debugging of computer programs, the basic ap-

proach remains the same, but a number of differences have to be taken into
account. Compare Figures 3.1 and 3.4 to see the most notable changes during
the diagnosis process. In the following some properties of diagnosis systems are
discussed in the light of software debugging:

System description: The system description, as defined by Reiter, defines the

structure and behavior of the system. Since the system to be diagnosed
is a program, the system description is a description of the behavior of
the program, which is derived from the program and the semantics of the
language in which the program is written. Therefore, the model chosen
usually varies with the language involved, because different languages have
different semantics. Given a fixed choice of how the semantics should be
represented, the system description can be derived automatically from the
code of the program. Note that unlike in many hardware oriented applica-
tions the system description mirrors the bugs in the program. It is not an
independent, correct specification, but rather includes the representation of
the bugs the program contains in the first place.

Components: In model-based debugging the choice of components depends on

the desired level of abstraction chosen for the used model of the source code.
Whereas a very abstract model might not cover enough information for an
efficient debugging process, a too detailed model might result in a very slow
diagnosis process, which is of no practical use. As we will see in Chapter 5
in the case of Java systems there exist multiple levels of abstraction, which
make sense for a representation of a Java program. The most important
levels are the expression and statement level, which associate each expres-
sion (statement) of the system with exactly one component. Note that once
the choice of model has been made (which parts of the program are repre-
sented as components and which parts of the semantics of the language are
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Figure 3.4: Diagnosis process in MBD

to be represented), converting a program to a model for a diagnosis sys-
tem is straightforward and technically trivial, because the program must
be available in machine-readable form in order to be executed.

Observations: In hardware diagnosis observations describe the behavior of the

system. If a system is faulty, the observations therefore differ from the cor-
rect behavior predicted by the system description. In debugging, the roles
have been reversed. It is the system description (derived from the buggy
source code) that reflects the incorrectness of the program and whose out-
put (incorrect in places) is confronted with observations that are correct
(the correct output to be produced by the test data). Note that in tradi-
tional diagnosis problems the model is correct and it is the observations,
made from the behavior of the system, that reflect the incorrect behavior.
In addition, the question of how a programming faults may manifest itself in
the model leads us to the related issue of structural faults (see Section 2.2).

Structure: Structural faults are faults that are not caused by an incorrectly

functioning component, but by a missing or additional connection between
two components, as in a bridge fault in electrical engineering. Structural
bugs are very relevant in the field of software debugging, since many typical
bugs are structural in nature. The use of an incorrect argument in an
expression (e.g., by using a different variable name, switching the order
of arguments), or the omission of part of a complex expression constitute
typical examples of these faults. The usual way of dealing with structural
faults is to assume the existence of a different, complementary model that
allows to reason about the likelihood of such faults. In software, such models
could take the shape of considering name misspellings, variable switchings,
or attempts to repair expressions, i.e., synthesize missing parts, to provide
correct functionality.
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Chapter 4

The JADE Project

The Java Diagnosis Experiments (JADE) project! is a research project carried
out by the Database and Artificial Intelligence Group of the Vienna University
of Technology. The project has partly been funded by the Austrian Science Fund
(FWF)? under grant P12344-INF. The main goal of the JADE project is to extend
and examine the application of model-based diagnosis techniques to programming
languages in general. In particular, object-oriented languages are of interest due
to their widespread usage and their position at the forefront of programming
language research. This includes theoretical research about software modeling
and the debugging of computer programs and practical issues, such as the im-
plementation of various models and an interactive debugging tool. Whereas all
implementations are done in Smalltalk, the target programming language was
chosen to be Java.

4.1 The Java programming language

Java (see [16, 20, 47]) is a general-purpose object-oriented programming lan-
guage, which is based on a variety of other programming languages, such as
C, C++, Objective-C, Smalltalk, Lisp, and Modula-3. It was originally devel-
oped by James Gosling at Sun Microsystems under the name Oak and designed
for the development of applications for consumer electronics, such as TV-top
boxes. In 1995 the language was renamed Java, when Gosling and his colleagues
were moving away from the hardware aspect of the language to a more powerful
general-purpose programming language designed for efficient networking and In-
ternet communications and the creation of powerful GUIs. With the rise of the
Internet Java became one of the most prominent programming languages. One
of its main advantages is its high portability, which is a result of the fact that
Java programs are compiled into a platform-independent byte-code. This byte-
code can then be executed by a Java Virtual Machine (JVM). Due to the exact
specification the JVM [23]| Java systems run on nearly all existing platforms and

Thttp:/ /www.dbai.tuwien.ac.at /proj/Jade/
Zhttp://www.fwf.ac.at
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hardware environments, which explains the language’s success, especially in the
area of Internet applications.

As already mentioned, the Java programming language [16] is used in the
JADE project as the target programming language. This means that in a first
step models of valid Java programs have to be created, which cover all source
code structures required for an efficient debugging process. In a second step the
Java source code is then debugged using the created models. There are multiple
reasons why Java has been selected as the target programming language of the
JADE project. Among these are:

e Java is a general-purpose programming language with widespread usage in
various software engineering areas. Moreover, its usage is still predicted to
be increasing in the coming years.

e Java is strongly typed and has relatively simple semantics, in particular
compared to C++, the most widespread object-oriented programming lan-
guage. It therefore seems to be better suited to the application of MBD
techniques to the debugging of object-oriented languages in this relatively
new research area.

e Java provides specific features for developing and running applications over
the World Wide Web (WWW), which is expected to present new challenges
for the MBD approach.

e Java is also expected to be widely used in the future by people with little
programming experience as it becomes the language of choice for develop-
ing small, ad-hoc WWW applications. In this context, a knowledge-based
debugger that guides an inexperienced user through the debugging cycle
would be especially important.

4.2 Goals of the JADE project

The goal of the JADE project has originally been stated as the examination of the
formal underpinnings required for using MBD in a standard software development
environment, and the development of an experimental system for solving concrete
diagnosis problems in form of Java programs. In particular, the JADE objectives
can be summarized as follows:

1. Development of a theory of model-based software debugging.

2. Description of Java semantics in terms of logical models usable for diagno-
sis.

3. Examination of the use of alternative models for scalable diagnosis and their
flexible use in a multi-model diagnosis environment.

4. Development of an intelligent debugging environment for Java programs
based on the theoretic results.
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5. Collection of example programs and establishment of a set of benchmarks
for diagnosis evaluation.

4.3 Current state of the JADE project

The JADE project is divided into several parts, each considering some aspects of
the problem. In the following we describe the current state of the JADE project
for each individual activity:

Theoretical aspects: This part of the project aims at the development of a
theory of MBSD, which includes the examination of different approaches to
the modeling of programming language constructs, in particular with regard
to object-oriented languages like Java. Current results of this activity have
been entered into the design of the diagnosis system for debugging Java
programs during all stages of the project. A variety of publications can
also be seen as the result of this part of the project (see [44, 40, 41, 28, 29,
31, 30, 25, 24, 26, 27]).

Applying MBSD principles to Java programs: The use of MBSD for Java
requires the description of Java semantics in terms of logical models usable
for diagnosis. So far, two model families have been developed, i.e., func-
tional dependency models and value-based models. Both model families
have been implemented and tested in various forms. This work focuses on
the creation and application of various functional dependency models. Dis-
cussions about value-based models as well as first debugging results with
these models can be found in [31] and [32]. Currently, both model families
cover a large subset of the Java programming language. The extension to
yet uncovered language features, e.g., exception handling, is still open to
further research.

Development of an intelligent debugging assistant: This is the most
strongly implementation-oriented part of the project. It deals with the de-
velopment of an intelligent debugging environment for Java programs based
on the theoretical results, again, obtained from the JADE project. Currently,
a debugging tool is in use, which deals with both model families and al-
lows for an interactive fault localization process. The JADE debugger makes
use of a code instrumentation module, which computes evaluation traces of
Java programs by instrumenting the source code and running the program
on a standard JVM. Work on this part of the project proceeds in parallel
with the more theoretical stages to guarantee that the environment is ready
for use when needed for experimenting with different diagnosis models and
algorithms. The JADE debugger is shortly described in Chapter 19.

Accumulating a set of example programs: Evaluation and testing of the
diagnosis algorithms requires the compilation of a set of example programs
of different size, complexity, and application domain. This set of programs
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is used as the base of a set of benchmarks for the (performance- and quality-
related) evaluation of different diagnosis approaches. Currently, there exists
a JADE test-case suite, which includes both, small demonstration programs,
which demonstrate certain language constructs and modeling features, and
medium-size applications®. The used models have been tested on the com-
plete JADE test suite. Empirical results obtained from tests with all sorts
of functional dependency models can be found in Chapter 20. The creation
of larger, real-world applications and tests with new test programs are left
for future research.

The software models described in the following chapters (see Part II) and
all results of concrete debugging sessions (see Part III) directly build on the
theoretical basis provided by the JADE project. All models described herein have
been implemented in the course of the JADE project and been tested on valid
Java programs. Note that in the following chapters some theoretical descriptions
are supplemented with references to problems and solutions of the JADE project.
These sections are especially labeled with the keyword JADE. All empirical results
stated in Part III of this work were obtained from experiments with the JADE
debugging environment, which is briefly described in Chapter 19.

3The current version of the JADE test suite can be downloaded from the JADE project page
(http://www.dbai.tuwien.ac.at/proj/Jade/)
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Chapter 5

Modeling Java Systems

Since every model-based approach requires a model of the analyzed system,
Part II of this work is dedicated to the definition and creation of different models
of Java programs, which are suitable for debugging. We start off with a short
analysis of software models and Java systems in general.

5.1 Software modeling

Generally speaking, a model is an abstract description of a given real-world sys-
tem. According to [51] a model can be a physical, mathematical, or logical rep-
resentation of a system, entity, phenomenon, or process. More formally, a model
is any system specification, which in most cases consists of a set of instructions,
rules, equations, or constraints for generating I/O behavior. [51] defines a general
framework for modeling, which consists of the following elements:

The source system is the real-world or virtual environment that we are in-
terested in modeling. It can be seen as a source of observable data, from
which the system behavior database is deducted. The latter contains all
data gathered from observing or experimenting with the system.

The experimental frame is a specification of the conditions under which the
system is observed. As such, an experimental frame is the operational
formulation of the objectives that motivate a modeling project.

The model itself is a system specification, which through a set of instructions,
rules, equations, or constraints, exhibits a well-defined I/O behavior.

The simulator is a system capable of executing a model in order to generate
its behavior.

In this work we are mainly interested in the modeling of software systems or,
to be more precise, the modeling of Java programs. The objective of creating
such a model is to efficiently locate faults in the Java system. In this context the
above framework can be stated a bit more precisely:

37



38

CHAPTER 5. MODELING JAVA SYSTEMS

The source system we are observing is a concrete Java system. This includes

not, only the source code, but also a Java compiler, the created byte-code,
the Java Virtual Machine (JVM), and finally the run-time behavior of the
system. Note that other components like the hardware and the operating
system also play a crucial role in the observation of a given Java system.
The content of the system behavior database depends on the exact type of
model and the objective of modeling. Since we are ultimately interested in
source code fault localization, we capture all components, which might lead
to a system failure.

The experimental framework is, again, determined by the goal of source

code fault localization. As we are not interested in the detection of hard-
ware faults or compiler bugs, our experimental frame purely focuses on the
source code. It is assumed that all other system components, i.e., hardware,
operating system, compiler, JVM, etc..., exhibit an expected behavior. We
further assume that the Java source code passes all syntactical checks by
the compiler and the system terminates on the given source code in all cases
and does not produce any run-time errors.

The model is an abstract representation of the analyzed Java system. Of

course, there exists a wide variety of program models, which can be used
for debugging. In the following sections some models are described, which
are based on the collection of functional dependencies.

The simulator is a system, which uses the produced model for debugging.

What such a system looks like and how good it is in finding source code
faults is described in Part III of this work.

Of course, there exist many different types of software models. Roughly they

can be divided into multiple categories using the following criteria:

Granularity: Models can be created for methods, individual blocks, statements,

or expressions. The models described herein are mostly method models,
which consist of models of all their statements. Expression models are in
most cases not explicitly created, which leads to a debugging process at
statement and not at expression level.

Used information: Models can further be divided by the amount of information

used during their creation. Purely static models only make use of informa-
tion, which is known at compile-time, i.e., the source code and well-defined
programming language semantics. Dynamic models, i.e., value-based mod-
els, explicitly simulate run-time behavior by propagating concrete values
through the system and thus evaluating the program. A third approach is
to use static information together with an evaluation trace. By doing this
we can incorporate dynamic information into a static model and thus make
the resulting model more powerful. Examples of all kinds of models are
presented in the following sections.
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Hierarchy: Models can be constructed as hierarchical models, i.e., a model com-
ponent contains sub-models, which specify certain parts of the source sys-
tem in more detail. Models, which do not make use of hierarchical model
components, have to include all necessary information in their top-level
structure.

Models of object-oriented programming languages like Java are in most cases
more complex than models of functional or purely imperative languages (see [42,
43, 50]). This is, because of the inherently more complex system structure of
object-oriented systems. Among others models of these systems have to deal
with the following problems:

e Imperative features, e.g., selection statements, loops, method calls, strings,
arrays, etc...

e Object-oriented features, e.g., multiple classes and objects, inheritance,
polymorphism, etc...

e Method calls with side-effects, which is very common in object-oriented
programming

e Efficient handling of aliasing problems

e Recursive method calls (direct and indirect recursion)

Finally, we state some requirements as they apply to all kinds of models. In
the following sections we then show, which of our models meet these requirements:

Soundness: A model is said to be sound, if the model correctly represents all
aspects of the modeled source system. If, for example, we want to create a
model including all data dependencies between different variables in a given
method m, a sound model never produces a dependency, which cannot be
found in m. In the following chapters the goal is to produce sound models.
However, we will see that it cannot be guaranteed in the general case that
only sound models are created.

Completeness: A model is said to be complete, if the model covers all aspects
of the source system lying in the model’s scope. In the above example
this means that we expect the model to create all dependencies between
variables of m and not just a few ones. As incomplete models cannot
guarantee to work in all aspects, completeness of the constructed models is
another goal in the next couple of chapters.

Minimality: A model is said to be minimal if it does not contain more elements
than needed for fulfilling its objectives. A model creating dependencies,
which are generally correct, but not needed for a particular case, is not
minimal in respect to this case. We come back to the concept of minimality
in the following chapters.
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5.2 Java systems

Before discussing the creation of models in detail we have a short look at the
source system of our modeling process: the Java system. A Java system consists
of a wide variety of system components, such as the used hardware, compilers,
source code files, system settings, operating system, the Java Virtual Machine
(JVM), etc... As we are only interested in locating bugs in source code files, we
merely look at those parts of a Java system, which are directly relevant to our

goal.

In particular, these are:

All source code files, i.e., compilation units of a given Java system.
The Java programming language semantics as defined in [16].

The input/output behavior of the system at run-time. This includes all
test-cases mapping an input vector to both, a computed and an expected
output vector.

Additional run-time information like the values of certain variables during
program execution. As mentioned above some models make use of the
evaluation trace taken directly from the Java system.

In order to keep the resulting models as simple and small as possible, we ab-
stract from all system features, which do not lie within the scope of our debugging

goal.

Therefore, we formulate the following assumptions, which are valid during

the whole modeling and debugging process:

All used hardware and low-level software components, e.g., operating sys-
tem, network, drivers, etc..., work correctly

The same is true for the used Java compiler and JVM.

All source code compilation units are syntactically correct, i.e., they pass
the Java compiler without error messages.

The compiled byte-code can be executed by the JVM and terminates on all
inputs. The debugging of faults leading to infinite loops or method calls is
not within the scope of this work.

No run-time failures occur during program execution. At the moment this
also includes exceptions, which as we will see cannot yet be handled by the
proposed models (see Section 10.6).

To demonstrate the properties of a Java system and their effects on the result-
ing models we implement a short example program Point.java, which provides
the basic data structure and functionality of a two-dimensional point (see Fig-
ure 5.1). We use this example throughout this chapter as a running example.
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class Point {

int x;
int y;
Point(int x, int y) {
1. this.x = x;
2. this.y = y; }
Point plus(Point p) {
1. return new Point(x+p.x, y+p.y); }
public static void test() {
Point pl, p2;
1. pl = new Point(0,0);
2. p2 = new Point(2,3);
3. plx =1;
4. pl.y = 2;
5. p2 = pl.plus(p2); }

Figure 5.1: Example program Point.java

5.3 Compile-time description of Java systems

At compile-time a syntactically correct Java system consists of multiple files, i.e.,
compilation units, each of which stores the source code of various Java classes.
The resulting Java host environment can logically be seen as a set of packages,
which include classes, interfaces, and sub-packages. In particular, a host environ-
ment consists of the following hierarchical levels:

The Host environment is the top-level of the Java system containing a set of
packages.

Packages include classes and interfaces of the Java system. Further on, a pack-
age may include sub-packages, what allows for a hierarchical package struc-
ture in Java.

Classes and interfaces are the main data structures in any object-oriented pro-
gramming language. Each class consists of multiple instance and class field
definitions, static initializers, and method declarations (including construc-
tors). Note that since version 2 of the JLS [16] inner classes are also part
of the Java programming language.

Methods consist of hierarchically nested blocks. The method body can be seen
as the top-level of the nested block structure.

Blocks are ordered collections of statements.
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Point
X:int
y:int

Point(x:int,y:int)

plus(p:Point)
test()

Figure 5.2: UML representation of class Point

Statements include expressions and sub-blocks

Expressions contain constants, i.e., literals, variables, and sub-expressions

There exist multiple techniques and standards of describing the static appear-
ance of Java host environments. Currently, the most important standard is the
Unified Modeling Language (UML) (see [36, 34]), which specifies the static prop-
erties of a given system through the use of various diagrams, e.g., class diagrams,
object diagrams, sequence diagrams, collaboration diagrams, state charts, etc...
A UML representation of class Point is given in Figure 5.2.

In the following chapters we are mainly interested in the modeling of Java
systems at method level down to the modeling at expression level. We therefore
give the following definitions:

Definition 5.3.1 CLASSES is defined as the set of all classes of the Java host
environment under consideration.

Definition 5.3.2 METHQODS is defined as the set of all method and construc-
tor declarations of the Java host environment.

Definition 5.3.3 BLOCKS s defined as the set of all (nested) blocks of the
Java system.

Definition 5.3.4 STATEMENTS is defined as the set of all statements of the
Java system.

Definition 5.3.5 EXPRESSIONS is defined as the set of all expressions of
the Java system.

Definition 5.3.6 CONSTANTS 1is defined as the set of all constants of a given
Java host environment. By constants we mean literals, which are defined in the
source code and never change their value during execution. Logically, constants
can be seen as objects of pre-defined type, which do not change their internal
state.
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Definition 5.3.7 VARS is defined as the set of all variables (of primitive or of
reference type) defined in the Java system.

Definition 5.3.8 LOCATIONS is defined as the set of all class instances,
which might be created at run-time. At compile-time, we can determine all loca-
tions by looking at all class instance creation expressions of a given Java system.
Note that class instances may also arise from string literals, which at run-time
are automatically promoted to instances of type string.

Note that all program structures as defined above are used in this work relative
to each other, e.g., BLOCKS,,, with m being a method denotes all blocks defined
in the body of m rather than in the whole host environment.

One of the key components of all models proposed in the following chapters
are Java variables. They can be classified by their:

Types: v € VARS can be of primitive or of reference type. Primitive variables,
e.g., ¢ and y in Figure 5.1, hold values, reference variables, e.g., p1 and p2,
reference objects, i.e., they point at a particular memory location.

Position in the source code: We distinguish (1) class variables, which are de-
fined once for a particular class of the system, (2) instance fields, which exist
for each instance of a given class, and (3) local variables, which are only
visible inside the blocks (and all sub-blocks) where they are defined.

Example 5.3.1 In the example depicted in Figure 5.1 we find only one
class, i.e., class Point with two instance fields, one constructor, and two
method declarations.  Class Point could be described by METHODS =
{Point(int z,int y), plus(Point p), test()}, where, for instance, BLOCK Seq1() =
{b} with b= {s1, s2, $3, 54, 85}. Method test() defines two local variables of refer-
ence type, pl and p2, and makes use of the instance fields © and y of instances
of class Point.

5.4 Run-time descriptions of Java systems

When we try to describe a certain Java system at run-time, we find that the
description looks somehow different from the one in Section 5.3. First of all we
distinguish between descriptions of a Java system from a static and from a dy-
namic point of view. Descriptions from a dynamic point of view make use of
a concrete evaluation of one of the system’s methods and therefore cover the
non-ambiguous state of the system at run-time. Descriptions from a static point
of view are a bit harder to specify. Whereas only information about the sys-
tem’s source code and a priori language semantics is available (hence the term
static point of view or static description), the concrete state of a Java system
during run-time has to be covered. The following sections introduce run-time
descriptions from both, static and dynamic viewpoints.
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5.4.1 The dynamic viewpoint

From a dynamic point of view it is quite easy to define a snapshot of a particular
Java system, because we can use the information provided by an evaluation trace.
This evaluation trace contains elements, which are not known at compile-time and
therefore cannot be part of a purely static system description as in Section 5.3.
We define:

Definition 5.4.1 VALUES O CONSTANTS is defined as the set of all values,
which are produced by the Java run-time system in all possible evaluation traces.
This definition covers literals and other values of primitive type that are computed
at run-time.

Definition 5.4.2 OBJECTS is defined as the set of all object locations created
by the Java run-time system during program execution.

The following components have to be defined in order to describe the state of
a Java system at an arbitrary point during program execution:

Values: The set VAL C VALUES of all values, which are assigned to Java
variables during the execution of a method of the Java system. These values
can either be part of the source code in form of literals (in our example the
integer values 0, 1, 2, and 3) or be created by the Java run-time system
(the integer value 5 in our example). Therefore, VAL may include values
of variables of primitive type, i.e., booleans (true, false), numeric values
(byte, short, int, long, char), and floating point values (float, double).

Objects: The set O C OBJECTS of object locations which store the state
of a particular Java object. Objects and their memory locations are pro-
duced in the course of program execution either by explicit constructor calls
or implicit object creations performed by the Java run-time system, e.g.,
string promotions. The internal state of object locations is user-defined and
alterable. In our example 3 objects of type Point are created.

Variables: The set V'V where vv; € V'V is a tuple (v,d). v € VARS is a variable
and d € VAL U O is a concrete value assigned to or an object referenced
by variable v.

At run-time the exact state of a Java system at a particular point in execution,
i.e., after the execution of statement n of method m, can now be defined by
the tuple system, = (O,VV). A snapshot of our example program after the
execution of all five statements of method test() reads as follows:

syStem?est() = <{017 02, 03}7 {<p17 01)7 <p27 03>7 <O1..T, 1)7 <01'y7 2)7
(09.,2), (09.y, 3), {03.7, 3), {(03.Y,5) })

where o; stands for an instance of class Point. Figure 5.3 shows the state
systemfesto .
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Figure 5.3: The Java system systemfesto

5.4.2 The static viewpoint

Obviously, we cannot define the run-time state of a Java system at an arbitrary
position in its evaluation by only looking at the source code. This is, because
values and objects are created at run-time and can only be predicted to a certain
extent at compile-time. However, there is still a lot of information about a
system’s run-time behavior, which can be approximated at compile-time. In
the following we give a static description of a Java system, which can serve as an
approximation of the dynamic description proposed in Section 5.4.1.

Constants: The set C C CONSTANTS of literals, that are defined in the
Java source code and do not change their values during program execution.
Although in Java these structures are no objects, they can logically be seen
as objects with a fixed content of primitive type (in our example we find
the constants 0, 1, 2, and 3). Note that each occurrence of a constant has
to be considered separately. In this work we omit indices of constants for
simplicity.

Locations: The set L C LOCATIONS of memory locations, which store the
state of a particular Java object. Locations are produced by constructors
or by default. Their internal state is user defined and alterable (in our
example three objects of type Point are created). Note that in contrast to
the dynamic viewpoint, the exact run-time type of a certain location cannot
always be determined by a purely static analysis. Therefore, locations rep-
resent a more abstract view of concrete class instances than objects used in
a dynamic system description. Section 6.4 describes the different types of
locations, which are used during the creation of all models, in more detail.
Some model types make use of multiple-locations, which represent multiple
concrete locations by a single model component. These locations provide
an even more abstract view of class instances created at run-time.

Variables: The set V'V’ of tuples mapping variables to a set of possible values,
ie., vv € VV'is of the form (v,D). v € VARS is a variable and D C
CONSTANTSULOCATIONSUV ARS is a set of constants, variables and
abstract representations of class instances possibly influencing the current
value of variable v or the state of the object referenced by v.
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L2 L3
(Point (Point)

X=const(2) T [x=?
y=const(3) | L7 |Y=?

pi‘k p2‘
Figure 5.4: Approximation of the Java system system?esto

The state of a Java system at any point of execution can now be approximated
by system!, = (L,VV"). A snapshot of our example program after execution of
method test() reads as follows:

SyStem?est() = <{l1a l2’ l3}’ {<p1’ {l1}>’ <p2’ {pl’ l3}>’ <ll'xa {pl’ 1})1
<lly: {p]-? 2}>7 <12$7 {2}>7 <l2y: {3}>7
(I3.x,{pl,p2, 1.z, ls.2}), (I3.y, {P1, P2, 1.y, l2.y}) })

Figure 5.4 shows the approximation of the state of our example program after
the execution of all five statements of method test(). We can see the current
state of the three objects (memory locations) given by their instance fields which
are either assigned to constants or run-time values. Whereas all constants are
known at compile-time, the run-time values can only be approximated by the set
of all language constructs, which are known to have an influence on the current
value of the instance fields. The two variables of reference type, i.e., pI and p2,
reference the first and third location, respectively. The object at location 2 is
not referenced by any of the system’s variables and is eliminated by the garbage
collector.



Chapter 6

Functional Dependency Models

The notion of functional dependencies (FDs) within computer programs and the
analysis of functional dependency graphs (FDGs) have been well-known concepts
in the software engineering community for many years. Informally, a FD describes
the fact that the value of a certain variable at a particular point within the
program depends on some other variable values, constants, or methods. In the
following we will discuss the concept of FDs in more detail.

6.1 Variable occurrences

First of all it is important to note that each variable v defined in a specific method
m can change its value several times during the execution of m. This happens as
a consequence of an assignment statement or a method call, which may alter the
value of v through side-effects. In order to non-ambiguously identify a certain
variable at a particular point within a given block of statements b, we assign
indices to all occurrences of variables in b starting with index 0. If a variable v
appears on the left-hand side of an assignment, its index is incremented by one.
These indices are unique relative to the block b, in which v appears. We no longer
speak about variables, but about variable occurrences. More formally, we define:

Definition 6.1.1 A wvariable occurrence VO is a tuple (v,b,i) where
e v € VARS is a variable defined in the Java system

e be BLOCKS is a block of the Java system

e 1 € Ny 1s a unique index relative to block b

Example 6.1.1 If we look at statement line 1 of method test() in Figure 5.1,
we find a variable occurrence (pl,b,1), which refers to the point in the top-level
block b of the body of method test(), where the value of variable p1 is changed for
the first time. Here, the variable occurrence appears on the left-hand side of an
assignment statement.

47
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Point maxCoordinate() {

int tmp;

1. if (z>vy)
1.1. tmp = x;
else
1.2. tmp = y;
2. return tmp;

}

Figure 6.1: Example method mazCoordinate()

Note that all VOs should be unique. Following the above definition this is the
case if all blocks of the system are given unique names. It is worth mentioning
that most Java methods consist of hierarchically nested blocks. VOs have thus
to be defined hierarchically for each block as well. For instance, look at method
mazCoordinate() of class Point, which is depicted in Figure 6.1. It returns the
maximum of the two coordinates of a given point object.

Here, we get two VOs of variable tmp ({tmp,t,1) and (tmp, e, 1) for the two
branches ¢ and e of the selection statement in line 1. At the top-level of statement
line 1 we get only one VO, i.e., (tmp, m,1), where m is the top-level block of
method mazCoordinate().

Variables can also change there values due to side-effects of called methods.
Therefore, VOs can also arise from method calls, which can be demonstrated
using statement line 1 of method test() (see Figure 5.1). Apart from the VO at
the assignment’s left-hand side, we get two more VOs arising through side-effects
of the method call on the right-hand side, i.e., the constructor invocation of class
Point. This is, because the two instance fields of the new point object (location
1) are set to initial values. The resulting VOs are (1.x,m,1) and (l.y,m,1),
where m denotes the block containing the method call. As we will see, VOs
are key components of all functional dependency models. Therefore, we give the
following two definitions:

Definition 6.1.2 (Equivalence (VO)) Let vo; = (v1,b1,11) and voy =
(v9, ba,i9) be two VOs. voy; and voy are said to be equivalent, i.e., vo; = Vo9,
Zﬁ V1 = Vg N bl = bg A il = iz holds.

Definition 6.1.3 VO, s defined as the set of all variable occurrences of block b.

Furthermore, we can distinguish two different types of VOs depending on their
syntactic positions within the source code. A variable appearing on the left-hand
side of an assignment is said to be set to a certain value. Only assignments can
change the value of a variable at a particular VO. In all other cases variables are
simply used, i.e., their value is used in the course of the evaluation of expressions
and statements. The following definitions should clarify this distinction:

Definition 6.1.4 A wvariable occurrence vo € VOy is called assignment variable
occurrence (AVO) if it appears on the left-hand side of an assignment. This
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includes all assignments in called methods, which are imported into the calling
method through side-effects. The set of all AVOs of block b is called AV Oy.

Definition 6.1.5 A wvariable occurrence vo € V Oy is called used variable occur-
rence (UVO) if it does not appear on the left-hand side of an assignment. The
set of all UVOs of block b is called UV O.

Obviously, the following proposition holds:
Proposition 6.1.1 AVOUUVO =VO

Example 6.1.2 If we come back to method maxCoordinates(), we find three
UVOs at the method’s top-level block m ({x,m,0) and (y,m,0) in line 1, and
(tmp,m, 1) in line 2), but only one AVO ((tmp, m,1) in line 1). Clearly, only
the value of variable tmp is changed, whereas all other variables are unaltered.

6.2 Functional dependencies

We can now compute one FD for every AVO in our system, i.e., whenever a
variable changes its value exactly one FD arises from the associated AVO. Let
x € AVOy and y € VO,. We say that r depends on y iff a change of the value of
y results in a change of the value of z. In other words, x depends on y iff there
is an execution el of b such that if at point ¢ during el we alter the value of the
variable occurrence y (thus producing a new execution e2), then there is a later
point ¢’ such that the value of z in el is different from its value in e2.

We can collect the set V' of all VOs, on which a given VO, e.g., vo € AV O,
depends. Often we are not only interested in VOs influencing a vo, but also in
other system components, whose character determines the current value of vo
(e.g., constants, called methods, etc...).

Definition 6.2.1 Generally, DEP is defined as the set of all system components
having an influence on the value of a given AVO, i.e., vo = (v,b,1i).

So far, DEP only contains VOs, i.e., DEP C VO,. We write DEP = (V),
where V' is the set of all VOs influencing the value of vo. Generally, DEP not
only contains VOs, but also other system components, such as constants, run-
time values, objects, method declarations, etc... This is, why we give a general
definition of DE P, which will be extended in the following chapters, when actual
model types are introduced. In this section, for the sake of clarity, we assume
that only VOs have an influence on a given VO, i.e., DEP only contains VOs.
Using the definition of DE P, we can now formally define a functional dependency
(FD) of a given VO, e.g., vo € AVO.

Definition 6.2.2 The tuple (vo, DEP) is called a functional dependency of the
variable occurrence vo = (v,b,1), i.e., FD,,.

Example 6.2.1 Consider the following source code fragment, which sets the
value of variable x:



50 CHAPTER 6. FUNCTIONAL DEPENDENCY MODELS

1. z=38% +ym();

We can now compute a single FD for the AVO vo = (x,b,1) with b being
the block containing statement line 1. If we only consider VOs as constituents of
DEP, we get DEP =< {{a,b,0),(y,b,0)} > and FD = (vo, DEP). As already
mentioned other components (e.g., constant 8, method m(), etc...) could also be
taken into consideration during the computation of DEP.

Intuitively, it seems clear that DE P contains all program components, which
influence the value of a particular VO, e.g., vo. Ideally the elements of DEP
model all program structures, which influence vo at run-time and thus include
not only static features, as variables and method declarations, but also dynamic
structures, such as values computed by the JVM at run-time and objects created
in the course of program execution. The problem with a purely static analysis
is that these run-time values and objects cannot always be predicted at compile-
time. Therefore, the exact look and interpretation of the various parts of a
FD also depends on the exact model created and even more on the run-time
information used during the modeling process. The above definition serves as a
general framework for all FDs used in this work. In the following sections about
concrete types of FDMs the meaning of individual parts of a FD is specified more
precisely. Finally, we give two definitions of the equivalence of FDs and DEPs.
This is done at this stage, because it is needed later on, e.g., for the modeling of
recursive methods (see Chapter 13).

Definition 6.2.3 (Equivalence (DEP)) Let DEP, = (Vi) and DEP, = (V5)
be two DEP structures. DEP, = DEP, holds iff Vi = V5.

Definition 6.2.4 (Equivalence (FD)) Two FDs, F D, and FD,, are said to
be equivalent, iff both, their left-hand side and their-right hand side, are equal.
More formally, let FD, = (vo;, DEP)) and FDy = (voy, DEP,) be two FDs.
Then FD, = FDy iff vo, =voy and DEP, = DEP,.

6.3 Types of dependencies

Until now we were talking about functional dependencies, but did not consider
the various kinds of dependencies. In [21] a classification of dependencies between
program instructions is given, which distinguishes between (1) data influences,
(2) control influences, and (3) potential influences. In this section we adapt
this classification to dependencies between variable occurrences. The resulting
classification, which will be used throughout this work can shortly be described
as follows:

Data dependencies or data influences between variable occurrences vo; and
voy occur, if vo; is the left-hand side of a variable assignment and vos
appears in the assignment’s right-hand side. The value of vo; is said to
depend on the value of vo,.
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Control dependencies arise in loop or selection statements, where the eval-
uation value of a condition determines the instructions to be executed at
run-time. A control dependency or control influence between variable oc-
currence vo; and vo, occurs, if the value of vo; is changed in the branch
of a selection statement or the body of a loop statement and vos appears
in the loop or selection statement’s condition. As we will see control de-
pendencies are created by combining multiple sub-models (branch models,
body models) into a single statement model, whereas data dependencies
arise directly from variable assignments. With the exception of conditional
expressions of the form expr, 7 expry : exprs control influences only appear
at statement level.

Potential dependencies or potential influences are purely static concepts,
which ignore run-time dependencies and focus on all variable influences,
which possibly occur at run-time. Imagine a data dependency between
the variable occurrences vo; and voy arising from a variable assignment in
one branch of a selection statement. If at run-time this branch is not exe-
cuted, the abovementioned data influence never arises. Nevertheless, from
a static point of view it constitutes a potential dependency, which might
effect the value of vo; at run-time. Note that in the following two sections
two concrete FDMs will be introduced. Whereas the first one (ETFDM)
makes use of run-time information and can therefore determine all data
and control dependencies arising at run-time (see Chapter 7), the second
model (DFDM) is a purely static model, which (due to a lack of run-time
information) takes all possible run-time scenarios into account. The latter
model therefore includes potential influences (see Chapter 8).

6.4 Locations

In order to model objects influencing a certain variable v we use locations, which
can be seen as an abstract representation of a class instance residing at a partic-
ular memory location. In this section we introduce the basic concepts and types
of locations, which are used in all proposed models either implicitly or explicitly.
The exact interpretation of locations in different models and their usage during
the modeling of complex program structures are explained in following chapters.
Each location [ has a type, i.e., the class type of the instance modeled by [, and
a unique identifier. In our case we chose a unique index, which non-ambiguously
identifies location [ within a modeled method m. More formally, we write:

Definition 6.4.1 A location [ is defined as a tuple {type,index), where type €
CLASSES and index € Nj.

We distinguish the following types of locations:

New locations arise from class instance creation expressions. In case of new
locations the exact run-time type is known, which is always equivalent
to the type of the class instance creation expression. In method test()
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(see Figure 5.1) two new locations arise from the constructor invocation
expressions in lines 1 and 2, respectively.

Default locations are created during the modeling of method m, if an object
that has not been explicitly created by the call of a class instance creation
expression, is accessed through a reference variable v, e.g., a field access or
a parameter of m. This can be the case, if v which is visible outside of m
is assigned a class instance in another method or static initializer. In case
of default locations the exact run-time type cannot always be determined.
Its type is initially set to the type of the reference variable v, but can also
contain any sub-type due to inheritance. Note that in method test() no
default locations appear.

Imported locations: If a new or default location [ is created in method n, but
imported into method m through a method call of n in m, [ will become
an imported new location or an imported default location, respectively. A
more detailed description of imported locations is given in the context of
modeling method calls (see Section 9.2). In method test() one new location
is created in the called method plus(Point p) and imported into method

test().

Multiple-locations: All locations described above can be marked single (by
default) or multiple. If a location [ is marked as multiple, it no longer
represents only one class instance but a set of n objects of the same type.
Note that the number of instances modeled by | may be unknown. The use
of multiple-locations is described in Section 10.4 and Chapters 11 and 13.

In order to uniquely identify a location [ we assign it a location key. The
location key for the individual types of locations is defined as follows:

New locations keys: A new location [ can uniquely be identified by the class
instance creation expression for which is was created. We define key(l) =
(pos), where pos is the source code position of the class instance creation
expression.

Default locations keys: As already mentioned a default location [ is created
for a reference variable v accessing the object modeled by [. We therefore
define key(l) = (v), where v € VARS is a variable of reference type initially
pointing at [.

Imported location keys: The keys of imported locations consist of two parts:
(1) the key of the original new or default location and (2) a method call
path storing information about called methods and method calls, through
which [ has been imported into the currently modeled method. An exact
definition of imported locations and their keys is given in Section 9.2.

Multiple-location keys: The keys of multiple-locations do not differ from nor-
mal new location or default location keys.
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In the next couple of sections we introduce various types of FDMs. All these
models either contain locations or use locations during their creation. As we will
see the concept of locations is the key to handle aliasing problems. Note that in
all example FDMs we denote locations by their unique numbers and, for the sake
of clarity, do not state the exact type of the location.

6.5 Functional dependency models

So far we have defined FDs for single variable occurrences. These FDs arise
from either assignments or method calls, both of which are expressions following
the Java language specification. We therefore speak of assignment and method
call FDs, respectively. In the following sections we show a complete functional
dependency model (FDM) for expressions, statements, methods, and even for
whole host environments.

6.5.1 FD expression models

In order to compute a full FD model of a given expression (possibly includ-
ing cascading assignments and multiple method calls), we have to compute the
FDs arising from all AVOs of that expression, i.e., determine all assignment and
method call FDs. Formally, we get

Definition 6.5.1 FDM,, i.e., the FDM of expression e € EXPRESSIONS,
is defined as the set {FD,, | vo € AVO,}

Example 6.5.1 Consider statement line 5 of method test(). This statement
contains three assignment variable occurrences, i.e., (p2,m,2), (3.z,m,1), and
(3.y,m,1). If we want to compute the FDM arising from the method call, i.e.,
FD My pruspe), we get two FDs representing the value changes of the two instance
fields of the newly created location 3. We write

FDMpI.plus(pB)
St.5: 3.x1 + {l.x9,2.21}
St.5: 3.y1 — {1.y2,2.y1}

Note that in case of conditional expressions of the form expr, ? expry : exprs
this is not always correct. The expression model in this case is computed similarly
to the model of if statements (see Section 10.3). The creation of expression
models will be handled in Chapter 9 in more detail.

6.5.2 FD statement models

If we want to create a FDM comprising all FDs of a certain statement s, there
are the following three cases to be considered:
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1. Statement s contains no expressions and no sub-blocks, e.g., empty state-
ments, break and continue statements, variable declarations without as-
signments, etc... Break statements never give rise to any FDs.

2. Statement s contains an expression but no sub-blocks, e.g., return state-
ments, unary pre- and post-operators. The model of these statements is
the same as the FDM of the expression.

3. Statement s contains sub-blocks, e.g., nested blocks, if statements, loop
statements, switch statements, etc... In this case the models of all sub-
blocks are created first. The statement model is then computed by com-
bining all sub-models. This procedure, however, is different for different
statements and will be presented in more detail in Chapter 10.

Therefore, at statement level we no longer deal with assignment and side-
effect FDs only, but also with selection and loop FDs, which are created through
the combination of various FDMs of the statements’ sub-blocks. Generally, a FD
statement model reads as follows:

Definition 6.5.2 F'DM;, i.e., the FDM of statement s € STATEMENTS, is
defined as the set {FD,, | vo € AVO,}

Example 6.5.2 If we now want to compute a statement model for statement line
5. of method test(), i.e., F'DMpyp—p1 pruspz);, we collect all FDs arising from the
assignment expression. As the statement contains no sub-blocks, the statement
model equals the model of the assignment statement. The resulting model reads
as follows:

FDMypo—p1.pius(p2);
St.5: 3.y + {l.19,2.21}
St.5: 3.1 + {ly2,2.y1}
St.5: p2g < {pl1,p21}

As mentioned above, the exact modeling of statements containing sub-blocks,
especially selection and loop statements, is described in Chapter 10 in more detail.

6.5.3 FDMs of blocks and methods

Furthermore, we want to compute the FDM of a whole block of statements or
even a whole method. The FD block model can be obtained by successively
modeling all statements of the block in question. Formally, we write:

Definition 6.5.3 F'DM,, i.e., the F'D model of block b € BLOCKS, is defined
as the set {FD,, | vo € AVOy} = {FDM; | s € b}
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Definition 6.5.4 Let b be the top-level block of method m. Then the FDM of m
i1s defined as the FDM of b, i.e., FDM,, = FDM,.

Example 6.5.3 Computing the complete FDM of method test(), i.e., F.DMq),
we get the following model:

FDM;es1()

St.1: Lz + {}

St.1: 1y + {}

St.1: ply <+ {}

St.2: 2.z + {}

St.2: 2.y1 + {}

St.2: p2; «+ {}

St.3: l.zg « {pli}

St.4: lys + {pli}

St.5: 3.x1 + {pl1,p21,2.21,1.2z9}
St.5: 3.y1 + {pl1,p21,2.91, L.y}
St.5: p2y + {pl1}

6.5.4 FDMs of host environments

We define the FDM of a complete Java host environment as the sum of all method
models of the Java system. Note that the computation of a host environment
model only makes sense if we use a static model, which stays the same for all
possible input vectors.

Definition 6.5.5 The FDM of a given Java host environment is defined as the
set {FDM,, | m € METHODS}.

6.6 Model views

6.6.1 Internal models

All models proposed so far are internal models, because they describe the internal
dependency structure of a given expression, statement, block, or method. The
following properties are unique to internal FDMs:

e FDs are computed not for variables, but for variable occurrences. In an
internal model different occurrences of the same variable have to be distin-
guished.
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W=

Figure 6.2: Example block b,

1. a=bh;
2. b=cgc
3. c=uga
4. i+

Figure 6.3: Example block by

e As a consequence, in internal models cyclic dependencies, i.e., FDs of the
form z depends on y and y depends on z, cannot arise. This is, because
we assign unique indices to all variable occurrences.

e There might exist multiple FDs for the same variable, though not for the
same variable occurrence.

e Internal models contain FDs for local variables, which are only visible inside
the modeled structure.

Internal FDMs can easily be visualized by the use of directed graphs (di-
graphs). A digraph usually consists of a finite number of nodes, i.e., V, and a
finite set of directed edges connecting two nodes, i.e., E. We denote a single edge
connecting the nodes v; and vy by (v1,v2). If we now want to depict an internal
FDM, we chose Algorithm 6.6.1, which works as follows:

Algorithm 6.6.1

e Create a node for each VO of the model, i.e., for each VO appearing on
either the left-hand or the right-hand side of a FD in the FDM

e Create an edge (v1,v9) iff the FD v; < vy is part of the FDM.

It follows from the above properties of internal models that the digraph of
an internal model never contains cycles. Therefore, we speak about a directed
acyclic graph (DAG).

Example 6.6.1 Consider the two source code fragments given in Figures 6.2
and 6.3. The DAGSs resulting from the blocks’ FD method models are depicted in
Figures 6.4 and 6.5.
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Figure 6.4: Internal model of block b,

¢
:9

Figure 6.5: Internal model of block b,

6.6.2 External models

Sometimes we are not interested in the internal view of a particular model, i.e.,
all FDs as they arise statement by statement, but only in the summarized model
as it is visible from outside the modeled structure. We therefore shortly discuss
external FD models for particular expressions, statements, or methods.

From an external view we are no longer interested in individual variable oc-
currences influencing each other, but only in dependencies arising from variables.
Furthermore, we only consider FDs, which are visible from outside the modeled
structure and discard all FDs of local variables. The following properties are
unique to external FDMs:

e FDs are computed for variables, not for variable occurrences. In an external
model different occurrences of the same variable are treated alike.

e As a consequence, in external models cyclic dependencies, i.e., FDs of the
form z depends on y and y depends on z, can arise. This is, because
multiple variable occurrences are contracted to a single variable.

e Only one FD for a given variable exists.

e External models do not contain FDs for local variables. Only variables,
which are visible outside the modeled structure, i.e., input and output vari-
ables, are considered.

Therefore, external models contain a different type of FD, which herein will
be called an external functional dependency (EFD). An EFD can be defined as
follows:

Definition 6.6.1 The tuple (v, DEP) is called an external functional depen-
dency of variable v, i.e., EFD,. Now DEP no longer contains variable occur-
rences influencing the value of v, but variables.
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) (O

Figure 6.6: External model of block by

A single FD can be converted into an EFD by substituting all VOs by their
variables. More formally, we define:

Definition 6.6.2 Let F'D = (vo, DEP), where vo = (v,b,i). Then the external
view of FD, i.e., EFD, can be computed by EFD = sum(FD) = (v, DEP'),
where DEP' equals DEP after all VOs have been substituted by their respective
variables.

When we now want to compute the summarized model of a complete FDM,
i.e., sum(FDM), this cannot be done by simply converting all FDs of FDM
separately. Algorithm 6.6.2 defines, how sum(FDM) is computed:

Algorithm 6.6.2 Let FDM be an internal functional dependency model of
any source code structure (expression, statement, block, or method). Then the
external FDM, i.e., sum(FDM) can be computed as follows:

e Let EFDM be an initially empty external FDM

e Consider all FDs of FDM in the order in which they arise from the source
code. Let the currently analyzed FD be fd = (vo, DEP;). We distinguish
the following two cases: (1) If fd contains only input VOs on its right-
hand side, i.e., i = 0V (w, b,i) € DEP;, add sum(fd) to EFDM. If EFDM
already contains a EFD for the left-hand side of sum(fd), this EFD has to
be overridden. (2) If fd contains a local VO vo = (w, b, i) on its right-hand
side, i.e., i # 0, then EFDM has to contain an EFD efd = (w, DEP,).
Compute sum(fd) and substitute all variables w by DEP,. Again, add the
new EFD to EFDM and, if necessary, override an existing EFDM.

e After all FDs have been processed EF DM = sum(FDM) holds.

Like internal models external models can be visualized by the use of digraphs.
In contrast to digraphs of internal models, now variables (and not variable oc-
currences) are the nodes of the graph connected by edges representing EFDs. As
already mentioned, graphs of external methods may contain cycles.

Example 6.6.2 Let us, again, look at the source code fragments depicted in Fig-
ures 6.2 and 6.3. The digraphs resulting from the blocks’ external FDMs are
depicted in Figures 6.6 and 6.7.
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Figure 6.7: External model of block by

6.7 Combining FDMs

In this section we discuss the possibility of combining multiple FDMs to a single
FDM. Imagine, for instance, two FD method models of the methods m and n,
i.e., FDM,, and FDM,. We then might be interested in all FDs arising from
either m or n and collect them in a combined model F"'DM,, . Note that the
same question can be asked in the context of expression, statement, or block
models.

It is obvious that it does not make sense to combine two internal FDMs. The
main reason is that internal FDMs consist of FDs, which are computed for VOs.
As different methods also have different VOs a combination of both models is not
feasible.

This, however, is not the case with external, i.e., summarized, FDMs. Sum-
marized FDMs contain EFDs describing all dependencies of a certain variable.
If we assume that a variable v is altered in both methods, then both models
include exactly one EFD with v on its left-hand side. By combining these two
EFDs we get a new EFD, which is part of the combined FDM, i.e., FDM,, .
More formally, we state:

Definition 6.7.1 Let fd; = (vo,DEP)) and fdy = (vo,DEP,) be two
functional dependencies defined for the same wvariable occurrence vo. Then
comb(fd,, fdy) = (vo, DEP) with DEP = DEP, UDEP,.

Definition 6.7.2 Let FDM;, and FDM, be two FDMs. The combined FDM,
i.e., FDM, 5 is defined as FDM, 5 = comb(sum(FDAM,), sum(FDDMs)), where
FDM, 5 contains the following FDs:

e fdy = (v,DEP)) if fdi € sum(FDM;) and 7fdy, = (v,DEP,) €
sum(F D M)

o fdy = (v,DEPR) if fdy € sum(FDM) and Ffd, = (v, DEP)) €
sum(FDM;)

® comb(fdl,fdz) with fdl = <U,DEP1> and fd2 = <U,DEP2> Zf fdl €
sum(FDM,) and fdy € sum(FDM,).

As already mentioned combined models can be computed for all sorts of ex-
ternal models (expression, statement, method models, etc...). In the following
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chapters we will need combined models, for instance, to combine models for mul-
tiple evaluation traces (see Chapter 7) and to model method calls (see Chapter 9).

6.8 Properties of FDMs

Finally, we discuss some general properties, which are valid for all FDMs.

e A FDM is said to be sound or correct, if it only computes FDs that possibly
(in the static case) or definitely (in the dynamic case) arise during run-time.
The difference between a purely static and a dynamic approach lies in the
modeling of potential influences as discussed in Section 6.3. However, a
model containing FDs which cannot arise at run-time is not regarded as a
sound model.

e A FDM is said to be complete, if it contains all FDs that are necessary to
model a certain program run (dynamic case) or all possible program runs
(static case). Again, it cannot be regarded as complete, if a FD arising from
the used evaluation trace or one arising in any possible evaluation trace is
missing.

e A FDM is said to be minimal, if it does not contain any spurious FDs. A
model containing incorrect FDs therefore can never be minimal. A model
containing potential dependencies is regarded as minimal in respect to a
static analysis of the source code, but does not have to be minimal in
respect to a single evaluation trace.

e Given an evaluation trace, all run-time information needed is available. This
means that in principle all data and control dependencies can be computed
using the trace and the Java programming language semantics.

e In the static case in general no minimal FDM with respect to a single trace
can be computed, because of unknown branching decisions at run-time.

In the following sections we present in detail how three types of FDMs are
created. The first model, which makes use of a concrete evaluation trace of a
particular method, can be shown to be complete and minimal. However, these
models have certain drawbacks, which do not always make them ideal for debug-
ging (see Chapter 7). We therefore present a second model, which is computed
statically without using knowledge about concrete variable values. This model
is an approximation of the ideal model. It can be shown to be complete, but
in general it is not correct and minimal (see Chapter 8). Finally, we present a
simplification of these two models, which is based on a simplified and more ab-
stract representation. We discuss its benefits and problems along with an altered
interpretation in Chapter 14.



Chapter 7
The ETFDM

The first model type we present in this work is the so called Evaluation
Trace Functional Dependency Model (ETFDM). During the computation of the
ETFDM we make use of an evaluation trace (ET) and thus compute a model,
which does not model a method m in general, but in the context of a particular
evaluation trace. As defined in Chapter 6, a FDM consists of a set of FDs. We
first describe how FDs in ETFDMs look like and how they differ from the gen-
eral description given in Chapter 6. We then show how a concrete FDM for a
given ET can be constructed. Finally, we discuss how multiple ETFDMs can be
combined to one model and ultimately a FDM comprising all possible ETs.

7.1 FDs in ETFDMs

In Chapter 6 we have already defined the general format of a FD, i.e., (vo, DEP)
with vo = (v, m,i). In the context of the ETFDM we use the same format of
FDs, but define an extended DEP structure on the FDs’ right-hand sides. This
is done in order to handle not only influences of VOs, but also dependencies on
run-time values, class instances, and method declarations. The constituents of a
DEP structure are:

R CVALUES contains run-time values, e.g., 10, that influence the FD’s left
hand side. These values can either be constants taken directly from the
source code or values computed by the run-time system in the course of
changing the value of v.

V C VO contains variable occurrences influencing the FD’s left hand side. vo; €
V' can have the same form as vo. It can thus be of primitive or of reference

type.

M C METHODS contains method and constructor declarations that influence
the value of the left-hand side’s variable v. This, for instance, occurs in the
case of a method call.

O COBJECTS contains the locations of all objects, not references to these
locations. A location o € O on the FD’s right-hand side means that v

61
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references the object at location o. v is therefore said to be dependent on
location o.

In the context of the ETFDM we write DEP = (R,V, M,O). Despite the
extended format of a DEP structure, all definitions and algorithms proposed in
Chapter 6 can still be applied to ETFDMs by analogy. In particular, we state:

Definition 7.1.1 (Equivalence (DEP)) Let DEP, = (Ry,Vi,M;,01) and
DEP, = (Ry,Va, M3,05) be two DEP structures. DEP, = DEP, holds iff
R1:R2/\‘/1:‘/2/\M1:M2/\01:OQ.

Note that Algorithm 6.6.2 for computing summarized FDMs given in Chap-
ter 6 can still be applied to the new format of the DEP structure, if the sets R, M,
and O are regarded as static and simply copied to the EFDs of the summarized
model.

Let us now have a look at a FD in the context of the ETFDM. The format of
a FD in the ETFDM is the same as described in Chapter 6, i.e., (vo, DEP) with
DEP being of the form introduced above. The VO vo = (v, b, %) is the left-hand
side of the FD and stands for the variable whose value is modified in a particular
statement of block b. Variable v therefore depends on the FD’s right-hand side.
A change in the right-hand side of the FD may cause a change in the value of
v. v can be of primitive or of reference type. If v is of primitive type (e.g. of
type integer) a change in the FD’s right-hand side alters the value of v. If on the
other hand v is of reference type, a change in the FD’s right-hand side changes
the reference v. In the latter case v then references a different location, i.e.,
object, whereas the object stored at that particular location is still unaltered. v
can be of the following form:

x: in this case = denotes a local variable of the currently modeled block b

O0.x: here z stands for an instance field of the class containing the currently
modeled method

n.x: in this case n refers to the location of an object different from 0. v denotes
an instance field of this particular object.

a.x: in this case z is a static variable and a denotes the fully qualified name of
the class, in which z is defined.

Note that in all three cases v can be of primitive or of reference type.

This shows us that when computing the ETFDM of a method m we get
all FDs arising during run-time. The most important point is that locations
represent objects as they are created at run-time. The numbers and types of
created locations should exactly match the numbers and types of all instances
created for the given ET. With the ETFDM the relationship between a VO on
a FD’s left-hand side and the associated DEP structure is always defined in a
way that a change of the right-hand side does influence the left-hand side and
in most cases results in a change of the value on the left-hand side. The reason
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int etfdml1(int x, int y) {
int a,b.c;
a = 3*x*x;
b = 2*y*y;
¢ = -5*x*y;
return (a+b+c);

=W =

Figure 7.1: Example method etfdm1(int z, int y)

for that is that only data and control dependencies as they occur during run-
time are modeled. Potential influences (see Section 6.3) stemming from unknown
branching or looping decisions are eliminated in the ETFDM by the use of ETs.

JADE: The JADE modeling component creates ETFDMs which contain
FDs matching the format described above. The only difference is that in-
stead of all run-time values on the right-hand side only constants (taken
directly from the source code) are used. All run-time values could theoret-
ically be taken from the used ET, but are substituted by constants in the
source code. This, however, is no problem for two reasons: (1) Currently,
only variable dependencies are used for debugging and (2) As we are only
interested in source code bugs and assume that the run-time system works
correctly, the modeling of run-time values is not actually needed. Note
that in the following sections all stated ETFDMs only contain constants
instead of run-time values for the sake of simplicity.

7.2 Collecting the FDs of a single evaluation
trace

We can now construct an ETFDM of a given expression, statement, or method
by collecting all FDs arising from an ET. Assume we want to create a model
of method m, i.e., FDM,,. This can be done by computing the models of all
statements of m one after another. For each statement s and all sub-expressions
and sub-branches a concrete ET has to be present. More formally, we define:

Definition 7.2.1 The ETFDM of method m and a given ET, et, is defined as
ETFDM® = {ETFDM¢ | s € m}.

Note that the computation of expression and statement models will be de-
scribed in detail in Chapters 9 and 10.

Example 7.2.1 Consider a very simple method etfdml(int x, int y) computing
the function t = 3z2 + 2y? — by for its two parameters x and y. The source
code of method etfdm1(int x, int y) is given in Figure 7.1. Before we can model
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execution trace 1

Figure 7.2: Evaluation trace of method etfdm1(int z, int y)

method etfdm1(int z, int y) we need an arbitrary ET for which we compute our
model. Since there are no selection and loop statements in method etfdm1(int
z, int y), the control flow of all ETs for etfdml(int x, int y) looks like the one
depicted in Figure 7.2. Therefore, we model exactly the same statements and (if
ignoring all run-time values) get the same FDMs for all ETs. The ETFDM of
method etfdm1(int z, int y) reads as follows:

(1,1)
ETFDMetfdmI (int z, int y)

St.1: a1 + {{3},{zo}, {}, {}}

5t.2: by« {{2},{wo}, {}, {}}

St.3: 1 + {{-5},{zo, w0 },{}, {}}
St.4: _return < {{},{a1,b1,c1},{},{}}

Example 7.2.2 Now consider another method etfdm2(int x, int y, int z), which
models the following function: t = 322 +2y* —5x if 2 = 0 and t = 32? + 2y*> + zy
else. The source code of method etfdm2(int x, int y, int z) is given in Figure 7.3.
If we look at the control flow chart of method etfdm2(int x, int y, in z) (see
Figure 7.4) we see that there exist two different types of ETs depending on the
evaluation value of the condition in line 3. If we take an input vector (1,2,0) the
then-block at line 3.1. is evaluated, whereas with an input of (1,2, 3) the else-block
(line 3.2.) is executed. For the two cases we get two different ETFDMs , which
are denoted as follows:
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int etfdm2(int x, int y, int z) {

int a,b.c;
1 a = 3*x*x;
2. b = 2*y*y:
3. if (z==0) {
3.1. c = -5%x;
else {
3.2. c =x*y; }
4. return (a+b-+c);

Figure 7.3: Example method etfdm2(int z, int y, int z)

(1,2,0)
etfdm2(int z, int y, int z)

St.1: a1+ {{3},{zo},{}, {}}

5t.2: by« {{2},{wo}, {}, {}}

St.3: ¢ + {{-5},{z0,20},{},{}}
St.4: _return < {{},{a1,b1,c1},{},{}}

ETFDM

(1,2,3)
etfdm2(int z, int y, int z)

St.1: a1 + {{3},{zo}, {}, {}}

5t.2: by < {{2}{wo}, {}, {}}

St.3: 1+ {{},{zo,v0,20},{},{}}
St.4: _return < {{},{a1,b1,c1},{}, {}}

ETFDM

Note that there exists an infinite number of evaluation traces for both meth-
ods, etfdml1(int z, int y) and etfdm2(int z, int y, int z). However, there exists
only one possible control flow path for etfdm1(int z, int y) and two possible con-
trol flow paths for method etfdm2(int z, int y, int z). Whereas R on the FDs’
right-hand sides always depends on the concrete ET, all variable dependencies
within one control flow path are the same. Therefore, if we only look at variable
dependencies, the one FDM (two FDMs, respectively) described above cover all
possible run-time scenarios of the two example methods.

7.3 Combining multiple ETFDMs

We now combine multiple ETFDMs of a certain method in order to create a
model covering all FDs arising during different method executions. Let ¢; and o
be two evaluation traces of a given method m and ETFDM!* and ETF DM} the
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execution trace 1 execution race 2

_return=at+b+c

Figure 7.4: Evaluation trace of method etfdm2(int z, int y, int z)

ETFDMs computed for t; and t9, respectively. We now construct an ETFDM
which contains all FDs arising in either ¢; or ¢5. Unfortunately, as shown in
Chapter 6, the combination of two internal FDMs is not feasible. We can only
compute a combined external FDM covering both evaluation traces. Formally,
we write:

Definition 7.3.1 The combined (external) ETFDM for the traces t1 and ty is
defined as: sum(ETFDM!""?) = comb(sum(ETFDM"), sum(ETFDM}2)).

If we need an internal FDM combining ETFDM! and ETFDM?, i.e.,
ETFDM!*2 we make use of a little workaround. Depending on the smallest
level of granularity needed, we can summarize all components of both ETFDMs
and combine them to new components of the resulting combined model. If, for
instance, we define the statement level as the smallest possible modeling level,
we can compute summarized statement models for all statements s € m for both
models and combine them to new statement models. The combined statement
models will then constitute the combined ETFDM ETF DM/!*2. More formally,

we write:

Definition 7.3.2 Let ETFDM} and ETFDM}> be two ETFDMs of method
m for the evaluation traces t, and ts, respectively. The combined ETFDM
ETFDM!“" s defined as follows: ETFDM!*" = {ETFDM!"" | s € m A
ETFDMM2 = comb(sum(ETFDM!*), sum(ETFDM®2))}.

Example 7.3.1 Let us now come back to example method etfdm2(int z, int
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y, int z). The combination of the two ETFDMs as computed above, i.e.,
ETFDM>0)(1:23) reads as follows:

etfdm2(int z, int y, int 2)

(17250),(15253)
ETFDMetfdm2(int z, int y, int z)

St.1: ay < {{3},{zo}, {}, {}}

5t.2: by < {{2},{wo}, {}, {}}

St.3: ¢+ {{-5},{=0,v0,20},{},{}}
St.4: _return < {{},{a1,b1,c1},{}, {}}

Note that it is also possible to combine the summarized FDMs for each ex-
pression e € m. We then get a more detailed model, but have to face the higher
computational requirements of such a task.

7.4 A complete FDM

Ultimately, if we want to create a FDM of method m, i.e., FDM,,, which covers
all possible run-time scenarios, we can compute the FDM of all possible evaluation
traces of a certain method and combine them to a general model. This approach
is briefly described in this section.

We begin with defining the set of all possible evaluation traces through a
method m. This set will usually be very large and in most cases include an
infinite number of evaluation traces. Formally, we define:

Definition 7.4.1 ET,, is defined as the set of all possible evaluation traces
through method m € METHODS.

We now define the complete functional dependency model (CFDM ) of method
m by combining the ETFDMs of all possible evaluation traces. Formally, we say:

Definition 7.4.2 CFDM,, = comb(ETFDM}, ... ETFDM!) | ti,....t, €
ET,,.

Unfortunately the CFDM of a given method cannot be computed in the
general case, because in most cases there exists an infinite number of evaluation
traces for m, i.e., |[ET,,| = co. Even if the number is finite, the computational
requirements of such a task would exceed satisfying modeling times by far.

Example 7.4.1 If we come back to method etfdml(int z, int y) we find that
an infinite number of evaluation traces exists, which prevents us from computing
CF DM eitami(int o, int y)- Nevertheless, there is only one control flow path through
method etfdml(int x, int y). This means that the ETFDM shown above covers
all variable dependencies as each evaluation trace in the same control flow path
produces the same variable influences.



68 CHAPTER 7. THE ETFDM

Example 7.4.2 If we look at method etfdm2(int z, int y, int z) we, again, en-
counter an infinite number of evaluation traces. However, there are only two
control flow paths through the method as depicted in Figure 7.4. This means that
the above combined ETFDM covers all variable dependencies possibly created at
run-time.

7.5 Handling aliasing with the ETFDM

As an object-oriented programming language, Java features the concept of alias-
ing. The basis of this phenomenon is the explicit distinction between class in-
stances (locations) and variables of reference type (references), which is inherent
to all object-oriented systems. A location [ may be referenced by more than one
variables of reference type. Whereas a change of one variable v does not alter
the content of [, a modification of [ on the other hand has no effect on variable
v. In this work we use the following definition:

Definition 7.5.1 Two variables of reference type, v and w, which reference the
same run-time location l, are said to cause aliasing. During the modeling process
we face an aliasing problem, if the content of | is altered by accessing | through
one of its references, say v. A modification of | should then be visible in the model
not only for an access of | through v, but also for an access of | through w.

The ETFDM handles aliasing in its most straightforward manner by keep-
ing locations and variables separate. This approach obviously solves the aliasing
problem during the modeling process, because changes of references and modifi-
cations of locations are represented by different model components, i.e., variable
names including the location of their owner instances on the one hand and loca-
tions on the other.

Example 7.5.1 Let us come back to the example presented in Section 5.2 (see
Figure 5.1). We now add a new method aliasing() (see Figure 7.5) to the Java
system, which creates one instance of class Point being referenced by two distinct
variables of reference type, i.e., p1 and p2. Following the above definition, we
now have a classic example of aliasing. By calling method doubleX Value() in
statement line 3 the content of the point object is altered leaving the reference p1
unchanged. The field access in line 4 should therefore return the new value of
field z, no matter whether the point object is accessed via variable p1 or p2.

If we now look at the resulting ETFDM we see that the created location, i.e.,
location 1, and its instance fields 1.x and 1.y are kept separate from the reference
variables p1 and p2. So, the ETFDM of line three includes a FD for 1.z, but
none for either p1 or p2.
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void aliasing() {

Point pl, p2;
pl = new Point(0,0);
p2 = pl;

pl.doubleXValue();
int tmp = p2.x;

=W =

Figure 7.5: Example method aliasing()

ETFDMY

aliasing

St.1: Lay + {{0},{},{Point(int,int)},{}}
St.1: Lyy « {{0}, {}, {Point(int,int)}, {}}
St.1: ply + {{},{},{Point(int,int)},{1}}

St.2: p2  {{}, {pl1 }, {}, {1}}
St.3: lxg + {{2},{pl1,1.21}, {doubleXV alue()}, {}}

St.4: tmpr < {{}, {p21, L.z2}, {}, {}}

Note that wn the above model only constants are used. Whereas 0 appears
in line 1 of method aliasing(), the constant 2 is imported from method doubleX-
Value(). As already explained, run-time values are not depicted in the ETFDMs
herein for the sake of simplicity. Currently, they are not computed by the JADE
system.

As shown during the computation of the ETFDM the aliasing problem is
solved by representing a Java run-time system by variables on the one hand and
locations on the other. Thus locations are crucial to the correct modeling of
object-oriented systems.

7.6 Properties of the ETFDM

We conclude this chapter with a short discussion about the main properties of
ETFDMs:

e All ETFDMs are sound models, because their FDs are directly taken from
an evaluation trace and therefore can easily be shown to indeed arise at
run-time.

e An ETFDM computed for a single evaluation trace et is both, complete
and minimal, in relation to et. In other words, if making use of a single
evaluation trace, we get all FDs arising from this particular program run,
but no additional FDs stemming from other run-time scenarios. However,
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such a model cannot be complete in relation to the CFDM covering all
run-time cases.

A combined ETFDM, i.e., an ETFDM computed for two or more evaluation
traces, is no longer minimal in relation to a single program run. Again, it
is not complete in relation to a complete model.

A complete ETFDM covering all run-time scenarios, i.e., CFDM, is com-
plete, because it contains all FDs, which might arise in any of all possible
program runs. Nevertheless, it is not minimal in relation to a single evalu-
ation trace.

The ETFDM covers all data and control dependencies arising at run-time.
Note that potential influences (see Section 6.3) are not part of the model.

All constituents of the ETFDM, i.e., run-time values, objects, and variables
are taken from an evaluation trace. The model is therefore detailed and easy
to interpret.

An ETFDM can only be computed for a particular run of a given method.
It does not make sense to compute a whole host environment model. The
drawback of this approach is that the models of all sub-blocks and called
methods are different (due to different sub-traces) and have (in the case of
hierarchical debugging) to be stored separately. This may require a lot of
memory.

Multiple ETFDMs can be combined to a model covering two or more eval-
uation traces. The combination of ETFDMs might result in a CFDM in-
cluding all FDs, which arise in any of all possible program runs. However,
in the general case the set of all possible evaluation traces is either unknown
or infinite.

The time needed to compute the ETFDM for a single evaluation trace
is proportional to the time needed to execute the program. This seems
obvious, if we consider that each statement of the method to be modeled
has to be modeled only once. In most cases ETFDMs can be computed in
a reasonable time. However, the computation of a CFDM, if possible, has
huge computational requirements and in most cases is not possible.

If a model for a single program run, i.e., test-case, is needed, the ETFDM
provides an appropriate model, which is sound, complete, and minimal in
relation to this particular evaluation trace. The combination of multiple
ETFDMs cannot be regarded as a useful approach towards the creation of
a general program model covering all run-time scenarios. In the following
chapter we discuss another model type, which approximates the CFDM in
the general case.



Chapter 8
The DFDM

In this section we describe a second class of FDMs, the Detailed Functional
Dependency Models (DFDMs). A DFDM tries to model all FDs of a certain
method m without the use of evaluation traces or other run-time information.
The creation of a DFDM is a purely static approach, which only relies on the
source code of the analyzed method.

As we will see there are certain language features, which cannot be modeled
exactly unless run-time information is present. In many cases the DFDM there-
fore represents only an approximation of the CFDMs described in Chapter 7,
which sometimes is achieved through a higher level of abstraction compared with
the ETFDM described in Chapter 7.

We first describe the meaning of the different parts of a FD in DFDMs, which
somehow differ from their counterparts in ETFDMs. We then show how a DFDM
can automatically be constructed using only a method’s source code. Finally, we
discuss some of the differences to the ETFDM and specific properties of the
DFDM.

8.1 FDs in the DFDM

As with ETFDMs we start with a short analysis of the individual parts of FDs as
they constitute a DFDM. Again, the form of FDs is based on the general format
of a FD, i.e., (vo, DEP) with vo = (v, m, 1), as it was presented in Chapter 6. As
with ETFDM we use an extended form of the DEP structure in the context of
DFDMs, which in the context of the DFDM includes all language constructs that
possibly influence the FD’s left-hand side during run-time. DEP itself consists of
the following elements:

C CCONSTS contains all constant values, e.g., 10, that possibly influence the
FD’s left-hand side.

V C VO contains all variable occurrences possibly influencing the FD’s left-hand
side.

M C METHODS contains all method and constructor declarations that possi-
bly influence the value of the left-hand side’s variable v. This, for instance,
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occurs in the case of a method call.

L C LOCATIONS contains locations of objects, not references to these loca-
tions. A location ! € L on the FD’s right-hand side means that v is possibly
referencing the object at location [. v is therefore said to be dependent on
location [.

In the context of the DFDM we write DEP = (C,V, M, L). Despite the
extended format of a DEP structure, all definitions and algorithms proposed in
Chapter 6 can still be applied to DFDMs by analogy. In particular, we state:

Definition 8.1.1 (Equivalence (DEP)) Let DEP, = (Cy,Vi,My,L,) and
DEP, = (Cy,Vs, My, Ly) be two DEP structures. DEP; = DEP, holds iff
ClZCQA‘/i:‘/QAMleQ/\leLQ.

Note that Algorithm 6.6.2 for computing summarized FDMs given in Chap-
ter 6 can still be applied to the new format of the DEP structure, if the sets C, M,
and L are regarded as static and simply copied to the EFDs of the summarized
model.

Let us now, again, have a look at a FD in the context of the DFDM. Generally,
the format of a FD in the DFDM is the same as described in Chapter 6, i.e.,
(vo, DEP) with DEP being of the form introduced above. The VO vo = (v, b, 1)
is the left-hand side of the FD and stands for the variable whose value is modified
in a particular statement of block b. In contrast to ETFDMs a change in the
right-hand side of the FD does not necessarily cause a change in the value of v.
It is possibly influenced by the constituents on the right-hand side. Again, v can
be of primitive or of reference type. If v is of primitive type (e.g., of type int), a
change in the FD’s right-hand side may alter the value of v. On the other hand,
if v is of reference type, a change in the FD’s right-hand side may change the
reference v. The format of v does not differ from the one in ETFDMs.

Note that this interpretation of a FD is no longer identical with the inter-
pretations of FDs used in the context of FDMs in general (see Chapter 6) or
ETFDMs (see Chapter 7). The most important peculiarities of the DFDM are:

e In contrast to ETFDMs only constants and literals appearing in the source
code are used on the FDs’ right-hand sides. Run-time values are not avail-
able during a purely static analysis and therefore are not part of the model.
We only use variable dependencies for the debugging of Java source files
(see part IIT). Therefore, missing run-time values will not affect the perfor-
mance of the debugging tool.

e In contrast to the ETFDM, in the DFDM locations no longer represent
objects created at run-time, but class instances which might be created
at run-time. The number of the created locations does not always match
the number of all instances created at run-time, because the DFDM tries
to cover all run-time scenarios and not just one particular program run.
Therefore, a FD’s right-hand side might include locations, which are not
created in one particular program run of method m.
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e The most important difference to all previously described models is that
a change to a FD’s right-hand side may, but not necessarily does change
the value of the FD’s left-hand side. Once more, the reason is that we
are employing a purely static approach, which due to a lack of run-time
information does not only have to consider data and control dependencies as
they occur during run-time, but also all potential influences (see Section 6.3)
stemming from unknown branching or loop decisions.

8.2 Creating a DFDM

In Chapter 7 we theoretically describe CFDMs, which come into being through
the combination of multiple ETFDMs. We argue that if combining ETFDMs for
all possible ET's, we get an optimal FDM covering all ETs and run-time scenarios.
As shown this approach has two main drawbacks: (1) All possible ETs or at least
all possible paths through a method m have to be known and (2) even then the
computational complexity of such a task is enormous in most cases. The main
goal of the DFDM is to approximate a CFDM. By computing only one model
and ignoring any run-time information, the drawbacks of the approach mentioned
above are thus avoided. Unfortunately, due to a lack of run-time information in
some cases the CFDM can only be an approximation and computes more FDs
as there possibly arise during run-time. The following examples demonstrate
problems in the context of DFDMs:

Example 8.2.1 In some cases the FDs can be too large. Imagine, for instance,
the following source code fragment:

wnt
1. if (false)
1.1. T=3;
else
1.2. r=2;

Since the condition in line 1 always evaluates to false, the statement in line
1.1 is never executed. The FD zy < {3} thus can not be part of any ETFDM of
statement line 1. Clearly, if we want to construct a CFDM covering all run-time
scenarios, we can ignore statement line 1.1, because no run-time FDs can arise
from it. When computing the DFDM of such a method, we can not rely on any
run-time information and have to add the FD arising from statement line 1.1
to our model. This leads to the FD x, + {2,3}, which includes a superfluous
element, i.e., 3. Note that in this simple example the evaluation value of the
condition in line 1 could easily be determined at compile-time. However, this is
not possible in the general case.

Example 8.2.2 [t is possible that there are too many FDs created in a DFDM.
Consider the following source code fragment:
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nt z;
1. z=2;
2. if (false)
2.1. =3;

In this case an additional FD is created for the selection statement in line
2. Howewver, this FD would not be necessary, because the branch in line 2.1 will
never be executed at run-time.

The hardest problems during the creation of a DFDM are posed by loop
statements and recursive method calls, which create a finite but unknown number
of locations at run-time (as long as the program terminates). The exact modeling
of these program structures and other statements and expressions is described in
Chapters 9 to 13.

8.3 Handling aliasing with the DFDM

When computing the DFDM of a given method, in principle we are facing the
same aliasing problems as with the ETFDM. However, the basic model compo-
nents of the DFDM are the same as the ones used for the ETFDM. Consequently,
aliasing problems can be solved just like with the ETFDM, i.e., by keeping loca-
tions and reference variables separate (see Section 7.5 for a detailed elaboration
of this topic). Note that the DFDM for method aliasing() (see Figure 7.5) is the
same as the FTFDM presented in Section 7.5.

The DFDM might include a higher number of locations due to the modeling
of potential dependencies, which are not considered in the ETFDM, where an
evaluation trace is available. However, this does not change the basic modeling
strategy or the properties of the model components.

8.4 Properties of the DFDM

The DFDM of a given method is supposed to cover all FDs arising at run-time
by applying a purely static analysis of the method’s source code. The following
properties of the DFDM can be stated:

e In contrast to ETFDMs DFDMs are static models. Their creation does not
involve any information about a particular evaluation trace or program run.
The only information used during the modeling process is the source code
of the Java system and the programming language semantics as defined
in [16].

e A DFDM approximates a CFDM by covering all run-time scenarios, which
seem possible at compile-time.

e When computing a DFDM, each method is modeled only once. This leads
to (1) a faster modeling process, (2) reusable models of all methods, (3) less
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computational requirements than for the ETFDM, and (4) the creation of
models for whole host environments.

e DFDMs are not always sound as they might compute FDs, which will never
arise in any run-time scenario. Therefore, the DFDM can only be an ap-
proximation of the CFDM.

e A DFDM is complete, because it covers all possible FDs. In the context
of locations, this proposition is true, only if certain abstractions are intro-
duced into the model. These abstractions are in detail described in the
following chapters. Note that without these abstractions the DFDM of an
arbitrary method cannot always be computed, because of an infinite set
of possible FDs (arrays, loops, recursion). By introducing a more abstract
model semantics, we are able to compute DFDMs in the general case with

the drawback of getting a less detailed and precise model in comparison
with the ETFDM.

e A DFDM is not minimal, neither in relation to a single evaluation trace, nor
in relation to the CFDM. This is obvious, because FDs might be created,
which are never produced at run-time.

e A DFDM comprises all types of FDs described in Section 6.3, i.e., data
dependencies, control dependencies, and potential influences.
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Chapter 9

Modeling Expressions

At expression level, FDs can only arise from variable assignments or method
calls. In the latter case FDs originating from assignments to variables in the
called method, which are visible in the calling method, are imported into the
calling method. If we want to compute the FDM of an arbitrary expression, we
have to traverse the expression’s parse tree and collect all FDs arising from either
assignment or method call nodes. This section is dedicated to the exact modeling
of variable assignments and method call expressions. Note that some kinds of
conditional expressions have to be considered separately, because of their inherent
control dependencies. The modeling of these structures is shortly discussed at
the end of this section and in more detail in Chapter 10.

9.1 Variable assignments

Strictly speaking, only variable assignments can be the source of data dependen-
cies. Whereas FDs imported into an expression through a method or constructor
call are ultimately based on variable assignments, FDs arising from selection and
loop statements are merely control or potential dependencies.

The modeling of variable assignments is performed in a straightforward way.
Whereas the assignment’s target variable becomes the FD’s left-hand side, the
assignment’s right-hand side is transformed into the new FD’s DEP structure.
This is done by adding all constants, variables and methods influencing the as-
signment’s right-hand side to the new FD’s DEP structure. In case of the ETFDM
additional run-time information is also put to the DEP structure, such as run-
time values. If the assignment’s target variable is of reference type, all locations
of the right-hand side have to be copied to the new DEP structure. In case of a
class instance creation expression on the assignment’s right-hand side the newly
created location has also to be added to the DEP structure. Note that array cre-
ation and array initializer expressions are handled separately and are described
in Chapter 11.

Note that if the left-hand side of the assignment is a field access, the scope
of this field access has to be resolved before its member variable can be used as
the FD’s left-hand side. This, however, can be done non-ambiguously only in
the case of ETFDMs when the exact location referenced by the scope of the field
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void assignment() {
Point pl, p2, p3;

1. pl = new Point(0,0);
2. p2 = new Point(1,1);
3. p3 = p2;
4. p3.x =25

Figure 9.1: Example method assignment()

access is known. When computing the DFDM we might get multiple locations
being possibly referenced by the scope of the field access. In this scenario multiple
FDs can arise from one variable assignment. Clearly, the model will be exacter
and better suited for diagnosis when using evaluation traces together with the
ETFDM.

Another interesting question is, whether reference variable occurrences in the
scope of a variable assignment should be included in the DEP structure of the
resulting FD. The reference on the assignment’s left-hand side plays an impor-
tant role in the assignment process, since an incorrect reference will cause the
assignment’s left-hand side to access an incorrect field, or to be more concise,
the field of an incorrect object. In most cases this results in two objects being in
an incorrect state, i.e., one, which is unintendedly altered, and one, which stays
unaltered although it should have been modified. Note that the same applies to
references in the scope of method calls.

Example 9.1.1 Consider method assignment(), which is depicted in Figure 9.1.
Method assignment() creates two locations of type Point, i.e., location 1 and 2.
In statement line 3 the reference p3 is assigned to p2 and therefore references the
same location as p2, i.e., location 2. Finally, in statement line 4 the field z of
location 2 is modified through a field access via reference p3. Clearly, if 2.z is in
an incorrect state after the execution of statement 4, the culprit can not only be
statement line 4, but also statement line & and as a consequence statement line 2.
The FD 2.x < p3 is therefore necessary in order to handle faults, which involve
incorrect reference variables.

Unfortunately, the approach described above introduces new problems, which
can be demonstrated using method test() of class Point (see Figure 5.1). Assume
we know that either the object created in statement line 1 or the object created in
statement line 5 is in an incorrect state after the execution of test(). In both cases
we get statement line 1 as potential diagnosis through the influence of p1 on both,
the assignments in lines 3 and 4 and the method call in line 5. Whereas in the case
of the assignment statements we could argue that the field of the wrong object is
altered and thus statement 1 is a diagnosis, this seems to be even more unrealistic
in the case of the method call, because the content of the object referenced by
pl is completely reset after statement 1. Therefore, if considering a reference in
an assignment’s or method call’s scope in the resulting DEP structure, too many
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diagnoses might be computed from the resulting model, making the debugging
process suboptimal.

9.2 Method calls

The second way FDs may arise at expression level is through the call of methods
or constructors. These FDs are herein called side-effect FDs, although they ulti-
mately stem from variable assignments in the called method, just like assignments
in the calling method. In the following we describe the modeling of method and
constructor calls for both model types, the ETFDM and DFDM.

At compile-time a certain method call can easily be identified by its parse
tree node mc. At run-time the situation is somewhat different, because we also
have to know, which method actually gets called during the execution of me. In a
programming language like Java supporting polymorphism this question cannot
always be answered at compile-time. Therefore, we give the following definition:

Definition 9.2.1 A given method call at run-time can uniquely be identified by
the tuple {mec, md), where mc stands for the parse tree node of the method call
and md s the method declaration actually being called at run-time. We call the
tuple (mc, md) a method call key.

Generally, the following steps have to be performed, when modeling method
or constructor calls:

1. Resolve the scope of the method call, i.e., determine the receiver(s) of the
method call.

2. Find the declaration(s) of the called method(s).
3. Get the FDM(s) of the called method(s).

4. Transform the summarized FD method model(s) of the called method(s) to
its (their) external representation(s) in the calling method.

5. If necessary, combine all summarized FDMs of the method call to a single
(summarized) model.

6. Incorporate the summarized FDM of the method call into the FDM of the
calling method.

These steps are discussed in the following sections in more detail. Through-
out this section we use example methods creating instances of class obj and
obj2. Class obj contains two instance fields, value and field, and, apart from
its constructor, two methods, getValue() and sideEffect(obj 0). Whereas method
getValue() simply returns the value of the instance field value, sideEffect(obj o)
changes the instance field field through a side-effect. The source code of class
obj is depicted in Figure 9.2. Class 0bj2 is derived from class obj and overrides
method sideEffect(obj o). The overridden version of sideEffect(obj o) creates a
new instance of class obj through a side-effect. The source code of class 0bj2 is
shown in Figure 9.3.
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class obj {
int value;
obj field;

obj(int x) {
1. value = x;

int getValue() {
1. return value; }

int sideEffect(obj o) {
field = o;
2. return value; }

—_

Figure 9.2: Example class obj

class obj2 extends obj {
obj2(int x) {

1. super(x); }

int sideEffect(obj o) {
1. field = new obj(600);
2. return value; }

Figure 9.3: Example class 0bj2

9.2.1 Scope resolution

As a first step, the scope of the method or constructor call has to be resolved.
This is necessary to determine the receiver of the method or constructor call.
Generally, the scope of a method call can be empty, a fully qualified name, an
arbitrary expression, or a keyword like this or super. At this stage it is important
to know, whether the called method is a class or an instance method, and the
exact class or instance, which is the receiver of the method call.

ETFDM: When computing the ETFDM, the scope of a method call can always
be resolved non-ambiguously, because the receiver of the method call can directly
be retrieved from the evaluation trace. To be more precise, each variable of
reference type should only reference one location at a time. FDs with two or
more locations on their right-hand sides should not appear in ETFDMs.

For example, consider the Java method mcl(int i), which is shown in Fig-
ure 9.4. Here, variable o is assigned two different objects (say, locations 1 and 2)
in the two branches of an if statement. The source code of class 0bj is depicted
in Figure 9.2.
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int mcl(int i) {

obj o;
1. if (i >0){
1.1. o = new obj(100); }
else {
1.2. o = new 0bj(200); }
2. return o.getValue();

}

Figure 9.4: Example method mc1(int i)

If the parameter ¢ is set to a value greater than 0, e.g., 1, statement 1.1 is
executed and an instance of class obj with a value of 100 is created. This instance
is also the receiver of the call to method getValue() in line 2. The ETFDM of

method mc1(int i) reads as follows:

ETFDMY

mcl(int i)
St.1: lwalue; + {{0,100}, {3}, {obj.obj(int)},{}}
St.1: 01 < {{0}, {io}, {obj.obj(int)},{1}}
St.2: _result; + {{}, {l.valuei, 01}, {obj.getValue()},{}}

If, on the other hand, mc1(int i) is called with a value of i < 0, e.g., -1,
statement 1.2 is executed. In this case another instance of class obj is created,
this time with a value of 200. Again, this instance is the receiver of the call to
method getValue() in line 2. The ETFDM of method mc1(int i) reads as follows:

ETFDM! Y

mcl(int i)
St.1: l.walue; < {{0,200}, {io}, {obj.obj(int)},{}}
St.1: o1 < {{0},{io}, {obj.0bj(int)},{1}}
St.2: _result; < {{},{l.valuei,o01},{obj.getValue()},{}}

Note that in both cases one instance of class obj is created. Both instances
are given the index 1. Nevertheless, both instance are different objects and arise
from different statements in the source code of method mc1(int i).

DFDM: In case of the DFDM the receiver of a given method call cannot
always be resolved non-ambiguously. There exist FDs with multiple locations on
their right-hand sides, mainly due to the modeling of selection statements (see
Chapter 10).

If we look at method mc1(int i), we find that after the if statement at state-
ment line 1 variable o possibly references either location 1 or location 2. By a
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int mc2(int i) {

obj o;
1. obj 01 = new obj(1000);
2. if (1 >0){
2.1. o = new obj(100); }
else {
2.2. o = new 0bj(200); }
3. return o.sideEffect(ol);

Figure 9.5: Example method mc2(int i)

purely static analysis (as the DFDM) this question cannot be decided. Therefore,
the scope of the call to method getValue() cannot be resolved non-ambiguously.
Consequently, the method call has to be modeled using all possible receivers, i.e.,
all locations which are currently possibly referenced by variable 0. The DFDM
of method mc1(int i) reads as follows:

DFDM a1 (int i)
St.1: lwalue; < {{0,100}, {30}, {obj.obj(int)},{}}
St.1: 2walue; < {{0,200}, {io}, {obj.obj(int)},{}}

St.1: o1 < {{0}, {io}, {obj.obj(int)},{1,2}}
St.2: _result; + {{}, {01, l.valuey, 2.valuey }, {obj.getValue()},{}}

We see that now two instances of class obj are created, i.e., locations 1 and
2. In statement line 2 both locations are possible receivers of the call to method
getValue(), which leads to the return value of mc1(int i) being dependent on the
instance field value of both locations.

We are now facing another problem, namely how to combine the multiple
expression models we get for the call of method getValue(). In this example
method getValue() is known to be side-effect free, which means that no side-
effect FDs arise from the method call in statement line 2. Now consider a small
modification of method mc1(int i), which is depicted in Figure 9.5. This time
sideEffect(obj 0) is called, which through a side-effect changes the internal state
of its receiver, i.e., the object referenced by variable o.

ETFDM: When we compute the ETFDMof method mc2(int i), the scope of
variable o can be resolved non-ambiguously. Therefore, only one FDM of the
method call in statement line 3 has to be computed. The following model of
statement 3 shows that only one side-effect FD has been created.
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ETFDM, s o
St.3: 2.field; + {{}, {01,011}, {obj.sideEf fect(obj)},{1}}
St.3: _resulty « {{},{o1,2.value; },{obj.sideEf fect(obj)},{}}

DFDM: When creating the DFDM, we have to compute two different FD
models corresponding to the two possible receivers, location 2 and location 3.
Note that here location 1 is the newly introduced object referenced by variable
ol. As a result we get two different side-effect FDs. The FD of the return value
contains both locations, location 2 and 3.

DFDM ne2(int i)

St.3: 2.fieldy < {{},{o1,011},{obj.sideEf fect(obj)},{1}}

St.3: 3.fieldr «+ {{}, {01,011}, {obj.sideE f fect(obj)},{1}}

St.3: _resulty « {{},{o1,2.value;,3.value; }, {obj.sideE f fect(obj)},{}}

JADE: In case of ambiguous scope locations the JADE system computes all
FD models of a method call one after another. Side-effect FDs are stored
i an intermediate data structure, where they are accumulated until all
models have been created. After that all side-effect FDs are written to the
current F'D method model.

Model comparison: Obviously, it is a big advantage of the ETFDM that
less models of the called method have to be created. This not only makes the
modeling process faster, but also results in fewer and smaller FDs in the calling
method. However, it should be noted that the resulting FD method model is
only correct for one specific evaluation trace, whereas the DFDM incorporates
the FDs arising from all possible traces.

9.2.2 Method resolution

Once we know the receiver(s) of a method call we have to find the declaration
of the called method. This includes matching the signature of the called method
with all methods defined for the receiver and (in case of polymorphism) determine
the method declaration actually being called at run-time. Of course this is not
always possible, if we decide to do without evaluation traces.

ETFDM: As with scope resolution the method being called at run-time can
directly be taken from the evaluation trace. Even with polymorphism we can
always determine a single method being called. This makes the modeling process
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int me3(int i) {

obj o;
1. obj 01 = new obj(1000);
2. if (i > 0) {
2.1. o = new obj(100); }
else {
2.2. o = new 0bj2(200); }
3. return o.sideEffect(ol);

Figure 9.6: Example method mc3(int i)

an easy job as we always have to create exactly one FD method model when
working with the ETFDM.

DFDM: When we look at the creation of the DFDM, we find that statically
we cannot always determine the method being called at run-time. We rather
get a set of possibly called methods, which all have to be considered during the
modeling process. To be more precise, we have to look at the type of the scope
location, i.e., at the type of the currently modeled receiver. We can distinguish
the following two cases:

1. If the location of the currently modeled receiver is a new location or an
imported new location, the exact type of the receiver is known. In this case
we can determine the method being called at run-time.

2. If, on the other hand, the location of the receiver is a default location or an
imported default location, the receiver’s run-time type is unknown, because
the run-time type can be the type of the location or any sub-type derived
from it. In the worst case we therefore have to create method models for all
possibly called methods of all possible receivers. Obviously, this can result
in a lot of models to be created and thus in a high number of FDs.

Example 9.2.1 Method mc3(int i) (see Figure 9.6) is similar to method mc2(int
i), but has slightly been modified in the if statement’s else-branch. The created
object is now of type obj2, which is derived from obj. Method sideEffect(obj o)
has been overridden for class obj2. To distinguish it from method sideEffect(obj
0) in class obj it creates an additional object of class obj. Note that the source
code of class obj and 0bj2 is depicted in Figures 9.2 and 9.3, respectively.

ETFDM: When computing the ETFDM with an input value of ¢ > 0, e.g.,
1, we know that one object of type obj is created in statement line 2. We can
therefore non-ambiguously resolve the method call in statement line 3 and find
the correct method declaration to be modeled, i.e., the one defined in class o0bj.
The FDs arising from statement 3 read as follows:
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(1)
ETFDMmc3(int i)

St.3: 2.field; < {{}, {01,011}, {obj.sideEf fect(obj)},{1}}
St.3: _resulty + {{},{o1,2.value; },{obj.sideEf fect(obj)},{}}

If method mc3(int i) gets called with a parameter value of i < 0, e.g., -1, a
new instance of class 0bj2 is created. In statement line 3 method sideEffect(obj
0) of 0bj2 is called, which leads to the creation of an additional instance of obj,
i.e., location 3. The ETFDM of statement line 3 reads as follows:

(=1)
ETFDMmcS(int i)

St.3: 2.field; + {{}, {o1}, {obj.obj(int),obj2.sideEf fect(obj)},{3}}
St.3: 3.waluer + {{600}, {o1},{obj.obj(int),obj2.sideE f fect(obj)}, {}}
St.3: _result; + {{}, {o1,2.valuer },{obj2.sideEf fect(obj)},{}}

DFDM: Statically the exact type of the object referenced by o cannot be
determined. Here, the scope of the method call in statement line 3 cannot only
reference two different locations, but also two locations of different type, i.e., obj
and obj2. Again, two models have to be computed and combined to the following
external model of statement line 3:

DFDM ;c3(int i)

St.3: 2.field; + {{}, {01,011}, {obj.sideEf fect(obj)},{1}}

St.3 : 3.field; + {{}, {o1},{obj.obj(int),obj2.sideEf fect(obj)},{4}}
St.3: 4walue; < {{600}, {01}, {obj.obj(int),0bj2.sideE f fect(obj)}, {}}

St.3: _result; + {{}, {o1,2.valuey, 3.value; }, {obj.side Ef fect(obj),
obj2.sideE f fect(obj)},{}}

The difference to the previous example is that here we no longer have to model
one method on two different receivers, i.e., locations, but actually two different
methods. This leads to the additional FD introduced by method sideEffect(obj
0) of class 0bj2 with location 4.

Example 9.2.2 Let f1 and f2 be two static fields, which reference objects of type
obj and obj2, respectively. The inserted code fragment reads as follows:

static obj f1 = new 0bj(300);
static 0bj2 f2 = new 0bj2(400);

Consider now the two methods, mc4() and method mc5(), which are shown in
Figures 9.7 and 9.8, respectively. Both call method sideEffect(obj o) on one of
the two static fields, whose type is not known inside the modeled method.
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int me4() {
1. obj 01 = new obj(1000);
2. return f1.sideEffect(ol);

}

Figure 9.7: Example method mc/()

int me5() {
1. obj 01 = new 0bj(1000);
2. return f2.sideEffect(ol);

}

Figure 9.8: Example method mc5()

ETFDM: When computing the ETFDM of method mc4(), the object refer-
enced by the static field fI is not known inside the modeled method. We therefore
have to assign it a default location, i.e., location 2. Modeling method mc4() the
default location 2 is of the static type obj. At run-time we also find fI to be of
type obj and thus only have to model method sideEffect(obj o) of class obj.

ETFDM)_,

St.2: 2.field; < {{}, {ol1, flo},{obj.sideE f fect(obj)},{1}}
St.2: _result; + {{}, {2.valuey, f1p}, {obj.sideE f fect(obj)},{}}

When modeling method mc(5) we get a run-time type of f2 of class 0bj2.
Therefore, we model method sideEffect(obj o) of class 0bj2. The following FDs
contain an additional FD for the new location, i.e., location 3, created in method
sideEffect(obj 0) of class 0bj2.

0
ETFDM,

St.2: 2.fieldy < {{},{f20}, {obj.obj(int),0bj2.sideE f fect(obj)},{3}}
St.2 : 3waluey < {{600},{f20}, {obj.obj(int),0bj2.sideE f fect(obj)},{}}
St.2: _result; + {{}, {2.valuey, f20}, {0bj2.sideE f fect(obj)}, {}}

DFDM: When computing the DFDM of method mc/() we only know the
compile-time type of field f1, i.e., obj. Because of the fact that at run-time we
could as well assign objects of type 0bj2 to it, we have to consider both cases.
Unlike explicitly created locations the run-time type of default locations can differ
from its compile-time type. We therefore have to compute two models, one for
method sideEffect(obj o) of class obj and one for sideEffect(obj o) of class 0bj2.
The resulting model reads as follows:
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DFDM,,cq)

St.2: 2.field) + {{}, {ol1, f1lo}, {obj.obj(int), obj.sideE f fect(obj),
obj2.sideE f fect(obj)},{1,3}}

St.2 : 3.waluey < {{600},{f1o}, {obj.obj(int),0bj2.sideE f fect(obj)},{}}

St.2: _result; + {{}, {2.valuey, f1¢}, {obj.sideE f fect(obj),
obj2.sideE f fect(obj)},{}}

When modeling method me5() the default location for field f2 gets a compile-
time type of class 0bj2. This type does not have any sub-classes, so no polymor-
phic method calls are possible. We only have to model method sideEffect(obj o)
of class 0bj2 resulting in the following FDs:

DFDM,,c5()
St.2: 2.fieldy < {{},{f20}, {obj.obj(int),0bj2.sideE f fect(obj)},{3}}
St.2 : 3.walue; < {{600},{f20}, {obj.obj(int),0bj2.sideE f fect(obj)},{}}
St.2: _result; < {{},{2.valueg, f20}, {0bj2.sideE f fect(obj)}, {}}

So far we saw that when computing the ETFDM of a certain method call,
all necessary information can be extracted from the evaluation trace. Neither
multiple objects assigned to one reference nor polymorphic method calls pose an
ambiguity as far as the declaration of the called method is concerned. The result
of that is that in all cases only one model has to be created, i.e., the model of
the method being called at run-time.

This, however, is not true for the DFDM. Both, the receiver and the dec-
laration of the method being called at run-time cannot always be determined.
This leads to multiple models being created during the modeling process, the
result of which are more complex FDs in the model of the calling method. One
last example, which is designed to combine both ambiguities should illustrate the
properties of ETFDMs and DFDMs, if a given method call is modeled.

Example 9.2.3 Consider method mc6(int i), which is depicted in Figure 9.9.
It combines the problems demonstrated using methods mc3(int i), mc4(), and
me5().

ETFDM: When computing the ETFDM of method mc6(int i), we have to
consider two cases, i.e., case 1 (i > 0), e.g., 1, and case 2 (i < 0), e.g., -1. In both
cases the exact run-time type of the scope of the method call in statement line 3
(i.e., 0) can be resolved non-ambiguously. The same is true for the method being
called at run-time. In both cases only one method has to be modeled, namely
method sideEffect(obj o) of class obj in case 1 and sideEffect(obj o) of class obj2
in case 2. The resulting FDs are as follows:
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int mc6(int i) {

obj o;
1. obj 01 = new obj(1000);
2. if (i >0){
2.1. o=1l;}
else {
2.2. 0=1f2;}
3. return o.sideEffect(ol);

}

Figure 9.9: Example method mc6(int i)

ETFDMY)

mc6 (int i)

St.3: 2.fieldy < {{},{ol1,01},{obj.sideEf fect(obj)},{1}}
St.3: _result; < {{},{o1,2.valuey},{obj.sideEf fect(obj)},{}}

ETFDM Y

mc6 (int i)
St.3: 2.field; < {{},{o1},{obj.obj(int),obj2.sideE f fect(obj)}, {3}}
St.3: 3.value; < {{600}, {01}, {obj.obj(int),0bj2.sideE f fect(obj)}, {}}
St.3: _resulty « {{},{o1,2.valuey}, {obj2.sideE f fect(obj)},{}}

DFDM: The interesting thing is what happens during the creation of the
DFDM of method mc6(int i). Now the receiver of the method call in statement
line 3 (i.e., 0) can possibly reference either the object referenced by variable f1 or
the object referenced by variable f2. Both these objects are modeled by a default
location, default location 2 of type obj and default location 3 of type 0bj2. If we
chose default location 2 as the receiver of the method call, we find a polymorphic
method call. The called method can either be method sideEffect(obj o) of class
obj or method sideEffect(obj o) of class 0bj2. On the other hand, if we model
the method call with default location 3 as its receiver, only sideEffect(obj o) of
class 0bj2 can be called at run-time. We therefore have to compute 3 different
models for the method call in statement line 3. To be more precise we get:

1. DFDM of method obj.sideEffect(obj o) on default location 2 (var fI)
2. DFDM of method 0bj2.sideEffect(obj 0) on default location 2 (var f1)
3. DFDM of method o0bj2.sideEffect(obj o) on default location 3 (var f2)

The complete DFDM of the method call in statement 3 is a combination
of all three individual models. It comprises 5 FDs (compared to 2 and 3 FDs
in the ETFDM). Note that the combination of multiple FDMs is described in
Section 6.7.
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DFDMmcG(int i)

St.3: 2.field; + {{}, {ol1, 01}, {obj.obj(int),obj.sideE f fect(obj),
obj2.sideE f fect(obj)},{1,4}}

)
St.3 : 3.field; « {{}, {o1},{obj.obj(int),obj2.sideEf fect(obj)},{5}}
St.3 : 4waluey + {{600}, {01}, {obj.obj(int),obj2.sideE f fect(obj)}, {}}
St.3: b.walue; < {{600}, {01}, {obj.obj(int),0bj2.sideE f fect(obj)}, {}}

St.3: _result; + {{}, {o1,2.valuey, 3.valuey}, {obj.sideE f fect(obj),
obj2.sideE f fect(obj)},{}}

Note that now method sideEffect(obj o) of class 0bj2 is modeled twice, once
on default location 2 and once on default location 3. Therefore, 2 new locations
(location 4 and location 5) are created as side-effects of this method. This seems
to be superfluous, but has to be done, because both new locations are created on
different receivers, which could influence the content of the new objects.

Model comparison: What we said in the context of scope resolution (see
Section 9.2.1) is also true for determining the declaration of the called method.
Whereas with the ETFDM only one method has to be modeled on exactly one
receiver, multiple methods have possibly to be considered during the computation
of a DFDM. This, again, results in fewer and smaller FDs in the model of the
calling method in the case of the ETFDM.

9.2.3 Getting the FDM of the called method

After a method or constructor declaration has been selected for modeling, its
FDM is needed. More precisely, what we need is the summarized FD method
model, which represents an external view of the called method. Note that in
case of the ETFDM the method called at run-time can always be determined
non-ambiguously. Therefore, we need the summarized FDM of only this method.
Generally, this is not true in case of the DFDM. If we encounter multiple methods,
which are possibly called at run-time, the summarized FDMs of all these methods
are needed.

ETFDM: In the case of the ETFDM, every time we encounter a method call
the called method has to be modeled on demand, regardless whether it has already
been modeled or not. The reason for that is that each method call corresponds
to its own evaluation sub-trace and different traces might result in different mod-
els. Assume a call to a method, which contains a selection statement, whose
condition depends on an argument of the method call. Clearly, in this case the
resulting model depends on the evaluation trace of the calling method. One big
advantage of this is that recursive methods do not have to be dealt with sepa-
rately. If we assume that the method to be modeled halts on its inputs, we get a
finite evaluation trace, which eventually leads to the termination of the modeling
algorithm.
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DFDM: In the case of the DFDM we compute purely static method models,
which do not depend on concrete method inputs. This means that we only have
to compute a method’s model once. We can then store it and use it again, when
its FDM is needed. When we encounter a call to a specific method, either its
model has already been computed and stored or we have to suspend the current
modeling process, compute the model of the called method, and resume the
modeling of the calling method. This approach does not work with recursive
methods, because of the possibility of an infinite method call sequence during
the modeling process. Note that in this section we assume that there are no
recursive method calls, neither direct nor indirect ones. This assures that we do
not encounter cycles in the chain of method modelings. Chapter 13 is dedicated
to the more sophisticated problems arising during the computation of DFDMs of
recursive methods.

Model comparison: One big advantage of the ETFDM over the DFDM is
that by modeling each method call separately, we get more detailed models of the
called method, which can then be transformed to the calling method. As a result
this leads to both, fewer and smaller FDs. Another advantage is that recursive
methods can be handled without applying additional techniques. These tech-
niques, which are needed in order to handle recursive methods with the DFDM,
are much more complicated and have higher computational requirements. On the
other hand, DFDMs are much faster to compute. This should be obvious, if we
remember that each method has to be modeled only once, no matter how often
it is called by other methods. Furthermore, DFDMs can be computed for whole
Java host environments, whereas ETFDMs are only feasible for one particular
call of the method to be modeled. In the latter case all models have to be seen
only in the context of one evaluation trace and generally cannot be reused for the
modeling of other method calls.

9.2.4 Transforming a FDM

We now have to transform the external models of all possibly called methods
on all possible receivers to their representations in the calling method. This can
be done by successively transforming all method model/receiver pairs and finally
combining all transformed models to one model as it will be part of the FDM of
the calling method.

Transforming a FDM: If we want to transform a single FD method model,
i.e., FDM,,, on a given receiver r, we first compute the summarized FDM of
the called method, i.e., sum(FDM,,). We then consider only these EFDs from
sum(FDM,,), which are defined for variables, which are visible in the calling
method. These EFDs have to be transformed one after another.

Example 9.2.4 Modeling a call to method sideEffect(obj o) of class 0bj2 (see
Figure 9.8) on a given location |, we compute the summarized FDM of method
sideEffect(obj o). If we use a DFDM, the summarized model reads as follows:
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sum(FDM ;4 ggrect(obj o))

0.field < {{}, {}, {obj(int)}, {1}}
l.value < {{600}, {}, {obj(int)},{}}
_result < {{},{0.value}, {},{}}

Location mapping: Before we explain the exact algorithm of transforming
EFDs, we first have a short look at the locations of F'DM,, and how they are
represented in the calling method’s FDM, i.e., FDM,. In the course of modeling
a method call, the following two types of locations are created:

Imported new locations arise in the model of n, if a new location is created in
m or imported into m via another method call. In other words, if F DM,
contains an explicitly created or an imported new location [, which is visible
in n, an imported new location I’ is created. Location [’ is of the same type
as [, but is assigned a different index due to the consecutive location num-
bering inside individual methods. Both locations theoretically represent
the same object location. Therefore, we define map(l) = 1'.

Imported default locations arise in the model of m, if a default location is
created in m or imported into m via another method call. However, if
FDM,, contains a default or an imported default location, [, there is not
automatically a new default location created in n. This is only done, if
no default location for the variable for which [ was created exists. Note
that default locations are only used for instance variables, static fields, and
parameters. In both cases, whether an imported default location has to be
created or not, we write I’ = map(l).

Example 9.2.5 Let us come back to the above example of a call to method side-
Effect(obj o) of class 0bj2 on location l. Internally, two locations are created for
method sideEffect(obj 0): (1) A default location 0 for the receiver (keyword this)
of type 0bj2 and (2) a new location 1 for the class instance creation erpression
in line 1 of sideEffect(obj o) of type obj. Externally, i.e., in the calling method,
location 0 is represented by the location of the method call’s scope, i.e., location
l. The new location 1 is imported into the calling method and thus becomes an
imported new location with a new index n. The new index depends on the cur-
rent state of the location index counter in the calling method. The following two
relations hold: map(0) = [ and map(1) = n.

Variable mapping: Building on the location mapping, we also define a map-
ping of variables from their representation in m to their representation in n. This
has to be done, because variables can contain locations in their scopes, i.e., in
case of instance fields.

Definition 9.2.2 Let v be a variable defined in method m. We define map(v) =
U'.x with ' = map(l) if v is of the form l.x and map(v) = v otherwise.
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Example 9.2.6 If we come back to our running example, we find variable 1.value
in the summarized DFDM of method sideEffect(obj o). From the above definition
it follows that map(1.value) = map(1l).value = n.value.

Imported location keys: Similar to new and default locations, we also define
unique keys for imported locations. In contrast to the keys defined in Chapter 6,
imported location keys also contain information about the method call trace,
through which these locations are imported into a method. More formally, we
give the following definitions:

Definition 9.2.3 Let MCK be the set of all method call keys possibly created at
run-time. Then a method call path is defined as a (ordered) sequence of method
call keys, i.e., (mcky, ...,mcky) | mcky, ...,mck, € MCK.

Definition 9.2.4 The key of an imported default location consists of (v, path),
where path s the method call path modeling the full sequence of method calls,
through which a default location is imported into a certain method. Similar to
default location keys, v stands for the wvariable for which the default location is
created.

Definition 9.2.5 The key of an imported new location consists of (pos,path),
where path s the method call path modeling the full sequence of method calls,
through which a new location is imported into a certain method. Similar to new
location keys pos stands for the source code position, where the new class instance
is created.

Example 9.2.7 In our running example location 1 of method sideEffect(obj o) is
imported into a calling method. There, an imported new location n is created, i.e.,
map(1) = n. Whereas the key of location 1 includes only the source code position
of the class instance creation erpression in method sideEffect(obj o), say pos,
the key of the imported location n also includes the method call path of the whole
importation trace. It reads (posi, pathy), where pathl = {{mc, sideEffect(obj 0)}}
and mc 1is the call to method sideEffect(obj o).

Note that the concepts of method call paths and imported location keys is
vital to the handling of recursions, which is described in Chapter 13.

Transforming a single EFD: An EFD, efd = (v, DEP), which is visible in
the calling method, can now be transformed to its representation in the FDM
of the calling method. This is done by creating a new side-effect EFD, efd’ =
(v, DEP'), with the following constituents:

e If v is an instance field and thus has the format [.z, we first have to map
location [ to its representation in the calling method, i.e., map(l). In all
other cases v' = v. Formally, we write v’ = map(v).

e The set of constants or run-time values can be copied to the new EFD

unchanged, because constants never change their forms. Therefore, R' = R
and C' = C.
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e When transforming variables on the right-hand side of the EFD, we have
to take locations into consideration. Therefore V' = {map(v) | v € V'}.

e In order to model dependencies on whole method declarations we add the
called method m to M. We get M' = M Um.

e Finally, all objects or locations have to be set to their external indices,
as they appear in the model of the calling method. Formally, we state:
O" = {map(o) | 0 € O} and L' = {map(l) |l € L}.

Example 9.2.8 In our ezample of a call to method sideEffect(obj o) of class 0bj2
we have to transform all EFDs in the summarized DFDM of method sideEffect(obj
0), which reads as follows:

sum(FDM g;4cEfect (obj o))

0.field < {{}, {}, {obj(int)}, {1}}
l.walue < {{600},{}, {obj(int)}, {}}
_result <+ {{},{0.value}, {},{}}

Using the location mappings map(0) = | and map(l) = n we get three new
EFDs in the calling method for the method call mc, which read as follows:

sum(FDM,,.)

I.field < {{},{}, {obj(int),sideEf fect(obj)},{n}}
n.value < {{600},{}, {obj(int), sideE f fect(obj)}, {}}
_result < {{}, {l.value}, {sideEf fect(obj)},{}}

9.2.5 Combining multiple external models

In case of the DFDM we possibly deal with multiple receivers and methods being
called at run-time. Therefore, we also have to handle multiple external FDMs of
the called method, which are transformed to their representations in the calling
method. These representations have to be combined to a single (summarized)
FDM, which can then be incorporated into the FDM of the calling method. This
is done by collecting all side-effect EFDs for a particular variable v and combining
their DEP structures by successively applying the union operator. More formally,
we write:

Definition 9.2.6 Let efd, = (v, DEP)) and efds = (v,DEP,) be two
EFDs created for the same wariable v, which stem from transforming two
different summarized FDM of a called method. Then comb(efd;,efdy) =
(v,comb(DEP,, DEP,)) with comb(DEP;, DEP,) being the union of all con-
stituents of DEP; and DEP;.
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Note that if the called method m has a return type other than void, we also
create a EFD for the return value. In case of multiple models, we have to combine
all return DEPs in order to get the complete DEP structure of the return variable.

JADE: The JADE system stores the side-effect EFDs of all models to be
converted in an intermediate data structure, where they are accumulated
until all models are built. After that all side-effect EFDs are incorporated
into the current FD method model.

9.2.6 Adding the method call model

The last step is to incorporate the external FDM of the method call into the FDM
of the calling model. This is done, once all summarized models are transformed
to their representations in the calling method and all these representations are
combined to a single external FDM. If we incorporate an external FDM into the
FDM of the calling method, we transform each EFD into a FD. This is done by
assigning indices to all variables in the EFD and thus converting these variables
to variable occurrences. The concrete indices depend on the current states of the
variable index counters in the calling method. The resulting FDs can directly be
added to the FDM of the calling method.

Example 9.2.9 Assume we are modeling a method call in statement 3 of method
mc7(int i, int j), which produces the EFD x < y. We incorporate this EFD into
the current DEDM of mc7(int i, int j), which reads as follows:

DFDMmc7(int i, int j)
St.1: zy < {{},{io}, {}, {}}
St.2: yr < {{} {io} {1 {}}

We then transform the EFD to a new FD and add it to the DFDM of method
mc7(int i, int j). The new FD reads as follows:

St.3: wo — {{} {m}, {}, {}}

9.2.7 Comparing the ETFDM and DFDM

Finally, we summarize the main differences between ETFDMs and DFDMs of
method and constructor calls and highlight advantages and drawbacks of both
model types.

e When computing the ETFDM of a given method call the called method
has to be modeled on the evaluation trace defined by the calling method.
This means that for multiple calls to the same method multiple models
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have to be computed. Clearly, this is a time consuming task. Furthermore,
if all models of the called methods should be kept (e.g., for hierarchical
debugging to step into a called method) this approach requires a lot of
memory.

e In the context of DFDMs each method has to be modeled only once. It can
be stored and retrieved every time a call to this method appears. Therefore,
DFDMs are better reusable and compute less models of called methods.

e Because of the fact that ETFDMs make use of evaluation trace information,
the scope of the method call and the declaration of the called method can
always be determined non-ambiguously. This means that only one FDM of
the called method has to be transformed into its external representation in
the calling method.

e When computing the DFDM of a method call, multiple models of the called
method have to be considered. This is due to potential dependencies, which
are part of the model, and polymorphic method calls, which cannot be re-
solved at compile-time. In a worst case scenario all possibly called meth-
ods, i.e., the method declarations of all sub-classes of the static type of
the receiver, have to be transformed in combination with all their possible
receivers. Finally, the FDs resulting from all modeled methods have to be
combined. In this respect it does not only take longer to compute the model
of a method call, but also results in more and larger FDs in the model of
the calling method.

e In both model types we get sound and complete models of the method call
provided that the used FDMs of the called methods are sound and complete.
This is, because all FDs are simply imported into the model of the calling
method.

e The resulting model of the calling method is minimal in respect to an eval-
uation trace when computing the ETFDM. This is not the case with the
DFDM, because all run-time scenarios (again, different receivers, polymor-
phic calls, etc...) have to be considered at compile-time.

9.3 Conditional expressions

Conditional expressions of the form expr; ? expry : exprs have to be considered
separately at expression level, because they introduce control dependencies and
potential influences. Logically, they very much resemble selection statements.
Therefore, the modeling of these expression will be explained in Section 10.3
together with if and switch statements.

JADE: The JADE system handles conditional expression of the above for-
mat exactly like of statements. This includes a hierarchical modeling
process as it is described in Section 10.3.
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Chapter 10

Modeling Statements

So far we have only discussed the modeling of assignments and method calls in
detail. This section deals with the modeling of statements, which contain sub-
blocks. These statements have to be treated differently, because all sub-blocks are
modeled separately and then combined to the statement model of the statement
in question. According to the Java Language Specification [16] the following
statements contain sub-blocks and are therefore discussed in this section:

1. Blocks

2. Selection statements (if and switch statements)

3. Loop statements (do, for, and while statements)

4. Synchronization statements (keyword synchronize)

5. Try statements (keyword try)

Note that all other statements can be modeled by an empty FDM (e.g., re-
turn) or the expression model of a single sub-expression (e.g., return expr).
This topic is shortly discussed in Section 6.5.

10.1 Modeling principles

Generally, statements containing sub-blocks are modeled in two steps. First, all
sub-blocks are modeled separately. Second, all sub-block models together with
expressions contained in the statement, if any, are combined to create the top-
level statement model of the statement in question. This approach leads to the
creation of hierarchical models, where each level in the model hierarchy can be
associated with exactly one block of the modeled source code.

97
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Creating sub-block models: In order to create a FDM of a statement’s sub-
block, we define an auxiliary method declaration, whose body is equivalent to
the sub-block to be modeled. We can then directly use the FDM of the auxiliary
method as the sub-block’s FDM at the next level in our model hierarchy.
However, the full sub-block model is not sufficient. Moreover, we need the
summary of the sub-block model, i.e., the summarized FDM of the auxiliary
method, in order to get all FDs, which are visible at the level of the modeled
statement. The computation of summarized models is described in Section 6.6.

Combining multiple sub-block models: Once we have all sub-block models,
we have to compute the top-level statement model of the original statement. This
is done in two ways:

1. In some cases it is possible to directly use the model of a sub-block as
the top-level statement model, e.g., when modeling nested blocks. Note
that in this case the resulting model is not hierarchical, because the model
structure no longer strictly reflects the source code’s block hierarchy.

2. In most cases the sub-block models have to be combined to a single state-
ment model at top-level. Note that in this case all sub-block models have
to be stored separately, because they constitute the next level of our model
hierarchy.

In the following sections we show how to model various statements. It is
assumed that all sub-block models are present in their full and summarized ver-
sions. Therefore, the main issues are to combine these models to the top-level
statement model of the considered statement.

10.2 Blocks

Nested sub-blocks are the easiest source code structures to handle, because they
can be modeled in a hierarchical and a direct way. If we chose to model blocks
in a hierarchical way, the full sub-block model has to be added to the model
hierarchy. Further on, the summarized sub-block model can be used as the top-
level statement model of the modeled block.

The other option is to directly incorporate the full sub-block model into the
top-level model by using the full sub-block model as statement model of the
block. This can be done, because nested blocks only result in additional data
dependencies, but no control dependencies. The result of the latter technique
is a flatter hierarchy, which as mentioned before no longer totally reflects the
original source code block structure. Since there arise no dependencies on a
block’s top-level, i.e., if the block is regarded as a statement, the computation of
the ETFDM works exactly like the computation of the DFDM.

As we will see in Part III of this work, a flatter hierarchy has to be preferred,
when using the FDM for debugging, because more diagnoses can be excluded
at the top-level and less overhead occurs when shifting from one level in the
hierarchy to another.
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JADE: The JADE system currently models blocks in a non-hierarchical way,
because of the better applicability of the resulting models to the debugging
process.

10.3 Selection statements

Generally speaking, selection statements are statements, which have more than
one sub-block plus a condition. At run-time the evaluation value of the condition
tells the run-time environment, which of the sub-blocks should be evaluated.
Selection statements are if and switch statements. The conditional expression
of the form expr, ? expry : exprs is no statement, but it can be modeled exactly
like if statements. This is why it is discussed in this section, too.

JADE: the JADE system is able to model tf statements and conditional
expressions. Switch statements are not yet implemented, but, as we will
see later, could follow the same principles as if statements.

10.3.1 Computing FDMs of selection statements

ETFDM: When we want to compute the ETFDM of a selection statement,
a concrete evaluation trace has to be known. We therefore assume that the
evaluation value of the statement’s condition is also known, which tells us, which
sub-block, i.e., branch, of the selection statement is evaluated at run-time. It is
only this branch we have to model. The exact modeling process works as follows:

1. Compute all FDs arising from the selection statement’s condition. These
FDs can be side-effect FDs, which are imported into the current model via
method calls inside the condition.

2. Compute the model of the evaluated branch. Since we only consider one
branch, we can treat this block just like a nested block (see Section 10.2)
and model it hierarchically or non-hierarchically.

3. Finally, all constants, variables, and method calls in the condition have to
be added to all FDs arising from the evaluated branch. This has to be done
in order to model the control dependencies of the statement.

Consider, for example, method if1(int i), which is depicted in Figure 10.1. If
if1(int i) gets called with a value of i > 0, e.g., 1, then statement 1.1 is evaluated
and an object of type obj with a value of 100 is created. The return value of
if1(int i) is 100. The complete ETFDM of if1(int i) for i > 0 reads as follows:
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int ifl(int i) {

obj o;

1. if (1 >0){

1.1 o = new obj(100);
else {

1.2. o = new 0bj(200);
}

2. return o.value;

}
Figure 10.1: Example method if1(int i)

ETFDMgQ(int i)

St.1: lwalue; < {{0,100}, {30}, {obj.obj(int)},{}}
St.1: o1 < {{0}, {io}, {obj.obj(int)}, {1}}

St.2: _result; + {{}, {l.valuer,o1},{},{}}

Now assume if1(int i) gets called with a value of i < 0, e.g., -1. In this case

statement 1.2 gets evaluated. Again, an object of type obj is created, but this
time with a value of 200. Therefore, the return value of if1(int i) is 200. Now
the complete ETFDM of ifl(int i) is somewhat different:

—
St.1: l.walue; < {{0,200}, {ip}, {obj.obj(int)},{}}
St.1: o1 < {{0},{i0}, {obj.0bj(int)},{1}}

St.2: _result; < {{},{l.valuei,o1},{},{}}

Finally, we may want to compute the combined ETFDM, i.e., ETFDMg ) ).

As explained in Chapter 7, this model covers all FDs arising from variable oc-
currences, method declarations, and objects, but does not include all run-time
values. Therefore, the following model can be seen as a good approximation of

CF D M1 (i 1)-

BTEDML
St.1: lwaluer + {{0,100}, {3}, {obj.obj(int)},{}}
St.1: 2walue; < {{0,200}, {ip}, {obj.obj(int)},{}}
St.1: o1 < {{0}, {io}, {obj.obj(int)},{1,2}}

St.2: _result; < {{}, {l.valuei,2.valuei,o1},{},{}}
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Note that in each of the two individual models a single location indexed one
is created. These locations, however, are different locations. When computing
the combined FDM at least one of the two has to be renamed to retain the full
dependency structure.

DFDM: To compute the DFDM, not only data and control dependencies have
to be considered, but also potential influences (see Section 6.3). This has to be
done, because we do not know the run-time value of the condition and therefore
have to take all branches of a selection statement into consideration. In other
words, we now compute all FDs, which might arise from either of the statement’s
branches, not just from the one evaluated at run-time. It is easy to see that all
sub-blocks have to be modeled and summarized. Further on, we can no longer
build a flat model, but have to create a hierarchical one. The key question re-
mains, how multiple sub-block models can be combined into a top-level statement
model. Algorithm 10.3.1 answers that question:

Algorithm 10.3.1
e Compute the full FDMs for all branches of the selection statement.
e Summarize all FD branch models as described in Section 6.6.

e For each variable v, which possibly changes its value in any of the state-
ment’s branches, compute a new FD by building the union of the FDs of v
in all branches, where such an FD exists. This can be done by combining
the summarized FDMs of all branches.

e For each variable v, which does not change its value in all branches, intro-
duce a so called self dependency, i.e., v,, < v,_1. This has to be done to
model the case in which the value of v is not changed during run-time and
therefore only depends on the value of v before the selection statement.

e The right-hand sides of all FDs of the combined model have to be merged
with the DEP structure arising from the statement’s condition. This has
to be done to cover all control dependencies, i.e., to model the influences of
the condition’s evaluation value on the branch executed at run-time.

e Finally, the resulting summarized FDM can be incorporated into the FDM
containing the selection statement. This is done by assigning new indices
to all variables in the summarized model.

If we apply Algorithm 10.3.1 to our example program we get the following
FDM for method if1(int i). In contrast to the ETFDMs computed for a single
branch two locations is created. Because of the fact that it is unknown at compile-
time, which of the two locations are created by the Java system at run-time, the
return value of if1(int i) depends on both locations.
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DFDMi (int i)

St.1: lwalue; < {{0,100}, {io}, {obj.obj(int)},{}}
St.1: 2.walue; < {{0,200}, {ip}, {obj.obj(int)},{}}
St.1: o1 < {{0},{d0}, {obj.obj(int)},{1,2}}

St.2: _result; + {{}, {l.valuey,2.valuey,01},{},{}}

Note that the DFDM and the combined ETFDM of method if1(int i) are
equivalent, except for the run-time values in the ETFDM. This is obvious, if we
remember that in both cases all possible run-time scenarios are covered by the
resulting FDM.

JADE: When computing the FDM of an if statement, the JADE system
performs hierarchical modeling, no matter whether the ETFDM or DFDM
1s created. In the case of the ETFDM, the evaluated sub-block could
also be modeled in a direct way. However, this is not done, because it
makes both models better comparable and leaves the implementation more
uniform.

10.3.2 Introducing self dependencies

Cases, where a variable v is assigned a value in some but not all of a selection
statement’s branches, have to be dealt with separately. In this case we introduce
self dependencies of the form v, < v,_; in order to model a run-time scenario,
where a branch not changing v is executed and thus the value of v after the exe-
cution of the selection statement is equal to the value of v before the statement’s
execution.

Consider the Java method if2(int i), which is depicted in Figure 10.2. In the
selection statement in line 4 two variables, a and b, are used on the left-hand
side of an assignment. Whereas in the then-branch the values of both variables
are changed, the else-block only affects the value of a leaving b unaltered.

ETFDM: The creation of the ETFDM is straightforward and easy to under-
stand. In case 1 (i > 0, e.g., i = 1) we get two FDs arising from the then-block
in lines 4.1 and 4.2, whereas the modeling of the else-block in line 4.3 (case 2:
i <0, eg., i = —1) only produces one FD for variable a. The two models read
as follows:

(1)
ETFDMifz(int i)

St. 4 : ao < {{0}, {blaiO}, {}, {}}
St. 4 : b2 — {{0}7 {ClaiO}a {}7 {}}
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int if2(int i) {

1. int a = 1;
2. int b = 2;
3. int c = 3;
4. if (i >0){
4.1. a = b;
4.2. b=c¢;}
else {

4.3. a=c; }
D. return a;

}

Figure 10.2: Example method if2(int i)

(=1)
ETFDMe (ins 5)

St.4: ag + {{0},{c1,i0},{}, {}}

Note that in the second model (case 2) no FD for variable b is created at all.
Therefore, we do not have to create a self dependency, because all variables not
covered by any FDs are implicitly assumed to remain unchanged.

DFDM: When now considering the DFDM we find that variable b is only
used in the selection statement’s then-branch and therefore only depends on c.
In order to explicitly cover the case, where the else-block is executed and b stays
unchanged, we introduce the FD by <— by, which leads to the following FDM for
the selection statement in line 4:

DFDMjg(int 1)
St.4: ag + {{0}, {Cl, blaiO}a {}a {}}
St.4: by < {{0},{c1,b1,%0},{}, {}}

10.3.3 Other selection statements

The JLS [16] defines a second type of selection statement, i.e., the switch state-
ment and a selection expression, i.e., the conditional expression of the form
expry 7 expry : exprs. Both source code structures behave very much like the if
statement described above. Conditional expressions can be modeled exactly like
if statements, only at expression level. Switch statements can be modeled by
applying the algorithms explained above to the general case of n branches. Prob-
lems might only arise due to a complex structure of break statements. In these
cases it is not guaranteed that switch statements are fully evaluated after the
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execution of one of its branches. The modeling of labels and break & continue
statements is not discussed in this work in detail.

JADE: The JADE system currently models conditional expressions exactly
like if statements. The only problem at the moment is that the code
instrumentation component computing the evaluation traces only works
at statement level and therefore cannot determine the run-time value of a
conditional expression’s condition. This is why the JADE system currently
always computes DFDMs for conditional expressions. Switch statements
are currently not implemented, because break € continue statements are
not yet supported by the JADE modeling component.

10.3.4 Model comparison

Selection statements uncover one of the main advantages of ETFDMs in com-
parison to DFDMs. If we only need a model for one particular evaluation trace,
with the ETFDM we get a substantially lower amount of FDs arising from the
sub-blocks of the selection statement. In the case of if statements, for instance,
we expect a reduction of the analyzed source code of nearly 50 percent provided
that an else-branch exists (and the else-branch contains approximately the same
number of statements as the then-branch). This results in a much lower number
of FDs compared to a purely static analysis like the DFDM. If the else-branch
is empty, we do not need self dependencies, which also reduces the complexity
of the resulting model. The same is true for conditional expressions, whereas
the advantage of ETFDMs in this respect should even be greater in the case of
switch statements containing more than two branches.

Furthermore, ETFDMs can be shown to be sound in all cases, which is not
true for DFDMs. As already mentioned DFDMs compute only an approximation
of the CFDM in cases of assignments to variables, which do not appear in all
branches of the selection statement.

A major drawback of ETFDMs in comparison to DFDMs is that their cre-
ation is based on the existence of an evaluation trace. As it is the case with
ETFDMs of all source code structures, these models cannot be constructed if
the appropriate run-time information is missing. Furthermore, the branches of
a selection statement have to be modeled for each sub-trace in the case of the
ETFDM, which means that the creation of ETFDMs of selection statements is
much slower and needs a lot more memory than the creation of DFDMs. Finally,
if a whole host environment model, which covers all run-time scenarios, is to be
created, the DFDM is the only possible solution (see Section 7.6).

10.4 Loop statements

One of the key aspects of every programming language (and thus of any meaning-
ful model) are loops. The Java Language Specification [16] provides the following
kinds of loop statements:
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Do statements (like all loop statements) have a body and a condition. When a
do loop is encountered by the JVM during run-time, its body and condition
are repeatedly executed starting with the loop body. This means that the
body of a do statement is executed at least once.

For statements have two additional features apart from a body and a condition,
i.e., an initializer and an update block. A for loop is evaluated starting with
its initializer. Then its condition, body, and update block are evaluated in
the stated sequence. Note the following peculiarities of for loops: (1) The
initializer is always executed first. It can be seen as an own block at the
same level as the loop statement. Nevertheless, all variables defined in
the initializer are only visible inside the for statement. The initializer is
executed only once. (2) The body of a for loop is not necessarily executed.
This can be the case if the loop’s condition evaluates to false right after
the initializer is executed, i.e., before the first iteration. (3) The update
block of a for loop is evaluated after each iteration. Logically, it is part of
the body and not at the same level as the for loop.

While statements work very much like do loops. The only difference is that
its execution starts with the evaluation of its condition rather than its body.
This means that in contrast to do loops the body of a while statement is
not necessarily executed.

The following sections describe in detail the computation of ETFDMs and
DFDMs for loop statements. At the beginning, general problems underlying the
modeling of loops and modeling principles are discussed. We then show how to
model while loops in detail and present examples highlighting various properties
of the resulting models. Finally, we describe how the presented techniques can
be used to model do and for statements.

10.4.1 Modeling principles

In order to demonstrate the key issues in modeling loop statements, we first
look at the FD structure of while statements. A while statement is executed
starting with its condition. This means that possibly its body never gets executed
at all, if the condition evaluates to false at the very beginning. On the other
hand its condition might evaluate to true ¢ times, which results in the body
being executed 7 times, too. In this case we say that 7 iterations of the while
loop are executed. Note that there is also the eventuality that a while loop’s
condition always evaluates to true resulting in an infinite loop. This leads to the
non-termination of the whole program, contradicting our initial assumptions (see
Section 5.2).

Consider, for instance, method whilel(int i), which is depicted in Figure 10.3.
In particular, we are interested in the FD structure arising from the while state-
ment in line 5 for various numbers of iterations being executed (¢ > 0). Obviously,
all variables used in the loop’s body (a, b, ¢, and 7) depend on variable i, because
¢ appears in the loop’s condition. But what are the FDs between the variables
a, b, ¢, and d? The following cases have to be considered:
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int whilel(int i) {
1. int a = 1;
2. int b = 2;
3. int ¢ = 3;
4. int d = 4;
5 while (i > 0) {
5.1 a = b;
5.2. b=c;
5.3. c=d;
5.4. 1— —;
6. return a+b+c;

}

Figure 10.3: Example method whilel (int i)

Case 1 (: = 0): The body of the while loop is never executed. Obviously, no
new FDs can arise. We can alternatively say that each variable depends on
itself, since its value stays unaltered. This fact is represented by the follow-
ing FDM. Note that here, for the sake of clarity, only variable dependencies
(without indices) are given.

FDMite1(int i)
St.5.1.: a <+ {a}
St.5.2.: b+ {b}
S5t.5.3.: ¢+ {c}

Case 2 (i = 1): Here the body of the while statement is executed exactly once.
The arising FDs can be taken directly from the source code. They read as
follows:

FDMyhile1 (int i)
St.5.1.: a <+ {b}
St.5.2.: b+ {c}
St.5.3.: ¢+ {d}

Case 3 (i = 2): If the body of the while loops is executed twice, some of the
FDs change. The new FDs are:
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FDMyhile1 (int i)
St.5.1.: a <« {c}
St.5.2.: b+ {d}
St.5.3.: ¢+ {d}

Case 4 (i > 2): If the loop’s body is executed more often than twice we get an
FD structure which does not change any more with an increasing number
of iterations. This behavior should be quite obvious, if one looks at the fact
that now all variables solely depend on d, which is not altered itself in the
body of the while loop. The FDs for ¢ > 2 are as follows:

FDMyhile1(int i)
St.5.1.: a <+ {d}
St.5.2.: b {d}
St.5.3.: ¢+ {d}

Whereas in each iteration new FDs arise, other FDs disappear due to the
repeated execution of the variable assignments found in the loop body. In each
iteration we get three FDs with three variables on their right-hand sides. If we

compute the closure of all four FDMs we get a static model comprising all 4 cases.
Its FDs are:

FDMyhile1 (int i)
St.5.1.: a «+ {a,b,c,d}
St.5.2.: b+ {b,c,d}
St.5.3.: ¢+ {c,d}

Alltogether we find 9 variables on the right-hand sides of the three FDs.
Whereas we now manage to incorporate all four cases, i.e., all run-time scenarios
as far as variable dependencies are concerned, into one model, the model becomes
less precise and its FDs are much larger.

10.4.2 Computing the FDs of a loop

The FDs of a while statement change with an increasing number of loop itera-
tions. The remaining question is how these FDs can be computed in the general
case for both model types, the ETFDM and the DFDM. This can be achieved
by rewriting the loop as a sequence of nested if statements with the following
properties:
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while (i > 0) { if (i >0){
a =b; a = b;
b = c; b = ¢;
c = d; c =d;
1= —; 1= —;
} if (i >0){
a = b;
b =c;
c=d;
,L'_ —

(a) Loop body (b) Nested if structure

Figure 10.4: Transforming a loop statement into nested if statements

1. The condition of each if statement is equivalent to the loop condition.

2. The if statements’ then-branches are the concatenation of the statements
of the loop body and the inner nested if statements.

3. The if statements’ else-branches are empty blocks.

The only free parameter of this approach is the depth of the nested if struc-
ture. This parameter, we call it nestsize, depends on the type of model to be
computed. Its computation is described in the following paragraphs.

Example 10.4.1 Figure 10.4 (a) shows, again, the body of the loop statement
of method whilel(int i) (see Figure 10.3). The result of the transformation into
nested if statements with nestsize = 2 is depicted in Figure 10.4 (b).

Note that the transformation of loop statements into a sequence of nested
if statements does not result in an executable Java program, if local variables
appear in the loop body. This is, because Java does not support the definition
of multiple local variables with the same name within the same variable scope.
However, this problem can easily be solved by either eliminating all local variable
declarations in the nested if structure except for the outermost if statement or
ignoring these declarations during the modeling process.

ETFDM: When we compute the ETFDM of a given while loop, we once
again can rely on the evaluation trace we are building our model on. The trace
information directly gives us the number of iterations of the while loop executed
at run-time. Let now the number of iterations, as taken from the evaluation
trace, be i. We can then construct a nested if structure with nestsize = 7 + 1,
which is completely equivalent to the while statement.
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Proposition 10.4.1 When the exact number of loop iterations executed at run-
time is known to be i, we construct a nested if structure with nestsize = 1+ 1.
This structure s computationally equivalent to the original loop statement for the
given evaluation trace.

Proof:

e If there are 7 iterations, then the loop condition evaluates to true exactly
1 times. The loop body is executed ¢ times, too.

e Since the conditions of all nested if statements are equivalent to the loop
condition, a nested structure with nestsize = 1 also executes the loop con-
dition and its body (which was copied to the if statements then-branch) i
times in the correct order.

e We then need one extra if statement to guarantee the evaluation of the
loop condition for iteration ¢ 4+ 1. This is especially important if the loop
condition contains side-effects, which influence the resulting FD model.

e Since the evaluation of the loop condition in iteration 7 + 1 evaluates to
false, the else-branch of the innermost if statement is executed. Because
this branch is empty, it has the same effect as the while loop being termi-
nated.

Q.E.D.

Since both structures, the original while loop and the nested if structure,
are computationally equivalent, it is guaranteed that the correct FDM can be
computed by applying this technique. This can be demonstrated by getting
back to the above example. The ETFDMs for various numbers of iterations
as computed by the JADE modeling components are given below. Note that
for (i = 0) the loop body is never executed and no FDs arise from the while

statement, i.e., ETF DM\SV(;I)ilel(int ) is empty.

(1)
ETFDMwhilel (int i)

St.5: ag < {{0},{b1,%0},{}, {}}
5t.5: by = {{0}, {c1, 00}, {}, {}}
St.5: g « {{0},{d1,%0},{}, {3}
St.5: 1 < {{0,1}, {io}, {}, {}}
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(2)
ETFDMwhilel (int i)

St.5: az < {{0,1},{c1,i0},{}, {}}
St.5: by« {{0,1},{d1,i0}, {}, {}}
St.5: ¢y < {{0,1},{d1,i0},{},{}}
St.5: i1+ {{0,1}, {io}, {}, {}}

(3)
ETFDMwhilel(int i)

St.5: ag < {{0,1},{d1,i0},{},{}}
St.5: by + {{0,1},{d1,io}, {}. {}}
St.5: ¢y« {{0,1},{d1,i0},{},{}}
St.5: i1+ {{0,1}, {io}, {}, {}}

DFDM: When computing the DFDM of a while statement, we face the prob-
lem that we do not know the exact number of iterations being executed at run-
time. This also means that in contrast to the ETFDM the parameter nestsize is
not known a priori, but has to be computed using only static information about
the source code. What we see from the above example is that the FDs arising
from a while loop only change up to a certain number of iterations and stay
the same afterwards. Any nesting depth above this number results in a nested
if structure, which in general is not computationally equivalent to the while
statement, but produces exactly the same FDs as the loop statement.

As described in Chapter 6, the summarized FDM of a given block b can be
depicted as a directed graph (possibly with cycles), where an edge leading from
variable v to variable w means that the value of v influences the value of w, i.e., w
depends on v. Obviously, all FDs arising from block b can directly be seen from
such a digraph. Let us now come back to our running example from Figure 10.3.
Figure 10.5 shows the digraph created for the body of the loop at statement line
5. If we are interested in all FDs arising during the first iteration of the loop
statement, we start at an arbitrary node, say c, and follow an outgoing edge to
another node b. We see that b depends on c in iteration 1.

If, on the other hand, we are interested in all FDs arising after 2 iterations,
we, again, start at node ¢, but this time follow a path of length two to node a
via node b. We see that the graph now produces the FD a < c¢ after iteration
2. It should now be easy to understand that collecting the FDs arising from all
possible paths between any two variables leads to a complete FDM of block b.
The problem of determining an optimal value for the parameter nestsize now
equals the problem of finding the maximum of all shortest paths between the
nodes of a given digraph.

We can determine an optimal value for nestsize by performing a purely static
analysis on the source code. The exact algorithm can be summarized as follows:
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Figure 10.5: Digraph of the while body of Figure 10.3

Figure 10.6: Digraph of the while body of Figure 10.7

Algorithm 10.4.1
e Compute the complete FDM of the loop body b, i.e., F'D M,
e Compute the summarized FDM of b, i.e., sum(F D M,)

e Construct a directed graph with V' containing all variables appearing on
either side of an FD in sum(FDM,) and E containing an edge from v to
w iff w v € sum(FDM,).

e Compute the length of the shortest path p;; from node 4 to node 5 Vi, 5 € V.
If no path between 7 and j exists, assume p;; = 0.

e Compute nestsize as the maximum length of all shortest paths, i.e.,
nestsize = maz(p;;) Vi,j € V.

Proposition 10.4.2 When the exact number of loop iterations at run-time is not
known, i.e, a purely static analysis on the source code is performed, we construct
a nested if structure with nestsize = max(p;;) Vi,j € V. This structure is
computationally not equivalent to the original loop statement, but the sets of FDs
arising from both structures are equivalent.

It should be intuitive that, if we follow all paths of a length of up to nestsize,
we get all FDs arising from the loop body at the loop’s top-level. Using Algo-
rithm 10.4.1 we can further employ existing algorithms taken from graph theory
in order to solve the so called all pairs shortest path (APSP) problem. Algorithms
that find all shortest paths in O(n?®) time, where n denotes the number of nodes
in the digraph, are presented in [1].
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int while2(int i) {
1. int a = 1;
2. int b = 2;
3. int ¢ = 3;
4. int d = 4;
5. while (i > 0) {
5.1 a = b;
5.2. b=c;
5.3. c = a;
5.4. i——;}
6. return a+b+c;

}
Figure 10.7: Example method while2(int i)

Example 10.4.2 If we look at the digraph in Figure 10.5 we find that nestsize
for the modeling of the loop statement of our example method whilel(int i) has
to be at least 3. This is, because variable d influences variable a through a path
of the length 3, i.e., from iteration 8 onwards.

Example 10.4.3 Consider another example, method while2(int i), which is a
small modification of whilel(int i). Its source code is depicted in Figure 10.7.
Here in line 5.3 variable ¢ depends on a instead of d, which leads to the summa-
rized body model represented by the digraph shown in Figure 10.6. In contrast to
the digraph in Figure 10.5 this graph now contains a cycle, because c directly de-
pends on a and a indirectly depends on c through the two variable assignments in
lines 5.1 and 5.2. Despite of the fact that the body of while2(int i) is very similar
to the one of whilel(int i) Figure 10.6 shows that all variable dependencies are
produced in the first two iterations, i.e., nestsize = 2.

If we do not want to use the Algorithm 10.4.1 to compute an optimal value of
nestsize, another way is to estimate the parameter by a value nestsize'. It then
has to be guaranteed that the new value nestsize' is greater than or equal to
nestsize, i.e., nestsize' > nestsize, because only then all FDs are guaranteed to
be included in the resulting model. The following approaches for an estimation
of nestsize can be used:

e The number of FDs in the DFDM of the loop body. In this case nestsize' >
nestsize, because after nestsize' iterations all variable dependencies are
propagated through the whole FDM at the latest. However, if one variable
appears on the left-hand side of two or more FDs this approach cannot
be optimal, because the summary of all FDs (as used in Algorithm 10.4.1)
eliminates these FDs.

e The number of variables or better the number of variables on the left-
hand side of an FD. Again, nestsize’ > nestsize, because the number of
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variables cannot exceed |V|. The problem here is that a worst case scenario
is assumed, in which all nodes of the graph are placed in a linear order. In
our example we would get nestsize’ = 4, which stems from the assumption
that an extra iteration is needed to produce the dependency ¢ < 7, which
in fact is produced in iteration 1.

JADE: The JADE system currently estimates the parameter nestsize by
using a function nestsize(b) for a given body of a while loop, i.e.,
b. Function nestsize(b) counts all top-level assignments and method
calls of b. Nested loop statements in b are counted as 1, because these
structures are assumed to be transformed into nested if structures them-
selves during the hierarchical modeling process. Nested if statements are
counted as the sum of all functions nestsize(t) computed for all of their
branches t. More formally, we write: Let m(s) be the number of side-
effects introduced through method calls in a certain statement s. Then
nestsize(b) = Lsepnestsize(s) with

o nestsize(s) = 1+ m(s) if s is a variable assignment or loop state-
ment.

e nestsize(s) = Lpranchesnestsize(branch) + m(s) if s is a selection
statement.

e nestsize(s) = m(s) in all other cases

Note that the exact algorithm has been proposed in [28].

If we now use a nestsize > 3 to convert the loop statement in method
whilel (int i) into nested if statements and then model the nested structure as
described in Section 10.3, we eventually get the following DFDM as a top-level
model for the loop in line 5 of Figure 10.3.

DFDMyhite1(int i)

St.5: as < {{0,1},{a1,b1,c1,d1,%0},{}, {}}
St.5: by < {{0,1},{b1,c1,d1,i0}, {}, {}}
St.5: co  {{0,1},{c1,dq,00}, {}, {}}
St.5: i1+ {{0,1}, {io}, {}, {}}

Note that in the above model all FDs are present, especially the FD a5 < d,
which is only created in iteration 3 at run-time and can thus only be reproduced
with nestsize > 3. Note further that not only variable i depends on itself,
but also all other variables. These self dependencies are necessary to model
the case, in which the loop is never executed, i.e., ¢ = 0. Technically, these
FDs are produced by the empty else-branches of the nested if statements (see
Section 10.3).
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int while3(int t) {

1. int a = 1;

2. int b =2;

3. int ¢c = 0;

4. int i = 0;

5. while (i < t) {

5.1. if (i%2 ==0)

5.1.1. Cc = a;
else

5.1.2. c = b;

5.2. i++; }

6. return c;

}

Figure 10.8: Example method while3(int i)

10.4.3 Sub-traces for loop bodies

One point that we have not been discussing yet is the fact that at run-time
we get different evaluation traces for different loop iterations. When computing
the DFDM this should not make a difference, but with the ETFDM it leads to
different FD body models in the various iterations of a loop.

Consider example method while3(int t) (see Figure 10.8), where an if state-
ment (line 5.1) is nested in a loop statement (line 5). Clearly, now the decision,
which branch of the selection statement is executed at run-time, depends on
the current loop iteration and its evaluation trace. Here lines 5.1.1 and 5.1.2
are executed alternatively depending on the current value of the loop counter +.
Therefore, the FD body models of the loop statement look different for even and
odd values of 7. The resulting model of the whole while loop depends on the
total number of iterations performed and thus on the input parameter .

ETFDM: The following two ETFDMs are computed for ¢t = 1 and ¢t = 2, re-
spectively. Note that in the case ¢ = 0 no new FDs arise from the loop statement.

1)
ETFDMwhileS(int t)

St.5: iy + {{1}, {ir, o}, {}, {}}
St.5: co + {{0,2},{a1,i1,t0},{}, {}}

(2)
ETFDMwhile3(int t)

St.5: 19 — {{1}, {ilatO}’ {}a {}}
St.5: ¢ {{Oa 172}7 {blail,tO}a{}’{}}
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list while4(int i) {

1. list 1 = list.create(i);
2. while (i > 0) {
2.1. 1——;
2.2. obj o = new obj(100);
2.3. l.set(i,0);
}
3. return I;

}

Figure 10.9: Example method while4 (int i)

DFDM: When computing the DFDM all FDs are generated. Variable ¢ now
depends on 7 and ¢ (i.e., the loop condition), ¢ (modeling odd numbers of itera-
tions), b (modeling even numbers of iterations), and ¢ (modeling the special case
t = 0). The resulting model reads as follows:

DFDMynhiles (int t)

St.5: iy + {{1}, {ir, o}, {}, {}}
St.5: ca < {{0,1,2},{a1,b1,c1,%1,t0}, {}, {}}

10.4.4 Location creation in loops

In this section we discuss the creation of new locations in loop statements.
Clearly, a class instance creation expression in the body of a loop statement
means that in each iteration a new class instance is created at run-time. As we
will see this poses no problem to the creation of the ETFDM of the loop, but has
to be dealt with differently in the case of a purely static analysis like the DFDM.

To illustrate the main problems arising with new locations in loop bodies,
look at method while (int i) in Figure 10.9, which creates a linked list of the size
of the parameter ¢, and then initializes it with newly created objects of type 0bj.

ETFDM: As mentioned above when computing the ETFDM of a given loop
statement we know the exact number of iterations performed at run-time, i.e., 2.
Assume that in each iteration an instance of class C' is created through a class
instance creation expression. We then also know that when the loop statement is
executed, a total of ¢ instances of class C is created. Since we are modeling each
iteration separately, we automatically get ¢ new locations representing the newly
created objects. All FDs involving these new locations can be computed without
any changes to the algorithms described above. If we look at the example we can
distinguish multiple cases depending on the computed evaluation trace:



116 CHAPTER 10. MODELING STATEMENTS

Case 1 (i = 0): In this special case the body of the loop is never executed.
Therefore no new instances of class obj are created. No FDs arise from statement
line 2. The return value [ does not reference any new locations.

Case 2 (i = 1): Here the body of the while statement is evaluated exactly
once. As a consequence, one instance of class obj is created, i.e., location 2.
Variable [ now references a list with one element, i.e., location 1, which, in turn,
via 1.0 references the newly created instance of obj. The FDs arising from the
loop statement in line 2 read as follows:

(1)
ETFDMwhile4(int i)

St.2: 2.walue; < {{0,100}, {ip}, {obj.obj(int)},{}}
St.2: l.oy «+ {{0},{l1,%0}, {list.set(int, 0bj), obj.obj(int)},{2}}
St.2: 41 < {{0’ 1}’ {7:0}’ {}’ {}}

Case 3 (1 = 5): If the parameter 7 is set to five, a linked list with five elements is
created. These elements are numbered locations 1 to 5. Before the loop statement
is modeled, the linked list looks something like ] -5 —4 —3 — 2 — 1 — null.
During the execution of the loop in line 2 another five class instances are created,
i.e., instances of class obj. These instances are numbered location 6 to 10. After
the execution of the loop all locations of type obj are referenced by elements
of the linked list, i.e., 1.0 — 6, 2.0 — 7, etc... The FDs arising from the loop
statement read as follows. Note that within the linked list each element depends
on variable next of the locations of all previous elements, which can also be seen
in the following FDs.

5
ETFDM\(N})lile4(int i)
St.2: 6.value; <+ {{0,100}, {ig},{0obj.obj(int)},{}}

St.2: Twalue; + {{0,1,100}, {ip }, {obj.obj(int)}, {}}

St.2: 8.walue;  {{0,1,100}, {ig}, {obj.obj(int)}, {}}

St.2: 9.walue; < {{0, 1,100}, {30}, {obj.obj(int)}, {}}

St.2: 10.value; + {{0,1,100}, {ig}, {obj.obj(int)}, {}}

St.2: l.oy + {{0,1},{l1,2.next1,3.next;, 4.nexty, 5.nexty,ip},

{list.set(int, 0bj), obj.obj(int)}, {6}}

St.2: 2.01 + {{0,1},{l1, 3.next1,4.next1,5.next,ip},
{list.set(int, 0bj), obj.obj(int)},{7}}

St.2: 3.01 + {{0,1},{l1,4.nextq,5.nexty,ip}, {list.set(int, 0bj), obj.obj(int)}, {8} }
St.2: 4.01 + {{0,1},{l1,5.nexty,ip}, {list.set(int,0bj), obj.obj(int)},{9}}
St.2: 5.01 + {{0,1},{l1,40}, {list.set(int, 0bj), obj.obj(int)},{10}}
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St.2: 41 < {{O’ 1}’ {iO}a {}v {}}

DFDM: When we compute the DFDM of a given loop statement we do not
know the number of iterations performed at run-time. This is why we compute
the parameter nestsize (see Section 10.4.2) so that we can construct a nested if
structure, whose FDs are equivalent to the FDs of the original loop statement (as
far as all variable occurrences are concerned). If we do not adapt our modeling
technique, we get nestsize new locations. In the general case this is not equivalent
to the exact number of instances created at run-time.

A possible solution of this problem is to introduce the concept of multiple-
locations. Since we do not know how many concrete locations to create at
compile-time, we decide to create only one location, which is marked as multiple-
location. The properties of multiple-locations are:

e Multiple-locations no longer stand for exactly one class instance created at
run-time, but represent a set of locations of fixed type. They can be seen as
abstract locations, which incorporate multiple possibly created instances in
just one location. If we encounter a multiple-location, we cannot distinguish
for which concrete locations the multiple-location has been created. All we
know is that it represents n > 0 locations, which have been grouped together
in the course of the modeling process.

e One example of the grouping of locations to multiple-locations is the mod-
eling of loop statements. All locations created within the body of a loop
statement by the same statement are part of the same multiple-location.
Note that all these locations have the same type. Since we are not interested
in the contents of the locations, we can make this abstraction without mak-
ing the resulting model useless for the debugging process. Other examples
of the usage of multiple-locations are presented in the following sections
(see Chapters 11 and 13).

e So far we distinguished locations into explicitly created and default loca-
tions. Now we expand this concept by introducing multiple-new locations
and multiple-default locations. An example of the use of multiple-default
locations is given in the context of recursive methods (see Chapter 13).

Since multiple-locations have a different interpretation than concrete locations
and represent a higher level of abstraction, we also have to treat them differently
during the modeling process. In particular, if the content of a multiple location
is changed, e.g., by assigning some value to one of its instance fields, we have
to model the fact that the field of only one concrete class instance is modified
and all other locations, which are also modeled by the multiple-location, remain
unchanged. This can be done by introducing self dependencies similar to the ones
introduced in Section 10.3.2. This aspect of the modeling process is demonstrated
by the following example:
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Example 10.4.4 Consider an assignment statement of the form o.value = z;,
where o is a variable referencing an instance of class obj (see Figure 9.2) and z
15 a variable of type int. If o represents a concrete location, say location 1, the
resulting FD (without indices) is 1.value < x. If, on the other hand, location 1
1s marked as a multiple-location, a self dependency has to be introduced leading
to the FD 1.walue <+ x,1.value. The self dependency now models the fact that
parts of the object space modeled by location 1 stay unchanged.

Let us now look at the modeling of method while4 (int ). The call to method
create(int i) in statement line 1 creates only one multiple-location, i.e., an im-
ported new location 1, which has to be seen as an abstract representation of
all elements of the linked list referenced by [. Interestingly, variable 1.nert now
depends on location 1. This means that in contrast to all previously proposed
models multiple-locations feature cyclic dependencies, which is due to their ab-
stract representation of multiple class instances. In the loop statement in line 2
only one location is created, too. This multiple-new location stands for all class
instances of type obj, which are possibly created at run-time. Note that whereas
the number of created objects, i.e., loop iterations, is not known, the parameter
nestsize is not used in this context, because it has nothing to do with the amount
of locations created at run-time. The instance field 1.0 is then set to reference
location 2, with both locations being marked as multiple. This means that the
possibly created objects of type obj, which are summarized by location 2, are
now referenced by the possibly created list elements, which are represented by
location 1. Nevertheless, it is no longer possible to distinguish between individual
list elements nor the objects referenced by these elements. The resulting DFDM
looks as follows:

DFDMyhiled(int i)

St.2: 2walue; < {{0,1,100}, {ig }, {obj.obj(int)}, {}}

St.2: loy «+ {{0,1}, {l1, L.nexty,ip}, {list.set(int, 0bj), obj.obj(int)},{2}}
St.2: 4y« {{0,1}, {io}, {}, {}}

10.4.5 Modeling do and for statements

In previous sections we discussed the modeling of while statements in the context
of ETFDMs and DFDMs. As already mentioned do and for statements can be
modeled very similarly. Nevertheless, some details in the modeling process of
these program components have to be considered separately, which is done in
this section.

Do statements are very similar to while statements. The main difference is
that the loop condition is at the end of the body in the case of do loops rather
than at its beginning. This means that (1) there is no evaluation of the condition
before entering the do statement and, as a consequence, (2) the loop body is
always executed at least once.
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Figure 10.10: Transforming a for loop into a while loop

When computing the ETFDM of a given do statement we apply the same
techniques as for while statements, but simply do not consider the first condition.
In other words, we create a nested if structure with nestsize =i+ 1 and remove
the loop condition from the outermost if statement making it a simple sub-block
statement.

The same approach can be used to create DFDMs of do statements. Note
that in the case of DFDMs the parameter nestsize has either to be computed or
approximated using algorithms presented in Section 10.4.2.

For statements are a bit more complicated than do and while statements,
because they include initializer and update blocks. Fortunately, for statements
can be transformed into a computationally equivalent source code structure using
only sub-blocks and while statements. Algorithm 10.4.2 describes the transfor-
mation of for loops:

Algorithm 10.4.2

1. Create a while loop with the same condition as the for statement. The
body of the new while loop is the concatenation of (1) all statements of
the body of the for statement and (2) all statement expressions of the for
update block.

2. Create a Java block containing the concatenation of (1) all statement ex-
pressions of the for initializer block and (2) the while loop created in
step 1.

Figure 10.10 (a) shows the general format of a for loop. The source code
structure resulting from the application of Algorithm 10.4.2 is depicted in Fig-
ure 10.10 (b). Since the new source code structure is computationally equivalent
to the original for statement, it can directly be used for the modeling process
using only techniques already discussed. Note that this approach can be applied
to both, the ETFDM and DFDM.
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10.4.6 Model comparison

As demonstrated in the last couple of sections, the FDs arising from the body
of a loop statement depend on the number of iterations performed at run-time.
Moreover, FDs, which are correct for iteration 7, might disappear in iteration
1+ 1 and be replaced by new ones. The ETFDM computes all FDs arising in the
context of a particular evaluation trace, i.e., for a certain number of iterations of
a loop statement executed at run-time. The DFDM, on the other hand, does not
make use of this dynamic information and aggregates all FDs arising from any
iteration until all FDs are produced. Therefore, the number of FDs computed by
the ETFDM is much smaller than the one in DFDMs, which is a huge advantage
of the ETFDM in comparison to the DFDM. When we come to concrete debug-
ging problems (see Part III) we find that potential diagnoses can so be eliminated
much earlier in the debugging process due to the reduced set of FDs in the used
model.

In the case of a location [ being created in the loop statement’s body, the
ETFDM creates exactly one object per iteration, which leads to a total of ¢ lo-
cations after ¢ iterations. This approach is a very exact one, because it pretty
much resembles the actual run-time behavior of a given Java system and comes
close to a value-based modeling approach, which propagates actual values through
the model. On the other hand the number of locations being created might be
too large to make the resulting model understandable and suited for debugging.
As shown, the DFDM creates exactly one location regardless of the number of
iterations performed at run-time. This multiple-location has to be seen as an ab-
stract representation of all locations possibly created during the execution of the
loop statement. Whereas multiple-locations are much more abstract and cannot
directly be mapped onto a single class instance created at run-time, the lower
number of locations reduces the number of FDs in the model and, thus, speeds
up the debugging process. Moreover, the specification of incorrect variables is so
much easier for the user.

When computing the ETFDM there exists a different sub-trace for each loop
iteration. This means that we also have to model the loop body 7 times and in case
of hierarchical debugging store ¢ models in the resulting diagnosis component.
Clearly, the computational requirements of such an approach are much higher
than the ones of the DFDM, where each sub-block of a statement is modeled
and stored only once. Moreover, like with selection statements, the creation of
ETFDMs requires much more memory than the computation of a static DFDM.

10.5 Synchronization statements

Software faults in multi-threaded Java systems, which stem from an incorrect
synchronization between multiple threads, are out of the scope of this work. Note
that other approaches have been designed to specifically deal with the localization
of these faults (see [12]).

Herein we assume that no faults of this sort arise. We therefore simply ignore
the synchronize keyword and model the synchronize statement’s expression
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and its sub-block one after another.

JADE: The JADE system currently ignores the synchronize keyword dur-
ing the computation of both models, the ETFDM and DFDM. Note that
in either case no run-time information is used.

10.6 Try statements

When computing the ETFDM of a try statement, once again all run-time in-
formation is present so that we can collect all FDs arising from the whole try
statement.

This, however, is not so straightforward in the case of DFDMs. A simple
solution is to ignore all exceptions and assume that each try block in the Java
system terminates without an exception being thrown. We could then simply
model the main block of the statement followed by the finally block, if any.
Clauses do not have to be modeled following the assumptions made.

Another approach is to construct all FDs possibly arising from all run-time
scenarios. This includes all potential exceptions being thrown at run-time.
Clearly, this approach is rather complex and results in a high amount of FDs
being created. However, in this work we forgo to dicuss the exact modeling of
try statements in more detail.

JADE: The JADE system currently ignores the concept of exceptions at
run-time and relies on all try blocks to terminate normally. Therefore,
only the try block is modeled and all catch clauses are ignored. In case
of a finally block this block is modeled after the main block of the try
statement.
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Chapter 11

Modeling Arrays & Strings

Like most imperative and object-oriented programming languages Java features
the creation and use of multidimensional arrays and strings. In this section we
shortly describe Java arrays and strings and show how they can be incorporated
into the various FDMs.

11.1 Java arrays

Java arrays are dynamically created objects of array type and may be assigned
to variables of type Object (see [16]). Each array object has a non-negative
number of components, which do not have names, but can be accessed through
array access expressions. If an array has n components, the array is said to have
a length of n. All components of an array must have the same type, i.e., the
component type. A component type may itself be a Java array. The innermost
component type of a (possibly multidimensional) array must have a type other
than array type. This type is called the element type of the original array. The
components at this level are called elements of the original array.

There are multiple ways of declaring a variable of array type. However, such
a declaration does not create an array object nor allocates space for array com-
ponents. It only creates the variable itself, which can contain a reference to an
array. There are two ways of creating an array object:

e An array creation expression creates an array object by specifying the el-
ement type, the number of levels of nested arrays, and the length of the
array for at least one of the levels of nested arrays.

e An array initializer creates an array by providing initial values for all its
components. The length of the constructed array is equal to the number of
expressions in the array initializer. Multidimensional arrays may be created
using nested array initializers, whose elements again are array initializers.

Components of an array may be accessed by an array access expression, which
consists of an array reference and an indexing expression enclosed by ’[" and ']’.
Usually the length of an array can be accessed through the final instance variable
length.
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void arrayl1(); {
n.  int[] a = {10,20,30,40,50};

m. int i = a[3];

Figure 11.1: Example method array1()

Example 11.1.1 Figure 11.1 shows a Java source code fragment, which includes
an array tnitializer in statement line n. The resulting array a has one dimension
with five components of type int. Thus the length of a is five. The components
of a are also its elements, because there appear no nested arrays in a.

11.2 Modeling arrays

ETFDM: When using an evaluation trace, we can always determine not only
the number of dimensions of a given array a, but also the length of a. Each time
a component of a (no matter whether it is an element of a or not) is accessed
through an array access expression, we can determine its exact index as the eval-
uation value of the indexing expression. Therefore, when building the ETFDM
of an array a, we can exactly model a by assigning it a new location /. Further-
more, all components of a can be represented separately as variables [.element_1
to l.element_n with n being the length of array a. The length of a itself can also
be modeled by introducing a new FD [._length < n.

Example 11.2.1 If we look at the example in Figure 11.1 we find an array ini-
tializer in statement line n. The resulting ETFDM (note that in this case state-
ment line n does not depend on an evaluation trace) reads as follows:

0
ETFDMarmyI ()

St.n: l.element 17 < {{10},{}, {}, {}}
St.n: lelement2; + {{20},{},{}, {}}
St.n : l.element_3; < {{30},{},{},{}}
St.n: l.element 41 < {{40},{}, {}, {}}
St.n : l.element 51 < {{50},{},{}, {}}

St.n: 1llength < {{6},{},{},{}}
St.n:ar < {{}{}{}H{1}}
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Example 11.2.2 If we now look at the array access expression in the assignment
in line m of Figure 11.1, we get the following FDs. Note that j and k stand for
the current indices of a and element_3, respectively.

0
ETFDM,, .

St.m : iy + {{3}7 {a’j’ 1.element_3k}, {}’ {}}

Clearly, the resulting model is very precise, but also introduces a lot of new
variables, i.e., array components, into the model.

JADE: The JADE system currently does not support the modeling of arrays
with run-time information. Therefore, the DFDM modeling component,
which is presented below, is used in all cases.

DFDM: The problem during the computation of the DFDM is that at compile-
time we can only determine the length of array a, but not the exact component
addressed by an individual array access expression. We therefore introduce a
new level of abstraction by grouping all components to a new abstract variable
element. This variable now stands for all components or elements of array a. All
language structures influencing any of the components of a are collected in a single
DEP structure, on which the abstract variable element finally depends. The
resulting model is not as exact as the one making use of run-time information. It
contains exactly one variable for each array location (apart from variable length)
and is so easier to read and smaller in its amount of FDs. Note that the more
abstract representation of array elements is similar to the concept of multiple-
locations (see Section 10.4).

Example 11.2.3 If we, again, look at the array initializer in the example in
Figure 11.1, we can now compute the DFDM of method arrayl(). As we do not
distinguish the various components of array a we get the following FDM:

DFDM gyay2()
St.n: l.element; « {{10,20, 30,40,50}, {},{},{}}

St.n: llength + {{5},{},{},{}}
St.n:oar < {{}{}{}{1}}

Example 11.2.4 The array access expression in line m is now associated with
any of the components of a. Note that in this case the indexing expression could
be resolved at compile-time, which is generally not the case. The resulting FDM
for statement line m looks as follows:
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int array2() {
arrayTest o = new arrayTest();
int i[] = {1,2,3,4,5};
int j[] = new int[] {10,11,12};

arrayTest a[|[] = new arrayTest[|[] {{o,null},new arrayTest[|{null,0}};

return i[3]+j[2];

Figure 11.2: Example method array2()

DFDMarmyQ(}

St.m: i1« {{3},{a;, l.elementy}, {},{}}

Note that, again, j and k stand for the current index of a and 1.element,

respectively.

11.3 An example DFDM

In order to further highlight the modeling principles of arrays consider method
array2() of class arrayTest, which is depicted in Figure 11.2. The full DFDM

arising from array2() reads as follows:

DFDMarrayZ()

St.1:
St.2:
St.2:
St.2:
St.3:
St.3:
St.3:
St.4:
St.4:
St.4:
St.4:
St.4:
St.4:
St.4:

o1 <+ {{},{},{arrayTest.arrayTest()},{1}}

2..arrayLengthy < {{5},{},{},{}}
2..arrayr + {{1,2,3,4,5}, {}, {}, {}}
i+ {{1,2,3,4,5},{}, {}, {2}}
3..arrayLengthy < {{3},{},{},{}}
3..array: + {{10,11,12}, {}, {}, {}}
j1 <+ {{10,11,12}, {}, {}, {3}}
4..arrayLengthy < {{2},{},{},{}}
4._array; < {{null},{01},{},{5,6}}
5._.arrayLength; <+ {{2},{},{},{}}
5..array; < {{null},{o1},{}, {1}}
6._.arrayLengthy < {{2},{}{}, {}}
6.-array; < {{null},{o1},{},{1}}
a1 < {{null}, {},{}, {4}}
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St.5: _result; + {{2,3}, {41, 1, 2.-array:,3..array: },{}, {}}

11.4 Modeling Java strings

In Java strings are implemented as instances of the system class String. This
class is part of the standard package java.lang and thus accessible from every
Java host environment. Due to the importance of strings, instances of class
String differ from other class instances in a couple of peculiarities, some of which
are shortly described in the following list. For a more detailed description of Java
strings refer to the Java Language Specification [16].

e Strings cannot only be created through explicit constructor calls, but also
by the specification of a string literal, e.g., “Jade”, which at run-time is
automatically promoted to an instance of class String.

e Instances of class String always have a constant value, i.e., their contents
cannot be changed.

e Instances of class String can be interned. This means that they are added
to an internal data structure kept by class String, where each string can
be stored only once. When different instances of class String with the
same contents are interned, they become a single instance stored in the
internal data structure. Note that all strings created by string literals are
automatically interned.

e [f one argument of the + operator is of type String, the Java string conver-
sion rules apply. This means that in this special case the other argument
to the + is converted to a String, and a new string object which is the
concatenation of the two strings is the result of the + operation.

Since all system classes can be modeled exactly like user-defined classes (see
Section 12.4), class String can be modeled by using techniques described in pre-
vious chapters. However, due to the special properties of strings some additional
features have to be added to the modeling component. The exact modeling of
Java strings is beyond the scope of this work. The following list shows some
points, which have to be considered during the modeling of strings:

e String literals have automatically to be converted to instances of class String
by the modeling component. This includes creating a new location of type
String.

e Similar techniques have to be applied in the case of string conversions.

e The internal data structure keeping track of interned string objects has
to be explicitly modeled by the modeling component. This means that
all interned strings with the same contents have to be represented by the
same location rather than different ones. This includes a special handling
of method intern() of class String.
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JADE: The JADE system currently does not support the special properties
of strings as discussed above. This means that generally string objects
can be used in the JADE debugging environment, but it can currently not
be guaranteed that the correct FDs are computed in case of string literals,
interned strings, and string conversions.




Chapter 12
Modeling Methods

In previous chapters we have described how ETFDMs and DFDMs can be con-
structed at expression and statement level. In this section we show how individual
statement models can be used to create a complete FD method model, which in
turn serves as a constituent of FD class, package or host environment models.

12.1 FD method models

As defined in Chapter 6 the FD method model of method m, i.e., FDM,,, is
a collection comprising the FDs of all FD statement models of method m, i.e.,
{FDMj; | s € m}. Although the chronological order of these FDs is implicitly
given by the variable indices, we herein assume that all FDs are ordered by their
statement indices.

Apart from the FDs there are other parts of a FD method model, which are
either used during the modeling process or may be needed after completion of
the modeling process in addition to the resulting FDs. These parts are shortly
described in the following list:

The modeled method is the source code of the Java method that serves as
the source system during the modeling process.

Diagnosis components are the individual statements of the modeled method
together with all FDs arising from these statements. In case of statements,
which contain sub-blocks (e.g., loop or selection statements), the FDMs of
all sub-blocks are stored in the (hierarchical) diagnosis components as well.

The summarized model, i.e., sum(F DM,,), can be computed using Algo-
rithm 6.6.2 proposed in Section 6.6. The summary of method m can either
be computed on demand or be created once and stored with FDM,,. In
the case of DFDMs where the same summarized FDM is used to model
multiple method calls, the latter approach is probably superior.

The locations are created in the course of modeling m. This includes all types
of locations, i.e., new, default, and imported locations. Locations are not
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only needed during the modeling process, but store important information
about a location’s type and state (e.g., single- or multiple-locations).

The variable environment stores all variables together with their indices. In
case of a variable v of reference type all locations, which v currently refer-
ences (ETFDM) or possibly references (DFDM), are part of the variable
environment, too. The variable environment is mainly used during the mod-
eling process to keep track of variable indices and object references. In the
latter functioning the variable environment is the key component allowing
for the handling of aliasing.

The Evaluation trace of m has to be stored together with FDM,, in case of
the ETFDM. Note that a certain ETFDM is only correct for method m in
the context of a specific evaluation trace and cannot be used in the general
case.

Example 12.1.1 Let us come back to method test() from Section 5.2 (see Fig-
ure 5.1). A full FD method model (DFDM) of method test() can be represented
as follows:

(1) Modeled method: see Figure 5.1

(2) Diagnosis components: All statements of method test(), i.e.,
{51, 89, $3, 84, S5}, together with the following associated FDs:

DFDM;4)

St.1: Lay « {{0},{}, {Point(int,int)},{}}

St.1: Ly « {{0},{}, {Poini(int,int)}, {}}

St.1: pli < {{}, {}, {Point(int,int)}, {1}}

St.2: 2.z1 + {{2},{},{Point(int,int)}, {}}

St.2: 2.y1 « {{3},{}, {Point(int,int)}, {}}

St.2: p21 «+ {{},{}, {Point(int,int)},{2}}

St.3: Loy« {{1},{pl1},{},{}}

St.4: Lys < {{2},{p11 },{}, {}}

St.5: 3.x1 + {{}, {pl1,p21,1.29,2.21 }, { Point(int, int), plus(Point) }, {} }
St.5: 3.1 « {{}, {pl1,p21,1.y2,2.y1 }, { Point(int, int), plus(Point)}, {}}
St.5: p29 < {{},{pl1}, {Point(int,int), plus(Point)}, {3}}

Note that in this case no sub-block models exist, because test() does not contain
any loop or selection statements.
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Var | i | locs
1x [2] {}
Ly | 2| {}
2x | 1| {}
2y | 1| {}
3x [ 1| {}
3y | 1| {}
pl | 1] {1}
p2 | 2] {3}

Figure 12.1: Variable environment of method test()

(3) Summarized model:
Sum(FDMtest())
l.x + {{1},{},{Point(int,int)},{}}

( )
ly < {{2},{}, {Point(int,int)},{}}
2.z + {{2},{}, {Point(int,int)},{}}

2.y « {{3},{}, {Point(int,int)}, {}}
3.z + {{1,2},{}, { Point(int,int), plus(Point) },{}}
3.y «+ {{2,3},{}, {Point(int,int), plus(Point)},{}}

pl < {{},{},{Point(int,int)},{1}}
p2 « {{}, {},{Point(int,int), plus(Point) },{3}}

(4) Locations:

e New location 1 of type Point
e New location 2 of type Point
e Imported location 3 of type Point

(5) Variable environment: see Figure 12.1

(6) Evaluation trace: none (DFDM)

12.2 Using default models

In some cases a FDM of method m cannot be constructed, what leads to an
incomplete model of the whole Java host environment. This can happen under
the following circumstances:
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e The source code of m is not fully available. This can be the case, if m is
defined as a native function, mostly as part of some Java system class, or if
we are dealing with an incomplete source code system, which only defines
the signature of method m and assumes that its byte-code is linked to the
system at run-time.

e Method m cannot be modeled, because it contains unsupported language
structures, e.g., exception handling, break and continue statements, etc...

In both cases we are interested in a default model of method m, which does not
have to be a precise model of the internal structure of m, but should enable the
modeling system to model methods containing calls to method m. The primary
goal of a default model of method m is therefore not a detailed model of m itself,
but a summarized model of m that guarantees that a given Java host environment,
can be modeled completely, including models of all system classes and methods.

When creating a default model of m, we look at m as a black box and consider
all variables, which might change their values during the execution of m. These
output variables are:

e All instance fields of the receiver

e All instance fields of objects, which can be accessed from the receiver
through instance fields, static variables, or arguments.

e All static variables of all classes of the system, which can be accessed
through the receiver or objects accessed by the receiver.

e The return value of m

On the other hand we have to determine all variables, which possibly influence
the variable changes assumed above. These input variables are:

e All instance fields of the receiver

e All instance fields of objects, which can be accessed from the receiver
through instance fields, static variables, or arguments.

e All static variables of all classes of the system, which can be accessed
through the receiver or objects accessed by the receiver.

e All arguments of m

We can now easily create a (summarized) default FDM of method m by
assuming that all output variables of m depend on all input variables of m.
Clearly, this approach results in a very complex model of m including too many
FDs. This model cannot be used for the debugging of m. On the other hand we
make sure that for all methods of a given system at least a default model exists.
We therefore can model all methods including method calls to m.

Another approach is to let the programmer specify a set of intended FDs for a
certain method during the software development process. This is a very difficult
task and it is doubtable whether the majority of programmers would do that, but
it could in the end turn out as a very powerful approach towards an automatic
fault localization tool.
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12.3 FD class, package, and host environment
models

A static FD class model theoretically includes the FDMs of all class body decla-
rations. This includes not only the models of all method and constructor decla-
rations, but also the FDs arising from assignments within field declarations and
the FD block models computed for static initializers. Note that in case of the
ETFDM, which is computed for a single evaluation trace, it does not make sense
to compute a class model, because such a model would only be correct in the
context of a certain run-time behavior of m. This is also true for FD package
and host environment models.

JADE: The JADE system currently only models method and constructor
declarations. This means that during the debugging process source code
faults in field declarations and static initializers cannot be found.

FD package models simply consist of the class models of all classes within the
package. FD host environment models store all package models currently loaded
into the system.

12.4 Modeling system classes

Since all Java systems include at least some of the pre-defined system classes, an
efficient modeling of these classes or packages has to be guaranteed. Generally,
system classes can be modeled like all other classes, because they normally include
standard Java methods. Note that native methods can be modeled by creating
default methods (see Section 12.2).

When computing the ETFDM of method m, which calls a system method s,
method s has to be modeled with a concrete evaluation trace on demand. Note
that default models could be used in the context of ETFDMs, but this would
nullify the advantages gained from ETFDMs.

When using DFDMs the models of all system classes can be computed off-
line and stored in a separate database. During the modeling process the models
of system classes can then be loaded into the system, whenever a method call
to a system method appears in the currently modeled method. This approach
requires a larger amount of system memory, but can avoid a repeated modeling
of system classes and thus speed up the modeling process.
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Chapter 13

Handling Recursion

So far we have only considered the modeling of non-recursive methods. In the
following sections we enhance the modeling process in a way that it is able to
handle directly and indirectly recursive method calls.

13.1 Introduction

In Section 9.2 we show how to model a method call of method n appearing in
method m. When computing the ETFDM of such a method call, the FDM of the
called method has to be computed on demand for the method call’s sub-trace.
Existing models cannot be reused due to the dynamic character of the ETFDM.
As a consequence, recursive method calls can be treated exactly like all other,
i.e., non-recursive, method calls. The termination of the modeling algorithm can
be guaranteed due to the finite evaluation trace. Furthermore, it is one of our
initial assumptions that only programs, which can be shown to terminate on their
inputs, are considered for modeling (see Section 5.2).

When, on the other hand, we compute the DFDM of such a method call,
we have to rely on the existence of a FD method model of the called method n.
There are generally two different scenarios:

1. Method n has already been modeled and stored in the current FD host
environment model. In this case the existing model can directly be used to
perform the modeling of the method call.

2. FDM,, has not been computed yet. In this case the modeling of method m
has to be suspended in order to first compute the FDM of method n. Only
if the latter model is present the modeling of method m can be resumed.

The problem is hidden in the second case. Clearly, such a strategy can only
succeed, if method n and all methods called by n do not, in turn, call method

m. We say, that method n must not be recursive with method m.

Definition 13.1.1 Two methods, m and n, are said to be recursive with each
other, if m or one of the methods called by m calls method n and, in turn, n
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interface Queen {
boolean first();
boolean next();
boolean checkRow(int r, int c);
void result(int[] r);

Figure 13.1: Example interface Queen

class NullQueen implements Queen {
public boolean first() {

1. return true; }

public boolean next() {
L. return false; }

public boolean checkRow(int r, int ¢) {
L. return false; }

public void result(int[] r) {

}

Figure 13.2: Example class NullQueen

or one of the methods called by n calls method m. If m = n we call it a direct
recursion. If m # n we speak about an indirect recursion.

Figures 13.1 to 13.4 show a Java implementation of the N-Queens-problem. It
has been included in this chapter, because it will help demonstrating some impor-
tant issues of recursive FD modeling. At this stage we note that most methods
presented in Figure 13.3 are recursive ones. Whereas method checkRow(int r, int
¢) of class ConcreteQueen is directly recursive, methods testPosition(), nezt(),
and advance() of class ConcreteQueen are indirectly recursive with each other.

It is obvious that a method call of method n, which is recursive with the
calling method m, results in an infinite modeling loop. While method m tries
to compute the FDM of n first, method n relies on the existence of a model of
method m. The modeling process will eventually encounter an infinite loop.

We therefore have to enhance the modeling process for the DFDM in order to
handle recursive methods. The following sections present a fix-point algorithm,
which computes the FDMs of recursive methods by successively adding FDs to a
method’s model until a stable model is found.

Note that all new concepts introduced in this section do not change the mod-
eling approach of non-recursive methods used so far. Furthermore, the non-
recursive modeling can be regarded as a special case of the modeling of recursive
methods. The algorithms proposed in the following sections will therefore work
for both, the recursive and non-recursive case.



13.2. THE METHOD DEPENDENCY GRAPH 137

class ConcreteQueen implements Queen {
int row, col,;
Queen neighbor;
ConcreteQueen(int ¢, Queen n) {

1. col = ¢;
2. neighbor = n; }
public boolean first() {
1. neighbor.first();
2. row = 1;
3. return testPosition(); }
public boolean next() {
1. boolean success = advance();
2. if (success) success = testPosition();

3. return success; }
public boolean checkRow(int r, int ¢) {

1. int colDiff = ¢ - col;
2. return row ==r
|| row + colDiff ==r
|| row - colDiff ==r
|| neighbor.checkRow(r,c); }
boolean testPosition() {
1. boolean success = true;
2. while (success && neighbor.checkRow(row, col))
2.1. success = advance();
3. return success; }
boolean advance() {
1. boolean success = true;
2. if (row == 8) {
2.1. success = neighbor.next();
2.2. if (success) row = 1; }
2.3. else +-+row;
3. return success; }
public void result(int[] r) {
L. r[col] = row;
2. neighbor.result(r); }

Figure 13.3: Example class ConcreteQueen

13.2 The method dependency graph

In order to find out, whether there are any recursive method calls in a given
Java system and to determine the modeling sequence of multiple methods we
construct a method dependency graph (MDG). A MDG is a directed graph (see
Section 6.6) with cycles or loops in the case of recursive method calls. More
formally, a MDG is defined as follows:
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class EightQueens {
static void demo() {

Queen gs = new NullQueen();

for(inti=8;i>0;i——)
1. gs = new ConcreteQueen(i,gs);
gs-first();
int[] result = new int[9];
gs.result(result);

T 0 00 N

Figure 13.4: Example class EightQueens

The vertices V: The vertices of a M DG are the methods of the Java system.
There exists a direct correspondence between the vertices of the M DG and
the methods of the Java program. Each vertex of the M DG is labeled by
the signature of the corresponding method of the Java program. Note that
each method of the program is uniquely identified by its signature, which
consists of the name of the class owning the method (note that different
classes may have methods with the same name) followed by the name of
the method and the types of its formal parameters (a class may have dif-
ferent methods with the same name but different types and/or numbers of
parameters).

The edges E: There exists a directed edge in the M DG from a vertex m to a
vertex n iff there exists at least one statement in the body of method m
containing a method call to method n.

Figure 13.5 shows the MDG of class ConcreteQueen of our example program
in Figure 13.3. Note that for readability purposes all methods are depicted only
with their simple names (i.e., not prefixed with their class names). Cycles in the
MDP mean that we have to deal with recursive methods. Moreover, all methods
lying on a cycle are recursive with each other.

Building on the MDG we can now compute all sets of mutually recursive
methods, i.e., a maximum number of sets, which contain only methods, which
are recursive with one another. This can easily be achieved by computing all
strongly connected components (SCCs) of the MDG. Algorithms for efficient
computations of a directed graph’s SCCs are presented in [45] and [35].

Definition 13.2.1 According to [35] two nodes v and w in a graph G are path
equivalent if there is a path from v to w and a path from w to v. Path equivalence
partitions V' into mazimal disjoint sets of path equivalent nodes. These sets are
called the strongly connected components (SCCs) of the graph G.

Definition 13.2.2 A SCC'is called recursive, if it contains one or more recursive
methods. Note that all SCCs with two or more methods are always recursive
SCCs.
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The SCCs of class ConcreteQueen of our example program are depicted in
Figure 13.6. We see that now the three methods advance(), nezt(), and testPo-
sition(), which are recursive with one another, all lie in the same SCC. All other
methods are either non-recursive or directly recursive. Therefore, they constitute
SCCs on their own.

Note that non-recursive methods always constitute SCCs themselves. All
Java examples presented in previous sections can therefore easily be transformed
into their SCC representation by creating exactly one SCC for each method of
the Java system. As we saw the modeling of these SCCs (i.e., SCCs containing
only one non-recursive method) is not a problem and can be performed using the
algorithms presented so far. Only recursive SCCs need to be treated separately.

Thus the new modeling approach, when creating the DFDM of a given Java
system, is to model all SCCs one after another. Again, if during the modeling
of one SCC models of methods in other SCCs are needed, the modeling process
has to be suspended, the other SCC has to be computed first, and finally the
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modeling of the original SCC can be resumed. Due to the acyclic structure of the
graph created by the SCCs of a Java program, we can be sure that this process
will terminate. The only problem remaining is how to model recursive SCCs.
This can be done by applying a fix-point computation, which will be the main
topic of the next couple of sections.

13.3 Top-level detection of infinite recursions

The problem with the modeling of recursive methods is that we eventually en-
counter an infinite modeling sequence during the modeling of recursive method
calls. In the following we will distinguish between method calls, which are
definitely executed at run-time, and method calls, whose execution depends
on a concrete evaluation trace. In order to do so we define a function
isRecursive AtTopLevel(m), which determines, whether method m contains re-
cursive method calls, which are executed regardless of the used evaluation trace.
More formally, we write:

Definition 13.3.1 Let b be the outermost block of method m. Then the follow-
ing equation holds: isRecursiveAtTopLevel(m) = isRecursive AtTopLevel(b),
where isRecursive AtTopLevel(b) returns true iff:

e there appears a recursive method call in b

e b contains a selection statement s so that isRecursive AtTopLevel(h) holds
for all branches h of s.

e b contains a do statement s so that isRecursive AtTopLevel(h) holds for
the body h of s

Note that recursive method calls in the bodies of for and while statements
are not considered here, because in contrast to do loops the bodies of these
statements are not necessarily executed.

Example 13.3.1 Let us now come back to the methods defined for class Con-
creteQueen (see Figure 18.3). As already mentioned the methods advance(),
nezt(), and testPosition() lie in the same SCC, which has been depicted in Fig-
ure 13.6. Method next(), for instance, contains a recursive method call, i.e., a call
to method advance(), in statement line 1. Clearly, this statement is executed in all
possible evaluation traces, which means that isRecursive AtTopLevel(next()) =
true holds. If we now look at the methods advance() and testPosition(), we find
recursive method calls only in a while and an if statement (with an empty else-
branch), respectively. This means that at run-time the recursive method call is
not always executed and, therefore, isRecursive AtTopLevel(advance()) = false
and isRecursive AtTopLevel(test Position()) = false hold.

Building on function isRecursive AtTopLevel(m) we can now distinguish the
following two cases:
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Case 1: Assume all methods of a certain SCC contain recursive
method calls, which are definitely executed at run-time, i.e.
isRecursive AtTopLevel(m) = true Ym € SCC. In this case we ex-
pect the method to encounter an infinite sequence of recursive method
calls, leading to the non-termination of the whole program. In most cases
the reason for this behavior is a missing exit condition of at least one of
the recursive methods. As stated in Section 5.2 we are only interested
in the modeling of Java programs, which terminate on all inputs. This
explicitly excludes the modeling of infinite loops, method call sequences,
and run-time failures. We detect such a program behavior at compile-time
by appropriately modifying Tarjan’s algorithm. Instead of modeling the
system, a warning is displayed to the user.

Case 2: There exists at least one method in a certain SCC, which does not con-
tain recursive method calls that are definitely executed, i.e., 3m € SCC |
isRecursive AtTopLevel(m) = false. In this case we will start our fix-point
iteration modeling process by first modeling the top-level structure of m.
The detailed algorithm will be presented in the following sections.

13.3.1 Polymorphism and recursion

As mentioned in Section 9.2, when computing the DFDM of a polymorphic
method call, we generally have to consider the FDMs of all methods, which
are possibly called at run-time. Of course, the same is true for calls to polymor-
phic recursive methods. Consider a method call, which at run-time may call one
of the polymorphic methods ny, no, or ng. Let further method m contain the
method call at its top-level. The function isRecursiveAtT opLevel(m) evaluates
to true iff method m is recursive with, i.e., in the same SCC as, all three possibly
called methods. In other words, if there exists one non-recursive method, which
is possibly called at run-time, then the whole method call has to be regarded as
non-recursive as far as function isRecursive AtTopLevel(m) is concerned.

Example 13.3.2 If we, again, look at method advance() of class ConcreteQueen
(see Figure 13.83), we find a polymorphic recursive method call to method next()
in statement line 2.1, i.e., in the then-branch t of the f statement in line 1. This
method call has to be seen as polymorphic, because at compile-time it is not known,
whether the receiver (referenced by variable neighbor) is of type ConcreteQueen
or of type NullQueen (see Figure 138.2). Because of the fact that method next()
of class NullQueen is not recursive, isRecursiveAtTopLevel(t) = false holds,
although method next() of class ConcreteQueen is recursive.

13.3.2 Evaluation of expressions

Unfortunately the algorithm to compute isRecursiveAtTopLevel(m) as intro-
duced above does not always produce the right result. One special case, which
should be mentioned here for the sake of completeness, are conditional expres-
sions, which are not always fully evaluated during run-time. Method check-
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Row(int r, int c¢) in Figure 13.3, for instance, contains a top-level recursive method
call to itself. This leads to the assumption at compile-time that we necessarily
encounter an infinite method call sequence at run-time. This assumption, how-
ever, is not true, because under certain conditions, i.e., when one of the first
three sub-expressions of the return expression evaluate to true, the rightmost
sub-expression, i.e., the recursive method call, is not executed.

JADE: Currently, the JADE system cannot handle the special case described
above. This means that an infinite method call sequence will be assumed
by the system, what causes the modeling process to be terminated. Note
that in the above example the correct FDM can only be computed due to
the polymorphism of the method call.

13.4 Fix-point iteration modeling

We now want to compute the FDM of a recursive SCC, i.e., the model of all
methods within the SCC. As shown above these methods have to be recursive
with one another and can therefore not be modeled separately. Moreover, all
methods of a given SCC have to be modeled together, which can be done by
employing a fix-point computation algorithm.

The fix-point algorithm starts with computing an initial model of the root
method of a given SCC. Generally, the root method is the method in a SCC,
which is visited first by Tarjan’s algorithm (see [45]). It has no special properties
apart from the fact, that SCC roots are always accessible from outside the SCC,
i.e., root methods are always methods, which are called by methods in other
SCCs. The initial root model can then be used to create initial models of further
methods in the SCC, which in turn allow for the creation of other methods etc...
Eventually, there should exist initial models for all methods within a given SCC.
As we will see in Section 13.4.1 this approach succeeds provided that no infinite
recursion is detected during the creation of the SCC graph.

The fix-point algorithm then uses the initial method models to compute more
detailed models in its next iteration. Generally speaking, all methods of a SCC
of iteration ¢ are needed in order to compute the model of the complete SCC in
iteration ¢ + 1. This process is repeated until an iteration ¢ is reached, in which
the models of all methods are equivalent to the respective models in iteration
t — 1. In this case we say that the fix-point of the modeling algorithm is reached.

Note that if during the computation of the models of the methods from a SCC
calls to methods belonging to another SCC' are encountered, the computation of
the models of the methods from SCC is suspended and the models of the methods
from SCC’ are computed by employing the same algorithm as for SCC. This
approach does not lead to infinite loops because each cycle in a M DG is covered
by a single SCC, i.e., all edges connecting two distinct SC'Cs have the same
direction.
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13.4.1 Initialization iteration

The first problem one has to deal with in any fix-point algorithm is how to ini-
tialize the main data structures. When applying a fix-point modeling algorithm,
we are looking for initial FDMs of all methods of a certain SCC. These models
are subsequently used as the basis for future computations. The initial method
models can be constructed using Algorithm 13.4.1:

Algorithm 13.4.1

Step I: The pre-condition for the fix-point algorithm as discussed in Section 13.3
is that there exists at least one method in a SCC, which does not contain
recursive method calls, which are definitely executed, i.e., 3m € SCC |
isRecursive AtTopLevel(m) = false. If this condition is satisfied we start
the fix-point algorithm by computing an initial model for method m. This
can be done by modeling only the method’s top-level block (which is guar-
anteed to contain no recursive method calls) and all sub-blocks, which do
not contain method calls to other methods within the same SCC. This
means that during the initialization phase all sub-blocks containing recur-
sive method calls are ignored. The resulting model of method m con-
tains only correct FDs, but generally some FDs are missing. It is the
goal of the fix-point algorithm to add these FDs in the following itera-
tions. Note that there might as well exist other methods m’, which do
not contain top-level recursive method calls, i.e., for which the condition
isRecursive AtTopLevel(m') = false holds. All these methods can imme-
diately be modeled in the same way as method m.

Step II: We then choose a method n from the SCC with the following properties:

e The initial model of method n has not yet been computed.

e The initial models of all methods in the same SCC as n, which are
called at method n’s top-level, have been computed.

Note that a method n meeting these criteria can always be found, if no
top-level, recursive method call sequence in the SCC exists. However, this
is a pre-condition of the fix-point algorithm. Method n can now be modeled
exactly like method m, i.e., by ignoring all sub-blocks containing recursive
method calls during the modeling process. The above procedure is repeated
until initial FDMs of all methods of a SCC are available.

Example 13.4.1 Let us now have a look at the computation of the initial models
of the methods testPosition(), advance(), and next() of class ConcreteQueen,
which as depicted in Figure 13.6 all lie in the same SCC, i.e., are recursive with
each other.
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Method testPosition() is the root node within the SCC, because it is the only
method called from outside the SCC, i.e., by method first() (see Figure 13.6). Fur-
ther on, method testPosition() does not contain any top-level recursive method
calls, because its only recursive method call, i.e., the one to method advance(),
is nested in the body of the while loop in line 2 (see Figure 13.3). Hence,
isRecursive AtTopLevel(test Position()) = false holds. As described above we
only model the method’s top-level block and leave out the body of statement line 2,
which contains a recursive method call. The resulting model in the initialization
iteration, t.e., iteration 0, reads as follows. Note that all methods are denoted by
their simple names.

. 0
Recursive DFDM testPosition()

St.1: successy < {{true},{},{},{}}
St.3: _result; + {{}, {success1},{},{}}

The following locations are created:
0: the receiver of method testPosition()
1: default location for 0.neighbor

2: default location 0.neighbor imported from method checkRow(int r, int c)

Method advance() can also be handled in step I of Algorithm 13.4.1, because
its only recursive method call, i.e., the one to method next(), is nested in the then-
branch of a selection statement. Hence, isRecursive AtTopLevel(advance()) =
false holds. By ignoring the then-block we get the following model in iteration 0:

Recursive DFDM?Y

advance()

St.1: success + {{true},{},{},{}}
St.2: 0.row; + {{1,8},{0.rowp},{},{}}
St.3: _result; < {{}, {success1},{},{}}

Note that for method advance() only default location 0 is created.

Method next() does contain a top-level recursive method call, i.e., the call to
method advance(). Consequently, isRecursiveAtTopLevel(next()) = true holds.
Therefore, we cannot model next() in step I of Algorithm 13.4.1, but have to rely
on the initial models of advance() and testPosition(). By modeling all statements
and blocks of next() we get the following model in iteration 0:
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0: self

e ]
/ \ [
[ next() J—{ testPosition() J—{ checkRow(int r, int ) }

0: self 0: self 0: self

1: 0.neighbor 1 OV 1: 0.neighbor
2: 2:

Figure 13.7: Locations created in iteration 0

int recl(int x, int y) {
1. if (x==0) {

1.1. Cc = X;
1.2. return 0; }
else {
1.3. ¢ = X+Yy;
1.4. return recl(x-1,y); }

Figure 13.8: Example method rec!(int z)

Recursive DFDM)_,

St.1: 0.row; < {{L 8}a {O'TOUJO}a {advance()}, {}}

St.1: successy < {{true},{},{advance()},{}}

St.2: successg < {{true}, {success;}, {testPosition()},{}}
St.3: _result; + {{}, {successa},{},{}}

The following locations are created:
0: the receiver of method next()
1: default location 0.neighbor imported from method testPosition()

2: default location 0.neighbor imported from method checkRow(int r, int ¢) via
method testPosition()

The locations created for all three methods in iteration 0 of the fiz-point algo-
rithm are depicted in Figure 13.7.

The use of the predicate isRecursive AtTopLevel(m) during the initialization
phase of the fix-point algorithm (see Algorithm 13.4.1) seems rather complicated
and one could argue that we could compute all initial models by simply leaving
out all recursive method calls instead of whole blocks. This, however, is not
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possible in the general case. When recursive method calls are left out during
iteration 0 of the fix-point algorithm, incorrect FDs can be computed, which
are never eliminated in later iterations. The following example is designed to
demonstrate this problem.

Example 13.4.2 Consider method recl(int z, int y), which is depicted in Fig-
ure 13.8. Assume that variable c is defined as a static variable of the same class
defining recl(int z, int y). Obviously, variable ¢ depends on parameter z, which
appears in the condition of the ¢f statement in line 1 and on the right-hand sides
of assignments to c in both branches of statement 1. However, c¢ is not influ-
enced by parameter vy, although y appears on the right-hand side of the variable
assignment n line 1.3. This is, because the assignment in line 1.1 is always
ezecuted as the last assignment before recl(int z, int y) terminates. If we use
Algorithm 13.4.1 to compute an initial model of method recl(int x, int y), we
only model the then-branch of statement 1 and get the following FD:

St.1: ¢+ {{0},{zo}, {}. {}}

If we decide to model the else-block as well and simply ignore the recursive method
call in line 1.4, we get the following FD, which contains an incorrect variable
occurrence, i.e., Yo, on its right-hand side:

St.1: ¢+ {{0},{z0, %0}, {},{}}

13.4.2 Computing the next iteration

We now have to define how to compute the methods of a particular SCC in iter-
ation ¢ using the method models of the previous iteration ¢ — 1. Generally, this
is done by modeling each method m of the SCC separately by applying the prin-
ciples presented in previous sections. We always start with the root node of the
SCC and then successively model all methods, which call other methods already
modeled in iteration ¢. Note that generally this process is non-deterministic, since
we do not define the exact sequence, in which these methods are modeled. Since
we can now rely on the fact that all other methods in the SCC have already been
modeled in iteration ¢ — 1 at the latest, all statements of m can be modeled, even
if they contain recursive method calls. This is also true for selection and loop
statements, whose sub-blocks can now fully be modeled. The exact procedure
of computing the DFDM of method m in iteration i, i.e., DF DM} , is given by
Algorithm 13.4.2:

Algorithm 13.4.2

Direct recursion: If in method m a recursive call to m is found, we always have
to use m’s model from iteration 7 — 1, i.e., sum(DFDM! ), to model the
recursive method call.

Indirect recursion: If in method m a recursive call to another method n in the
same SCC appears, the most recent model of n is used. This can either
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be the model from iteration i, i.e., DFDM!, if n is modeled before m in
iteration 4, or the model from iteration i — 1, i.e., DFDM!™'  otherwise.
Note that always using the most recent model leads to a faster convergence
of the fix-point algorithm.

Handling variable dependencies: When modeling recursive methods, which
do not create any locations (neither default nor new locations) this approach
eventually leads to a stable model for all methods of the SCC. Obviously, FDs
computed in previous iterations for the model of a method m can never be in-
validated in the current iteration ¢, which leads to a monotonically increasing
amount of FDs for method m over the course of the fix-point algorithm. More
formally, we define the following lemma:

Lemma 13.4.1 Let FDM, be the FDM and sum(F DM,) the summarized FDM
of a block b. Let further FDM, be a modification of FDM,, which results
from adding variable v to one of the FDs’ right-hand sides. Then all FDs in
sum(FDM]) are greater or equal than their counterparts in sum(FDM,). We
write sum(FDM]) > sum(FDM,). This also means that through the insertion
of v no dependency from sum(FDM,) can be lost.

Proof: Let us remember the way sum(F DM,) is computed. This is done by
starting with the last FD for each variable v in b and successively substituting
the VOs on the FD’s right-hand side with a prior FD’s right-hand side, whose
left-hand side matches the VO on the FD’s right-hand side (see Section 6.6). In
case of multiple variables on a right-hand side, all variables have to be substi-
tuted. If we now add a variable w to any of the FD’s right-hand sides, more
substitutions will take place during the summarizing algorithm, but all substi-

tutions performed previously will still be performed. This leads to an increased
sum(FDM,). Q.E.D.

Theorem 13.4.2 The number of FDs computed for a given method m, i.e.,
the number of wvariables changing their values during the execution of m, 1is
constant after the first iteration. The sizes of all FDs computed for method
m 1s monotonically increasing during the whole fiz-point algorithm. We write
DFDM}, > DFDM! Vi > 1. This means that if a variable v depends on
another variable w in iteration i, v also depends on w in iteration  + 1.

Proof: We prove the above theorem by induction over the number of iterations.
Let us first assume that method m is directly recursive.

Iteration 0: During the initialization iteration of the fix-point algorithm all FDs
arising from blocks without recursive method calls are created. If no infinite
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recursion is detected (see Section 13.3), we get a model for at least the top-
level block of m. Note that there exists at least one sub-block, which has
not been modeled completely.

Iteration 1: In the first iteration all blocks are considered. The ones already
modeled in iteration 0 are, again, considered, which leads to the same FDs
as in iteration 0. All other sub-blocks, i.e., all blocks containing recursive
method calls, are modeled for the first time. The modeling of these sub-
blocks results in the creation of new FDs for these sub-blocks. However,
additional FDs stemming from a sub-block of statement s can never lead to
the deletion of FDs at the top-level of s. In case of selection statements the
modeling of an additional branch always leads to the same or more FDs at
the selection statement’s top-level, because the top-level FDs are computed
by unifying all branches (see Section 10.3). The situation is similar for loop
statements. If the loop body gets modeled, this can never invalidate the
top-level FDs already computed for the loop condition (see Section 10.4).
Note that now FDs for all variables changed in m are created.

Iteration i: We assume that DF DM, > DF DM holds.

Iteration i + 1: Let mc be a recursive method call in block b of method m.
When modeling mc in iteration 7, we make use of the summarized model
of m in iteration i — 1, i.e., sum(DFDM?™). Obviously, all imported FDs
stem from variables, for which an FD already exists. Thus, the number
of FDs does not increase any more. Since DFDM! > DFDMZ ! holds,
there might exist larger FDs in DF DM}, than in DF DM!"!, which are now
imported into DF DM in iteration i+1. According to Lemma 13.4.1 this
can only result in larger FDs but never lead to the deletion of existing ones.
Thus the number of FDs stays constant, but their sizes are monotonically
increasing.

Q.E.D.

These results can easily be applied to the general case of indirect recursions,
where it cannot always be determined a priori, which model of the called method
n (the one from iteration ¢ or the one from iteration ¢ — 1) is used in iteration
1. However, all blocks of the calling method m are modeled in iteration 1 at the
latest and the modeling of additional blocks never invalidates existing FDs (as
above). The FDs imported from method n are in either case greater than or
equal to the ones imported in iteration s — 1, which using Lemma 13.4.1 leads to
a monotonically increasing size of all FDs of method m.

It is clear that after a finite amount of iterations no new FDs are introduced
into the model of method m and thus a fix-point is reached. The algorithm
terminates, when the models of all methods of the currently analyzed SCC in
iteration 7 equal their respective counterparts in iteration i—1 (see Section 13.4.3).

Handling locations: Now consider a recursive method, which creates new
objects, i.e., locations, in its body. Method rec2(int t), which is depicted in
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C rec2(int t) {

Cx;
1. if (¢t > 0)
1.1. x = rec2(t-1);
else
1.2. x = new C();
2. return x;

}

Figure 13.9: Example method rec2(int t)

Figure 13.9 is directly recursive and therefore constitutes a SCC on its own.
In statement line 1.2 it contains a class instance creation expression, which at
run-time creates a new instance of class C if the condition ¢ > 0 evaluates to
true.

During the initialization iteration (i = 0), the then-branch of statement 1 is
ignored, because it contains a recursive method call in statement line 1.1. The ini-
tial model of method rec2(int t), DF DM?° therefore only contains one FD

rec2(int t)?
arising from statement 1.2. Two locations are created in iteration 0, location 0 to
represent the receiver of method rec2(int t) (i.e., this) and location 1 for the new
instance of class C' created in line 1.2. We write ZOC(DFDMrOecz(im o) = {0,1}.

In the first iteration all statements are modeled building on the initial model
DFDM? )- We get two FDs (for statements 1.1 and 1.2) and three locations,

rec2(int t

location 0, location 1 imported from DF DMfecQ(int ) via the recursive method call

in statement 1.1, and a new location 3 representing the newly created instance of
class C in statement 1.2. Thus, loc(DF DM} ) = {0,1,2}. If we continue

rec2(int t)
) =40,1,2,3} in iteration 2 (lo-
(int 1) and DF DM

rec2(int t)?

) =1{0,1,2,3,4} in itera-

the modeling process we get loc(DEF M?

rec2(int t)
cation 0, locations 1 and 2 imported from DF DM?®

rec2

respectively, and a new location 4), loc(DF DM f’ed(int 0
tion 3 etc...

Obviously, the explosion of locations during the modeling of recursive methods
prevents the algorithm from reaching a fix-point. With an increasing amount of
locations, we also encounter an infinite amount of changes in the FDs arising
from the recursive method call. Therefore, the exit condition requiring all FDs
to stay stable is never satisfied leading to the non-termination of the modeling
algorithm.

This behavior is due to the fact that we are still performing a purely static
analysis of method rec2(int t). We therefore do not know how often method
rec2(int t) gets called at run-time and how many instances of class C' are created
during program execution. This problem very much resembles the problems we
are facing when computing the DFDM of a loop statement with the creation of
locations in the loop body. We therefore give a similar solution by introducing
multiple-locations for recursive methods. Such a concept changes the semantics
of the model, but guarantees that a fix-point can be found in a finite number of
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iterations.

Consider a location /i, which is either created in a recursive method m or
imported into m through a call to some other method n, which is not part
of the same SCC as m, i.e., m is not recursive with n. All statements of m,
which are modeled in iteration %, are also modeled in iteration 7 4+ 1, leading to
a monotonically increasing amount of FDs computed for m. This means that
in iteration ¢ + 1 another location [, is created by exactly the same statement
or method call as in iteration ¢. The two locations, I; and Iy, are two different
instances of the same class, i.e., two different locations of the same type, but
are known to have arisen from the same class instance creation expression. In
iteration ¢ + 1 now both locations are visible. Whereas [, is created in iteration
1+ 1 or imported through a call to method n, [; is imported through a recursive
call of either m or another method o, which lies in the same SCC as m.

If we look at the keys of the locations l; and ls, i.e., k; and k9, we find, that
both keys only differ in their method call path. This seems clear if we remember
that both locations stem from the same source code position and were created
for the same reference variable. The two method call paths differ in the way
that k; includes a cycle at its front, which represents the sequence of recursive
method calls in iteration ¢. In case of direct recursion, the cycle only consists of
one element, i.e., the method call key of the recursive method itself. In case of
indirect recursion, the cycle includes n elements with n being exactly the size of
the modeled SCC.

In order to prevent the modeling algorithm from creating an infinite number of
locations, we pool all locations arising from the same statement. The result of this
approach is a multiple-location, which represents a finite but unknown number
of locations created at run-time. Now the similarities with the modeling of loop
statements become obvious. In our case one multiple-location stands for I, lo,
and all other locations arising from the same statement during the whole modeling
process. As with loop statements, the resulting abstract multiple-location means
a loss in precision of the resulting model, but makes sure that only a finite number
of locations is created during the whole modeling process. See Section 10.4 for
further properties of multiple-locations.

After all these explanations the algorithm for summarizing concrete locations
to abstract multiple-locations seems straightforward. After each iteration of the
modeling process all locations of the modeled method m have to be checked,
whether they can be pooled to a multiple-location. This is the case, if the key
of one location equals the key of another location after a complete method call
cycle is removed in either of the two locations. More formally, we define:

Definition 13.4.1 Let path be the method call path of an imported location |
stored in its key k. We then define removeCycle(path) = path' with

e path! = {(mci1,mdis1),...(mc,, mdy)} if path = {{(mec;, mdy),...,
(me;, md;), (meir1, mdig), ..., (me,, mdy,) } and mdy; = md; ;.

e removeCycle(path) = path, otherwise.
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Definition 13.4.2 Let k = (v, path) be the key of an imported default location.
removeCycle(k) = (v, removeCycle(path)).

Definition 13.4.3 Let = (pos, path) be the key of an imported new location.
removeCycle(k) = (pos, removeCycle(path)).

Two locations [; and Iy with the keys k; and k, are summarized after iteration
i iff k1 = removeCycle(ky) or ko = removeCycle(k:). Applying this approach
we can compute the model of a method m in SCC s in iteration i, i.e., DF DM,
in the general case. We can now repeatedly compute the models of all meth-
ods within s until we eventually encounter the exit condition of the fix-point
algorithm. The next section discusses the termination of the fix-point algorithm.

Example 13.4.3 Let us come back to our example class ConcreteQueen and the
SCC including the methods testPosition(), next(), and advance(). We can now
compute iteration 1 by using the initial models of the three methods as described
in Section 13.4.1 and all the models of all following iterations until a fix-point is
eventually found.

Let us first look at the locations, which are created in or imported into the
individual methods in iteration 1. First, the methods testPosition() and next()
are modeled, which both rely on the model of method advance from iteration 0.
Therefore, no new locations are created in testPosition() and next(). During
the modeling of advance() we for the first time create a default location for the
variable 0.neighbor and import locations from next(), which leads to the locations
depicted in Figure 15.10.

In iteration 2 location 8 of method advance(), which originally was imported
from testPosition() via next(), is re-imported into method testPosition() and then
into next(). Figure 138.11 shows the locations in iteration 2 with the bold line
highlighting the re-importation process. However, in iteration 2 of the fiz-point
algorithm the following interesting things happen:

e Clearly, after iteration 1 all locations have been created in their original
methods. This is obvious, if we remember that in iteration 1 at the latest
all statements and sub-blocks of all methods are modeled. However, only
in iteration 2 all locations are present in all methods, because it takes one

extra cycle to import a certain location to any other method within the same
SCC.

o In iteration 2 for the first time a location is re-imported into method test-
Position() and next(). These locations stem from method checkRow(int r,
int ¢) and are first brought to the methods testPosition() and nezt() in the
wnitialization iteration. In iteration 2 they are re-imported via method ad-
vance() and thus pooled to a single multiple-location during the summarizing
process of testPosition() and next(), respectively.

e Due to the pooling of the re-imported locations, the number of locations
after iteration 1 and iteration 2 stays constant. This will be the case for
all following iterations, because any re-imported locations are immediately
contracted to a multiple-location.
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0: self
1: 0.neighbor
2:

checkRow(int r, int c)

0: self 0: self 0: self
1: 0.neighbor 1: 0.neighbor 1: 0.neighbor
2: 2:

Figure 13.10: Locations created in iteration 1

Let us now have a look at the models of method testPosition() in iteration
1 and iteration 2. Due to the increasing number of locations the numbers and
sizes of FDs increase, too. The following models show (for readability purposes)
the variable dependencies arising from method testPosition() in iteration 1 and

iteration 2, respectively:

. 1
Recursive DFDM testPosition()

St.1: success; < {}

St.2: 0.row; < {0.coly, 1.coly, 2.coly, 0.neighbory, 1.neighbory, 2.neighbory,
successi, 0.rowy, 1l.rowy, 2.rowp }

St.2 : successy < {0.coly, 1.coly, 2.coly,0.neighbory, 1.neighbory, 2.neighbory,
successi, 0.rowy, 1.rowy, 2.row}

St.3: _result; + {successa}

s 2
Recursive DFDM testPosition()

St.1: success) < {}

St.2: 0.row; < {successi,0.rowy, 1.rowy, 2.rowy, 3.rowy, 0.coly, 1.coly, 2.coly,
3.coly, 0.neighbory, 1.neighbory, 2.neighbory, 3.neighbory }

St.2: lLrow; < {successy,0.rowy, l.rowy, 2.rowy, 3.rowy, 0.coly, 1.coly, 2.coly,
3.coly, 0.neighbory, 1.neighbory, 2.neighbory, 3.neighborg }

St.2 1 successy <+ {successi,0.rowy, 1.rowy, 2.rowg, 3.rowy, 0.coly, 1.coly, 2.coly,
3.coly, 0.neighbory, 1.neighbory, 2.neighbory, 3.neighbory }

St.3: _result; + {successa}



13.4. FIX-POINT ITERATION MODELING 153

0: self
1: 0.neighbor
2.

checkRow(int r, int c)

0: self 0: self 0: self

1: 0.neighbor 1 OﬂeE)rmc:r/ 1: 0.neighbor
2 2

3 3

Figure 13.11: Locations created in iteration 2

13.4.3 Termination of the fix-point algorithm

The last step is to define the exit condition of the fix-point algorithm. As already
mentioned in previous sections, the fix-point is reached, when the models of all
methods in a given SCC in iteration ¢ equal their respective counterparts in
iteration ¢ — 1. As we saw the numbers and sizes of the FDs computed for a
particular method are monotonically increasing during the fix-point algorithm.
Hence, the fix-point is reached once no new FDs in iteration 7 emerge and all FDs
remain unchanged in comparison to iteration ¢ — 1. In this section we show that
a fix-point is always reached after a finite number of iterations.

Definition 13.4.4 A fiz-point of the FD modeling algorithm for a given SCC,
s, s reached in iteration i iff DFDM! = DFDM!' ¥Ym € s.

JADE: The JADE system indezxes its locations by their position in the source
code. The same location | can be indexed differently in two consecu-
tive iterations, if additional locations are created or imported into the
method before the creation of . Therefore, before the exit condition can
be checked, all locations of one of the two FDMs have to be set to indices
as they appear in the other FDM. The renaming function is straightfor-
ward and 18 thus not described in this work.

The proposed algorithm is only of value if we can prove that in all cases a fix-
point is reached after a finite number of iterations. Before we show this property
of the fix-point algorithm, we give the following theorems:

Theorem 13.4.3 The total number of locations created for method m does not
exceed the sum of all explicitly created and default locations of all methods in the
same SCC as m.

Proof: Each location [ can either be created in m directly or, if it is created in
another method n called by m, be imported into m. First, consider all default
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and new locations of method m. All these locations are created in the initializa-
tion iteration or the following iteration for the first time depending on recursive
method calls in m. In the following iterations exactly the same locations are
created. The amount of explicitly created locations can therefore never increase,
except for the initialization and the first iteration. Second, assume that location
[ is imported into m through a method call. We distinguish two cases:

e [ originates from a statement s of method m, i.e., m will find its own
signature at the beginning of the method call path of [. In this case [ is
immediately pooled with the location, which is created for statement s in
the current iteration. The overall amount of locations stays the same.

e [ originates from another method n. Given that the size of the SCC con-
taining both, m and n, is finite, such a location is eventually re-imported
into method n after a finite number of iterations, where it will be pooled as
described in case 1. The number of locations imported from other methods
is therefore finite.

Therefore, the total number of locations created for method m is always finite
and equal to the specified number. Q.E.D.

Theorem 13.4.4 Consider a SCC with the root node m. Let n be an arbitrary
node in the SCC. Let p be the shortest method call path leading from m to n.
Then, the mazximum number of iterations needed to import a location | created in
n into the root node m is given by |p| + 1.

Proof: We proof Theorem 13.4.4 by induction over the length of p, i.e., |p|.

|p| = 0: This is the case, if m = n. Obviously, all locations are created in iteration
1 at the latest.

|p| = 1: This is the case, if n is directly called by m. All locations created in n
in iteration 1 are imported into m in iteration 2.

Ip| = k: We assume that all locations created in n are imported into m after
iteration k£ + 1.

Ip| = k 4+ 1: If we now add a vertex to p, this means that an additional method
call has to be performed in the method call sequence linking m to n. There-
fore, we need one extra iteration to import all locations from n into m, i.e.,
k + 2 iterations.

Q.E.D.

Theorem 13.4.5 Consider a SCC with the nodes {ng,ni,...n;}, where ng de-
notes the SCC’s root node. Let {p1,...,p;} be the shortest paths from node n; to
the root node ng Vi € {1,...,j}. Let further m be the length of the longest path in
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{p1, .-, p;}, i.e., max(ps,...,p;). Then, the number of iterations needed to create
all locations for a given method m does not exceed m + 1.

Proof: From Theorem 13.4.4 it follows that in iteration m + 1 all locations
created in all nodes of the SCC are imported into the root node ng. Since the
root node is always modeled first in each iterations, all other nodes import all
locations from the root node in iteration m + 1, too. Q.E.D.

Based on Theorems 13.4.3 and 13.4.5 we can now prove that in all cases a
fix-point is reached after a finite number of iterations, i.e., the following theorem
holds:

Theorem 13.4.6 The fiz-point algorithm as described above always reaches a
fix-point after a finite number of iterations.

Proof: In Theorem 13.4.2 we have already shown that during the fix-point al-
gorithm the sizes and numbers of FDs are monotonically increasing. This means
that we can never encounter a situation, where two consecutive models of a given
SCC oscillate around a fix-point, which is never reached. Either an infinite num-
ber of FDs or constituents are created or a fix-point is reached after a finite
number of iterations.

Obviously, the number of variable occurrences, constants, and method dec-
larations of a certain Java system is finite. If we do not consider locations,
the worst case scenario is that everything (all constants, variables, methods) de-
pends on everything, but the outcome still is a finite set of finite FDs. From
Theorems 13.4.3 and 13.4.5 it follows that the total number of locations created
for a given method is always finite. Therefore, only a finite number of (finite size)
FDs is created during the course of the described fix-point algorithm. A fix-point
is thus reached in all cases after a finite number of iterations. Q.E.D.

Example 13.4.4 If we consider the SCC containing the methods testPosition(),
next(), and advance(), we encounter a fix-point after iteration 4. This means that
the summarized models of all three methods in iteration 4 equal the summarized
models of the respective method in iteration 3. The following summarized model is
computed for method testPosition() in iterations 3 and 4 of the fiz-point algorithm.
Note that the model contains only three locations, i.e., location 0, 1, and 2, after
the locations 2 and 3 are contracted to a multiple-location 2.
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sum(FDM e position())

2.row; + {0.coly, 1.coly,2.coly, 0.neighbory, 1.neighbory, 2.neighbory,
0.rowg, 1.rowy, 2.rowgy }

0.row;  {0.coly, 1.coly,2.coly, 0.neighbory, 1.neighbory, 2.neighbory,
0.rowy, 1.rowy, 2.rowg }

_resulty < {0.coly, 1.coly, 2.coly, 0.neighbory, 1.neighbory, 2.neighbory,
0.rowy, 1.rowg, 2.rowy }

l.rowy < {0.coly, 1.coly, 2.coly, 0.neighbory, 1.neighbory, 2.neighbory,
0.rowg, L.rowy, 2.rowy }

successy <+ {0.coly, 1.coly, 2.coly, 0.neighbory, 1.neighbory, 2.neighbory,
0.rowy, 1.rowy, 2.rowg }



Chapter 14
The SFDM

In previous sections we introduce two types of FDMs, the ETFDM and the
DFDM, and describe their construction in detail. In this chapter we propose
a third FDM type, the Simplified Functional Dependency Model (SFDM). The
SFDM is based on either the ETFDM or the DFDM and can automatically be
derived from the two models. As we will see a higher level of abstraction leads
to a new type of model, which is shorter and easier to read, but not as detailed
and exact as the models proposed so far.

14.1 Basics of the SFDM

As discussed in Chapters 7 and 8, both models, the ETFDM and DFDM cover
all FDs of a certain method by keeping locations and references separate. The
advantage of this approach is that a broad range of program bugs can be located
at statement level, whereas detailed information about all memory locations and
variables exists. On the other hand, the ETFDM and DFDM are difficult to read
and understand. The large amount of constants or run-time values, variables,
and locations on the FDs’ right-hand sides sometimes leads to slow debugging
processes. Further on, a potential user has to have detailed knowledge about the
underlying object structure when specifying an incorrect variable observation.

In contrast, the SEDM is easier to understand, includes only variables on the
FDs’ right-hand sides, and makes it easier for the user to specify observations.
In order to define the SFDM we first divide the set of all variables into top-level
variables and others using the following definition:

Definition 14.1.1 A (reference) variable v is said to be a top-level (reference)
variable iff it is one of the following:

e a local variable, i.e., of the form x

e a class variable, i.e., of the form a.x with a being a simple or fully qualified
class name

e an instance field of the currently modeled method, i.e., of the form 0.z

157
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(Point) (Point) (Point)

x=3

Figure 14.1: Abstract view of the Java system system?est()

Note that following this definition all instance fields of remote objects, i.e., all
objects other than the receiver of the currently modeled method, are not top-level
variables.

One of the key components of FDs in the ETFDM and DFDM is the variable
occurrence, e.g., vo (see Section 6.1). Now we extend the concept of variable
occurrences to the notion of object structures, which stand for a variable occur-
rence vo of variable v and all locations and variables currently (possibly) hidden
behind v. In other words, an object structure contains the following elements:
(1) A variable occurrence vo = (v, b, i) after which the object structure is named.
(2) If v is of primitive type the value stored in v. (3) If v is of reference type
the location [ referenced by v and the object structures of all instance fields of [.
More formally, we define:

Definition 14.1.2 The complete object structure of a variable occurrence vo =
(v,b,1) is defined as o(vo) = {vUwal(v)} if v is of primitive type and o(vo) =
{vUlU{o(w) | w € fields(l)} | | = val(v)} if v is of reference type. Here val(v)
denotes the value of v if v is of primitive type and the location referenced by v
otherwise. fields(l) stands for the set of all instance fields of location .

We can now, in contrast to Chapter 5, specify the complete state of a Java
system by considering the complete object structures of all top-level variable
occurrences. In case of primitive variables this covers all these variables together
with their current run-time values. In case of variables of reference type, not
only the reference v itself, but also all locations and variables hidden behind v
are part of the system description.

Example 14.1.1 If we, again, look at method test() from Section 5.2 (see Fig-
ure 5.1), we get a new representation of the method’s run-time state, which is
depicted in Figure 14.1. After the execution of test() there are two top-level ref-
erence variable occurrences, pl1 and p2. Both variables span a complete object
structure, i.e., o(pl) and o(p2), respectively. The state of the whole Java sys-
tem can be specified by the set {o(pl),0(p2)}. Note that the third instance of
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class Point, which is not referenced by any (top-level) variable, is not part of any
object structure and thus removed by the garbage collector.

As we will see in the following section, this new interpretation of a Java
system’s run-time state is the basis for the more abstract SFDM.

14.2 Simplified functional dependencies

Like in the ETFDM and DFDM the main component of the SFDM is a single
FD. This FD now looks somewhat different from a FD of the models presented
so far, because in the SFDM only variables are considered as possible influences
of a FD’s left-hand side. Moreover, instead of variable occurrences now object

structures of top-level variable occurrences are used. The exact format of a
simplified FD (SFD) is given as follows:

Definition 14.2.1 A simplified functional dependency (SFD) of the variable oc-
currence vo = (v, b, 1) is defined as the tuple SFD = (o(vo), DEP), i.e., SFD,,.

Let us now, again, have a look at the meanings of the different parts of the
SFD:

o(vo) = o((v, b, 1)) is the SFD’s left-hand side and stands for the complete object
structure of vo. Variable v can be of primitive or of reference type. In case
of v being of reference type it no longer simply denotes the reference, but
all locations and references hidden behind the reference v as well. Here
we see that it is no longer possible to distinguish between a reference and
the location referenced by it. As we will see that makes the model much
shorter and simpler, but also introduces a couple of interesting questions
and problems. Now v can only be of the following forms:

x: In this case z denotes a local variable of the currently modeled block
or an instance variable of the class containing the currently modeled
method. All other structures (object locations, instance fields of these
objects, objects referenced by these instance fields, etc...) are hidden
behind z and are so implicitly covered by the SFD.

a.z: in this case z is a static variable and a denotes the fully qualified
name of the class, in which z is defined. Again, if a.z is of reference
type, it stands for the reference and all locations and further references
hidden behind a.z.

DEP: is the SFD’s right-hand side. In contrast to the ETFDM and DFDM,
DEP only contains object structures of variable occurrences that (possibly)
influence the FD’s left-hand side. Therefore, DEP contains o(vo), if vo =
(w,b,1) € VO stands for a variable occurrence influencing the FD’s left-
hand side. w can have the same form as v. It can thus be of primitive or of
reference type. In case of w being of reference type it stands for the whole
object structure behind the reference w.
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14.3 Creating a SFDM

As mentioned above the SFDM can automatically be derived from either the
ETFDM or the DFDM. This is done by successively simplifying each FD of the
underlying FDM into one or more SFDs. The resulting SFDM can be defined as
follows:

Definition 14.3.1 The SFDM,, for a given FDM,, is defined as SFDM,, =
deeFDMm simplify(fd).

The conversion from a FD, e.g., fd, to a set of SFDs is defined by function
S = simplify(fd), which can be computed using Algorithm 14.3.1:

Algorithm 14.3.1 Consider a FD fd = (vo, DEP), where vo = (v,b,i) and
DEP = (R,V,M,0) or DEP = (C,V,M,L). Let further DEP' be the set of
object structures of all top-level reference variables in V, i.e., DEP' = {o(vo) |
vo € V'} where V! C V is the subset of V' containing all top-level variables
occurrences. Then, compute the set of SFDs S = simplify(fd) by distinguishing
the following two cases:

Case 1: v is a top-level variable. Then, S = (o(vo), DEP").

Case 2: v is not a top-level variable, i.e., it is of the form n.xz withn >0 € L
(DFDM) or n > 0 € O (ETFDM). Then, S = (o(y), DEP") | y € Y},
where Y is defined as the set of all top-level variables, which at the given
point within the program (possibly) reference n or another location n/,
which in turn contains references to n. DEP" equals DEP' as defined
above, only that sometimes self references have to be inserted, i.e., DEP" =
DEP'Uo(y). The introduction of self references is discussed in Section 14.4.

Finally, when computing a SFDM note the following points:

e The computation of Y can be done by a recursive algorithm, which in one
step computes all references currently (possibly) pointing at location n. The
resulting references are either top-level variables or include another location
n' in their scope. In the latter case the reference variable has to be further
resolved.

e During this process the indices of all variable occurrences are adapted in or-
der to guarantee a correct sequence of occurrence indices from the method’s
beginning to its end.

e If multiple FDs for different variables in the same object structure arise
from the same expression or statement, it is now possible that more than
one SED is computed for the same top-level variable v. In this case all
SEFDs have to be combined by forming the union of their right-hand sides.
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e As a result, FDs for variable occurrences of reference type no longer simply
denote that reference. Instead the dependency directly refers to the loca-
tions and references representing the local state of the referenced object
(since these locations are no longer explicitly present in the model).

e A SFDM can be based on either an ETFDM or a DFDM. We should there-
fore speak about simplified ETFDMs (SETFDMs) and simplified DFDMs
(SDFDMs). However, in this section we talk about SFDMs meaning FDMs
based on either an ETFDM or a DFDM.

e All locations and instance fields with scopes other than 0 at an FD’s right-
hand side are simply deleted and not resolved to top-level references as the
variable on the FD’s left-hand side. There are two reasons for that: (1) In
case of variables with a scope of n > 0 the top-level reference should already
be part of V. This is, because a field access is modeled by considering
not only the instance field, but also the reference defining the scope of
the field access in the right-hand side of the arising FD. (2) As we will see
locations are not needed in the final version of the model any more. They are
important throughout the modeling process (i.e., during the computation
of the ETFDM or DFDM) in order to solve aliasing problems. Section 14.4
deals with aliasing problems in SFDMs.

e As described in Algorithm 14.3.1 in some cases self dependencies are added
to SFDs. The reason for this approach and problems arising in its context
are discussed in Section 14.4.

Example 14.3.1 Let us come back to our example of Section 5.2, which is de-
picted in Figure 5.1. If we apply Algorithm 14.3.1 to either the ETFDM or the
DFDM of method test() (see Chapters 7 and 8) we get the following SFDM:

SFDMes)

St.1: pl1+ {}

St.2: p2.1+ {}

St.3: pl 2+« {pl.1}
St.4: pl.3 «+ {pl_2}
St.5: p2.2 + {pl1.3,p2_1}

14.4 Handling aliasing with the SFDM

Both model types, the DFDM and ETFDM, distinguish between references, i.e.,
variables of reference type, and object locations. As discussed in Section 7.5 by
doing this we implicitly solve all potential aliasing problems occurring in the Java
source code. The reason for that is quite obvious, because references to locations
and the locations themselves are modeled by different model constructs.
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The SFDM introduces a new notion of aliasing. We no longer speak about
aliasing only if two variables of reference type reference the same object, but also
if two variables of reference type reference two different object structures, which
in turn hold references to the same object. Due to the changed model semantics
of the SFDM we redefine the aliasing problem as follows:

Definition 14.4.1 Two variables of reference type, v and w, are said to cause
aliasing, if there exists a location [, which s part of both object structures, the
one referenced by v and the other modeled by w. During the modeling process we
face an aliasing problem, if the content of | is altered by accessing | through one
of the two variables, say v. A modification of | should then be visible in the model
not only for an access of | through v, but also for an access of | through w.

In contrast to the ETFDM and DFDM, references and locations are no longer
kept separate. Moreover, it is the key property of the SFDM that these model
components are contracted into a single object structure denoted by the name
of the top-level reference variable. As a direct consequence, aliasing problems
are no longer explicitly covered. In order to make the SFDM suitable to handle
aliasing problems during the transformation of a FD to a SFD we have to ensure
the following two points:

Reference resolution: The left-hand side of a FD, i.e., vo, is resolved by com-
puting all top-level references currently pointing at the object structure o
including vo. By this we make sure that if the contents of o is changed,
not only a single SFD is created for variable vo, but one SFD for each top-
level reference. Hence, we assure that model components, i.e., all top-level
references, stay up to date.

Self dependencies: Due to the changed semantics of the SFDM we are facing
another problem, which can be described as some sort of frame problem: If
a variable w, which is part of an object structure o hidden behind variable
v changes its value, the rest of the object structure stays unchanged. This
fact has to be considered, when computing a SFD arising from the change
of variable w. If we compute a SFD for variable v with only such constructs
on its right-hand side, which cause the change of w, we delete all existing
dependencies between v and the rest of 0. A very simple and efficient
solution is to introduce self dependencies, i.e., assure that v is always part
of the SFD’s right-hand side. In most cases this postulation is met anyway,
but in other cases self dependencies have to be created explicitly. Note
that self dependencies have only to be introduced if not the whole object
structure gets modified. This is the case, if the top-level reference itself is
changed. In other words, if the ETFDM or the DFDM of a given expression
or statement contains a FD for a top-level reference variable v, then the
SED for variable v does not have to contain a self dependency.

Example 14.4.1 Let us now consider the example from Section 5.2 (see Fig-
ure 5.1) and method aliasing(), which is depicted in Figure 14.2. In lines 1 and
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void aliasing() {

Point pl, p2;
pl = new Point(0,0);
p2 = pl;

pl.doubleXValue();
int tmp = p2.x;

=W =

Figure 14.2: Example method aliasing()

2 we find two variables of reference type, p1 and p2, pointing at the instance of
class Point created in line 1. In the context of the SFDM these two variables
are top-level references comprising the reference itself and the point object. If we
now change the content of the point object in line 3, both top-level references are
influenced. This gets obvious by looking at the output of Algorithm 14.3.1, which
reads as follows:

SFDM gjiasing()

St.1: ply + {}

St.2: p2y + {pli}
St.3: ply « {pl1}
St.3: p2g < {p21,pl1}
St.4: tmp; + {p22}

If we now assume the object structure p1 to be incorrect after the execution
of statement line 4, we find statements 1 and 3 as possible culprits. This seems
to be clear as only these two statements change either variable p1 or the point
object. If on the other hand we assume the object structure p2 to be incorrect,
we not only get statement 1 and 2 as possible diagnoses, but also statement line
3, where the object structure (not the reference) p2 is modified. It should now
become obvious how the SFDM handles aliasing problems.

Note that in the second SFD for line 3 a self dependency is inserted. Without
this dependency we get line 3 as a possible diagnosis and thus solve the aliasing
problem, but lose all information about dependencies of the rest of the object space
p2. By adding the self dependency we make sure that statements 1 and 2 can also
be reached from the SFD for statement line 3.

14.5 Properties of the SFDM

Similar to the ETFDM and DFDM, we shortly summarize the benefits and draw-
backs of the SEDM. The quality of various SFDMs for debugging has been tested
using different test-cases. The exact results are presented in Part III of this work.
The most important properties of the SFDM are:
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e As already discussed the SFDM is based on either the ETFDM or the
DFDM. Therefore, the main properties of a SFDM depend on the general

properties of the underlying model type and are different for SEDMs based
on ETFDMs and SFDMs based on DFDMs.

e Due to the changed model semantics SFDMs are only complete in relation
to the new interpretation of object structures. Note that they are no longer
complete as far as individual variables and locations are regarded.

e As mentioned above the SFDM introduces a new variant of the aliasing
problem. As shown this problem can be solved by repeatedly resolving
references to given locations and by adding self dependencies in certain
cases.

Advantages of the SFDM:

e The SFDM is easier to read and understand, mainly because it does not
contain locations and variables with scopes.

e As a consequence, the SFDM contains less FDs with fewer variables, which,
as we will see, leads to a faster diagnosis process, i.e., diagnoses are com-
puted quicker.

e With the SFDM, observations might be easier to specify for the user, who
generally thinks in terms of references and not in terms of object locations

Disadvantages of the SFDM:

e Due to the introduction of object structures the system can no longer dis-
tinguish between references to objects and object locations, which in turn
leads to a loss of information. As a consequence, the granularity of the
model becomes coarser.

e Observations cannot be specified as precisely as with either the ETFDM
or the DFDM. A user, who knows the exact location of an observed error,
has to specify a reference pointing at that location rather than the location
itself.

e The loss of information has to be paid off with larger diagnosis sets. This, as
we will see in Part III, will lead to an increased amount of variable queries
put to the user and to a slower convergence to the correct diagnosis.

The introduction of self dependencies is discussed in Section 14.4. Unfortu-
nately, this concept does not only allow for an efficient handling of aliasing, but
also poses a couple of new problems, which are shortly highlighted on the basis
of the following example.
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void sfdm1() {
obj 0 = new obj();

Oy O W N -
© 9 0O ¢

2]

@

o+
NN NN

Figure 14.3: Example method sfdm1()

Example 14.5.1 Consider the example method sfdm1(), which is depicted in
Figure 14.3. In statement line 1 it creates an instance of class obj, whose instance
field field is left uninitialized (and thus stores its default value). In the following
statements, i.e., lines 2 to 6, the value of field is then repeatedly set to a new
value, which each time overrides the value previously held by field. When we
construct the DFDM of sfdm1() we get the following model. Assume that we
specify the value of variable field, i.e., 1.field, to be incorrect, we get two possible
diagnoses, i.e., statement 1 or statement 6 to contain the bug.

DFDMsfdmI()

St.1: 1.field 1 + {{},{},{0bj0},{}}

St.1: o1 {{},{},{objO}, {1}}

St.2: 1.field2 < {{3},{0-1},{set b A{}}

(int)

St.3: 1.field 3 < {{1},{o_1},{set(int)}, {}}
St.4: 1.field 4 < {{5},{o-1},{set(int)},{}}
St.5: 1.field 5 < {{2},{o-1},{set(int)},{}}
(int)

St.6: 1.field 6 < {{4},{o_1},{set(int)}, {}}

If we now look at the corresponding SFDM of method sfdm1(), we find that
each FD (apart from the first one) contains a self dependency. We can no longer
specify vartable 1.field to be incorrect, but only the object structure o to be in
an incorrect state. This, however, results in all six statements being potential
culprits, which highlights a major drawback of SFDMs as far as their ability to
locate software faults is concerned.
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SFDMt4m1()

St.1:
St.2:
St.3:
St.4:
St.5:
St.6:

ol +{}

02 < {01}
03 « {02}
04+ {03}
05 + {04}
06 < {05}

CHAPTER 14. THE SFDM
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Chapter 15

System Descriptions

In Part II of this work we presented various ways of modeling Java systems.
All described models cover static and dynamic properties of the respective Java
systems and are thus suited to be used for fault localization. This part describes
how the FDMs described in Part II can be used to debug a faulty Java method.

15.1 Diagnosis components

Diagnosis components are the constituents of every system description. They
can directly be derived from the FDMs, whose computation is presented in detail
in Chapter 12. The following types of diagnosis components are used for the
debugging of Java systems at statement level:

Assignment components are the basic components directly derived from the
FDM. These components store the statement, which they are associated
with, together with a set of FDs, which arise from the modeling of this
statement. The set of FDs always includes at least one FD, which models
the data dependency introduced by the variable assignment itself. Further
FDs might stem from side-effects, which are imported into the statement
model through method calls inside the variable assignment.

Selection components are always associated with a selection statement and
thus store an if or switch statement. The set of FDs stores all side-effect
FDs arising from the selection statement’s condition and all FDs, which
belong to the summarized FDM of the statement’s branches. In addition,
every selection component stores all diagnosis components, which were com-
puted for all branches of the statement. For example, a diagnosis compo-
nent associated with an if statement contains two additional sets storing
all diagnosis components of its then- and else-branch, respectively.

Loop components are always associated with a loop statement and thus store
a do, for, or while statement. Similar to selection components, the FD
set stores all side-effect FDs arising from the loop condition and all FDs
belonging to the summarized FDM of the loop body. An additional set
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of sets stores all diagnosis components of the loop body for all modeled
iterations.

Note that in this work we focus on the debugging of Java methods at state-
ment level. To be used for expression level debugging, the individual diagnosis
components have to be slightly modified. Not all statements of a Java system
have associated diagnosis components. If during the FD modeling process no
FDs for a particular statement are computed, then no diagnosis component is
created either. This means that during the debugging process these statements
are not part of any diagnosis. The type of FDM computed during the modeling
step (ETFDM, DFDM, or SFDM) has no influence on the resulting diagnosis
components, only on the FDs stored in the individual components. However,
there are some differences between ETFDMs and SFDMs based on an ETFDM
on one hand and DFDMs and SFDMs based on a DFDM on the other:

e In combination with the ETFDM selection components always store the
diagnosis components of only one branch of the statement, i.e., the branch
being executed at run-time. The sets of diagnosis components for all other
branches stay empty, because no FDs are created for these branches during
the modeling process.

e When using the DFDM, only one model for a loop statement’s body is cre-
ated. This seems obvious, because the exact number of loop iterations is
not known at compile-time. The set storing all sub-block models therefore
always has only one element, i.e., a set of diagnosis components arising
from the loop body. This, however, is not true for the ETFDM. When an
evaluation trace is used during the modeling process, each loop iteration is
modeled separately and results in a different FDM. Therefore, loop compo-
nents, when using the ETFDM, contain ¢ sets in their subBlock field with
1 being the number of iterations being performed at run-time.

15.2 System descriptions

A complete system description, as it is needed for the fault localization process,
can now be automatically constructed from the existing diagnosis components.
In this section we show how to construct a hierarchical system description, which
consists of all top-level structures of its diagnosis components. Sub-structures
stored in the individual components, e.g., for loop bodies or branches of selection
statements, are not considered at this level. They, in turn, can be combined
to system descriptions on their own, if needed. A complete system description
consists of the following parts:

Components (C) constituting a system description are the diagnosis compo-
nents of a given Java method. The diagnosis components are automatically
derived from the various FDMs. Their format is described in Section 15.2.
A component ¢ € C can non-ambiguously be associated with a statement
of the analyzed method.
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Connections (£) link a diagnosis component ¢; € C to another diagnosis com-
ponent ¢y € C via the use of ports. They always lead from a component’s
output port to another component’s input port. Note that a connection
[ € L can be linked to multiple input ports, but only one output port. As
we will see there exists a one-to-one correspondence between connections
and variable occurrences, i.e., each connection in a diagnosis system can
non-ambiguously be associated with exactly one variable occurrence.

Ports (P) are used to mount connections to diagnosis components. An indi-
vidual port p € P can non-ambiguously be associated with a variable oc-
currence vo of the analyzed Java method. We write vo(p). Ports can be
divided into two disjoint sets, input ports (Z) and output ports (O). An
input port ¢ € Z of a diagnosis component ¢ € C stands for a variable oc-
currence influencing the outcome of component ¢. An output component
o € O of component ¢, on the other hand, models a variable occurrence,
whose value is altered in the statement associated with component c.

JADE: The JADE system currently only uses variables as influencing fac-
tors of diagnosis components. Run-time values, constants and method
calls are not used in the system description. For the sake of simplicity in
this work only variables are used, too.

As mentioned above the diagnosis components of our system descriptions can
directly be derived from the FDMs. In order to get a complete system description
we have to connect the existing components via connections and ports. The
algorithm works as follows:

Algorithm 15.2.1

e Vc € C: create an input port ¢ € ZV v € V;, where V; stands for all variables
appearing on the right-hand side of one of the FDs of c.

e Vc € C: create an output port o € O Vv € V,, where V, stands for all
variables appearing on the left-hand side of one of the FDs of c.

e Yo € O create a connection [ € L leading from o to all input ports {7 | 7 €
Z ANvo(o) = vo(4)}. If no such input port ¢ exists, a connection [ is created
and called an output connection of the diagnosis system.

e Vi € 7, which are not assigned to any connection, create a connection [ € L.
This connection is called an input connection of the system.

Example 15.2.1 Consider method test() of class Point, which is depicted in
Figure 5.1. DF DMz is given in Section 12.1. We can now collect all FDs
of the model in five diagnosis components representing the five statements of
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Figure 15.1: System description of method test()

test(). If we use these diagnosis components as input for the algorithm presented
above, we get a complete system description of method test(), which is depicted
wn Figure 15.1.

Note that a system description as depicted in Figure 15.1 shows the com-
ponents and structure of a given diagnosis problem. The exact behavior of the
individual components is only defined in connection with the set of FDs stored
in each component, which internally connects a component’s input and output
ports.



Chapter 16

Computing Diagnoses

As discussed in Chapter 3 a diagnosis system is defined as the pair (SD,COM P),
where SD is a logical model describing the correct behavior of the system and
COMP a set of components. Whereas the set of components can directly be
taken from the used model, the system description as defined in Chapter 15 has
to be transformed into a logical representation, i.e., SD, taking into account
the structure of the system and the behavior of the individual components. This
chapter describes how a logical model can be constructed and then in combination
with concrete observations be used to compute diagnoses.

16.1 Logical model description

In order to generate a logical representation, i.e., a model, of a given method m
we successively convert all FDs of the underlying F"DM,, into logical sentences
defining part of the behavior of the FD’s component. The basic idea can be
formulated as follows: If a statement can be assumed to behave correctly and all
variables used as input are also correct, then the statement’s outputs must be
correct, too. Since FDs describe behavior only implicitly by describing influences
between variable occurrences, we cannot make use of concrete variable values,
but only speak about whether the value of a particular variable occurrence vo
is correct (written as ok(vo)) or not (written nok(vo)). If we further use the
predicate “AB(C) (AB(C)) as defined in Chapter 3 to denote that component
C, i.e., statement C, behaves correctly (incorrectly) and fd(C) as the set of all
FDs stored in component C, we get the following logical representation:

Y (wo,pEPYe fa(c) © | TAB(C) A /\ ok(xz) — ok(vo)| € SD

reDEP

where C € COMP is a statement. In addition, we know that it is impossible that
a variable value is known to be correct and incorrect at the same time. Therefore,
we have to add the rule

ok(vo) A nok(vo) — L
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to the model SD, for each variable occurrence vo in the program.

Example 16.1.1 If we come back to method test() of class Point (see Fig-
ure 5.1), we can transform a FD method model of test(), i.e., FDM,.g, into a
logical model using the algorithm described above. Using DF D M.y (see Sec-
tion 12.1) we get the following logical sentences describing the behavior of the
components COMP = {s1, s2, 53, s4, s5}:

—AB(s3) A ok(ply) — ok(1.xq)
—AB(s4) A ok(ply) — ok(1.ys)
—AB(s5) A ok(ply) A ok(p21) A ok(1.22) A 0k(2.21) — 0k(3.x1)
—AB(s5) A ok(pli) A ok(p21) A ok(1.ys) A 0k(2.y1) — ok(3.y1)
—AB(s5) A ok(pl1) — 0k(p2s)

Finally, we complete the model by adding inconsistency sentences for all variable
occurrences of the system, which reads as follows:

ok(l.z1) Anok(l.zy) = L, ok(l.y) Anok(l.y;) — L, ok(ply) Anok(pl;) — L,
0k(2.21) Anok(2.21) = L, 0k(2.y1) Anok(2.y1) — L, o0k(p21) A nok(p2;) — L,
ok(1.x9) Anok(1l.zs) = L, ok(l.y2) Anok(1l.ys) — L, o0k(p22) Anok(p2;) — L
0k(3.21) Anok(3.21) = L, 0k(3.y1) Anok(3.y2) — L

bl

16.2 Observations

Apart from the logical system description, the MBD approach requires a set of ob-
servations OBS in order to fully specify a diagnosis problem (SD,COM P,OBS)
(see Chapter 3). In the case of software debugging using FDMs, observations
are given by logical sentences stating whether a particular variable occurrence
vo = (v, b,1) is in a correct state, i.e., v has the correct value, or not. This can
easily be determined by comparing the computed value of v with its expected
value as defined by the intended behavior of the system. More formally, we write:

e ok(vo), if the computed value of v matches its expected value and

e nok(vo), otherwise
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Example 16.2.1 Assume that after the execution of method test() (see Fig-
ure 5.1) we expect the values of the instance fields x and y of the point object
created in statement s5, i.e., the object at location 3 in the above model, to hold
the values 4 and 5, respectively. We can then compare these values with the val-
ues computed by the Java run-time system, which are t = 3 and y = 5, and
conclude the following: (1) Instance field © of location 8 is in an incorrect state
and (2) instance field y of location 8 holds the correct value. Formally, we write
nok(3.xz1) A ok(3.y1).

As discussed in Chapter 14, we cannot distinguish between a reference v being
incorrect or the state of the object referenced by v being incorrect, when we are
using SFDMs for debugging. Moreover, by specifying nok(vo) for vo = (v, b, 1)
we specify something like either variable v is referencing the wrong object or the
object which is referenced by v is in an incorrect state. Clearly, with the SFDM
observations cannot be specified as concisely as with the DFDM or ETFDM, but
on the other hand it seems easier for the user to determine the correctness of
whole object structures than individual values and references.

16.3 Computing diagnoses

Since we have defined a complete diagnosis problem (SD,COM P,OBS), we can
use standard diagnosing algorithms taken from MBD together with a standard
theorem prover in order to compute conflict sets and diagnoses of the used model
(see Chapter 3). A diagnosing algorithm based on the computation of hitting
sets of the collection of all conflict sets is proposed in [38]. This algorithm was
improved by [17]. Conflict sets are computed using standard theorem provers.

Example 16.3.1 If we compute diagnoses for the logical system description of
method test() (see Figure 5.1) as specified in Sections 16.1 and 16.2, we get
four single-diagnoses, i.e., D = {{s1},{s2},{s3},{sb}}. Informally, this can be
explained as follows:

o Statement sb obuviously is a possible source of the bug, since it creates the
object at location 8 through a call to method plus(Point p). Possible bugs
within sb are the call to an incorrect method, an incorrect receiver, or an
incorrect argument.

o Statement s4 sets the instance fields y of location 1. Since this field is not
involved in the computation of 3.x in statement s, this statement is not a
diagnosis

e Statement s3 alters the value of 1.z, which is used in statement 5 in the
computation of the incorrect variable 3.x. Therefore, s3 has to be a diagno-
sts. Possible bugs within s3 are an incorrect constant on the assignment’s
right-hand side, an incorrect assignment operator, or an incorrect scope of
the assignment’s left-hand side.
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e Statement s2 sets the value of 2.z, which is used in the computation of 3.z
in statement sb. Therefore, s2 is a possible diagnosis. Potential bugs are
incorrect arquments or the call to an incorrect constructor.

e Statement sl is also a diagnosis, although this does not seem obvious. The
reason s that p1 appears in the scope of the method call in statement 5. See
Section 9.1 for a more detailed discussion about this phenomenon.

Note that in the above example all diagnoses are so called single-diagnoses,
i.e., diagnoses comprising only one component. The interpretation of a single-
diagnosis is straightforward in such a way that the specified misbehavior of
the system can solely be explained by the malfunction of a single component.
Multiple-diagnoses on the other hand contain two or more components. In the
case of multiple-diagnoses the incorrect system behavior can only be explained
as the combination of all components in the diagnosis behaving incorrectly at the
same time.

In principle, all potential diagnoses are of interest regardless of their cardinal-
ity. This is, because every diagnosis explains the malfunction of the system and it
is assumed that by correcting all components within the diagnosis the expected
system behavior can be achieved. Note that this is only correct for a perfect
model. In case of FDMs diagnosis candidates can be computed, which in prac-
tice are not diagnoses (see Section 9.1). However, in practice smaller diagnoses
(in particular single-diagnoses) are preferred over larger ones for the following
reasons:

e Generally, smaller diagnoses seem to be more likely. Although (almost)
all diagnoses explain the malfunction of the system, the majority of diag-
noses are not correct diagnoses in the sense that they represent the system
intended by the programmer. For instance, the assumption that all compo-
nents of a given system behave abnormally is a diagnosis as far as the MBD
approach is concerned. However, this diagnosis is not useful for transform-
ing an incorrect system into a correct one. Since the probability of a single
fault in a system seems higher than a fault affecting more components,
smaller diagnoses are preferred over larger ones.

e A second, more practical reason is that fewer components are easier to
replace or correct. Clearly, it is more economic to fix a single bug in a given
system than to make multiple changes to the source code, if the outcome
is the same. Furthermore, fixing only a few components is normally the
more general solution, which is expected to hold for not just the current
test-case. By fixing many components the risk is high that a given system
is fitted to a single test-case too tightly so that it is not appropriate for the
general case.

Finally, it should be noted that the process of computing diagnoses for a
particular method as proposed in this chapter has always to be seen in the context
of a single test-case. If an ETFDM is used as underlying model, the system
description is only valid for this one test-case. Since different test-cases require
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different ETFDMs, the test-case is defined by the evaluation trace used during
the creation of the ETFDM. In contrast to ETFDMs, DFDMs are models, which
take all possible run-time scenarios into consideration and thus implicitly cover
all possible test-cases. Nevertheless, the process of computing diagnoses cannot
be seen independently from a test-case. This is, because observations of variable
occurrences can in general only be specified, if a whole evaluation trace or at least
a concrete input/output pair is used during the debugging process (not during
the creation of the model). Observations like the value of variable occurrence
vo s incorrect in all possible run-time scenarios can hardly be stated in the
general case. However, the concurrent use of multiple test-cases is possible, if
the computation of diagnoses is slightly changed. Section 18.2 deals with the
application of multiple test-cases.
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Chapter 17

Building a Debugger

In this section we show how to build a debugging tool, which enables the user to
use logical system descriptions of Java programs as introduced in Chapter 16 for
efficient software debugging.

17.1 The debugging process

The combination of software models and MBD techniques on the one side and
classic software engineering (SE) tools, such as GUIs and intuitive debuggers, on
the other side has been proposed by [22] and more recently in [25]. The main
idea behind this approach is to combine Al techniques as described in this work
with existing SE tools and knowledge about efficient human-machine interactions
in order to guide a user through a fault localization process in an optimal way.
In this context possible requirements of a debugging tool are:

User-friendliness: A debugging tool should be as user-friendly and intuitive
for the user as possible. This includes short learning times, logical steps
and sequences of the individual procedures, a clear and understandable
GUI, etc...

Response time: The response time of the system has to lie in a range which is
acceptable for industrial applications, i.e., in the range of a few seconds for
interactive applications.

Efficiency: The fault localization process itself has to be designed as efficiently
as possible. This includes a minimum number of queries put to the user,
an optimal bug candidate elimination, an efficient measurement selection
algorithm, etc...

The debugger presented in this chapter is based on an iterative approach of
computing diagnoses, reporting current bug candidates to the user, querying in-
formation from the user, and eliminating bug candidates. The debugging process
can be described by the following phases:
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Figure 17.1: The debugging process

Initialization: Before we can start the debugging process we need a model of
the program, which we are interested in debugging. This model has to be
transformed into a logical description of the debugged source system. Fur-
thermore, we need test-cases specifying the inputs of the debugged method
together with the expected outputs. This information can directly be taken
from the test phase of the software development process.

Diagnosis: An automatic debugger can then compute all diagnoses, which ex-
plain the malfunction of the system. These diagnoses highlight all potential
software bugs provided that correct models and test-cases are available.

Measurement selection: As long as there exists more than one diagnosis, we
select a measurement point within the Java system, whose validation re-
duces the number of potential diagnoses in an optimal fashion. The goal
is to limit the search space of bug candidates by eliminating a maximum
number of incorrect diagnoses in a minimum number of steps.

Variable Query: Once a measurement point is chosen, its value has to be mea-
sured. This can be done by querying the user for the correct value of the
variable at the measurement point. The specification of additional obser-
vations reduces the number of diagnoses in the next step.

Hierarchical Debugging: If only one explanation for the faulty behavior of a
system is present, the bug is located at the current hierarchy level. De-
bugging can then be terminated or led into the next level of the system
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hierarchy.

Figure 17.1 shows the complete debugging process. Whereas the modeling of
Java systems and the computation of diagnoses are discussed in previous chap-
ters, the following sections deal with an efficient measurement selection algorithm,
variable queries, and hierarchical debugging.

17.2 Measurement selection

The goal of an efficient measurement selection algorithm is to determine an op-
timal measurement point in the system description. After an additional obser-
vation is specified for a measurement point and added to the diagnosis system,
the number of diagnoses should decrease as much as possible. In our case we
want to determine a system connection, i.e., a variable occurrence of the Java
system, whose specification reduces the number of diagnoses in an optimal way,
regardless of the concrete value assigned to the measured variable.

One way to determine an optimal measurement point is to compute all possible
observations, i.e., all possible values for all potential measurement points. For
each connection/value pair all diagnoses then have to be recomputed and the
measurement point, which on average (over all its potential values) eliminates
the most diagnoses is chosen. Obviously, this is computationally very expensive
and too slow for real-world applications.

Another way is to use algorithms, which estimate an optimal measurement
point. Algorithm 17.2.1 is a simplification of the algorithm presented in [11] and
uses entropy functions for all connections of the system description:

Algorithm 17.2.1

e For each diagnosis d of all current diagnoses D perform a simulation run
and for each connection [ € L of the system description count the number
of correct (true;), incorrect (false;), and unknown (null;) predictions.

e For each connection compute its entropy as FE(l) =
Zme{truel,falsel,nulll} abs((\x\/\DD * ln(|$‘/|DD)

e Compute the next measurement point mp € £ by maximizing the entropy,
ie.mp=1I1€L ‘ E(lz) = ’ITLCLLE(E(ZJ)) VZJ e L.

Example 17.2.1 Consider the system description depicted in Figure 17.2. The
system comprises 4 diagnosis components, i.e., COMP = {stl, st2, st3, std},
which are arranged in a linear chain. Therefore, the system contains 5 connec-
tions, i.e., input connection i1, output connection ol, and three internal connec-
tions (1, 12, and 3. We can now assume i1 to hold the correct input value and
ol to be faulty. Formally, we add ok(il) Anok(ol) to the logical system represen-
tation. Clearly, this results in 4 possible diagnoses, namely all components of the
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i1 11 12 13 ol
Statement 1 Statement 2 Statement 3 Statement 4

Figure 17.2: Measurement selection example 1

system. If we perform a simulation run for each diagnosis and count the number
of values (true, false, or null) produced for each of the connections 1, 12, and
3, we get the following result:

Diagnosis Value

11 12 3
Statement 1 | null | null | null
Statement 2 | true | null | null
Statement 3 | true | true | null
Statement 4 | true | true | true

We can now compute the entropy for each connection using the Algorithm 17.2.1.
This leads to the following result:

E(11) = abs(0.25 % In0.25) + abs(0.75 * In 0.75) = 0.56
E(12) = abs(0.5 x In0.5) + abs(0.5 x (n 0.5) = 0.69
E(13) = abs(0.75 * In 0.75) + abs(0.25 * in 0.25) = 0.56

From mp = 1; € {i1,12,13} | E(l;) = maz(E(l;))VI; € L =12 it follows that our
next measurement point has to be connection [2.

To improve Algorithm 17.2.1 we make use of a heuristics. Consider a connec-
tion [y, which is only linked to components that are not part of any diagnosis.
If there exists another connection /s with the same entropy value as [y, but with
a connected component in at least one diagnosis, then [y is preferred over /; as
a measurement point. The reason is that connections linked to components in
at least one diagnosis are more likely to eliminate incorrect diagnosis candidates
than other connections. The following example is designed to demonstrate this
property of diagnosis systems.

Example 17.2.2 Consider the system description depicted in Figure 17.3. Let
us assume that input connection i1 is known to be correct and output connection
03 s incorrect. Then there are two diagnosis candidates, i.e., statement 1 and
statement 4. Performing a stmulation run on both diagnoses we get the following
result:

Diagnosis Value

1 0l 02
Statement 1 | null | null | null
Statement 4 | true | true | true
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Statement 2 Statement 3 Statement 4

ol 02 03

Figure 17.3: Measurement selection example 2

We find that the values of 01 and 02 are equal to the value of connection I1 in all
simulation runs. Therefore, the resulting entropies of I1, ol, and 02 have to be
equal as well, which can easily be proven by the following calculation:

E(l1) = abs(0.5 % In 0.5) + abs(0.5 * In 0.5) = 0.69
E(ol) = abs(0.5 % In0.5) + abs(0.5 x [n0.5) = 0.69
E(02) = abs(0.5 * [n 0.5) + abs(0.5 * In 0.5) = 0.69

Using Algorithm 17.2.1 it seems that all measurement points have to be regarded
as equally good as far as their ability to distinguish correct diagnoses from incor-
rect ones is concerned. This, however, is not true. If we take ol or 02 as the next
measurement point, we have to distinguish two cases: (1) If ol or 02 is specified
to be incorrect, statement 4 is no longer a diagnosis and the bug is thus located
in statement 1. (2) If ol or 02 is specified to be correct, no diagnosis candidate
can be eliminated. In the latter case the query of the value of connection ol or
02 seems to be useless. If, on the other hand, we decide to use l1 as our next
measurement point, one diagnosis is eliminated regardless of the specified value of
[1. Thus 1 seems to be a superior measurement point than either ol or 02. Using
the heuristics stated above, we guarantee that in this example I1 gets selected as
an optimal measurement point.

17.3 Variable query

Once a measurement point mp is selected, the expected value at connection mp,
i.e., the variable associated with connection mp, has to be read from some kind
of oracle. Generally, there are two different approaches of specifying the expected
value of mp:

e The value is known a priori. This, for instance, can be the case, if a detailed
test specification exists, which not only contains a system’s I/O behavior
but also all or some of its internal states. In this case the expected values
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of all variables or connections can be stored in a database and read into
the debugging system on demand. Note that this approach is not optimal,
because all values, which are known before the debugging session, could be
specified during the initialization phase. This would speed up the debugging
process as measurement selection steps and recomputations of diagnoses
were no longer needed.

e The value can be queried from the user. In this case it is assumed that
the user has enough knowledge about both, the programming language and
the internal structure of the buggy program, to provide information about
individual measurement points.

When using FDMs we are only interested in whether the value of a certain
variable is correct or not. In contrast to value-based models we cannot handle
concrete values or distinguish different degrees of incorrectness. Nevertheless, we
can make use of an evaluation trace, if it exists. In such a case the value computed
by the system is displayed to make it easier for the user to judge, whether this
value is correct or not. However, the value itself is only needed for the sake of an
intuitive GUI and not during the modeling and diagnosis process.

17.4 Hierarchical debugging

Once there is only one diagnosis left, the bug is located at the current level of the
system hierarchy, i.e., at the current block level within the Java source code. If
the bug is found in a statement containing sub-blocks, i.e., selection statements,
loops, etc..., the debugger can automatically be led to sub-block level and locate
the fault at the next level of the hierarchy. The diagnosis process at sub-block
level works exactly like the process at a method’s top-level and can thus be
explained by Figure 17.1. However, before debugging at sub-block level can be
started, some initialization has to be done:

e The debugger has to load the model of the sub-block, which should be
debugged, and create a logical system description. Before the first diag-
nosis process, the theorem prover has to be loaded with the new system
description. Note that all models constructed in Part II of this work are
hierarchical models, which store all sub-models in the respective diagnosis
components. In this case it is very easy to retrieve the model of sub-blocks.
Another option is to create sub-models on demand, which leads to a shorter
modeling but longer debugging time.

e The output connections of the new system description have to be initialized.
This means that the user has to specify, whether the variable occurrences
associated with the output connections are correct or not. In certain cases
this can be done automatically, if the values of the outputs of the super-
component can directly be used to initialize the sub-component. This, for
instance is the case with selection statements and in the last iteration of
loop statements. If an iteration of a loop other than the last one is to be
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debugged, the super-component’s values cannot be used and the user has
to specify appropriate values.

Another question arising in the course of a hierarchical debugging process is,
which branch or iteration of a loop or selection component to debug. Again, we
can distinguish two different approaches:

e If no run-time information is used, the user has to guide the search process
into a sub-block or branch manually. This is not an optimal strategy, be-
cause the user is not guaranteed to locate the bug once a wrong decision is
made at a higher level of the hierarchy.

e The other option is to make use of evaluation traces. In such an approach
the branch of a selection statement evaluated at run-time can be determined
by looking at the run-time value of the statement’s condition. The fault
localization process can automatically be led into the correct branch. This
is not possible for loop statements, where the iteration in which a bug
appears first cannot be determined automatically in the general case. One
approach is to let the user step through all iterations manually, but provide
him with as much information as possible about the variable environments
before and after individual iterations. The user can then enter the loop
body once an unexpected behavior becomes observable.

17.5 Debugging method calls

In previous section we show how the fault localization process can be guided into
a selection statement’s branch or a loop body. However, there is yet another pos-
sibility of carrying on the debugging process after a single-diagnosis is computed.
If a bug is located in a called method m, the debugging process can be guided
into this method without restarting the whole debugging process. The debugging
of method m works very much like the debugging of the calling method.

The inputs of method m are all assumed to be correct, whereas its outputs
can be set to the values set for the component containing the method call in
the calling method’s system description. If an evaluation trace is needed, it can
be taken from the evaluation trace of the calling method, which as a sub-trace
contains the trace of the called method m. We can then start the diagnosis
process exactly like for the calling method.
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Chapter 18

Enhancements

This section describes some enhancements to the debugging process. In particu-
lar, the following topics are discussed:

e The design and implementation of an assertion language.

e The computation of diagnoses using multiple test-cases.

In the course of the JADE project both topics have not only been tackled
theoretically, but also been integrated into the JADE debugging environment (see
Chapter 19).

18.1 Assertions

The JADE assertion language helps to specify assertions and expected values of
variables and expressions of Java programs. In particular, the language provides
means to embed assertions either directly in the Java source code or to store them
in separate files. The debugging environment is modified such that the assertions
replace or supplement the traditional observation specification mechanisms of the
debugger as described in Chapter 17. Consequently, the use of assertions makes it
possible to run test-cases unattendedly. Also, multiple test-cases can be applied
concurrently to improve diagnosis performance (see Section 18.2).

18.1.1 Assertion syntax

The syntax of the assertion language is chosen in a way that it can easily be
integrated in existing Java programs. An important feature of the language is
that the resulting program is still a valid Java program and can be parsed and
compiled by existing Java tools. This is achieved by embedding the assertions
within Java comments, similar to Java documentation comments (/** ... */).
To distinguish assertions from ordinary Java comments and to allow for simpler
parsing, the assertions must be delimited by the strings /*@ and @x/.

Besides the delimiting tokens, an embedded assertion may consist of several
parts. First, an assertion may be prefixed with the name of a test-case, to which
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the assertion belongs. This allows the specification of assertions of several test-
cases in a single file. If this part is not present, it is assumed that the assertion
is valid for all test-cases. The main part of an assertion consists of a boolean
expression, which should evaluate to true. Here, any valid Java expression can
be used, provided that the semantics of the program is not altered.

The above mechanisms to specify assertions is sufficiently general to specify
almost any reasonable assertion used in our software debugging environment.
However, as the number of assertions and test-cases increases, the program soon
becomes cluttered with assertions. To avoid this, the assertions can be put in an
extra file and be associated with parts of the program. This is done by introducing
labels which denote parts of the program, where assertions will be inserted later
on. Labels are specified similarly to assertions, but without the expression part.
In the separate file, the assertions are prefixed by the label to which the assertion
belongs.

The assertions and assertion labels can be inserted into the program at several
places: Pre- and post-conditions of methods are specified by inserting assertion
comments immediately before or after the method’s body. Further assertions
can be inserted within methods after each statement. Note that assertions at
expression level cannot be specified in the current implementation. However, the
specification of assertions at statement level is sufficient for our current purposes.

All syntactical enhancements, which are introduced in the context of the as-
sertion language, are defined by the following grammar rules (EBNF notation):

AssertionComments ::= { AssertionComment }

AssertionFile = { AssertionLabel : [ Assertion | }
AssertionComment = /*@ (AssertionLabel | Assertion) @*/
AssertionLabel = Name o
Assertion = [Name :] ( Expression )

The non-terminals Name and Ezpression are defined as in the Java Lan-
guage Specification [16] and denote simple identifiers and Java expressions. The
integration of the above language definition is done through two modifications of
the Java parser, resulting in the following production rules (changes are empha-
sized):

MethodBody AssertionComments Block AssertionComments
BlockStatement ::= (LocalVariableDeclarationStatement

| ClassOrlInterfaceDeclaration

| [Identifier :] Statement) AssertionComments

The separate assertion file is parsed as specified by the grammar rule given
above (non-terminal AssertionF'ile) using a modified version of the Java parser.
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Example 18.1.1 FExzamples of pre- and post-conditions following the grammar
rules as described above can be found in the source code listings in Figures 18.1
and 18.2.

18.1.2 Semantic restrictions

Although the grammar given in the previous section allows any valid Java ex-
pression to be used as assertion expression, some semantic restrictions have to
be followed. Note that these restrictions are not checked by the system. It is
assumed that all assertions are well-formed according to these rules.

e First, any expression used as assertion must be executable at the point
of specification. Pre- and post-conditions must be executable before the
first and after the last statement of the method, respectively. Note that
post-conditions must be executable immediately after the evaluation of the
return expression of each return statement of the method.

e The expression must not alter the behavior of the program. In particular,
no values may be assigned to variables and no methods with side-effects
may be called.

e The expression must evaluate to a boolean value and it must not throw an
exception.

e The names of test-cases and assertion labels must be globally unique. They
are not local to methods, classes or packages.

The assertion language as defined above can be used in combination with
various software models, e.g., FDMs, value-based models, etc... However, in this
work we focus on its use together with FDMs for concrete debugging problems.
In order for the assertion language to be applicable to FDMs some further re-
strictions have to be met, which can be described as follows:

e The syntax of expressions is restricted such that only one variable of the
method is used. Otherwise, the assertion’s associated variable cannot be
determined automatically.

e Variables and fields may be used in expressions as far as they are used in
the enclosing method. Unused variables and fields may not be included in
assertions.

e The form of assertion expressions used in pre-conditions of methods is lim-
ited to v == ¢, where v € VARS denotes a parameter or global variable
and c € CONSTANTS represents a constant expression.

e All input parameters and used global variables must be assigned a value for
each test-case. Otherwise, the program cannot execute and the assertions
cannot be compared with the computed values.

Assertions that do not respect these restrictions are assumed to be correct
and are ignored.
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18.1.3 Using assertions for debugging

This section describes the current implementation of the assertion mechanism
and its integration into the debugger in the context of FDMs. When the parser
recognizes an assertion comment, the assertion is added to the current node of the
parse tree (representing a statement or a method declaration). When separate
assertion files are parsed later on, the assertions therein are added to the node of
the parse tree that contains the same assertion label as the assertion. Note that
the current implementation requires the assertion labels to be globally unique.

A further requirement is that every test-case must be present in the method’s
pre-condition in order to be applicable to the method. Otherwise the system
does not include the test-case in the list of defined test-cases. If the method has
formal parameters, this is not considered a restriction, as every test-case must
fully specify the values of the formal parameters. If no parameter variables are
present, an empty pre-condition (containing the constant true as condition) can
be inserted.

When assertions are used for debugging in combination with FDMs, the mod-
eling process itself is not modified, i.e., assertions are not incorporated into the
FDMs, but only used during the debugging process. Moreover, the model building
process of the program is separated from the modeling of the assertion expres-
sions. The algorithm of using assertions for debugging can be summarized as
follows:

Algorithm 18.1.1
1. Build a model of the program as before, but ignore all assertions.

2. Generate an instrumented version of the program, including all assertion
expressions. The assertions are converted to equivalent Java code and
their result is written to a log file for later use. Note that this step can
be fairly complex for return statements and constructor invocations, as
the expressions have to be duplicated and wrapped in function calls. Pre-
conditions of methods are handled specially, as they are converted into
statements assigning the specified value to the corresponding parameter
variable.

3. Read the log and extract all values computed by the program and all values
resulting from assertion components. For all assertions that are associated
with exactly one variable, compare the computed value with the value of
the assertion expression and set an observation accordingly. The connection
representing the variable occurrence, say vo, is observed as nok(vo) iff the
values are different. For assertions that evaluate to true no observations
are specified, since this is impossible for general expressions. For example,
consider the assertion z > 5. If the assertion evaluates to true it is still
not guaranteed that the value of z is correct.

4. Perform diagnosis as before.
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Assertions are introduced to improve the debugging process without directly
influencing the used FDMs. The advantages of the use of assertions can be
summarized as follows:

e General observations can be specified by the user either directly in the
source code or in a separate assertion file. These observations can be used
during the debugging process to eliminate incorrect diagnosis candidates
and to minimize the amount of user interaction.

e Individual test-cases can be defined, which can then be debugged either
interactively as described in Chapter 17 or off-line without the attendance of
the user. The latter application is a prerequisite for the use of multiple test-
cases in a single debugging session, which is discussed in the next section.

18.2 Using multiple test-cases

In the previous section we describe the use of an assertion language in order
to enhance the debugging potential of an automatic debugging tool. Another
enhancement building on the notion of assertions is the extension of the model-
based theory presented in Chapter 3 to the concurrent application of multiple
sets of observations, i.e., the use of multiple test-cases, in a single diagnosis step.
Theory and implementation of this approach are discussed in this section.

18.2.1 Extending MBD

So far we are dealing with diagnosis problems of the form (SD,COMP,0OBS)
(see Chapter 3), which include a single set of observations, i.e., OBS. In the
context of software debugging we are speaking about a single test-case, which
comprises the observed values (true or false) of various variable occurrences.
It is important to note that so far it is not possible that multiple observations
of the same variable occurrence are incorporated into a diagnosis problem. [43]
propose an approach of extending the standard MBD definitions in a way that
multiple test-cases can be handled simultaneously. Let OS be a set of test-cases.
More formally, we define:

Definition 18.2.1 A collection of test-cases of a given method, i.e., OS, is a
finite set of observations, each of which is itself a finite set of first-order sen-
tences. The triple (SD,COMP,0S) is called a diagnosis problem for the system
(SD,COM P) with multiple test-cases OS.

In analogy to Chapter 3 we are now looking for all sets of components, whose
malfunction explains the incorrect behavior of the system. In other words we
want to compute all diagnoses for a given diagnosis problem with multiple test-
cases. Formally, we write:

Definition 18.2.2 ([43]) A  diagnosis A  for a  diagnosis  system
(SD,COMP) using multiple test-cases OS is a subset of COMP such that
Y oBscos (SD UuOBSU {AB(C)‘C € A} U {ﬁAB(C”C e COMP \ A} % J_)
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Similar to the standard MBD definitions we define a conflict as the dual
concept of a diagnosis. A conflict specifies a set of components, which (given the
model and a set of test-cases) cannot all work as expected at the same time. This
means that at least one component exhibits unexpected behavior in at least one
of the specified test-cases. More formally, we write:

Definition 18.2.3 ([43]) A conflict set for (SD,COMP,0S) is a set CO C
COMP such that ElOBSEOS (SD UOBS U {ﬁAB(C)‘C € CO} ): J_)

We now compute all diagnoses of a given diagnosis system with multiple test-
cases by applying the hitting set algorithm (see [38, 17]) to all conflict sets pro-
duced by all test-cases in OS. In particular, the relationship between diagnoses
and conflicts is stated by the following modification of Theorem 3.1.1:

Theorem 18.2.1 The set A C COMP is a (minimal) diagnosis for
(SD,COMP,0S8) iff A is a (minimal) hitting set for the collection of conflict
sets produced by all test-cases OBS € OS.

We see that the basic technique is still the same with the only difference that
now multiple test-cases are used to compute conflicts. Clearly, the more test-cases
we use, the more conflict sets we can possibly get. In turn, a higher number of
conflicts as input to the hitting set algorithm means a lower number of resulting
single-diagnoses and thus a more accurate diagnosis process.

18.2.2 Computing diagnoses using multiple test-cases

The techniques described in the previous section can easily be incorporated into
an existing debugging tool based on MBD algorithms. This section shows how
diagnoses can be computed, if multiple test-cases are used in combination with
DFDMs and ETFDMs. We also discuss, in which cases an improvement in the
resulting number of diagnoses can be expected by adding new test-cases to the
system.

DFDM: If multiple test-cases are used with a DFDM as the underlying model,
the goal is to compute all diagnoses arising from different observations of the same
system description. In other words, we specify multiple test-cases for a given
method m, but the underlying model DF D M,, does not change. This is, because
a DFDM covers all possible run-time scenarios and can thus not be adapted to

individual test-cases. In particular, Algorithm 18.2.1 can be used to compute all
diagnoses for the diagnosis problem (SD,COMP, OS), it SD = DF DM, holds:

Algorithm 18.2.1
1. Compute the underlying model as SD = DFDM,,.

2. Specify a set of test-cases, i.e., OS, for a given diagnosis system
(SD,COMP).
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void multipleTestcases1(int i, int j)

/*@ t1:(i==0) @*/ /*@ t1:(j==1)@ */
/*@ t2:(i==1) @*/ /*Q t2:(j==0)@ */
{

1. int k = 5;
2. int x = i*k;
3. int y = j*k;

/%@ t1:(x==0) @*/ /*Q t1:(y==3)Q */
/5@ t2:(x==3) @*/ /*Q t2:(y==0)@ */

Figure 18.1: Example method multiple Testcases1 (int i, int j)

3. For each test-case OBS € OS use a theorem prover to compute all conflicts
arising from the diagnosis problem (SD,COMP,OBS), i.e., COSops.

4. Compute the set of all conflicts of all test-cases as COS =
UOBSeos COSops-

5. Apply the standard hitting set algorithm to COS to compute all diagnoses
of (SD,COMP,0S).

From Algorithm 18.2.1 it follows that the same DFDM is used for the com-
putation of conflict sets, even, if multiple test-cases are used. Therefore, an
improvement of the diagnosis process can only be expected, if different inputs of
the same DFDM produce different conflict sets. This behavior is demonstrated
by the following example:

Example 18.2.1 Consider method multiple Testcases1(int i, int j), which is de-
picted in Figure 18.1. Assume that statement 1 contains a bug and should read
int k = 3;. Then depending on the two specified test-cases we get the following
scenarios: (1) When running test-case t1, the value of x is correct, whereas the
value of y is incorrect (5 instead of 3). (2) With test-case t2 the opposite is true.
Variable x is incorrect (should be & instead of 5) and y is correct. Therefore, we
get two different conflict sets for the two program runs, i.e., {sl,s3} for test-
case t1 and {sl,s2} for test-case t2. By applying the hitting set algorithm we
get a single fault location in statement line 1. Obviously, in this case using two
test-cases outperforms the debugging with just one observation.

ETFDM: The situation is somewhat different, when ETFDMs are used as
underlying models. This is, because ETFDMs only model a single program run
of method m and thus directly correspond to a particular test-case. If we now
use multiple test-cases, we also have to use multiple ETFDMs at the same time
in order to compute a maximum amount of conflict sets. Note that we must
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not compute a combined model of all ETFDMs, because by doing so we would
lose information about the individual program runs. Therefore, we rather use
all ETFDMs separately to compute conflict sets, which can then be brought
together during the hitting set algorithm. Algorithm 18.2.2 shows how diagnoses
are computed using multiple test-cases in combination with ETFDMs:

Algorithm 18.2.2
1. Specify a set of test-cases, i.e., OS, for a method m

2. For each test-case OBS € OS compute SDops = ETFDM985. Use a
theorem prover to compute all conflicts arising from the diagnosis problem
(SDOBS, COMP, OBS), i.e., COSOB,S'.

3. Compute the set of all conflicts of all test-cases as COS =
UOBSeos COSoss-

4. Apply the standard hitting set algorithm to COS to compute all diagnoses
of (SD,COMP,0S).

Using Algorithm 18.2.2 different conflicts are produced for different evaluation
traces and their corresponding ETFDMs, which in practice can lead to a smaller
amount of resulting diagnoses. This principle is clarified by the following example:

Example 18.2.2 Consider method multipleTestcases2(int x, int y), which is
depicted in Figure 18.2. This method computes four different functions z =
f(z,y,c) depending on the values of z, y. Note that a single bug is installed
in statement line 2, which should read ¢=3;. The four test-cases specified by the
pre- and post-conditions in Figure 18.2 correspond to four different control flow
paths through multiple Testcases2(int x, int y), in each of which exactly one of the
four of statements in lines 3 to 6 is executed. Fach of the four resulting ETFDMs
contains FDs for statements 2 and 7, but only one of the four tf statements. If
we assume that variable z is observed to be incorrect after the execution of the
whole method, four conflicts are computed: {s2,s3,s7}, {s2,s4,s7}, {s2,s5,s7},
{52, s6,s7}. Applying the hitting set algorithm, we only get two possible minimal
diagnoses, i.e., {s2} and {s7}, instead of 7 in case of the DFDM. This is, because
by using multiple test-cases all four &f statements can be eliminated as possible
culprits.

Finally, we shortly describe how the overall debugging procedure changes, if
the handling of multiple test-cases is incorporated into a debugging system. First,
the debugging interface has to provide means of allowing the user to specify mul-
tiple test-cases for a single method. This can either be done interactively or
more elegantly by the use of an assertion language. The JADE debugger currently
accepts the input of multiple test-cases through the specification of pre- and post-
conditions or assertions as defined in Section 18.1. Second, the whole debugging
process has to be adapted to multiple test-cases. The following two strategies can
be used: (1) Diagnoses are computed off-line, i.e., without any user interaction.
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int multipleTestcases2(int x, int y)

/5@ t1:(x==2) @*/ /*Q t1:(y==2) @*/

/%@ tQ:Ex:: ) @*/ /*@ t2:(y==-2) @*/
/5@ t3:(x==-2) @*/ /*@ t3:(y==2) @*/
/5@ t4:(x==-2) @*/ /*Q t4:(y==-2) @*/

{
int i1,i2,z,c;
z = 0;
¢ = 5; // should be ¢ = 3;
if (z>=0&y>=0){
7z=2*%x*x + y*y + 3*x*y 4+ ¢; }
if (2>=0&y<0){
7z=x*x + T*y*y + -2%x*y + ¢; }
if (z<0&y>=0){
z=x*x + -3*y*y + 6*x*y + ¢; }
if (z<0&y<0){
7z=-4*x*x + y*y + -1*x*y + ¢; }

OGOt W
— — —

S
—_

/*@ t1:(z==27) @*/
/%@ t2:(z==-21) @*/
/%@ t3:(z==-29) @*/

((z==-13) @*/

Figure 18.2: Example method multiple Testcases2(int z, int y)

This works well in combination with the specification of multiple test-cases by
using an assertion language as described above. Nevertheless, exact fault loca-
tions cannot always be found due to a possible lack of observations. (2) If an
interactive debugging strategy is to be employed, it has to be modified to accept
inputs for multiple test-cases in each step. This involves a changed measurement
selection algorithm and new forms of variable queries. Such an approach seems
quite complex and is possibly no longer intuitive for the user. This is, why cur-
rently the JADE debugger only features the use of multiple test-cases in an off-line
mode.
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Chapter 19

The JADE Debugging
Environment

The JADE debugging tool is a prototype debugging environment, which has been
developed as one major activity of the JADE project (see Chapter 4). It is a GUI
tool, which enables its user to model and debug Java systems.

19.1 The JADE system

The whole JADE system is implemented in Smalltalk in the course of the JADE
project. Figure 19.1 shows all modules of the JADE system and their interdepen-
dencies. These modules can shortly be described as follows:

Parser: The JADE parser transforms valid Java programs to an internal parse
tree representation and has to be seen as the base component for all modules
working with the source code structure of an analyzed Java system. The
Java parser accepts the full syntax and semantics of a given Java program
and can thus handle not only small user-defined programs, but also larger
applications including the full range of Java system classes. Currently, the
Java parser understands all source code elements defined in version 2 of the
Java Language Specification [16]. Note that the parser has been modified
in a way that it is able to handle in-line assertions and assertions defined
in special assertion files (see Section 18.1). In both cases all assertions
are stored directly in the internal parse tree and can be accessed by other
modules.

MBD: The model-based diagnosis module provides all data structures necessary
for the creation of system descriptions as defined in Chapter 15. Further-
more, it contains all algorithms, which are needed for the computation of
conflicts and diagnoses including a standard theorem prover. It also pro-
vides a measurement selection algorithm as proposed in Section 17.2.

FDM: The functional dependency modeling module creates ETFDMs and
DFDMs of given Java programs as described in Part II of this work. It

197
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Figure 19.1: JADE modules

builds on the internal parse tree representation, which is returned by the
parser module. It provides a set of hierarchical diagnosis components, which
are directly used for debugging. Currently, the FDM module handles a large
subset of the Java programming language. Source code structures, which
are currently not or only partly handled by the JADE system are:

e Labeled, break and continue statements

e Switch statements

Exception handling (keywords throw and try)
e Synchronization of multiple threads (keyword synchronize)
e Inner classes

e Special cases, such as reflexion and method arrays

VBM: Similarly to the FDM module, the value-based modeling module creates
value-based models building on the internal parse tree representation re-
turned by the parser module. However, the creation of these models and
its application to debugging is out of the scope of this work (see [32]).

Debugger: The debugging module is based on all modules described above and
brings together the software models and concrete diagnosis algorithms as
provided by the MBD module. The exact features of the debugger module
are described in the following sections.

19.2 The JADE debugger

The main constituent of the JADE debugger module is the JADE debugging envi-
ronment. Figure 19.2 shows the main GUI of the JADE debugger after the source
code of class Point (see Figure 5.1) is loaded into the system. The JADE debug-
ging environment is a debugging tool for the efficient localization of source code
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faults in Java programs. It is designed to guide the user through the debugging
process in an optimal fashion as far as information queried from the user and
visualization techniques are concerned. The main features of the JADE debugging
environment in combination with the use of FDMs are:

Parsing: As already mentioned the JADE debugger makes use of the parser mod-
ule. The debugging tool can parse user-defined programs and system classes
and transform them into an internal parse tree representation. Assertion
files (see Section 18.1) can be added to the parse tree.

Modeling: The next step in every debugging procedure is to compute a model
of the Java program. ETFDMs and DFDMs can be created from the
debugging tool via a call to the FDM module. The JADE debugger contains
all algorithms for the computation of the SFDM of the underlying model,
if requested by the user.

Debugging: The main functionality of the JADE debugging tool is to compute
diagnoses of the analyzed Java program. This is done by following the
principles of MBD as discussed in Chapters 3 and 16. In particular, there
are three different diagnosis modes:

1. The computation of all diagnosis candidates of a Java program in the
context of a single test-case (see Chapter 16).

2. The computation of all diagnosis candidates of a Java program in the
context of multiple test-cases (see Section 18.2).

3. The exact localization of a single bug in a Java program in the context
of a single test-case. This is done by employing an interactive and
iterative debugging process, which successively uses more information
and thus eliminates incorrect diagnosis candidates until eventually a
single bug location is identified. This debugging mode is described in
more detail in Chapter 17 and the following section.

Note that an interactive debugging process in combination with multiple
test-cases is not implemented in the JADE debugger. This is mainly, because
it seems to be too complicated for the user to specify variable values be-
longing to different evaluation traces in one debugging run. An efficient and
intuitive algorithm for an interactive debugging strategy involving multiple
test-cases is therefore left to future research projects.

Code instrumentation: The JADE debugging tool makes use of a code instru-
mentation component, which computes evaluation traces. These traces are
used during the whole debugging process in two ways: (1) A trace can be
created by the debugger and then be used in order to create an ETFDM
of the analyzed Java method. If no evaluation trace is created before the
modeling, only DFDMs can be computed. (2) A trace can be used during
a debugging session to display current variable values to the user during
variable queries (see Section 17.3) or to automatically guide the user into
sub-models in case of hierarchical debugging (see Section 17.4). Since the
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Figure 19.2: The JADE debugger main window

latter use of traces is not affecting the modeling process, it can be applied
to both model types, ETFDMs and DFDMs.

Database controller: The JADE debugger provides the option of removing in-
dividual methods from the modeling and debugging scope. These methods
are stored in an internal database and ignored during the modeling process.
This is helpful, if the user wishes to use default models (see Section 12.2)
of certain methods.

19.3 An interactive debugging session

The procedure of an interactive and iterative debugging process, which exactly
locates a single bug in a given Java program, has already been discussed in
Chapter 17 (see Figure 17.1). The following paragraphs show how the fault
localization process is implemented in the JADE debugger in detail. Note that it
is always assumed that a single bug is the source of the incorrect output produced
by the program under consideration. This is, because at certain points during
a debugging session we have to guide the debugger into a statement’s sub-block
or the body of a called method. In case of multiple faults this would pose an
indeterministic problem, which has not yet been tackled by the JADE project. If
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Figure 19.3: Specifying initial observations

we come back to the iterative debugging sequence as depicted in Figure 17.1, we
encounter the following phases:

Specification of observations: As already discussed, diagnoses for a given sys-
tem can only be computed, if observations contradicting the behavior de-
scribed by the logical model are specified. We therefore need a successful
test-case containing at least one variable in an incorrect state. The JADE
debugger supports the following ways of specifying initial variable observa-
tions:

e Normally, at the start of each interactive debugging session the user

is asked to provide initial values for certain variables. The GUI used
by the JADE debugger for querying these observations is depicted in
Figure 19.3. For each variable v the user can either state whether the
value of v is correct or incorrect by entering true (false) or ok (nok)
in the respective target value field or specify the exact target value. In
the latter case the JADE debugger internally compares the target value
with the value computed by the code instrumentation module to gen-
erate observations of the form ok(v) or nok(v). It is further possible to
choose, whether all variable occurrences of the system or only the ones
associated with output connections are displayed. Figure 19.3 shows
the GUT used by the JADE debugger to specify initial observations for
method test() of class Point (see Figure 5.1). Here, the SFDM of
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test() is used as an underlying model and all system connections are
initially put to the user.

e An alternative way of specifying observations is the use of assertions
and pre- and post-conditions (see Section 18.1). The user can either
specify general assertions, i.e., assertions not defined for a particular
test-case, or assertions, which are only valid for a single test-case t.
Whereas the latter are only considered during the debugging of ¢,
general assertions are used in all diagnosis sessions.

Computation of diagnoses: Once observations are specified, diagnoses are

computed. When using the JADE debugger, the user can set the maxi-
mum size and maximum number of diagnoses to be produced. The maxi-
mum diagnosis size determines the maximum amount of statements in each
diagnosis candidate. If only single-diagnoses are to be computed, this pa-
rameter should be set to one. The maximum number of diagnoses specifies
how many diagnoses are computed. Both parameters are used to limit the
maximum computation time of the diagnosis algorithms.

Measurement selection: The JADE system uses exactly the measurement se-

lection algorithm proposed in Section 17.2. In case of multiple connections
having the same entropy the heuristics discussed in Section 17.2 is used to
distinguish connections linked to components within at least one diagnosis
from other connections. If two connections linked to components within
at least one diagnosis have the same entropy, one connection is randomly
chosen. Figure 19.4 (a) shows the results of a measurement selection pro-
cess during the debugging of method test(). All system connections, whose
value has not yet been specified, are displayed with the top connection show-
ing the highest entropy value. The exact entropy of the currently marked
connection is presented in the entropy field on the GUT’s right-hand side.

Variable query: Once an optimum measurement point within the system de-

scription is selected the user has to provide values for that measurement
point. In our case a measurement point is a system connection, which can
non-ambiguously be associated with a particular variable occurrence of the
debugged method. Therefore, the user has to state whether the value of the
variable occurrence is correct or not. Furthermore, the user has the option
to reject a proposed measurement point and evaluate the next best variable
occurrence. This can be very helpful in cases, where the user has a priori
expectations about the possible location of a bug. Figure 19.4 (b) shows
the GUI used by the JADE debugger for a single variable query. The buttons
Previous and Next can be used to select the different measurement points
in an ordered list starting with the variable occurrence with the highest
entropy. Note that in such a way only one variable value can be specified
in each step of the debugging procedure. Alternative GUIs similar to the
one used to specify initial observations (see Figure 19.3) could be used to
allow for the evaluation of multiple variable occurrences in one step.
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Figure 19.4: Selection and evaluation of a measurement point

Further computations: The new observations read in through the variable
query GUI are now expressed in logical sentences and added to the knowl-
edge base. Then new diagnoses are computed by the JADE debugger. This
process can be continued until eventually only one diagnosis is left, which
explains the misbehavior of the analyzed method. In this case the bug is
located at statement level. The debugging process can now either be termi-
nated by the user or guided into a sub-block or sub-expression of the buggy
statement. The latter approach is possible, because all used models are
hierarchical models. The exact procedure of hierarchical debugging with
the JADE debugger is described in Section 19.4.

19.4 Hierarchical debugging

The JADE debugger makes use of a hierarchical debugging strategy. Once a single
bug is determined at statement level, the debugging process can be guided into
a sub-block of the buggy statement (in case of loop and selection statements)
or into a called method (in case of a method call). In the following we shortly
describe how the JADE debugger handles hierarchical debugging in the case of if
statements, while loops, and method calls. Note that other selection and loop
statements can be handled very similarly to if and while statements, respec-
tively. If a fault is located in a loop or selection statement, it is possible that
the statement is incorrect, altogether. For example, an if statement could be
changed to a while statement. However, in this case hierarchical debugging is
not feasible. In the following paragraphs we assume that the type of the state-
ment containing a bug is correct and the fault can therefore be found in one of
its sub-structures.

If statements: If a fault is located within an if statement, we know that either
the statement’s condition or one of its branches have to be buggy. The JADE
debugger therefore has to guide the debugging process into one of the statement’s
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Figure 19.5: Debugging if statements

sub-structures depending on information provided by the user. In particular, the
following two approaches are used in the JADE debugging tool:

e If no run-time information is used during the debugging session, the user
has three options: (1) State that the bug is located in the condition, (2)
debug the then-branch, or (3) debug the else-branch. Whereas the first case
leads to a new debugging process at expression level, which is currently not
implemented in the JADE system, the latter two cases start a new interactive
debugging process as depicted in Figure 17.1 at sub-block level. Since no
evaluation trace is used, the user gets no feedback about the condition’s
evaluation result. Thus, it seems doubtable whether the user can provide
enough information to properly continue the debugging process.

e If an evaluation trace is available, the branch executed at run-time can
be determined automatically. Therefore, in this case the user only has
two options: (1) Mark the statement’s condition as buggy or (2) lead the
debugging process into the branch executed at run-time. In particular, the
evaluation result of the condition is displayed to the user, who has to decide,
whether the fault lies within the condition (in case of an incorrect evaluation
value) or in one of the statements of the branch executed at run-time. This
approach is superior to the first one, because the user has less options with
a higher amount of information. Figure 19.5 shows the GUI used by the
JADE debugger to debug incorrect if statements. The GUI shows the if
statement in line 1 of method if1(int i) (see Figure 10.1), which has been
detected as buggy with an input value of 4+ = 1. Note that all run-time
variable changes of statement 1 are displayed in order to support the user
in his decision making.
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While statements: If a fault is located in a while loop, the strategy is similar
to the debugging of incorrect selection statements. We know that the fault can
either be found in the loop condition or its body. In the latter case the user has
to provide enough information to continue the debugging process at sub-block
level. The following two approaches are implemented in the JADE debugging
environment:

e If no run-time information is used during the debugging process, the user
has to decide whether the fault can be found in the loop condition or to
continue debugging in the loop body. Again, this seems to be very difficult,
if the evaluation value of the condition is unknown. Note that in this case
the user cannot specify a particular iteration of the loop, in which the fault
gets observable for the first time. This is due to the following reasons: If
a DFDM is used for debugging, the sub-models for all possible iterations
are the same. The usage of ETFDMs, on the other hand, is not feasible
without evaluation traces.

e If an evaluation trace is used, the user has to do the following: (1) Step
through the execution of the loop iteration by iteration and find the first
iteration, in which the bug becomes observable. (2) Specify, whether the
bug appears in the loop condition or the loop body. In the latter case
the debugging process is continued in the body. Note that the selection
of the first incorrect iteration has to be done for the following reasons: If
a DFDM is used, the body models for all iterations are the same, but
the correct sub-trace of the used evaluation trace has to be determined
for further debugging. If an ETFDM is used, the exact iteration has to
be known to determine the correct sub-model, since there exist different
models for different loop iterations. Furthermore, the correct sub-trace has
to be computed as in the case of DFDMs. Figure 19.6 shows the GUI
used by the JADE debugger to debug incorrect while statements. Here,
method whilel (int i) (see Figure 10.3) is debugged with the evaluation trace
computed for an input value of + = 1. Once the while loop in statement 5
is found to be buggy, the user can step through the variable environment
changes of the loop condition and its body in all iterations performed at
run-time. This can be done by pressing one of the buttons in the upper list
(First, Previous, Next, or Last). The buttons in the lower button list
can be used to direct the debugging process to the loop condition or the
loop body.

Note that incorrect do and for loops can be debugged in the same way.
The JADE debugger uses exactly the same GUIs for these loops after the loop
transformation algorithms described in Section 10.4.5 have been applied.

Method calls: When a method call is found to be the culprit of the misbehavior
of a given system, two cases have to be distinguished:

1. The bug lies in the calling method. This is the case, if (1) the scope or
part of the scope of the method call are incorrect, (2) one or more of the
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method call’s arguments are incorrect, or (3) the wrong method is called.
The latter case includes all scenarios, where an incorrect method signature
can be found in the source code, e.g., an incorrect method name, a wrong
number of arguments, etc... Since in all three cases the bug is located in
the calling method, no further debugging in the called method has to be
performed. Moreover, the method call in the calling method has to be
changed in order to correct the fault.

2. The bug lies in the called method. This is the case, if the called method re-
turns an incorrect value or exhibits incorrect behavior through side-effects.
In this case the called method has to be debugged by leading the fault local-
ization process into the faulty method. In the called method the debugging
process works exactly like in the calling method. The initial specification
of output observations in the called method’s system description can be
obtained automatically, because all known values of output connections of
the buggy method call components can directly be used inside the called
method.

The JADE debugger currently only features statement level debugging, which
introduces a new problem, when method calls to buggy methods appear at ex-
pression level. At the moment the JADE tool displays the buggy statement in
the calling method and lets the user select any sub-expression of this statement
for further debugging. If the user manually selects a method call for further de-
bugging, the debugging process can automatically be led into the called method.
Nevertheless, inside the called method all output connections have also to be set
manually, because no information about correct or incorrect variable occurrences
at expression level exists in the calling method. Figure 19.7 shows the GUI, which
is used by the JADE system to display a fault located in an assignment statement.
All sub-expressions of the variable assignment’s right-hand side are listed and can
be selected by the user. The options left to the user are the following: (1) Stop
the current debugging session (End), (2) go back to the diagnosis at the outer
hierarchy level (Backtrack), or (3) debug another method, if a method call is
selected in the sub-expression list box (Debug Method).

In the following chapters we give some results obtained from experiments with
the JADE debugging environment. We describe the current JADE test suite and
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discuss the outcomes of all tests carried out.



Chapter 20

Empirical Results

In this chapter we evaluate the performance of the JADE debugging environment
and discuss the advantages and drawbacks of the approaches described in previous
chapters of this work. In particular, we test the following properties of the JADE
system:

Diagnosis performance: First, we examine the ability of the JADE tool to re-
duce the search space of bug candidates for a faulty Java method. This is
done by creating a system description (see Chapter 15) of the method under
consideration and computing all diagnoses as described in Chapter 16. In
other words, we test what parts of a Java method can automatically be
excluded from the fault localization process in a single diagnosis step and
what parts of the search space remain for further debugging actions. Em-
pirical results of the JADE environment and some theoretical considerations
about the diagnosis performance are part of this chapter.

Debugging performance: In a second step we evaluate the debugging perfor-
mance of the JADE debugger (see Chapter 19). This includes empirical re-
sults of debugging sessions, which demonstrate in how many steps and with
how much user interaction a fault in a Java method is exactly located. The
debugging performance builds on the diagnosis performance, but also takes
into consideration issues arising in the context of hierarchical debugging,
variable queries, and measurement selection (see Chapter 17). The main
goal of these tests is to show, how well the JADE debugging environment
succeeds in supporting the user during a whole debugging session.

20.1 Evaluating the diagnosis performance

In this section we test the ability of the JADE debugging environment to compute
bug candidates for a single successful test-case. In particular, we take a Java
method and install a single fault in a way that all pre-conditions for the diag-
nosis process are still met (see Section 5.2). We then specify a set of test-cases
for the given method and run the method on all test-cases. As a consequence,
the set of test-cases can be divided into the following two classes: (1) Test-cases,

209
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where an output error can be observed, i.e., positive or successful test-cases, and
(2) test-cases, where no misbehavior of the tested method can be identified, i.e.,
negative or unsuccessful test-cases. Since the installed fault gets observable as a
failure or an error only in the case of successful test-cases, these test-cases are
used during the diagnosis process. We use a single successful test-case together
with its evaluation trace (in case of ETFDMs) to compute all diagnoses, i.e.,
all statements possibly containing the bug. This section contains some theoret-
ical thoughts and empirical results clarifying the performance of our diagnosis
approach.

20.1.1 General remarks

As already said in Part II of this work, all used models represent the analyzed
Java system at statement level. Therefore, in this section we compute diagnoses
at statement level, too. To be more precise, we compute all top-level statements
of a given method m, which possibly include the installed fault. However, we
do not consider statements or expressions nested in sub-blocks, such as branches
of selection statements or bodies of loops. In contrast to the debugging process,
where we perform a hierarchical fault localization process, here we are only inter-
ested in the percentage of all top-level statements, which can be eliminated from
the debugging scope by performing a single diagnosis step. Moreover, during all
tests we only consider single-diagnoses, i.e., diagnoses containing one statement.
As we install single faults into the analyzed methods single-diagnoses exist for all
successful test-cases.

Clearly, when computing the set of all single-diagnoses D at statement level
for a given block b of length n we expect D to contain at least one possible
culprit and in the worst case scenario all n statements of block b. More formally,
1 < |D| < n holds. Ideally, we only get one single-diagnosis, in which case the
fault localization process can be terminated after the diagnosis process. However,
due to the complex FD structure of most methods we expect |D| to be greater
than one in most cases. The following sections give some empirical results and
theoretical considerations about the amount of single-diagnoses computed for
incorrect Java methods.

20.1.2 Empirical diagnosis results

The following paragraphs discuss various test series carried out with different
Java systems. The source code of all tested systems including the exact specifi-
cation of all used test-cases is not depicted in this work, but can be downloaded
from the JADE web-site!. In all cases the models described in Part II of this work
are used to create system descriptions of the tested methods. All single diagnoses
are then computed by setting the maximum number of diagnoses to 100 and the
maximum size of diagnoses to 1 (see Section 19.3). The results of all test series
are given in Tables 20.2 to 20.7. The meaning of the values stated in each column
of these tables is described in Table 20.1. In the following paragraphs, we discuss

Thttp:/ /www.dbai.tuwien.ac.at /proj/Jade/javaPrograms/
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#: Number of test.

Method:  Signature of the tested method.

F: Number of single fault installed into the method.

TC: Number of test-case used during the test.

S: Number of statements of the method.

Dy: Number of diagnoses computed when using the method’s DFDM. This number is equal to the

number of statements, which are left as possible culprits after the diagnosis process. Note that
in most tests the number of diagnoses is the same for DFDMs and simplified DFDMs. In test
cases where this is not the case the number of diagnoses obtained by using the full version of the
DFDM is given in brackets.

D1(%): Percentage of all statements, which possibly contain the fault after the diagnosis process has been
performed using a DFDM, i.e., D1(%) = D1/S.
Day: Number of diagnoses computed when using the method’s ETFDM. Note that currently the JADE

system does not support diagnosis using full versions of the ETFDM. Therefore, in all cases a
simplified ETFDM is used.

D2 (%): Percentage of all statements, which possibly contain the fault after the diagnosis process has been
performed using a ETFDM, i.e., D2>(%) = D2/S.

Table 20.1: Columns of Tables 20.2 to 20.7

the results of each test series in more detail. Finally, we look at some statistics
of all performed tests and discuss the implications of the conducted tests.

Test series 1 (Adder): The first test series uses an implementation of a bi-
nary full adder as the target Java system. This implementation includes only
method calls and variable assignments, but no selection and loop statements.
Furthermore, no explicit object-oriented structures, such as multiple objects, in-
heritance, or polymorphism are used. Method adder(int a, int b, int c) is tested
with 8 different single faults and multiple test-cases for each fault, leading to an
overall number of 14 tests performed with successful test-cases.

On average 8.14 single-diagnoses are computed. This means that on average
8.14 statements out of a total of 17 have to be considered as possible culprits of
the installed single fault, which amounts to 48% of the method’s source code. In
other words, 8.86 statements can be eliminated from the fault localization process
by showing that their behavior does not account for the misbehavior spotted in
combination with the used test-case. This amounts to 52% of the method’s source
code.

Note that the results are exactly the same regardless of the underlying model.
This can be explained as follows: Since adder(int a, int b, int c) contains no
selection or loop statements, there exists only a single control flow path through
the method. As a consequence, the method’s DFDM and ETFDM contain ex-
actly the same FDs. Using the simplified version of either the DFDM or ETFDM
does not affect the results either. This is, because no objects are created and no
variables of reference type are used in this test series.

The main reason for the high number of statements eliminated in a single
diagnosis process is the fact that adder(int a, int b, int ¢) computes the values
of two different variables in two independent source code parts. This can also be
spotted in the underlying FDMs, which include two independent FD chains. As
each single fault only influences one of these FD chains, all statements associated
with FDs in the other chain can be eliminated.
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Method [ FITC] S [ D1 [ D1i(%) | D2 [ D2(%) |
adder(int a, int b, int c) | f1 t1 17 5
adder(int a, int b, int ¢c) | f1 to 17 5
adder(int a, int b, int c) | fa t1 17 5
adder(int a, int b, int c) | fo to 17 5
adder(int a, int b, int c) | fo ts 17 5
adder(int a, int b, int c) | f3 | t 17 10
adder(int a, int b, int c) | fa | to 17 10
adder(int a, int b, int c) | fa t1 17 10 59 10 59
10
10
10
10
9

QDOO\]G)U‘»&OJ[\D»—‘:H:

adder(int a, int b, int c) | fa to 17
10 | adder(int a, int b, int ¢) | fs t1 17
11 | adder(int a, int b, int c) | f5 | t2 17
12 | adder(int a, int b, int ¢) | fo | t1 17

13 | adder(int a, int b, int ¢) | fr t1 17 53 9 53
14 | adder(int a, int b, int ¢) | fs t1 17 10 59 10 59
> 238 114 48 114 48
%] 17 8.14 48 8.14 48

Table 20.2: Diagnosis results of test series Adder

In general this can be explained as follows: Let us look at the digraph of the
internal model of a given method’s top-level block. Examples of digraphs are
depicted in Figures 6.4 and 6.5. We distinguish the following two cases:

1. Assume that all nodes of the digraph are connected with each other ei-
ther directly or via a finite number of intermediate nodes. With a single
(negative) observation at the method’s output, we then get all statements
associated with one of the variable occurrences in the digraph as bug candi-
dates. By increasing the number of negative observations at the method’s
output, we also increase the number of conflicts computed during the diag-
nosis process and thus reduce the number of resulting diagnoses.

2. Assume, on the other hand, that the digraph contains sub-graphs, which are
not connected with each other. Then a single fault can only be observable in
one of these sub-graphs and the maximum amount of diagnoses equals the
number of statements associated with the variable occurrences in this sub-
graph. All statements, which are associated with variable occurrences ap-
pearing in other sub-graphs only, are eliminated from the debugging scope
during the diagnosis process.

Test series 2 (IfTest): The second test series evaluates the performance of
the JADE system in the context of if statements. Ten tests with 5 methods and
various installed faults and test-cases are performed. The results of test series 2
are given in Table 20.3.

When using DFDMs as the underlying models on average 37% of the methods’
statements can be eliminated leaving 63% for further debugging. When applying
the full DFDM instead of its simplified version results can be improved in the
case of method ifTest/(int a, int b, int ¢) and ifTest5(int a, int b, int c), because
these methods use objects and references. The more complex model structure
and distinction between locations and references accounts for this improvement.
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[ # | Method [FITC] ST Di [ Di(%) [ D2 D2(%) |
15 | fTesti(int a, int b) it |4 3 75 3 75
16 | ifTest1(int a, int b) fo| t2 | 4 3 75 2 50
17 | ifTest2(int a, int b) fi| t2 | 3 2 67 2 67
18 | ifTest2(int a, int b) 2|t 3 1 33 1 33
19 | ifTest2(int a, int b) fo to 3 1 33 1 33
20 | ifTest3(int a, int b) fi| 2 | 3 2 67 2 67
21 | ifTest3(int a, int b) fa | t2 3 1 33 1 33
22 | ifTestf(int a, int b, intc) | f1 | t2 | 4 3(2) 75 (50) | 3 75
23 | ifTest{(int a, int b, intc) | fo | t1 | 4 3(2) 75 (50) | 2 50
24 | ifTest5(int a, int b, intc) | f1 | t1 | 4 3(2) 75 (50) | 3 75
> 35 | 22(19) | 63 (54) | 20 57
o 3.5 | 2.2(1.9) | 63(54) | 2.0 57

Table 20.3: Diagnosis results of test series IfTest

In case of ETFDMs results can also be improved to a total of 43% of all state-
ments being removed by the diagnosis component leaving only 57% for further
debugging. The advantages of ETFDMs in the context of selection statements
are discussed in Section 10.3 in detail and can shortly be summarized as follows:

e Whereas in the computation of the selection statement’s FDM DFDMs
make use of all summarized branch models, ETFDMs only take into consid-
eration the summarized model of the branch executed at run-time. There-
fore, ETFDMs only incorporate FDs produced in one branch, which leads
to a smaller amount of FDs in the FDM of the whole selection statement.

e In case of the DF DM additional self dependencies are introduced in certain
cases (see Section 10.3.2). This is not necessary in the case of ETFDMs,
leading, again, to fewer FDs.

Note that similar results can be expected for switch statements and condi-
tional expressions of the form expr, 7 expry : exprs. Further tests with the JADE
systems will have to verify that.

Test series 3 (WhileTest): The next test series deals with the evaluation of
methods containing while statements. 10 tests are carried out with two meth-
ods and various fault/test-case pairs. The results of all tests are depicted in
Table 20.4.

The results are similar to test series IfTest. In particular, when using DFDMs
41% of the methods’ statements can be eliminated leaving 59% for further debug-
ging. Again, ETFDMs outperform DFDMs by eliminating 53% of all statements
leaving only 47% for further analysis. The main advantages of ETFDMs in com-
parison to DFDMs in the context of the modeling of loop statements are discussed
in Section 10.4 in detail. They can be summarized as follows:

e ETFDMs use different models of a loop statement’s body for different iter-
ations. DFDMs on the other hand incorporate the FDs from all iterations
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[ [ Wiethod [FITC[ 5 [ D [ DA ] Ds | Da00) ]
25 | whileTesti(int i) | f1 ta 7 6 86 3 43
26 | whileTestl(int i) | fo ta 7 6 86 3 43
27 | whileTestl(int i) | fs ta 7 5 71 3 43
28 | whileTest2(int i) | f1 t1 5 2 40 1 20
29 | whileTest2(int i) | f1 to 5 2 40 2 40
30 | whileTest2(int i) | f1 | ts 5 2 40 2 40
31 | whileTest2(int 1) | f2 | t2 5 2 40 x(5) | x(100)
32 | whileTest2(int i) | f2 | t3 5 2 40 2 40
33 | whileTest2(int i) | fs | t2 5 3 60 2 40
34 | whileTest2(int i) | f3 | t3 5 3 60 2 40
> 56 33 59 25 47
%} 5.6 | 3.3 59 2.5 47

Table 20.4: Diagnosis results of test series WhileTest

into a single model. The latter model contains more FDs than the indi-
vidual models used by the ETFDM modeling component, if different itera-
tions produce different body-models, e.g., in the case of selection statements
nested in the loop body.

e DFDMs accumulate the summarized body-models of all iterations, which
leads to a monotonic increasing amount of FDs at the loop’s top-level.
ETFDMs on the other hand combine the individual summarized body-
models in such a way that FDs, which are valid only for previous iterations,
are eliminated in the currently modeled iteration (see Section 10.4).

Since no methods used in this test series make use of objects or reference
variables, the use of full models does not change the results in Table 20.4. Note
that similar results can be expected for methods including do and for statements,
because of the similar modeling algorithms.

The computation of all single-diagnoses for method whileTest2(int i) with
fault fy and test-case to, i.e., test 31, with an ETFDM highlights an interesting
drawback of ETFDMs in comparison to DFDMs. Here no diagnoses are computed
by the JADE system, although 2 represents a successful test-case. The reason
for this behavior and possible approaches to deal with this type of problems are
discussed in Section 21.1.2. Since no diagnoses are eliminated due to this problem,
we use the total amount of statements in whileTest2(int i), i.e., 5, instead of 0
for further statistical computations. Clearly, in this case 100% of the source code
remain for further debugging.

Test series 4 (Numeric): Another test series is carried out with two numeric
test methods computing the difference quotient and integral of a given method.
Table 20.5 shows all results of test series Numeric.

Method differentiate(double z, double diff) has only one possible control flow
path and a single FD chain in both model types. Therefore, in this case no diag-
noses can be eliminated using either the DFDM or the ETFDM. As a consequence
100% of the source code remain as bug candidates.

The same is true for method integrate(double a, double b, int n), although
this method includes a while statement. Note that in tests 39, 40, and 41 no
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[ # | Method [ FITC] S [ D1 [ Di(%) | D2 [ Da(%) |
35 | differentiate(double z, double diff) f1 to 4 4 100 4 100
36 | differentiate(double z, double diff) f1 ts 4 4 100 4 100
37 | differentiate(double z, double diff) | f2 to 4 4 100 4 100
38 | differentiate(double z, double diff) fo ts 4 4 100 4 100
39 | integrate(double a, double b, intn) | f1 | t 5 5 100 x(5) | x(100)
40 | integrate(double a, double b, int n) | f1 t2 5 5 100 x(5) | x(100)
41 | integrate(double a, double b, int n) | fi t3 5 5 100 x(5) | x(100)
42 | integrate(double a, double b, int n) | fo t1 5 5 100 5 100
43 | integrate(double a, double b, int n) | fo t3 5 5 100 5 100
> 41 41 100 41 100
%] 4.6 | 4.6 100 4.6 100

Table 20.5: Diagnosis results of of series Numeric

[ # [ Method | FITC ] S [ D1 [ Di(%) [ D2 | D2(%) |
44 | trafficLightTest(int i) | f1 ts 5 3 60 3 60
45 | trafficLightTest(int i) | fo t2 5 3 60 3 60
46 | trafficLightTest(int i) | fo ts 5 3 60 3 60
47 | trafficLightTest(int i) | fo ta 5 3 60 3 60
D 20 [ 12 | 60 | 12 | 60
2] 5 3 60 3 60

Table 20.6: Diagnosis results of test series TrafficLight

diagnoses can be computed, if the ETFDM is used as underlying model. The
reasons for this behavior are presented in Section 21.1.2.

Test series 5 ( Trafficlight): Test series Trafficlight implements a small traffic
light simulation including objects, loops, and selection statements. The results
of all tests carried out with method trafficLightTest(int i) are presented in Ta-
ble 20.6.

In all test-cases 40% of the statements can be eliminated as bug candidates
leaving 60% of the source code as possible bug locations. Interestingly, no im-
provement can be obtained by using ETFDMs, despite the appearance of loops
and if statements in the tested method’s body. This can be explained as follows:
(1) The loop body is executed at least once in all test-cases. This is, because no
successful test-case can be found, in which the loop body is never executed. As a
consequence, the loop statement cannot be eliminated from the bug candidates
in any of the test-cases. (2) The nested if statements all produce the same FDs.
Therefore, the ETFDM cannot optimize the resulting model.

Using the full DFDM instead of its simplified version also results in no im-
provements. This is due to the fact that all statements of the tested method
depend on the same instance field of the created traffic light object. Keeping this
field separate from other locations and references does not improve diagnosis.

Test series 6 (Library): The last test series implements a fully object-
oriented virtual library. Authors and books are created and stored in a library
object by the use of a linked list. The tested method then computes the number
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3

Method | F | TC | S | D1 | Dl(%
48 | library() | f1 | @ 26 21 (19 81 (73
49 | library() | f2 | t 26 20 (18 77 (69

) [ D2 | D2(%) ]
) | 7 oo
50 | library() | f3 | t | 26 | 21(18) | 81(69) | 21 81
) )
)
)
)

51 | library() | fa | t1 26 20 (17 77 (65

52 | tibrary() | fs | 1 | 26 | 21(18) | 81(69) | 20 77
3 T30 | 103 (90) | 79 (69) | 100 77
@ 26 | 20.6 (18) | 79 (69) | 20 77

Table 20.7: Diagnosis results of test series Library

#: Number of test series.

Test series:  Name of test series.

#TC: Total number of test-cases in test series.

aS: Average number of statements of the methods in the test series.

@Dy Average number of diagnoses when using DFDMs of all methods in the test series. Values

in brackets stand for results obtained from tests with full models instead of simplified ones.
These values are only specified, if different from the ones obtained by using simplified models.
ZDl(%): ZDl(%) = ZDl/QS.
@ Da: Average number of diagnoses when using simplified ETFDMs of all methods in the test series.
@D2(%): @D (%) = @D2/BS.

Table 20.8: Columns of Table 20.9

of books published by the author, who has published most books out of all au-
thors, whose books are currently in the library. The results of all tests performed
with method library() are depicted in Table 20.7.

When using a DFDM as the underlying model only 21% of the source code
can be eliminated, because of the rather complex object structure in method
library(). This complex structure is due to a high number of created objects,
which are all referenced by each other mainly by the use of a linked list.

If the full DFDM is used instead of its simplified version, the diagnosis per-
formance can be improved quite notably to 31% of all statements being removed
from the debugging focus. In this case this is clearly due to the more detailed
representation of the complex object structure. Statements influencing only in-
stance fields, which are not used in the computation of the incorrect output values
can be eliminated, which is not the case, if object structures are used instead of
locations and references (see Chapter 14).

The use of an ETFDM shows a slight improvement in comparison with the
DFDM, which is probably due to the while loop in method library(). In this test
series the combination of full models separating locations from references and
the advantages of ETFDMs looks especially promising. Further tests with future
versions of the JADE system could verify this assumption.

20.1.3 Discussion

Table 20.9 summarizes the average diagnosis results of all test series carried out.
Table 20.8 describes the meaning of the columns of Table 20.9. The main findings
of the performed tests can be summarized as follows:

e If a DFDM is used to compute all single-diagnoses of a given Java method,
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[ # [ Test series | #TC | @5 | @D [ @D1(%) | @D2 | @D>(%) |

I | Adder 4 17 8.14 48 8.14 48
2 | IfTest 10 | 3.5 2.2 (1.9) 63 (54) 2.0 57
3 | WhileTest 10 | 5.6 3.3 59 2.5 47
4 Numeric 9 4.6 4.6 100 4.6 100
5 Trafficlight 4 5 3 60 3 60
6 | Library 5 26 20.6 (18) 79 (69) 20 77
> 52 | 520 | 325.4 (309.4) 3124

@ 1 10 6.3 (5.9) 63 (59) 6 60

Table 20.9: Average diagnosis results of all test series

the amount of statements possibly including a bug can be reduced in most
cases. Therefore, the search space for additional debugging steps can be
limited quite efficiently. The tests described in this section indicate that
approximately 37% of a method’s statements can be eliminated leaving
63% as possible culprits of a given bug. Whereas in some cases more than
50% of the source code can be eliminated due to multiple independent FD
chains (see test series Adder), in other cases all statements remain in the
debugging focus, because of a complex FD structure, where all statements
lie in the same FD chain (see test series Numeric). It can be expected that
larger methods, i.e., methods with more statements in their top-level block,
intensify this behavior by either eliminating large parts of their source code
or resulting in nearly all their statements as bug candidates. However, it
has to be noted that the diagnosis performance of the JADE debugger on
its own is not sufficient to exactly localize source code bugs at a method’s
top-level.

If ETFDMs are used instead of DFDMs results can be improved slightly. In
particular, with ETFDMs 40% of a method’s statements can be eliminated
leaving only 60% of the source code as possible culprits. The improvement
is mainly due to the more exact modeling of selection and loop statements,
which results in fewer FDs and thus less diagnoses being created. Although
ETFDMs improve the results quite significantly in some test series, this
approach is still not sufficient for an exact fault localization process.

If DFDMs are used in their full versions instead of their simplified versions,
a further improvement is obtained in cases, where multiple objects and ref-
erences are used. This is mainly due to the more detailed representation
of the full DFDM, which keeps locations and variables of reference type
separate (see Chapter 8). In particular, in all tests an average of 41% in-
stead of 37% of all statements can be removed from the debugging focus.
Unfortunately, the JADE debugging environment currently does not support
the use of full ETFDMs. In future releases such a feature promises another
improvement by combining the advantages of ETFDMs and full models.
This combination seems possible, because both techniques constitute inde-
pendent approaches.
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Note that the used test methods are all small to medium-size Java methods.
This has the following two reasons: (1) Most methods are designed to explicitly
test and demonstrate certain modeling and diagnosis features of the JADE system,
e.g., selection statements, loops, etc... (2) Larger applications, which include
more statements at their top-levels can hardly be found, since most methods
contain only a few loop or selection statements at their top-level block. The
main difference is that larger methods contain more nested blocks, which can
only be tested in the context of hierarchical debugging during concrete debugging
sessions. Nevertheless, additional test series should be performed in the future
to further evaluate and improve the diagnosis ability of the JADE debugger. The
focus of these test series should be on one of the following issues:

e Tests with longer and more sophisticated methods. This also includes dif-
ferent source code structures and new classes of installed faults.

e Tests with more observations. So far only observations for output con-
nections of the system descriptions have been specified. Additional obser-
vations, possibly specified by the user through the use of assertions, are
expected to improve diagnosis results.

e Tests with methods, in which multiple faults are installed. These meth-
ods would then have to be diagnosed by allowing the diagnosis engine to
compute larger diagnoses.

e Tests with the concurrent application of multiple test-cases (see Sec-
tion 18.2).

As shown in this section the application of MBD techniques to compute bug
candidates for buggy Java systems cannot only be put on a firm theoretical basis,
but also provides a means of notably reducing the amount of statements possibly
including a given fault. Nevertheless, it is obvious from the results presented in
this section that the computation of diagnoses on its own cannot limit the search
space in such a way that exact bug locations can be determined automatically.
Furthermore, a single diagnosis step does not provide sufficient information for
the user to non-ambiguously identify a bug location in an interactive procedure.
Therefore, the computation of diagnoses can only be seen as the base technique
for two more general approaches: (1) The computation of diagnoses is one element
of an iterative and interactive debugging environment as described in Chapters 17
and 19. The following sections evaluate the performance of the JADE debugger
over the whole debugging process and show how efficient it can support a user
during a complete fault localization process. (2) The diagnosis process itself can
be lifted to a more abstract level in the course of a debugging process. This
means that building on modeling techniques described in this work models for
whole methods or even modules can be created and used to locate bugs at these
higher levels in a system architecture. The exact fault localization at statement
or expression level can then be done by using more detailed models, such as
value-based models. Section 21.2.2 includes a more detailed discussion about
this possible use of FDMs.
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20.2 Evaluating the debugging performance

In contrast to the previous section this section is dedicated to the evaluation of
the performance of the JADE debugging environment during the whole debugging
process, which is depicted in Figure 17.1. As a consequence, we are interested
in the debugger’s ability to support a user during the whole debugging process
until eventually the exact location of a given bug is found. In particular, this
no longer includes only the diagnosis process, but also an evaluation of the used
measurement selection algorithm, variable queries, and support for the handling
of hierarchical debugging steps, for example, in the case of selection and loop
statements.

20.2.1 General remarks

In the course of a debugging session the programmer normally brings in a lot
of a priori knowledge about the type and location of a certain bug. Apart from
knowledge about the intended data and control flow of the method in question,
he might have some additional information. Examples of such an information
are the programmer’s experience with fault probabilities of various statements
and expressions or intuitive feelings about the correctness of certain parts of his
work. In order to test the JADE debugger it is assumed that no knowledge about
the type and the location of the fault is available apart from the specification of
the method’s in/out behavior and its internal data and control flow. One way to
incorporate a priori knowledge into the debugging process is the use of assertions,
which is discussed in Section 18.1. Other approaches, such as fault probabilities
of statements and expressions or the definition of different fault modes could be
introduced into future versions of the JADE system.

In analogy to the evaluation of the system’s diagnosis performance, we further
assume that at the moment only test methods with single faults are considered
and during the diagnosis steps only single-diagnoses are computed. As before,
debugging is performed only at statement level. In contrast to the diagnosis pro-
cess, the exact location of a given bug is detected not only in a method’s top-level
block, but also in sub-blocks until a fault location has non-ambiguously been iden-
tified. The debugging of expressions (mainly to identify faults in method calls in
order to restart the automatic process in the called method) has to be conducted
manually as described in Section 19.4. Applying model-based techniques to the
debugging at expression level might be implemented in future versions of the
JADE debugger.

Ideally, an evaluation of a debugging tool should be done by an empirical
experiment, which involves the formation of two groups of programmers. Each
group includes programmers from different backgrounds and with different pro-
gramming experiences. The overall skills and experiences of all participants of
the experiment have to be distributed evenly across both groups in order to al-
low for comparisons between the two groups. The members of both groups are
then confronted with Java systems exhibiting incorrect behavior. Note that in
such a way no a priori knowledge about the possible locations and natures of
the individual faults are available to the programmers. Whereas the members
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of one group then have to locate the faults in all test methods by the use of
traditional debugging tools, the participants in the other group can make use
of the JADE debugging tool. If we assume that both groups are equally familiar
with their respective tool and that both tools have comparable learning times,
the average times needed by both groups for exactly the same fault localization
tasks would provide a good measurement of the performance of the JADE tool in
relation to existing standard debugging environments. However, this approach is
a very complex and time-consuming task, which not only relies on a stable and
complete version of the JADE debugger, but also takes up a lot of resources, espe-
cially as far as human work force and organizational constraints are considered.
Therefore, in this section we make use of a simplified evaluation process of the
JADE debugging environment and leave the approach described above to future
research.

The approach pursued in this work contrasts the JADE debugging environment
with traditional debugging tools by comparing the amount of user interactions
needed by both systems to exactly locate a single fault in a test method. If we
look at traditional debuggers we find that, without any a priori knowledge, we
have to go through the source code of a method statement by statement. This
means that, if a bug occurs at statement line ¢ of a certain block, the programmer
has to look at all 7 statements in order to find the bug. In reality an experienced
programmer might know, whether a statement might account for an observed
failure or not, but in an object-oriented environment with a lot of side-effects
such an assessment can become a hard task. Together with the abovementioned
assumption about a priori knowledge, we assume that 7 user interactions, i.e.,
evaluations of a certain statement and its corresponding variable environment,
are needed to find a bug in line 7 of a certain method. In the best case we find
the bug in only one step, but on the other hand the worst case scenario is going
through all statements of a method to locate a bug. Given a concrete test-case,
we assume that the index of the buggy statement within a method determines
the number of user interactions needed to locate the bug. This number is the
reference value for the performance of the JADE debugger. More formally, we
define:

Definition 20.2.1 The reference value R for the performance of the JADE de-
bugger is defined as the index of the statement containing the installed source code
bug.

In the current version of the JADE debugging environment various kinds of
user interactions are performed (see Section 19.3). The following list describes
all user interactions, which are used by the JADE debugging tool, and highlights
the problems of comparing these interactions with the reference value R:

Variable setup: Before a certain method can automatically be debugged, the
user has to evaluate the method’s output behavior by specifying a negative
observation for at least one of the system’s output connections. These
interactions are essential to the debugging process, because without them no
diagnoses can be computed. However, in a well-defined software engineering
process these observations can directly be taken from the test phase as
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the target values of the used test-cases. From the latter point of view
the variable setup is no longer a user interaction as far as the debugging
process is concerned, because the needed information can be taken from
earlier stages in the software development process.

Variable queries: These user interactions are needed to find out, whether the
value of a particular variable at a certain source code position is correct or
not. Variable query interactions are similar to the evaluation of a statement
in a traditional debugging process and therefore constitute the main type of
user interaction, which determines the performance of the JADE debugging
tool. The problem with comparing variable queries with the evaluation of
statements in traditional debuggers is that a single statement normally con-
tains multiple variable occurrences. It is therefore possible to get multiple
variable queries aiming at different variable occurrences within the same
statement during a single debugging process.

Selection statement interactions: These interactions are designed to find
out, whether the condition of a faulty selection statement is correct or not.
In case it is, the debugging process is automatically led into the branch
of the selection statement executed at run-time. Otherwise, the fault is
located in the condition. Strictly speaking, these interactions belong to the
debugging at expression level and are therefore not covered by the reference
value R.

Loop interactions: These interactions let the user specify (1) whether a certain
fault is located in the body or the condition of an incorrect loop statement
and (2) the first iteration, in which the fault becomes observable as a failure
or an error. Again, these tasks represent debugging actions at expression
level and are not unique to the JADE debugger. It could therefore be as-
sumed that traditional debuggers use the same technique or have to go
through all iterations, what in general leads to an even worse performance.
In both cases these interactions are not covered by the reference value R.

Method call interactions: These interactions are designed to find the small-
est sub-expression of a faulty statement, which contains the bug. In case
of buggy method and constructor calls further debugging is automatically
performed inside the called method. Again, these interactions represent
debugging at expression level and are thus not covered by the reference
value R.

When testing the performance of the JADE debugger we can now specify the
amount of user interactions for each of the described types of interactions. In
order to compare it with the reference value R provided by the performance of tra-
ditional debuggers we compute two indices. First, all interactions are aggregated.
The second index only takes variable query interactions into account, because, as
discussed above, only these interactions represent interactions at statement level.
More formally, we define:
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Number of performed test.

Number of statements of the method.

Index of the statement containing the fault, i.e., reference value for performance of the JADE debugger.
Number of setup interactions specifying the output values of the tested method.

Number of variable queries.

Number of selection statement interactions.

Number of loop interactions.

Total number of user interactions.

BETOPIUH

Table 20.10: Columns of Tables 20.11 to 20.16

Definition 20.2.2 The performance of the JADE debugging environment is mea-
sured by the following two indices:

e () is defined as the total number of variable queries during a single debugging
S€8S10M.

o T is defined as the total number of user interactions during a single debug-
ging Session.

From what has been said about the individual types of user interactions it
should become clear that there exist a couple of difficulties in the comparison of
both indices with the reference value R. However, such a comparison can still
provide meaningful information about the performance of the JADE tool, espe-
cially in relation to standard debugging environments. In the following section we
present some empirical results obtained from experiments with the JADE debugger
and Java test methods.

20.2.2 Empirical debugging results

In this section we test the debugging potential of both models, the DFDM and
ETFDM, on the same test methods, which are used in Section 20.2.2 during the
evaluation of the diagnosis performance of the JADE system. The results of all
6 test series are given in Figures 20.11 to 20.16, whose columns are described
in detail in Table 20.10. The following paragraphs discuss the results of the
individual test series in more detail.

Note that all tests are carried out with simplified versions of the DFDMs and
ETFDMs of all test methods. Full models are not tested due to the following
reasons: (1) The handling of full models during the debugging process is very
complex, especially as far as the specification of observations is concerned. This
problem and possible enhancements are discussed in Section 21.2.1 in more detail.
(2) As already mentioned the current version of the JADE debugger does not
support the creation of full versions of ETFDMs. Therefore, a comparison of the
full versions of both model types is not possible. In all tests the source code fault
can be found directly in the tested method. Therefore, method call interactions
are not needed and thus not stated in the following paragraphs.

Test series 1 (Adder): Table 20.11 shows the results obtained from test se-
ries Adder. Whereas on average 10 statements have to be checked to assuredly
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# S R DFDM ETFDM
BIQIJ[I[W]ITI[|BJQIJIJW]T
1 17 4 1 2 0 0 3 1 2 0 0 3
2 17 4 1 2 0 0 3 1 2 0 0 3
3 17 7 1 2 0 0 3 1 2 0 0 3
4 17 7 1 2 0 0 3 1 2 0 0 3
5 17 7 1 2 0 0 3 1 2 0 0 3
6 17 12 1 3 0 0 4 1 3 0 0 4
7 17 12 1 3 0 0 4 1 3 0 0 4
8 17 11 1 3 0 0 4 1 3 0 0 4
9 17 11 1 4 0 0 5 1 4 0 0 5
10 17 14 1 4 0 0 5 1 4 0 0 5
11 17 14 1 4 0 0 5 1 4 0 0 5
12 17 16 1 3 0 0 4 1 3 0 0 4
13 17 12 1 3 0 0 4 1 3 0 0 4
14 17 9 1 3 0 0 4 1 3 0 0 4
> 1238140 [ 14 | 40 | O 0 54 | 14 | 40 | O 0 54
2] 17 10 1 29 | 0 0 3.9 1 29 | 0 0 3.9

Table 20.11: Debugging results of test series Adder

find the bug with a traditional debugging approach, the JADE debugging envi-
ronment performs less than 4 user interactions and less than 3 variable queries.
Since no selection and loop statements are used during this first test series, no
hierarchical debugging is performed and only variable setup and variable query
interactions are carried out. As already described in Section 20.1.2 quite a large
part of method adder(int a, int b, int c) can be excluded from the debugging
process during the first diagnosis process. After that the repeated application
of measurement selection steps, variable queries, and new computations of di-
agnoses leads to the exact localization of the installed fault. Note that similar
to the computation of diagnoses there are no differences between the two tested
models. The debugging procedures for the DFDM and ETFDM are exactly the
same, because no loop and selection statements are used in this test series.

Test series 2 (IfTest): Table 20.12 shows all results obtained from experi-
ments during test series IfTest. On average the fault is installed in statement
line 4.9 and can be located with the JADE tool with 3 interactions (in case of
the DFDM) or 2.8 interactions (in case of the ETFDM). If we look at the num-
ber of variable queries, only 1.4 (DFDM) and 1.2 (ETFDM) user interactions
are needed. In contrast to test series Adder selection statement interactions are
performed in cases where the bug can be found in a statement nested in the
branch of an if statement. Note that in test 20 two if interactions are needed to
located a fault in the branch of an if statement, which is itself nested in another
if statement.

If an ETFDM is used instead of the DFDM in two cases less variable queries
are performed, which is due to the more efficient diagnosis process in these cases
(see Section 20.1.2). Note that with both models the same number of selec-
tion statement interactions is performed, since the hierarchical debugging is not
influenced by the different modeling approaches.
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# S R DFDM ETFDM

B Q[ I J[WIT[BJQIJTIJ[W]T
15 5 3 1 2 1 0 4 1 2 1 0 4
16 5 2 1 2 0 0 3 1 1 0 0 2
17 5 4 1 1 1 0 3 1 1 1 0 3
18 5 5 1 0 0 0 1 1 0 0 0 1
19 5 5 1 0 0 0 1 1 0 0 0 1
20 9 7 1 1 2 0 4 1 1 2 0 4
21 9 9 1 0 0 0 1 1 0 0 0 1
22 6 5 1 3 1 0 5 1 3 1 0 5
23 6 2 1 2 0 0 3 1 1 0 0 2
24 8 7 1 3 1 0 5 1 3 1 0 5
S| 63 49 | 10 | 14 6 0 30 | 10 | 12 6 0 28
2] 6.3 | 4.9 1 1.4 | 0.6 0 3 1 1.2 | 0.6 0 2.8

Table 20.12: Debugging results of test series IfTest

# S R DFDM ETFDM

B | Q | I | W | T B | Q | I | W | T
25 11 5 1 3 0 0 4 1 2 0 0 3
26 11 3 1 5 0 0 6 1 3 0 0 4
27 11 9 2 3 0 1 6 2 2 0 1 5
28 12 3 1 3 0 0 4 1 0 0 0 1
29 12 3 1 2 0 0 3 1 2 0 0 3
30 12 3 1 3 0 0 4 1 1 0 0 2
31 12 5 1 1 0 1 3 X X X X X
32 12 5 1 2 0 1 4 1 2 0 1 4
33 12 9 2 4 0 2 8 2 2 0 2 6
34 12 9 3 4 0 2 9 3 2 0 2 7
D 117 54 14 [ 30 | O 7 51 13 16 0 6 35
%} 11.7 | 54 | 14 3 0]07]|51]13] 1.6 0 0.6 | 3.5

Table 20.13: Debugging results of test series WhileTest

Test series 3 ( WhileTest): The third test series tests the JADE debugger’s
performance on methods including while statements. Table 20.13 shows all re-
sults of this test series. On average the bug can be found in statement line 5.4
and it takes 5.1 user interactions (in case of the DFDM) or 3.5 user interactions
(in case of the ETFDM) to exactly localize this fault. Looking only at variable
queries, 3 such interactions are needed with the DFDM and only 1.6 in case of
the ETFDM. Due to the reasons explained in Section 20.1.2 the results are sig-
nificantly better, when ETFDMs are used as the underlying models. However,
in test 31 the debugging process is terminated after the initial diagnosis step,
because no diagnoses can be computed (see Section 20.1.2). This drawback of
ETFDMs is discussed in more detail in Section 21.1.2.

Test series 4 (Numeric): The results of test series Numeric are given in
Table 20.14. Here, more interactions are needed than in a manual walk-through.
In particular, the fault can be found in statement 3.6 on average and localized
only after 4.4 (DFDM) or 5.3 (ETFDM) user interactions, respectively. The
number of variable queries is also high with 3 in case of DF'DMs and 3.7 in case
of ETFDMs. The main reason for this poor performance is the fact that in all
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# S R DFDM ETFDM

B | Q | 1 | W | T B | Q | I | w | T
35 4 3 1 1 0 0 2 1 2 0 0 3
36 4 3 1 2 0 0 3 1 2 0 0 3
37 4 4 1 3 0 0 4 1 3 0 0 4
38 4 4 1 3 0 0 4 1 3 0 0 4
39 8 2 1 2 0 0 3 X X X X X
40 8 2 1 2 0 0 3 X X X X X
41 8 2 1 2 0 0 3 X X X X X
42 8 6 2 6 0 1 9 2 6 0 1 9
43 8 6 2 6 0 1 9 2 6 0 1 9
> 56 32 11 27 | 0 2 40 8 22 0 2 32
%] 6.2 | 3.6 | 1.2 3 0[02]| 44|13 |37 0|03]53

Table 20.14: Debugging results of test series Numeric

# S R DFDM ETFDM

B [Q] T [W][ T B [Q] T [W] T
44 | 14 11 1 2 3 1 7 1 2 3 1 7
45 | 14 6 2 2 1 1 6 2 2 1 1 6
46 | 14 6 2 2 1 1 6 2 2 1 1 6
47 | 14 6 2 2 1 1 6 2 2 1 1 6
S| 56 29 7 8 6 4 25 7 8 6 4 25
%} 14 | 7.25 | 1.75 | 2 1.5 1 6.25 | 1.75 | 2 1.5 1 6.25

Table 20.15: Debugging results of test series Trafficlight

test methods of this test series all statements remain as potential culprits after
the initial diagnosis process (see Section 20.1.2). Another problem arising in the
context of ETFDMs is that in tests 39 to 41 the fault cannot be located due to
the problem of the ETFDM discussed in Section 21.1.2.

Test series 5 ( Trafficlight): The results of test series Trafficlight are depicted
in Table 20.15. Whereas on average the fault can be found in statement 7.25,
the JADE debugger takes 6.25 user interactions, but only 2 variable queries to
exactly locate the fault. In this test series both models, the DFDM and ETFDM
perform equally well for reasons explained in Section 20.1.2. A high percentage
of all user interactions are selection and loop interactions, which are executed
in the course of hierarchical debugging and cannot be optimized by the use of
ETFDMs. The complicated structure of nested loops and selection statements
accounts for the rather poor performance in this test series as far as index T is
concerned.

Test series 6 (Library): The last test series evaluates the debugger’s per-
formance in the context of a real object-oriented library example. All results
are depicted in Table 20.16. On average a fault is installed in statement 18.6
and can be located with less than 8 user interactions with both models. The
number of variable queries looks even more promising with only 5.6 (DFDM)
or 5.4 (ETFDM) such interactions. Here a higher number of variable assign-
ments and method call statements in relation to loop and selection statements
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# S R DFDM ETFDM
BJIQJTI[W]T BJIQJI[W]T
48 33 30 2 7 1 1 11 2 6 1 1 10
49 33 6 1 5 0 0 6 1 5 0 0 6
50 33 10 1 5 0 0 6 1 5 0 0 6
51 33 16 1 5 0 0 6 1 4 0 0 5
52 33 31 2 6 1 1 10 2 7 1 1 11
> ] 165 93 7 28 2 2 39 7 27 2 2 38
1%} 33 186 | 1.4 | 56 | 04 | 04 | 7.8 | 1.4 | 54 | 0.4 | 0.4 | 7.6

Table 20.16: Debugging results of test series Library

#: Number of test series.

Test series:  Name of test series.

#TC: Total number of test-cases in test series.

aS: Average number of statements of the methods in the test series.

IR: Average index of buggy statement.

Ty Average number of total user interactions using the DFDM.

T (%): T (%) = @T1/DR.

STo: Average number of total user interactions using the ETFDM.
@Tz(%): @Tz(%) = ZTQ/@R.

FQ1: Average number of variable query user interactions using the DFDM.
2Q1(%): @Q1(%) = 2Q1/9R.

Q2 Average number of variable query user interactions using the ETFDM.

2Q2(%): 2Q2(%) = 2Q2/2R.
Table 20.17: Columns of Tables 20.18 and 20.19

leads to significantly better result than in the last two test series. Note that the
ETFDMs perform slightly better, which is due to the modeling of the while and
if statement in method library().

20.2.3 Discussion

To test the debugging performance of the JADE debugging environment, several
debugging sessions were carried out with all 52 test methods used in Section 20.1.
Tables 20.18 and 20.19 summarize the average debugging results of all test series
with respect to the two indices 1" and @), respectively. Table 20.17 describes the
meaning of the columns of both tables. If we compare the two indices 7" and @)
with the reference value R as defined in Section 20.2.1, the main findings can be
summarized as follows:

e In most cases the JADE debugging tool needs significantly less user interac-
tions than a traditional debugger, if the latter is used to step through the
code statement by statement. In particular, with the DFDM only 60 per-
cent of the user interactions of a traditional debugger are needed to exactly
locate an installed source code fault. If only variable query interactions are
counted only 37% of the user interactions are needed. However, it should be
mentioned that there arise various difficulties when comparing these figures
as discussed in Section 20.2.1.

e When an ETFDM is used instead of a DFDM the debugger’s performance
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[ # [ Testseries [ #TC | @S | @R [ Ty | oTh(%) | 8T | 2T2(%) |

1 Adder 14 17 10 3.9 39 3.9 39
2 IfTest 10 6.3 4.9 3 61 2.8 57
3 WhileTest 10 11.7 5.4 5.1 94 3.9 72
4 Numeric 9 6.2 3.6 4.4 120 5.3 147
5 Trafficlight 4 14 7.25 6.25 86 6.25 86
6 Library 5 33 18.6 7.8 42 7.6 41
> 52 694.8 | 397.4 | 239.2 232.3

%] 1 13.4 7.6 4.6 60 4.5 59

Table 20.18: Average total user interactions of all test series

can slightly be improved due to a more powerful diagnosis process. This
means that the debugging process is exactly the same as far as hierarchical
debugging steps (selection statement and loop interactions) are concerned,
but less variable queries are needed, because of a more efficient elimination
of wrong diagnoses in the individual diagnosis steps. Overall, only 35%
of the user interactions of the reference value are needed, if only variable
queries are counted.

e Whereas the fault can be located in all cases, if DFDMs are used, this is not
the case with ETFDMs. In particular, in 4 out of the 52 performed tests
the debugging process terminates, because no diagnoses can be produced
with the ETFDM. The reasons for this behavior and possible solutions are
discussed in Section 21.1.2.

e In some cases the debugging process of the JADE debugger works very effi-
ciently with less than 50% of the user interactions of a traditional debugger.
However, in other cases significantly more user interactions are needed with
the JADE tool. As already mentioned with the JADE debugger a single user
interaction evaluates a single variable occurrence, whereas in our reference
debugger one interaction evaluates the correctness of a whole statement.
Therefore, the worst case scenario in the case of the JADE debugger involves
a much higher number of user interactions, since the number of variable
occurrences is normally much higher than the number of statements.

e The crucial element in the debugging process is the diagnosis step, which
is evaluated in detail in Section 20.1. Whereas initial variable setup in-
teractions and loop and selection statement interactions for hierarchical
debugging steps are inevitable in most cases (and have to be carried out
with traditional debugging tools, too), the number of variable queries can
be optimized by the use of different models and an efficient measurement
selection algorithm.

The last point suggests that the debugging process can mainly be improved
by enhancing the diagnosis process and making use of more efficient measurement
selection algorithms. The following list shows some further tests, which should be
carried out with future versions of the JADE tool in order to increase the overall
performance during the whole debugging process:
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[ # [ Testseries | #TC [ @S | @R | @Q1 | 2Q1(%) | 2Q2 | 9Q2(%) |

T | Adder 4 17 10 2.9 29 2.9 29
2 | IfTest 10 6.3 4.9 1.4 29 1.2 24
3 | WhileTest 10 1.7 | 5.4 3 56 1.8 33
4 | Numeric 9 6.2 3.6 3 83 3.7 103
5 Trafficlight 4 14 7.25 2 28 2 28
6 | Library 5 33 186 | 5.6 30 5.4 29
> 52 | 694.8 | 397.4 | 147.6 138.9

o 1 134 | 76 2.8 37 2.7 35

Table 20.19: Average variable query user interactions of all test series

The main component of the JADE debugger is the diagnosis engine, which
should eliminate as many incorrect diagnoses as possible. Some further
tests in the context of the diagnosis process are discussed in Section 20.1.3.

In particular, further tests should be carried out with longer and more so-
phisticated methods. These tests should include further source code struc-
tures and new fault classes.

Tests should also be performed with full versions of both models, the DFDM
and ETFDM. However, this can only be done, if the JADE modeling module
can provide full versions of the ETFDM, which is currently not supported.

In future versions of the JADE debugger different measurement selection
algorithms should be implemented and tested in order to minimize the
number of variable query interactions.

Further tests should be carried out with the concurrent specification of
multiple variable values in a single evaluation step. This includes new
forms of variable query interactions as discussed in Section 19.3.

More efficient techniques should be developed for handling the hierarchical
debugging process. This includes reducing the overhead introduced through
the switching from one hierarchy level to another and the use of flatter
models, which allow for the debugging of sub-models together with their
super-models in a single diagnosis step.

The following chapter discusses some problems with the approaches described

in this work and shows in what respects the current version of the JADE debugger
can be improved.
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Discussion

This chapter is dedicated to a discussion about the approaches presented in this
work and the empirical results given in Chapter 20. In particular, we discuss the
main strengths and weaknesses of our diagnosis and debugging techniques and
present some enhancements, which look promising for future research projects.
Like in the last chapter, we split this chapter into two sections. First, we discuss
problems arising in the context of the diagnosis process and show how this phase
of the debugging process can be improved. Second, we take a look at the whole
debugging process. We discuss, which role a model-based debugging tool might
play in the future as part of an integrated software development tool.

21.1 Diagnosis

The computation of diagnoses (see Chapter 16) is the basis for an efficient limita-
tion of the search space of bug candidates and constitutes the main element in an
interactive and iterative debugging process (see Chapter 17). The performance
of the diagnosis process directly depends on the underlying model. Part IT of this
work describes in detail the creation and properties of various kinds of FDMs.
Empirical diagnosis results obtained from the use of these models are given in
Section 20.1. However, one of the main questions is, which classes of source code
faults can be located by using the approaches described in this work. In the
following we try to answer this question.

21.1.1 Fault classes handled by the JADE debugger

In Section 2.2 we argue that the focus of this work is on the localization of source
code bugs, which (1) become observable as failures or output errors and (2)
manifest themselves as logical faults in the analyzed source code. This explicitly
excludes compile-time and run-time failures as well as faults violating the syntax
or semantics of our target programming language Java. Further restrictions on
the analyzed fault classes are presented in Section 5.2. Furthermore, in Section 2.2
the class of source code faults analyzed in this work is divided into functional and
structural faults. Functional faults are all faults, which result in a certain variable
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storing an incorrect value in at least one possible evaluation trace. In particular,
these faults include the use of incorrect operators or the specification of incorrect
literals, such as integer or boolean constants. Since these faults do not alter the
structure of the program and, in case of a successful test-case, always become
observable through an incorrect variable value, faults belonging to this class can
generally be found with the JADE debugging environment. Whereas DFDMs are
designed to potentially locate all functional faults of a given program, ETFDMs
can only handle a functional fault, if a test-case is present, which exhibits a failure
as a consequence of the functional fault. Note that in the case of functional faults
the created system description (see Chapter 15) does not differ from the system
description of the correct program.

Structural faults, on the other hand, are source code bugs, which alter the
structure of the underlying program. This is the case, if the dependency graph [14]
of the program is not structurally equivalent to the dependency graph of the
correct program. The result of these faults is that the system description differs
from the system description obtained by the correct program. From a global view
structural faults result in an incorrect structure of the created system description.
This means that either the ports of individual system components are incorrect
or the connections linking multiple components are set in an incorrect way. Note
that due to the hierarchical modeling used in this work, a structural fault can
also lead to a system description with an incorrect structure at a lower level
of the hierarchy. This can result in a system description at a higher model
level, which is structurally correct, but includes a component with an incorrect
behavior. In this case the incorrect system description structure is hidden behind
the abstract behavior of the component, which includes the incorrect sub-system.
When diagnosis is performed at statement level, structural faults occur in one of
the following forms:

e Missing statements
e Superfluous statements

e Statements including structural faults, such as an access to an incorrect
variable.

Missing statements are currently not handled by the JADE system. How-
ever, missing statements mostly occur in very special contexts, such as a
missing termination condition in a recursive method or a missing incrementa-
tion/decrementation statement at the end of a loop body. These faults in most
cases lead to the non-termination of the program or could be located by the use
of special-purpose models suited specifically to these fault classes. Generally, a
missing statement seems unlikely. Superfluous statements are detected by the
JADE debugging environment, if they influence the value of an output variable
of the debugged method. In these cases a superfluous statement is part of the
computed diagnoses and can thus be located by the JADE system. Again, it seems
unlikely that superfluous statements, which alter the value of variables, occur in
a method’s source code.
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By far the most difficult problems arise in the context of statements, which
are themselves structurally incorrect. In particular, these faults include an access
to an incorrect variable. Since these faults result in a system description, which
differs from the system description of the correct program, they cannot be located
in the general case. The following program fragment demonstrates this behavior:

1. int x=0;

2. int y=0;

3. X = 2;

4 x = 2; // should be y=2; expected results: x=2, y=2

Using any of the models presented in Part II of this work, the JADE debugger
returns statement 2 as the only possible culprit of the error observed for variable
y. However, the fault in statement line 4 cannot be located. In some cases, e.g.,
when line 4 reads x=3; and we expect the outputs =2 and y=3, the debugger is
able to locate the bug, but in general more powerful solutions need to be applied,
such as the introduction of replacement fault modes for assignments [43].

Another problem arising in the context of structural faults are faults influ-
encing the location structure of a given Java system. In particular, these faults
appear in two different forms: (1) Two variables of reference type point at differ-
ent locations, i.e., objects, but should in fact reference the same object. (2) Two
variables of reference type point at the same location, i.e., object, but should
reference different objects. The latter case represents a common bug, which is
demonstrated in the following source code fragment:

1. pl = new Point(0,0);
2. p2 = pl; // should be p1.copy()
3. plx =1; // expected result: p1=(1,0), p2=(0,0)

When using full FDMs to compute diagnoses, the debugger distinguishes be-
tween variables of reference type and locations. This is how the JADE debugger
solves the aliasing problem (see Sections 7.5 and 8.3). In the above example,
we specify nok(p2) and get two bug candidates, i.e., statements 1 and 2. In
case of the SFDM this distinction is no longer made, but object structures are
used instead (see Chapter 14). The aliasing problem is solved implicitly by a FD
for p2 in statement 3 (see Section 14.4). In the above example all three state-
ments are bug candidates. If we eliminate the FD for p2 from statement 3, the
dependency-based model delivers only statements 1 and 2 as possible culprits,
but can no longer deal with aliasing. One solution is to use two different models,
one with and one without aliasing. The best model to be used for a specific
problem can then be chosen by the user (if a priori knowledge about the problem
exists) or by the use of given error class statistics.

21.1.2 Enhancing diagnosis using FDMs

As already mentioned the underlying model directly influences the diagnosis per-
formance of the JADE debugger. In this work FDMs are used during all diagnosis
and debugging sessions. Section 20.1 presents empirical results from diagnosis
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void demo() {
int tmp, a, b, c;

1 tmp = 3;

2 a = f(tmp);
3 b = f(tmp);
4 ¢ = f(tmp);

Figure 21.1: Example method demo()

sessions performed with different kinds of FDMs. This section discusses some en-
hancements, which could make the diagnosis process in combination with FDMs
more efficient.

In certain cases the JADE environment cannot locate a given fault, when using
the ETFDM. This can be explained by looking at the following source code
fragment:

n. while(z > 1) {
// should be while(i > 0) {
n.1 X =a + b;

-

Consider an evaluation trace, where at statement n variable ¢ evaluates to
one. Then the body of the while loop is not executed, although the condition
should evaluate to true in a correct version of the method. If we compute the
ETFDM for this source code, no FDs arise from statement n and this statement
can thus never be part of a diagnosis. The solution to this problem is to explicitly
incorporate the following fact into the model: The values of all variables possibly
modified in the loop body stay unaltered, if the condition is correct. This can be
achieved by adding FDs of the following form to the model (variable occurrences
are stated without indices):

x <+ {z,c1y.yCn}

where z is a variable modified in the loop body and {ci,...,c,} is the set of all
variable occurrences used in the condition of the loop. In the above example, we
add the FD z < {z,i} to the ETFDM. The effect of this modification is that
now the loop statement is a diagnosis, if variable z is observed to be incorrect at
the method’s output. The disadvantage of this approach is that in other cases,
where the fault cannot be found in the loop condition, too many bug candidates
are computed.

Another interesting behavior of the JADE debugger, which becomes apparent
during experiments performed with the tool, is that it cannot distinguish between
an incorrect method call and a buggy method being called. This is demonstrated
by method demo(), which is depicted in Figure 21.1. The standard system de-
scription of method demo() (see Chapter 15) is depicted in Figure 21.2 (a). The
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Statement 1 Statement 1

tmp tmp

Statement 2 Statement 3 Statement 4 ‘ Statement 3 Statement 4
a b c a b c
(a) Standard system description (b) Using meta-components

Figure 21.2: System description of method demo()

logical representation of demo() reads as follows (inconsistency sentences not
stated):

—AB(sl) — ok(tmp
—AB(s2) A ok(tmp) — ok(a)
—AB(s3) A ok(tmp) — ok(b)
—AB(s4) A ok(tmp) — ok(c)

If we specify all output variables to be incorrect, i.e., nok(a) Anok(b) Anok(c),
we get the following conflict sets: {sl1,s2}, {s1,s3}, and {sl,s4}. Clearly,
this results in one single-diagnosis, i.e., {s1}, and the more unlikely diagnosis
{52, 83, s4}. The latter diagnosis says that statements 2 to 4 are all incorrect, no
matter, whether they call the wrong method or call a method including a bug.
However, this behavior is somewhat unexpected for the user, since a single bug
in method f(int i) explains the whole misbehavior of method demo() and seems
at least as likely as statement 1 being the culprit.

The solution to this problem is straightforward. We introduce a meta-
component in the system description of demo(), which models the called method
f(int 7). This component is independent of the components modeling statements
2 to 4, because the latter components only stand for the method call in con-
trast to the method declaration. The additional information needed to introduce
these meta-components is already available in the FDMs created in Part II of
this work, because these models include the signatures of the methods, on which
a particular variable occurrence depends.

In the above example we create a new component, labeled f(int i), and connect
it to the components associated with statements 2 to 4 via a new connection
labeled f(tmp). The new system description is depicted in Figure 21.2 (b). The
resulting logical model specifying the behavior of the new system description
reads as follows:

—AB(s1) — ok(tmp)

—AB(f(int i) — ok(f (tmp))
—AB(s2) A ok(tmp) A ok(f(tmp)) — ok(a)
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void vbm() {

int tmp, a, b;
1. tmp = 3;
2. a = 2*tmp;
3. b = 3*tmp;

}

Figure 21.3: Example method vbm()

—AB(s3) A ok(tmp) A ok(f(tmp)) — ok(b)
—AB(s4) A ok(tmp) A ok(f(tmp)) — ok(c)

If we, again, perform a single diagnosis step, we now get the following con-
flict sets: {sl1,s2,f(int i)}, {s1, s3,f(int i)}, and {s1, s4,f(int i)}. The resulting
minimal diagnoses are {sl1}, {s2, s3, s4}, and {f(int i)}. The last diagnosis solely
explains the system’s misbehavior as expected by the user. This is done by sep-
arately modeling method calls and method declarations.

21.1.3 Using alternative models

Another possibility to increase the diagnosis performance of the JADE debugger
is the use of additional model types. These models can either be general models
(like FDMs) or models, which focus on specific fault classes. The latter models
are special-purpose models, which can be used by the user under certain circum-
stances, e.g., if a priori knowledge about the problem domain or the bug exists.
In this section we concentrate on a general-purpose model type, which can be
used instead of the FDMs presented herein: the Value-Based Model (VBM).

As already mentioned FDMs are designed in a way that they only allow for
reasoning from a method’s inputs to its outputs. Let us look at method vbm(),
which is depicted in Figure 21.3. By using a FDM we might specify ok(a) Anok(b),
which leads to the conflict {s1, s3} and consequently to two single-diagnoses, i.e.,
{s1} and {s3}. Figure 21.4 (a) shows the system description of method vbm()
and Figure 21.4 (b) depicts the conflict produced by the use of a FDM.

Logically, statement 1 cannot be the culprit, if we use concrete variable values
and know that statement 2 is correct. In other words, if statement 2 has the
correct value of 6, then the diagnosis {s1} alone does not explain the misbehavior
of the system, because then statement 2 would have to be in an incorrect state,
too. Therefore, from the user’s point of view we only expect one single-diagnosis,
i.e., {s3}. This can be achieved by VBMs, which make use of concrete values
instead of ok and nok. Furthermore, VBMs allow for propagating these values
from the inputs to the outputs and in at least some cases also from the outputs
to the inputs of the system. VBMs thus are able to produce additional conflicts,
which in turn lead to fewer diagnoses being computed. Figure 21.4 (c) shows
the conflicts computed for the example method depicted in Figure 21.3. Note
that the additional conflict is a horizontal conflict, which cannot be produced by
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Figure 21.4: System description of method vbm()

FDMs, which only make use of vertical conflicts. As a consequence, {s3} remains
the only single-diagnosis.

Multiple VBMs have been incorporated into the JADE debugger and tested
on various Java methods. [41] gives a brief description of one VBM and first
results of experiments with this model type. The results show that in general
the VBM is more powerful than FDMs and thus computes less diagnoses. Un-
fortunately, it is also computationally more complex and can so currently only
be applied to small test applications. Future research will have to provide more
efficient implementations of the VBM and further test its performance, especially
in comparison with FDMs.

21.1.4 Outlook

This work shows, how various kinds of FDMs can be constructed and used to
compute diagnoses for buggy Java methods. Section 20.1 gives some empirical
results obtained from diagnosis sessions with the JADE debugging environment.
There, the conclusions are that the pursued diagnosis approach efficiently reduces
the search space by eliminating significant parts of the analyzed source code from
the debugging scope by showing that these parts cannot account for an observed
output error. Nevertheless, the obtained results indicate that the techniques
described herein are not strong enough to exactly locate a bug location in a
single diagnosis step.

This chapter includes some enhancements to the diagnosis process, which
reach from small modifications of the used models to the use of alternative, more
powerful models. As a matter of course, these enhancements are not the only
ones, which can be designed and implemented for a more efficient diagnosis pro-
cess. So far it has shown that a wide variety of different models can be used for
the computation of diagnoses. All these models have individual strengths and
weaknesses and are applicable to different problem domains and fault classes. For
example, FDMs can be seen as general-purpose models, which can be constructed
very quickly and seem to scale up for medium to large-size programs quite well.
VBMs, on the other hand, are much slower to compute and can currently hardly
be used in practical debugging sessions due to their slow response times. How-
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ever, they are more powerful models than FDMs in the fact that they compute
less diagnoses and more efficiently reduce the search space of bug candidates.

Therefore, future research has to concentrate not only on improving existing
models and developing additional (special-purpose) models, but mainly on bring-
ing these individual models together. This can, for example, be done by using
different models in a single debugging session. The following sections discuss the
current debugging performance of the JADE tool and show how this performance
can be improved. Finally, we present some ideas of incorporating multiple models
and debugging techniques into a single software development tool, which provides
a maximum support for the user by an efficient combination of these debugging
elements.

21.2 Debugging

The debugging process, which is depicted in Figure 17.1, is based on the com-
putation of diagnoses and is designed to support the user in an optimal fashion
until a certain fault is exactly located. Empirical debugging results obtained from
experiments with the JADE debugger are given in Section 20.2. These results in-
dicate that in most cases the JADE debugger significantly reduces the amount
of user interaction needed in comparison with traditional debugging tools and
thus provides a powerful tool for software developers. However, the debugging
approaches presented herein also have a couple of drawbacks and existing prob-
lems. This section first presents some enhancements to the debugging process
and shows, how the JADE debugger might be made more effective in future ver-
sions. Finally, we discuss which role model-based debugging techniques might
play in the future and how these tools can be incorporated into existing software
development tools.

21.2.1 Enhancing the JADE debugger

In Section 17.1 the main requirements of an interactive debugging tool are stated
as follows: (1) User-friendliness, (2) response time, and (3) efficiency. These
three criteria represent starting points for a systematic discussion about possible
enhancements of the JADE debugger.

User-friendliness: The user-friendliness of the JADE debugger mainly depends
on its GUI, which lets the user specify observations and displays the current sets
of diagnoses and conflict sets. Although some effort has been made to construct
an intuitive and clear GUI, this part of the JADE system is one, where future
research could substantially improve the support for the user. The following ideas
are thought as an outline for future research projects, which aim at increasing
the user-friendliness of the JADE debugger:

e The first step in each debugging session is the specification of target output
values. These values can either be specified interactively or by the use of
the assertion language described in Section 18.1. The integration of the
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JADE debugger into a more general software development tool can further
increase the user-friendliness of the tool. In particular, information taken
from the test phase can automatically be stored and used as input to the
debugging process.

e The measurement selection algorithm currently computes the variable oc-
currence, whose evaluation eliminates a maximum amount of incorrect di-
agnoses. However, it does not take questions into consideration, which arise
in the context of the system’s user-friendliness. Examples of these questions
are: What knowledge about the underlying source code does a programmer
have? or At which points within a program is it possible to make statements
about the correctness of individual variable occurrences? A more intuitive
measurement, selection can, for instance, rank variable occurrences higher,
which are easier to specify (e.g., variables after loop statements), than vari-
ables, whose values are unlikely to be known by the programmer (e.g., a
temporary variable in the middle of a complex computation). An alter-
native is to let the user specify potential measurement selection points,
e.g., by using labels inserted into the source code (similar to assertions or
breakpoints).

e Another key point in each debugging session is the specification of variable
values. Currently, only one variable value is queried from the user, but it
has already been proposed to let the user specify multiple values in one
diagnosis step. When full FDMs are used during debugging, the states of
concrete variable values have to be evaluated by the user. This is not always
easy, especially, if the queried variable is a field of a remote object. This
task becomes even more difficult, when SFDMs are used, which require the
evaluation of whole object structures by the user in a single step. Improved
visualization techniques could be used, which display (part of) the current
object space and the internal state of individual objects in order to support
the user during these tasks.

e Finally, the hierarchical debugging process can be made more intuitive by
providing additional support, when a fault is located in a loop or selection
statement. This is especially true for method calls, which currently can
only be debugged, if the user manually selects the incorrect method call at
expression level. Allowing for automatic debugging at expression level can
make life easier for the user.

To sum up, there remain various ways of enhancing the JADE debugging envi-
ronment as far as its user-friendliness is concerned. Most improvements include
the creation of powerful GUIs, which provide the user with additional information
about the state of the debugging process and the underlying source code. Fur-
thermore, the support of psychologists could clarify, how programmers proceed
in a fault localization session, what kinds of mental models they use, what knowl-
edge about faults and the source code they have, and what their expectations
about fault locations are. Together with the embedding of the debugger into
more general software development tools, which is discussed in Section 21.2.2,
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this could provide a substantial enhancement to the current version of the JADE
debugger.

Response time: The FDMs described in Part II of this work can be con-
structed very quickly. This is especially true for non-recursive DFDMs, which
model each method exactly once. In the recursive case, the creation of a DFDM
with the fix-point algorithm presented in Chapter 13 is somehow more sophis-
ticated and thus computationally more demanding. Nevertheless, experiments
have shown that models for even complex recursive Java systems can be created
with a simple prototype implementation in the range of a few minutes. Since the
creation of an ETFDM requires an evaluation trace, the time needed to create an
ETFDM directly depends on the time needed to execute the modeled method.
Furthermore, the number of method calls and loop iterations of individual loops
in the modeled method directly affects the modeling time of ETFDMs. Overall,
all FDMs can be computed very efficiently, especially in contrast to value-based
models. Once a model exists the debugging process can be performed without
further model computations. Since the JADE debugger makes use of efficient di-
agnosis algorithms and a simplified measurement selection algorithm, response
time in all experiments carried out lies in the range of a few seconds. By a more
efficient implementation, response time could further be reduced and should not
be the bottle neck of an efficient debugging tool.

Efficiency: The third criterion of a debugging tools is its efficiency. In Sec-
tion 20.2 the performance of the debugger is evaluated as the number of user
interactions during a debugging session. The following list presents some ideas
of how to reduce this number of interactions and thus increase the debugger’s
efficiency:

e As already discussed in Section 21.1, the key element of the debugging pro-
cess is the computation of diagnoses. There, various options of increasing
the diagnosis performance are discussed, which should directly lead to a
reduced number of variable queries in the debugging process.

e As proposed in Section 18.2, multiple test-cases can be used during a single
diagnosis process to compute additional conflicts and thus less diagnoses.
So far the use of multiple test-cases with the JADE debugger is only possibly
in an off-line mode. By integrating this technique into the interactive de-
bugging process the overall debugging performance of the JADE tool could
be improved. This requires the adaptation of the existing measurement
selection and variable query algorithms to the general case of multiple test-
cases.

e The measurement selection algorithm used by the JADE debugger (see Sec-
tion 17.2) is a quite simple algorithm, which should be improved in future
versions of the JADE environment not only as far as its user-friendliness is
concerned, but also with respect to its efficiency. One possibility to en-
hance the performance of the measurement selection algorithm is to use
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fault probabilities of individual statements and expressions or to use ad-
ditional run-time information of the analyzed program, such as absolute
run-times of loop statements, etc... More sophisticated measurement se-
lection algorithms could also take into account statistics about individual
diagnosis components, which count the number of test-cases (in relation to
all performed test-cases), in which the component appears as bug candidate.

e Another weak point in the debugging process is the high amount of interac-
tion overhead introduced through the hierarchical modeling and debugging
approaches pursued in this work. In order to locate faults nested in selec-
tion statements, loops, and called methods, special interactions have to be
performed regardless of the used diagnosis and measurement selection algo-
rithms. The results given in Section 20.2 indicate that in certain cases these
interactions represent a significant percentage of the total amount of user
interactions needed to locate a given fault. One alternative to reduce the
amount of hierarchical interactions is to build flatter models. Section 10.3
briefly discussed the creation of flat models of selection statements. Simi-
lar, though more complex techniques can be used to create flat models of
loop statements. Another possibility to use flat models is to completely
unfold the target program. This includes the unfolding of all loop state-
ments and the elimination of method calls by copying the body of the called
method into the calling method. Clearly, this approach is only possible, if
evaluation traces are used. The resulting programs can then be modeled
and debugged with exactly the same techniques as described in this work.
All diagnoses finally have to be mapped back to source code positions of
the original program. Note that this approach is no longer trivial in cases,
where the fault is duplicated as well (e.g., in the case of a fault in a loop).
In these cases multiple-diagnoses have to be computed and mapped back
to smaller (possibly single-) diagnoses.

In Section 21.1 the use of alternative models or special-purpose models, which
are suited to specific fault classes, are proposed to enhance the diagnosis perfor-
mance of the JADE debugger. Similar techniques can also be applied to the whole
debugging process, which can be made more efficient through the concurrent or
sequential use of multiple models. The following section shows, how multiple
models can be used during a single debugging session.

21.2.2 An integrated software development tool

Finally, we discuss how the approaches presented in this work can be used in
practical real-world applications. The answer to this question is to view the
techniques presented herein from a more general perspective and combine them
with (1) other techniques from the same field of research and (2) existing standard
software engineering tools, which are currently used by programmers during the
whole software life cycle.

The first goal is to create an integrated debugger in the way that multiple
models can be used during a single debugging session. The advantages of this
approach are twofold:
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Figure 21.5: Using different models during the debugging process

1. Multiple models can be used during the debugging process one after an-

other. For instance, FDMs are fast and relatively easy to create. They
can thus be applied to even large applications. Nevertheless, their diag-
nosis performance is limited as demonstrated in Section 20.1. VBMs, on
the other hand, are much more detailed and in general compute less di-
agnoses than FDMs. Unfortunately, they are computationally much more
challenging and currently can only be applied to small programs. In an
integrated debugging system, FDMs can be used to reduce the search space
to an amount of remaining bug candidates, which then can be handled by
the more detailed VBMs. It should be noted that this approach is not
limited to FDMs and VBMs, but might as well include new model types.
Figure 21.5 shows the architecture of an integrated debugging tool, which
locates source code faults at module and method level by using FDMs.
Once a particular method is found to locate the bug, VBMs are used for
further debugging steps.

Multiple models can also be used in parallel. This means that depending on
different fault classes specific special-purpose models can be created, which
are then used during a fault localization process. The use of special-purpose
models can be triggered by the user once he has certain expectations about
the class or location of the bug. These special-purpose models can also be
used in parallel to provide a wide range of alternative fault explanations to
the user.

The second goal of an integrated debugging environment is to provide clear

interfaces to existing software engineering and CASE tools. Only this guarantees
a uniform and intuitive system, which is easy to use for software developers and
widely accepted even by experienced programmers. We conclude this section by
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presenting some synergies between a model-based debugging tool and standard
software engineering tools:

e All initial variable observations needed for the automatic debugging process
can directly be taken from the test phase. An integrated GUI has to be de-
signed, which lets the user specify and run test-cases. In case of an observed
output error or program failure a debugging session should automatically
be initialized and started using information from the test phase.

e Existing debugging techniques, e.g., breakpoints and single-step operation,
can be combined with model-based debugging approaches. One example
for this combination is the use of assertions in the JADE debugger, which is
presented in Section 18.1.

e Finally, future research may include automated software repair techniques.
This means that once a fault is located by the debugging environment
replacements for the faulty statement or expression can automatically be
proposed to the user or tested for consistency by the system.
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Chapter 22

Conclusion

In this work we have shown how model-based diagnosis techniques can be used
to compute possible fault locations of buggy Java programs. Since this approach
relies on the existence of a logical representation of the underlying Java system,
large parts of this work deal with the creation of models of Java programs,
which can automatically be created from the program’s source code and easily
be converted into a logical system description. We have presented three different
model types, which are based on the collection of functional dependencies arising
from the source code of the Java program. These functional dependency models
differ in the amount of information used during their creation and the level of
abstraction of the individual model components. In particular, the following
model types have been introduced:

e The Evaluation Trace Functional Dependency Model (ETFDM) covers all
functional dependencies, i.e., data and control dependencies, which arise
during a particular program run, i.e., for a particular test-case. We have
shown that by using an evaluation trace of the modeled method, all source
code structures can be modeled non-ambiguously. This, in particular, holds
for (polymorphic) method calls, loop and selection statements, and even re-
cursive Java systems. We have argued that ETFDMs are sound models,
which are minimal and complete in relation to a single program run. How-
ever, in most cases it is impossible to combine multiple ETFDMs to a sin-
gle model covering all possible run-time scenarios, because of the immense
amount of possible evaluation traces of a single Java method.

e The Detailed Functional Dependency Model (DFDM) computes all func-
tional dependencies, which possibly arise at run-time during any possible
program run. Since this model type is a purely static approach and does
not make use of any run-time information, whatsoever, not all source code
structures can be modeled without introducing a higher level of abstraction
for various model components. In particular, we have presented algorithms
for the static modeling of method calls, loops, and selection statements.
Moreover, a fix-point algorithm has been proposed, which allows for the
computation of static DFDMs of recursive Java systems. We have shown
that in the general case the DFDM is no longer sound and can therefore be
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seen as an approximation of a complete model, which covers all functional
dependencies as they arise in any possible program run. We have shown
that DFDMs are complete, but not minimal.

e The Simplified Functional Dependency Model (SFDM) is based on either
the ETFDM or the DFDM and can be interpreted as a more abstract view
of the underlying model. The SFDM is created by combining multiple
variables and locations to object structures, which represent an abstract
view of part of the analyzed Java system. Whereas the SFDM is easier
to read and understand due to its simpler structure, it is less exact and
detailed than its underlying model.

We have discussed in detail how individual source code structures can au-
tomatically be transformed into model fragments. Among others, we have de-
scribed the modeling of variable assignments, method calls, selection statements,
loops, arrays, strings, and whole Java methods. We have dealt with the main
properties of all three model types in the context of the underlying source code
structures and have shown how the different models handle polymorphic method
calls, aliasing, and recursion.

Furthermore, in this work we have explained how functional dependency mod-
els together with standard model-based diagnosis techniques can be applied to
the debugging of Java programs. In a first step we have shown how bug can-
didates can be computed. We have extended this approach to the creation of
an interactive and iterative debugging tool, which combines the diagnosis pro-
cess with efficient measurement selection and variable query algorithms and thus
guides the user through a debugging session with a minimum of user interac-
tions until eventually a single bug location is identified. We have introduced
the JADE debugging environment, which is a prototype debugger implementing
the basic concepts and techniques described in this work. The various types of
user interactions and the exact handling of the JADE debugger have briefly been
described.

The JADE debugging environment has been tested on various (buggy) Java
methods, which include different source code structures and fault classes. In a first
step the diagnosis performance has been evaluated to show, which parts of a Java
method can be eliminated from the debugging scope during a single diagnosis
step. Empirical results have shown that approximately 40% of all statements can
be proven not to account for a given system failure and thus be eliminated in
a single diagnosis step. In other words, only 60% of the analyzed source code
remain for further debugging actions. We have performed all tests separately for
the three model types introduced in previous section. Results have indicated that
the ETFDM is superior to the DFDM, especially in case of selection and loop
statements. The full models have been shown to perform slightly better than the
respective SF'DMs, what has to be contrasted with the easier handling and higher
level of abstraction of SFDMs.

In a second step, we have tested the debugging performance of the JADE tool
by comparing the amount of user interaction needed in comparison to the number
of user interactions needed with a traditional debugging tool. Empirical results
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have shown that significantly less user interactions are needed with the JADE tool.
In particular, if ETFDMs are used as underlying models, on average only 37% of
the user interactions of a traditional debugger are needed to exactly locate the
installed source code fault. These results indicate that the debugging potential
of the JADE debugging environment is very promising. Its performance should be
increased in the future by performing additional tests and making use of improved
measurement selection and variable query techniques.

Furthermore, we have discussed various strengths and weaknesses of the ap-
proaches presented in this work. We have discussed, which fault classes the JADE
tool currently handles, and which fault classes still pose problems during the de-
bugging process. Multiple possibilities of solving these problems and enhancing
both, the debugger’s diagnosis and debugging performance, have been discussed
in detail. Finally, we have highlighted the future role of a model-based debug-
ging tool like the JADE debugging environment in the more general context of
the whole software development process. We have argued that the approaches
presented herein should be combined with the use of alternative models (e.g.,
value-based models) to increase the performance of the JADE system and be em-
bedded into a general software development tool in order to increase the user-
friendliness and efficiency of such a tool and support the user during the whole
software development process in an optimal way.
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