A proof of the irrationality of $\sqrt{2}$

Leslie Lamport

December 1, 1993

Abstract

Printable version of a sample proof that uses Lamport's proof style [1], illustrating how structured proofs can be converted to HTML pages via $LAT_EX2HTML$ enriched with extensions for Lamport's proof style.

Theorem There does not exist r in **Q** such that $r^2 = 2$.

PROOF SKETCH: We assume $r^2 = 2$ for $r \in \mathbf{Q}$ and obtain a contradiction. Writing r = m/n, where m and n have no common divisors (step (1)1), we deduce from $(m/n)^2 = 2$ and the lemma that both m and n must be divisible by 2 ($\langle 1 \rangle$ 2 and $\langle 1 \rangle$ 3). Assume: 1. $r \in \mathbf{Q}$ 2. $r^2 = 2$ PROVE: False $\langle 1 \rangle 1$. Choose m, n in **Z** such that 1. gcd(m, n) = 12. r = (m/n) $\langle 2 \rangle$ 1. Choose p, q in **Z** such that $q \neq 0$ and r = p/q. **PROOF:** By assumption $\langle 0 \rangle$:1. LET: $m \stackrel{\Delta}{=} p / \operatorname{gcd}(p, q)$ $n \stackrel{\Delta}{=} q / \operatorname{gcd}(p,q)$ $\langle 2 \rangle 2. m, n \in \mathbf{Z}$ **PROOF:** $\langle 2 \rangle 1$ and definition of *m* and *n*. $\langle 2 \rangle 3. \ r = m/n$ PROOF: $m/n = \frac{p/\gcd(p,q)}{q/\gcd(p,q)}$ = p/q[Definition of m and n] [Simple algebra] = r $[By \langle 2 \rangle 1]$ $\langle 2 \rangle 4. \ \gcd(m, n) = 1$ PROOF: By the definition of the gcd, it suffices to: ASSUME: 1. s divides m2. s divides nProve: $s = \pm 1$ $\langle 3 \rangle 1. \ s \cdot \gcd(p,q)$ divides p.

PROOF: $\langle 2 \rangle$:1 and the definition of *m*. $\langle 3 \rangle 2. \ s \cdot \operatorname{gcd}(p,q)$ divides q. **PROOF:** $\langle 2 \rangle$:2 and definition of *n*. $\langle 3 \rangle 3$. Q.E.D. **PROOF:** $\langle 3 \rangle 1$, $\langle 3 \rangle 2$, and the definition of gcd. $\langle 2 \rangle 5.$ Q.E.D. $\langle 1 \rangle 2$. 2 divides m. $\langle 2 \rangle 1. \ m^2 = 2n^2$ PROOF: $\langle 1 \rangle 1.1$ implies $(m/n)^2 = 2$. $\langle 2 \rangle 2$. Q.E.D. **PROOF:** By $\langle 2 \rangle 1$ and the lemma. $\langle 1 \rangle 3$. 2 divides *n*. $\langle 2 \rangle$ 1. Choose p in **Z** such that m = 2p. Proof: By $\langle 1 \rangle 2$. $\langle 2 \rangle 2. \ n^2 = 2p^2$ Proof: $2 = (m/n)^2$ [(1)1.2 and (0):2] $= (2p/n)^2 [\langle 2 \rangle 1]$ $=4p^2/n^2$ [Algebra] from which the result follows easily by algebra. $\langle 2 \rangle 3.$ Q.E.D. **PROOF:** By $\langle 2 \rangle 2$ and the lemma. $\langle 1 \rangle 4.$ Q.E.D.

PROOF: $\langle 1 \rangle 1.1$, $\langle 1 \rangle 2$, $\langle 1 \rangle 3$, and definition of gcd.

References

[1] Leslie Lamport, 1993, How to write a proof. In *Global Analysis of Modern Mathematics*, pp. 311–321. Publish or Perish, Houston, Texas, February 1993. A symposium in honor of Richard Palais' sixtieth birthday (also published as SRC Research Report 94). http://research.microsoft.com/users/lamport/proofs/src94.ps.Z