ASP-Based Problem Solving with Cutting-Edge Tools

Marcello Balduccini and Yulia Lierle?

! Kodak Research Laboratories
mar cel | 0. bal ducci ni @nai | . com
2 University of Kentucky
yul i ya@s. ut exas. edu

Abstract In the development of practical applications of answer set program-
ming (ASP), encodings that use well-established solvers suchasr andbLy

are sometimes affected by scalability issues. In those situations, onestahto
more sophisticated ASP tools exploiting, for instance, incremental arsireant
ASP. However, today there is no specific methodology for the selectinseoof
such tools. In this paper we describe how we used such cutting-edgecdisP

on challenging problems from thEhird Answer Set Programming Competitjon
and outline the methodology we followed. We view this paper as a first step in
the development of a general methodology for the use of advancBddifs.

1 Introduction

The Third Answer Set Programming Competition — 2J1] (AsPcomB included a
Model and Solvérack. Within this track the teams were free to choose a fpelgclar-
ative solver and modeling technique for each problem. Ans&eprogramming (ASP)
solvers were of primary focus.

Today, there are a number of well-established ASP solverth a8 CLASP [5],
DLV [7], and cutting-edge solvers based on constraint and rimengal ASP (resp.,
CASP, IASP), such aszcsP[3] and ICLINGO [4]. Well-established solvers are ro-
bust and their use relies on a well-understood programmigiipodology. On the other
hand, in some circumstances the encodings for these sysimmsscalability issues.
The extensions of ASP implemented by the solvers for CASPIAB® aim at over-
coming some such issues. However, today there is no spedifibaaiology for the
formalization of knowledge with such new tools, or even fo selection of a suitable
tool given the features of a domain.

In this paper we describe how, out of concerns for the sdélalmf our en-
codings, we used CASP and IASP tools to tackle four challepgispcomp
benchmarks Weight-Assignment, Reverse-Folding, Hydraulic-Systelanning, and
Airport-Pickup. We hope that the discussion will be instrumental in outtythe prin-
ciples we followed, providing a first step towards a generaihradology for the use of
advanced ASP tools.

The structure of this paper is as follows. We start with a simroduction on ASP,
CASP and IASP. Sections 3, 4, 5, and 6 provide the problerarataits and the spec-
ifications of the encodings for the Weight-Assignment, Reed-olding, Hydraulic-
System-Planning, and Airport-Pickup benchmarks resgelgtiin Section 7 we give a
performance assessment. Finally we draw conclusions.

2 Background

Because of space considerations, in this section we onlygea short introduction on
ASP, CASP and IASP, and refer the reader to [6], [3] and [4)eetvely for the syntax
and semantics of the corresponding languages.

ASP is a declarative programming paradigm based on the arsstesemantics
of logic programs [6]. The idea of ASP is to represent a giveablem by a program
whose answer sets correspond to solutions. A common praogirsggrmethodology is to
design two main parts of a programeneratendtest The former defines a collection
of answer sets, seen as potential solutions. The latteistertd the rules that remove
the non-solutions. To distinguish the language in [6] frésneixtensions, we talk about
pure ASP, programs, and rules.

CASP extends the syntax and semantics of ASP with constpaitessing ele-
ments. It allows for new modeling features and novel contmnal methods that com-
bine traditional ASP procedures with constraint satigfec{CSP) and constraint logic
programming (CLP) algorithms. CASP is especially useful@mains that pose con-
straints over large numerical values. In such cases, giogradften becomes a bottle-
neck in the pure ASP approachzcsris an inference engine for CASP that allows
a lightweight integration of ASP and constraint programgniim theezcspterminol-
ogy, anextended answer sef a CASP program(is a pair consisting of an answer
set of IT where some of the atoms encode CSP constrains, and of aosolatthese
CSP constraints. Given a progralf the Ezcspsolver computes one or more ff's
extended answer sets. The solver combines off-the-shd¥ @&3).,cLAsSP) and CLP
solvers (e.g.BPROLOG). The architecture is such that first the ASP solver is used to
find an answer sedl of a given CASP prograni/. Then the CSP constraints encoded
by A are evaluated by the constraint solver. If the solver deterathat the constraints
from A are not satisfiable, another answer set is computed anddbegz repeats. Oth-
erwise, A and a solution found by the constraint solver form an extdrateswer set.

If IT is a pure ASP program thegzcspbehaves as its underlying ASP solver. On the
other hand]I may also be a direct encoding of a CSP theory, and in this easepr
behaves as its underlying constraint solver.

In certain domains, a numerical parameter can be identi&é@dcting the size or
complexity of a candidate solution. IASP extends pure ASBIlmying one to take ad-
vantage of such a parameter (d@wth parameter. The programmer is given means
to denote rules that are independent of the growth parar(tbiebase, rules whose
grounding should be computed incrementally in dependefhtewalue of the param-
eter (thecumulative par), and rules which should be grounded anew for each different
value of the parameter considered (tladatile part). An incremental answer set solver
such asCLINGO first attempts to find a solution for a minimum value of the gifow
parameter. If unsuccessful, it iteratively (1) incremehts value, incrementally grows
the grounding of the cumulative part of the program, (2) medgds the volatile part,
and (3) checks again for a solution.

Shttp://ww. probp. con .

3 Weight-Assignment Benchmark

In the Weight-Assignment Benchmark, a binary tree witleaves is considered, such
that (1) the leaves are pairs of integétseight, cardinality); (2) the right child of an
inner node is a leaf; (3) each inner node is a paitor, weight), wherecolor is green,
red, or blue; (4) the inner nodes are numbered fiolmn — 1; noden — 1 is the root
node; the left child of each inner nodés inner node; — 1. The weight of an inner
nodek is computed as follows: (1) if the color &fis green, themveight (k) is the sum
of the weight and cardinality df's right child; (2) if the color ofk is red, then its weight
is the sum of the weight of its right and left children; (3)h&tcolor ofk is blue, then its
weight is the sum of the cardinality of its right child and b&tweight of its left child.
The task is to verify that there is a tree formed by the givemés in accordance with (1-
4) so that the total weight of this tree — the sum of the weighits inner nodes —is less
than or equal to a given integaraximum weightProblem instances are specified by
the relations of the formiea fWeightCard(l, w, c), num(n), andmazW eight(muv),
where! is a name of the leafw, ¢), n is a number of leaves, andv is a maximum
weight. More detailed description of the Weight-Assigntieenchmark and also other
benchmarks discussed in this paper are given atirecompPwebsite [1].

Because of the abundance of constraints over numericatsaile., weights and
cardinalities of the leaves and inner nodes, this benchsrianids itself to being solved
usingezcse
Hybrid ASP-CSP Encoding: let n andmuv denote a number of leaves and a maximum
weight in a given weight-assignment problem instance aetbely. We say that a leaf
[occurs at position < p < n in the tree if it is the right child of an inner node
Furthermore, a position of an inner node is identified withumber associated with it,
i.e.,,1...n — 1. Aleaf occurs at positiof if it is the left child of an inner nodé. We
model the assignment of a leaf to positiptby the relationassignedLea f Pos(l, p)
that denotes that a leaf with the nairie assigned a positiom The rules

1{assignedLeafPos(L, P) : position(P)}1 « leafWeightCard(L, W,C). 1)
«— assignedLeafPos(L, P), assignedLeafPos(L',P), L # L'.

state that each leaf is assigned a unique position. Thearlatner N odeColor(k, c)
denotes the fact that inner no#és assigned a colar. The rule

1{inner NodeColor(P,C) : color(C)}1 « position(P), P # 0. 2

states that each inner node (identified by its position) ségagd a single color. The
weight of an inner nodg is modeled by a CSP variableeight(k), whose value ranges
from 0 to mw. In order to simplify the encoding of the constraints, we GS&P variable
weight(0) to denote the weight of the leaf at positidriThe corresponding rules are:

cspvar(weight(K),0, MV) «— num(N), K = 0..N — 1, mazWeight(MV).
required(weight(0) = W) «— assignedLeaf Pos(L,0), leafWeightCard(L, W, C).

The first rule declares the CSP variables of the fargight (k). The other rule encodes
a CSP constraint that determines the value of variablght(0) to be the weight of the

leaf assigned positiod. The constraints on the weights of the inner nodes are edcode
by statements such as:

required(weight(P) = W + weight(P')) «—
position(P), P # 0, P' = P — 1, inner NodeColor(P,red), 3)
assignedLeafPos(L, P), leafWeightCard(L,W,C).

To compute the total weight of a tree, we introduce a set oflianx CSP variables of
the forminnerWeight(k), wherek ranges froml ton — 1. For everyk in that range,
variableinnerWeight(k) equalsweight(k).

cspvar(innerWeight(K),0, MV) «— num(N), K = 1..N — 1, mazWeight(MV).
required(innerWeight(K) = weight(K)) < num(N), K =1..N — 1.
required(sum([innerWeight/1], <, MV)) «— mazWeight(MV).

The last rule encodes a CSP constraint stating that the suine afeights of the inner
nodes of the tree must be less than or equahto We denote the program consisting
of the rules discussed so far i (WA).

Encoding Analysis: in programII; (WA), the generate part consists of the rules in (1)
and (2). The rest of the rules form the test part. Note thatgaion is formed by pure
ASP rules whereas testing is formulated using rules thab@oCSP variables. Recall
the general architecture of tlrzcspsystem discussed in Section 2. Itis not difficult to
see that in the worst case scenario (for instance, when tigdeon is unsatisfiable)
ezcspwill generate and evaluate every possible combination af-p@sition/inner
node-color assignments during its search process. To aumld behavior we restate
the generate part of the program so that the CSP solver gfzbepsystem is respon-
sible for both generate and test. Thus the encoding we distg can be viewed as a
CSP formalization of the weight-assignment problem by rmezra CASP language.
We denote this encoding by, (WA).

CSP Formalization by means of CASP: we start by modeling the assignment
of a leaf to a positiorp by the CSP variableissignedLeaf(p). Since CSP vari-
ables have numerical values, we map the namef a leaf (w,c) (given by
leafWeightCard(l,w,c)) to an integerid ranging from1 to n and add an auxil-
iary factieafId(l,id) to a program. The&zcspdeclaration ofassignedLeaf(p) is:
cspvar(assignedLeaf(P),1, N) « position(P), num(N). The fact that a leaf can
only be assigned one position is compactly enforced by metasglobal constraint
all_different, encoded by-equired(all_different([assignedLeaf/1])). where the
expressiofassignedLeaf /1] denotes the list of the CSP variables formed by function
symbolassignedLeaf with arity 1. These two rules are counterparts of the rules (1)
in IT, (WA). The statementspvar(innerNodeColor(P),0,2) «— position(P). de-
clares a CSP variableiner NodeColor(k) for each inner nodé; the value of the
variable denotes the color assigned:tthat ranges betwedh(representing color red)
and2 (representing blue). The association between a color anddntifier is encoded
by a set of facts of the formolorId(c,id), wherec is red, blue or green, and is its
identifier. The declaration afiner NodeColor(k) is the counterpart of rule (2). As in
IT,(WA), the weight of an inner nodieis modeled by a CSP variablecight(k). The
variable declaration stays the same, but the encoding oétherements oweight (k)

is different. For instance, rule (3) becomes:

required((inner NodeColor(P) = REDID A assignedLeaf(P) = 1D) —
weight(P) = W + weight(P')) «
position(P), P #0, P' = P — 1,
colorId(red, REDID), leafId(L,ID), leafWeightCard(L,W,C).

The rules forinnerWeight are reformulated similarly. In order to improve perfor-
mance, the encoding also contains constraints that prdnddads for the value of the
weight of an inner nodandependently of the color of the nqdwich as:

required(assignedLeaf(P) = ID — weight(P) >
min(W + C, min(W + weight(P"), C + weight(P")))) «
position(P), P #0, P' = P — 1, leafId(L,ID), leafWeightCard(L,W,C).

4 Reverse-Folding Benchmark

In the Reverse-Folding benchmark, one manipulates a sequén pairwise connected
segments located on a 2D plane in order to take the sequametife initial configura-
tion to the goal configuration specified. The ordering of thguence and the fact that
the segments are connected to each other allows one to &die¢éad point of a segment
either as a starting point or as an ending point. All segmigangs unary length, and are
parallel either to the-axis or to they-axis. In the initial configuration, the segments are
parallel to they-axis and oriented so that the sequence extends in theidirextthe
positivey-axis. The sequence is manipulated by rotating a segmeuahairits starting
point by 90 degree (in either direction). This action is edlpivot move. A pivot move
on a segment causes the segments that follow it to rotat@ditbe same center of ro-
tation. Concurrent pivot moves are prohibited. At the end pivot move, the segments
in the sequence must not intersect. In the Reverse-Foldioigigm, one is given the
numbern of segments (relatiofength), the goal configuration (relatiofold(i, =, y),
wherel < i < n andz, y are the coordinates of th#&" starting point, or of the ending
point of the last segment for= n), and an integet (relationtime). The task is to find
a sequence of exactlypivot moves which produces the goal configuration from the
initial configuration, satisfying the constraints aboves@ution is encoded as a set of
atoms of the fornpivot(t,i,r), saying that the!" pivot move rotates thé" segment
either clockwise« = clock) or counter-clockwiser{= anticlock).

Simple Encoding: in writing an encoding that solves this benchmark, the fivisig that
became apparent is that a minimum number of necessary pwegsrcan be inferred
directly by observing the structure of the goal configumatif two segments are at
an angle in the goal configuration, it is not difficult to protreat every solution to
the problem instance must contain a pivot move that rotdtessécond segment of
the pair. In order to infer such moves, we first define a ratatigyDirection(i, d, o),
which intuitively states that thé" segment in the goal sequence has directiand
orientationo. For example, the rules for the segments parallel ta:theis are:

segDirection(I, horiz, plus) «— X2 > X1, fold(I,X1,Y), fold(I +1,X2,Y).
segDirection(I, horiz, minus) «— X2 < X1, fold(I,X1,Y), fold(I +1,X2,Y).

Next, we define relatioffold Direction(i, d), intuitively saying that in the goal config-
uration thei** segment is aligned with its predecessot none), or rotated clockwise

or counter-clockwise with respect toit & clock andr = anticlock respectively). The

rules forr € {none, clock} are:

foldDirection(I,none) «— segDirection(I — 1, D, 0), segDirection(I, D, O).
foldDirection(I, clock) «— clockFold(D1,01, D2,02),

segDirection(I — 1, D1,01), segDirection(I, D2,02).
clockFold(vert, plus, horiz, plus). clockFold(horiz, plus, vert, minus).
clockFold(vert, minus, horiz, minus). clockFold(horiz, minus, vert, plus).

Finally, relationrequiredFold(i,r) says that thé® segment must be rotated clock-
wise or counter-clockwise:

requiredFold(I, R) < R # none, foldDirection(I, R).

In most cases, performing the pivot moves starting from tice @ the sequence pro-
duces a solution. In this case, the pivot moves can be detedy the rules:

pivot(1, I, R) «— first(I), requiredFold(I, R).
pivot(T1, 11, R1) « pivot(T, 12, R2), T1 =T + 1, next(I1,12)
requiredFold(I1, R1), requiredFold(12, R2).

wherefirst(i) andnext(i1,iz) enumerate the segments that are to be rotated, starting
from the one closest to the end of the sequence. Becausetoosdiu the Reverse-
Folding problem is required to contain exactly the specifiachber of moves, it may
happen that extra, irrelevant moves need to be generatesdcdmbe achieved by alter-
nating clockwise and counter-clockwise rotations of segme

pivot(T1,1, clock) — numRequiredFolds(R), time(T),
T1>R, T1<T, (Il - R) mod 2 = 1.

Relationnum RequiredFolds(r) says that required folds were identified in the goal
configuration. The rule foiinticlock is similar. Next, we ensure that there are no over-
lapping segments during the execution of the moves. To aehtds, we project the
effects of each move on the segments and check for an ov@dagduce the size of
the grounding, we consider separately the effects of tregioois on ther andy coor-
dinates of the end points of the segments. The informatiend®ded byfoldx(t, 1, p)
and foldy(t, i, p), saying that the: (resp.,y) coordinate of the*" end point before
movet is p. The effect of a move on the coordinate of a segment is encoded by:

foldx(T1,1,Y — Y1+ X1) « foldy(T,I,Y), pivot(T, I1,clock), I > I1,
T1=T+1, foldz(T,I1,X1), foldy(T,I1,Y1).

foldx(T1,1,Y1 —Y + X1) « foldy(T,I1,Y), pivot(T, I1,anticlock), I > I1, (4)
T1=T+1, foldz(T,I1,X1), foldy(T,I1,Y1).

foldz(T1,1,X) « foldx(T,I,X), piwot(T,I1,R), I <I1, T1=T+1.

The first two rules state the effect of clockwise and counteckwise rotations on
the segments that follow the point where the rotation isiadpIThe last rule states that

thex coordinate of the other end points is unchanged. The deiiniti f oldy is similar.
The following denial states that overlaps are not alloweadlcur:
— foldz(T, 11, X1), foldy(T,I1,Y1), foldx(T,12,X1), foldy(T,12,Y1),
I1 < I2, pivot(T — 1,13, R), 12 > I3.

The two inequalities in the denial are aimed at reducing the af the grounding, the
former by exploiting symmetry considerations, and the sdday preventing the denial
from considering segments that were not affected by thet piave. Finally, relations
foldx and foldy are used to ensure that the goal configuration is eventiesdighed:

—time(T), T1 =T+ 1, X1 # X2, foldz(T1,1,X1), fold(I, X2,Y?2).)

—time(T), T1=T+1, Y1 #Y2, foldy(T1,1,Y1), fold(I, X2,Y?2).

The program consisting of the rules discussed so far willdweoted byll; (RF).
Encoding Analysis. unfortunately, the presence of the pivot moves identified by
IT,(RF) is a necessary, but not always sufficient, condition to findlat®n. In some
cases, executing the pivot moves starting from the end ofdogence of segments
causes some segments to overlap, but the moves can be reebstethat no overlap
exists. In particular, it is often possible to find a solutlpnpostponing one (suitable)
pivot move to the end of the sequence of moves. We call thisi¢theyed-movease.
(Other cases are not discussed to keep the presentatiole 9imp

The delayed-move case can be handled by adding a choiceoruleefselection of
one delayed move and modifying the definition of relatignot so that the delayed
move is executed at the end of the sequence of moves. One Baide cule is for
example0{ delayed(I) : requiredFold(I, D) }1. Let IIs(RF) denote the modified
program. The computation fdlx(RF') is substantially slower than the computation
for I1,(RF), with the performance of the grounding process particulaflected. In
II,(RF) the grounder does not handle efficiently the rules involvingix and foldy,
whose arguments have rather large numerical domains. IRkaalthe definitions of
foldz and foldy rely on relationpivot, whose definition i1, (RF') differs from the
one inll; (RF). Hence, we create a varialf; (RF’) of IIo(RF) that takes advantage
of CASP capabilities ofzcspPby encoding constraints gfvidx and foldy using CSP.
We discuss some details of;(RF') encoding next.
CASP Encoding: In I13(RF), the z andy coordinates of theé!" end point before
movet are now encoded using CSP variabfesdz (¢,7) and foldy” (t, i), e.g.:

espvar(foldx™(T,I),0,2- N) « length(N), T = 1..N, fold(I,X,Y).
The effect of a pivot action on thecoordinate of a segment is encoded by the rules:

required(foldz” (T1,1) = foldy”(T,I) — foldy” (T, I1) + foldx" (T, I1)) —
pivot(T, I, clock), T1 =T+ 1, I > I1.

required(foldz” (T1,1) = foldy™ (T, I1) — foldy” (T,I) + foldx" (T, I1)) «—
pivot(T, I, anticlock), T1 =T + 1, I > I1.

required(foldz” (T'1,I) = foldx"(T,I)) < pivot(T,I1,D), T1 =T+ 1, I < Il.

These rules are the counterpart of rules (4Ji RF'). The rules below are the coun-
terpart of rules (5) inI; (RF).

required(foldz? (T1,I) = X) «— time(T), T1 =T + 1, fold(1,X,Y).
required(foldy”(T1,1) =Y) « time(T), T1 =T + 1, fold(I,X,Y).

5 Hydraulic-System-Planning Benchmark

In the Hydraulic-System-Planning benchmark, a hydrauf&teim is viewed as a di-
rected graplG. The nodes of~ represent tanks, jets, and junctions. Tanks are either
empty or full. Each link between nodes is labeled by a valveralve can be opened
(by actionswitchon). Valves that arestuckcannot be opened. A node 6fis called
pressurizedn stateS if it is a full tank or if there exists a path from some full tank
to this node such that all the valves on the edges of this patlogen. Furthermore,
no path connecting two tanks exists and every jet is condeotat least one tank. An
input for this benchmark consists of a grapha specification of which tanks are full
and which valves are stuck (all valves are initially closedyd a set ofoal jets The
goal is to find a shortest sequencesafitchon actions to pressurize the goal jets. In the
sequence, no actions can be executed concurrently.

The challenge in this benchmark is that the length of the evecgi of actions must
be minimized. From a methodological standpoint, we apgred¢he problem by first
writing a pure ASP encoding, and then addressing its pedoo® by transforming it
into anICLINGO program. For later reference, we label various sets of agese in-
troduce them. We define an important notiorviable pathas a path irG such that no
valve along the path is stuck. Relatiofble Path(j,n) formalizes this notion recur-
sively, restricting it to the goal jets for efficiency:

viablePath(J, J) « goal(J).
viablePath(J, N') « goal(J), viablePath(J, N), link(N', N,V), not stuck(V).

The following rules ensure that there is a viable path to ladnk for every goal jet:

canPressurize(J) «— goal(J), full(T), viablePath(J,T).
«— goal(J), not canPressurize(J).

Let II; (H P) denote all of the rules above. Next, we address the planasligit two
steps. In the first step we find the length of the shortest &iphths between each goal
jetand a full tank, and in the second step we determine a seque¥ actions that opens
the paths of the given length. We begin by defining the notfaeachability in a given
number of steps, which again we restrict to goal jets forqgremtince:
reachable(J, J,0) «— goal(J).
reachable(J, N', S) « goal(J), reachable(J, N, S — 1), link(N', N, V), not stuck(V).

(6)
Using this relation, we can now define the notion pfessure pattof lengthk between
goal jetj and full tankt, i.e. a viable path of length betweenj andt:

pressurePath(J, T, S) <« goal(J), full(T), reachable(J,T,S). @)

We denote the set of rules (6) and (7) By (H P). Next we describe the set of rules
that formI7;5(H P). The length of the shortest paths from goaljeb any full tank is
defined by:

shortestPath(J, Len) < goal(J), Len = # min| pressurePath(J,T,L) = L : full(T)].

Note that there may be multiple shortest paths for a goalSetwe determine a
single shortest path for each jet. We begin by defining thnaif valves thatan be

possiblyused to open a shortest path for a given jet. We encode thmnnatcursively
using relatiorposs_use_valve(j, n, v, s), which states that at the end of the path from
j to noden of lengths, valvewv can be possibly used:

poss_use_valve(J, N,V, S — 1) — goal(J), shortestPath(J,S), full(T),link(T,N,V),
reachable(J, T, S), reachable(J, N, S — 1).
poss_use_valve(J,N2,V2,S — 1) « goal(J), poss_use_valve(J,N1,V1,5S),
reachable(J, N2,S — 1), link(N1,N2,V2).

The recursion intuitively enumerates the valves movingifeotank towards a goal jet.
The first rule encodes the base case and says that if the sthpaths for jetj have
lengths and a full tankt is reachable from in s steps, then for any nodeconnected
tot and reachable fromiin s — 1 steps, the connecting valvecan be used at the end
of the path fromj to n. The second rule states that, if valwecan be possibly used at
the end of the path fromj to n; of lengths, then for any node:, reachable frony in
s — 1 steps and directly connectedsig by valvew,, v, can be possibly used at the end
of the path ton, of lengths — 1.

The selection of valves to be used is also performed re@lysWe begin by con-
sidering, for each jej, all paths of lengthd. We select exactly one valve among the
valves that can be possibly used at the end of each of thokss: pat

1{ use_valve(J, N, V,0) : poss_use_valve(J, N,V,0) }1 « goal(J).

Next, given the decision to use valvet the end of the path fromto n of lengths, we
identify the noden’, connected ta by v and select exactly one valve among the ones
that can be possibly used at the end of the path fidaown’:

1{ use_valve(J,N2,V2,S + 1) : poss_use_valve(J, N2,V2,S + 1)
:link(N2,N1,V1) :nottank(N2)}1 —
goal(J), shortestPath(J, MS), use_valve(J,N1,V1,85), S < MS —1.

Finally, we generate the correspondingitchon actions. Because the actions can-
not be executed concurrently, we produce a global orderfnilpe actions. This is
achieved by, first, ordering the goal jets (in lexicograghier according to their name).
Second, we schedule the execution of the actions for thédirdvllowed by the actions
for the second jet, and so on. We define relatiam_prev Actions(j,n), which states
thatn is the number of actions to be executed before the first afmiogoal jet; takes
place:

num_prevActions(J, NP) «— goal(J), NP = #sum][shortestPath(J1,N) =N : J1 < J].

At this point, theswitchon actions for a jeyj are scheduled to progressively open the
path starting from the tank that has been selected tojfeed

switchon(V, S — LS — 1+ NP) « goal(J), shortestPath(J,S),
num_prevActions(J, NP), use_valve(J, N,V, LS).

This concludes the description of; (H P).
Encoding Analysis: it is not difficult to see that the progradi (H P) consisting of
II,(HP) — II3(H P) may not scale well. As the size of the graph grows, the number

of possible paths of arbitrary length may grow dramaticadigding to an explosion in
the grounding. On the other hand, because the goal is to fihdréest path for each
goal jet, the search performed By H P) could be intuitively done in an incremental
fashion. Among the ASP tools availableLINGO[4] offers a simple way for dealing
with programs that involve an incremental search, and prod? (H P) lends itself to
being extended to exploit the featuresofINGO.
IASP Encoding: first, we identify the sefl;(H P) of rules defining the base of the
program.I;(H P) consists ofl[; (H P) together with the first rule in (6). The presence
of IT, (H P) is particularly important from the point of view of performee, because it
allows to identify a problem instance that has no solutiotihaut performing any iter-
ation of the search. Laetdenote the growth parameter. The cumulative pdf(,H P),
of the program includes a number of elements. First offl[,// P) includes a modifi-
cation of the second rule in (6) and rule (7) where these tWasrcontain an additional
conditionS = s. This allows us to restrict the grounding of the rules to ahlypaths of
the length considered by the current iteration of the sedrch semantics of the rules
changes so that now they define, respectively, reachabiligkactly s steps and the
presence of a pressure path of lengthThe overall meaning of the relations remains
unchanged because the cumulative part of@anNGo program is implicitly quantified
over all of the possible values of the growth parameter.

Next, we add tdlI/(H P) rules aimed at detecting when the length of the shortest
paths for all the goal jets can be computed. This detectived needed in the pure
ASP program, but is used here to terminate the iterationseo$éarch process:

—orphan(J, s) < goal(J), S < s, pressurePath(J,T,S).
orphans(s) < goal(J), not morphan(J,s).
all_jets_fed(s) < not orphans(s).

The key notion defined by the above rules is that obgshangoal jet. A goal jetj
is orphan of ranls if no pressure path of lengthor less exists fol. The second rule
determines if there are still orphans of rankThe last rule states thatl_jets_fed(s)
holds if no orphans of rank exist.

Finally, IT/(H P) includesII;(H P) modified by adding to each rule the condition
all_jets_fed(s). This modification ensures that the rules are considergdigmiessure
paths of lengths or less exist for every goal jet.

The volatile part/I/ (HP) of the program contains the deniat orphans(s),
which states that it is impossible for the iterative searchetminate at step if or-
phans of ranlks exist. This constraint forces the iterative search to comtiuntil pres-
sure paths have been found for every goal jet. Once theselemrefound, the rules
in II’(H P) select a shortest path for each goal jet and determine ekugaquence
of switchon operation. ByII'(H P) we denote the union off;(H P), II,(HP), and
IT! (HP). Answer sets ofI’(H P) encode solutions to the problem instances.

6 Airport-Pickup Benchmark

In the Airport-Pickup benchmark, one must solve resourgel planning problems
that involve objects moving between locations. More prgjsa city is represented by

a weighted undirected grapgh. The nodes of+ represent locations where exactly two
of them are airports. Some locations may contain gas statidre arcs o7 represent
direct connections between the locations and are labelidaniinteger corresponding
to the amount of gas required to travel between them. Thelgmmoblso involves a set
of vehicles and a set of passengers. A vehicle can initiaghatany location, and can
travel from its current locatiord, to any location connected t@s long as it has enough
gas. A problem instance specifies the amount of gas in eadbleefriginally. Each
passenger is initially located at an airport, and his goabiseach the other airport.
Passengers can move between locations only by vehicleclesiian pick up and drop
off passengers, but only one passenger at a time can ridedevdtinally, vehicles can
fill their tanks at a gas station. The goal is to find a sequeheet®mns that takes each
passenger to its goal destination.

This benchmark is interesting because the large size ofdhesponding search
space makes it difficult to solve it efficiently using a singkl to a solver. In our
initial evaluation we could not find any such “monolithic” @uing that would scale
to the training instances provided faspcoMr For this reason, we decided to adopt
an approach in which the problem is divided into sub-prolsleamd multiple calls to
solvers are used. It is important to stress that this appraathough not frequently
discussed in the literature, can be extremely useful intiga@pplications of ASP.

Our solution of the Airport-Pickup benchmark is based onrahigecture consisting
of a main module, tackling the overall search problem, and ntimber of auxiliary
modules, to which the main module delegates the solutioradbus sub-problems.
This allows us to limit the size of the grounding of the pragsa and at the same
time makes it possible to use the language/solver bestdstateeach module. The
main module,IT; (AP), employs an extension of ASP developed for controlling the
interactions among modules [2]. To keep the presentatioplsiwe abstract from the
technical details of the control structure, and descfih€AP) as a pure ASP program.

The first task performed by the main module is a preliminamcghio ensure that,
in the initial state of the domain, each passenger can béedduy at least one vehicle,
and that the vehicle can then reach the passenger’s desting@eachability also takes
into account the amount of gas initially in the vehicle anel #mount of gas needed to
travel between locations.) This check is done by formutptirsub-problenils (AP, p)
for each passenger, so thatllo(AP,p) is consistent iffp can be reached by some
vehicle and then driven to his destination. The main modutesk is then reduced to
verifying whether alll7, (AP, p)’s are consistent. The passenger that is to be considered
is specified by an atom of the forsalected(p). The main rules of I (AP, p) are:

1{ assigned(P,V) : vehicle(V, M) }1 « selected(P).

< not pass_reachable_from_start.
< not destination_reachable_from_passenger.

pass_reachable_from_start < p_location(S), reach_from_start(S,G).

The first rule states that exactly one vehicle should be aedigo drive the selected

passenger. The two denials require that the assigned getad reach the passenger
from its initial location and can subsequently drive thegeager to his destination. As

a resultIl; (AP, p) U {selected(p)} has an answer set if and only if passengean

be reached by at least one vehicle satisfying these regeitesmThe last rule defines
reachability of the passenger in general terms of readhabil a location from the
vehicle’s initial location (with a certain amount of gastlaf the end of the trip). Re-
lation destination_reachable_from_passenger is defined in a similar way. Relation
reach_from_start(s, g) is defined by the rules:

reach_from_start(S, G) « start(S), gas(G).

reach_from_start(Y,G — C) «— reach_from_start(X,G), connected(X,Y,C), G > C.
reach_from_start(X,T) < reach_from_start(X,G), gasstation(X), tank(T).
start(S) < assigned(P, V), vehicle_at(V, S).

The relation is formalized recursively. The first rule enesdhe base case, and states
that the start is reachable without using any gas. The néxtemcodes the recursive
step, and says that any location connected to the curreatidnds reachable if enough
fuel is left in the vehicle’s tank; the amount of fuel in thenkaat the end of the leg
takes into account the cost of driving to the new locatiore Tiird rule considers the
availability of a gas station, and states that, if the curteaation is reachable from
the start and has a gas station then it is reachable fromahength a full tank left at
the end of the trip. The last rule determines the start looaif the vehicle currently
assigned to the passenger; the rules for relatji@arsandtank are similar.

If the preliminary test implemented by, (AP, p) succeeds thef; (AP) proceeds
with the next phase of the search. In this phd&g,A P) maintains the current locations
of passengers and vehicles and the gas level in the tank bfvediicle. The program
selects one passengerand assigns to him a vehiclecapable of taking him to his
destination. The state of the domain is then updated acuptdithe effects of driving
to his destination using. Note that at this stage of the search we are only concerned
with final locations of the objects and gas levels, and abistram the low-level actions
that need to be performed to dripdo his destination. At this point the process repeats:
IT, (AP) selects another passenger, assigns him a vehicle, andatiod sentinues.

Whenever no vehicle can be found for driving a currently settpassenger, the
search backtracks. To improve performance, the selectfipassengers and vehicles is
guided by a heuristic that prefers to use vehicles that aeady at a passenger’s current
location. This is implemented by the rules:

1{ use_at_passenger, ~use_at_passenger }1 «— —all_at_destination.
«— use_at_passenger, Not some_already_at_passenger.
#minimize| use_at_passenger = 1, ~use_at_passenger = 2].

The first rule states that if not all passengers are at thsiirdgions then it is possible
to select between using vehicles that are at a passengeaitido and vehicles that are
not. The second rule states that it is impossible to reqgbgause of a vehicle that is at
a passenger’s location if no vehicle is at this location. Tt rule (from a language
extension ofcLASP) states that choosing to use vehicles that are not at a ggssen
location has a penalty. The selection of a passenger andicdeveéhperformed by the

rules:

1{ assigned(P,V) : passenger(P) : not at_destination(P)
s vehicle(V, M) : good(V, P) : already-at_passenger(V, P) }1 «
—all_at_destination, use_at_passenger.
1{ assigned(P,V) : passenger(P) : not at_destination(P) : vehicle(V, M)
: good(V, P) }1 « —all_at_destination, —use_at_passenger.

Both rules state that exactly one p§it v) must be selected. In the first rule, the selec-
tion is among the pairs for which andv are at the same location. In the second rule
this restriction is lifted. Next/I; (AP) verifies the reachability gf from v’s location
(if necessary) and qf's destination after has picked up. The rules for the definition
of reachability are the same as usediig(AP). Note that multiple paths may exist that
allow v to drive p to his destination. For this reason, we consider didgtpaths, i.e.
those that leave the largest amount of gag'sitank at the end of the path. Note that if
a solution to the main problem cannot be found by using behsghen no solution can
be found even if the condition is lifted. Considering exjljcmultiple paths, in general,
involves an amount of backtracking that would make perforceaunacceptable.

At this stage of the search, we focus on finding the amount®fafathat character-
izes the best path. The amount is determined in two stest, fFatationbest_d1_gas(g)
says thabtyg is the largest amount of gas leftirs tank after it has reachets location:

best_dl_gas(BG) < plocation(D), BG = # max[reach_from_start(D,G) = G].

It should be noted that in the definition @éstination_reachable_from_passenger
used inlly (AP, p), the amount determined st _d1_gas is used as the initial gas
level for the trip to the passenger’s goal location. We thefing the similar relation
best_dest_gas(g):

best_dest_gas(BG) « destination(D), BG = # max[reach_from_d1(D,G) = G].

The valueg for which best_dest_gas holds is the amount of gas left s tank after
driving p to the airport along the best path.

Oncell; (AP) has determined a sequence of passenger-vehicle selettitrssic-
cessfully takes all the passengers to their respectivenddisns, the sequence of actions
to be performed for each passenger-vehicle pair is detedrig means of another pro-
gram,II5(AP). The progranils(AP) (i) takes as an input a pafp, v) and the current
state of the domain, and (ii) finds the sequence of actiomesponding to the best path
for (p,v). The program is called iteratively for each passengerelelsissignment de-
termined earlier by7, (AP). Between calls/I; (AP) updates the state of the domain
according to the sequences generatedlhyAP).

As in the Hydraulic-System-Planning benchmaik;(AP) is written in the lan-
guage oficLINGO, using the maximum length of the paths considered as thetgrow
parameter. The search revolves around the noti@xtnsion of input grapty for ve-
hicle v: a directed graph whose nodes are péirg), wherel is a location and; is an
integer specifying an amount of gas. A péirg) belongs to the extensiof of G if |
can be reached from the current locatiorvdin the current state of the domain) with
an amount of gag left in the tank. InII5;(AP), we consider paths ift of increasing

length until we find the best path. The paths are representeddil, lg, n, ng,), stat-
ing that thei’* element of a path is the arc frofh Ig) to (n, ng). The base ofI3(AP)
is:

arc(S,SG, X, SG — C,1) « start(S), gas(SG), connected(S, X,C), SG > C.
arc(S,SG, S, T, 1) « start(S), gas(SG), gasstation(SG), tank(T).

The rules define the first arc of each pattkinwith the second rule dealing with the case
in which the vehicle is refueled at the start. The cumulgpigg of I73(AP) determines
thei*" arc in each path, wherids the growth parameter:

arc(X,G1,Y,G1 — C,i+ 1) «— arc(Z,G0, X, G1,1), connected(X,Y,C), G1 > C.
arc(X,G1, X, T,i+ 1) « arc(Z,G0, X, G1,1), gasstation(X), tank(T).

The cumulative part also includes the definition of relatioriest (), saying that there
exists a path of lengththat leadsv to the destination location (after picking win
such a way that the intended amount of gas is leftsrtank:

at_dest(i) — arc(X,G, D, BG,1), destination(D), best_dest_gas(BG).

Relationat_dest is the key to detecting when the best path has been foundlykina
the volatile part ofl7;(AP) contains a denia— not at_dest(i), which intuitively
forces the iterations to continue until the best path hag fmend. Once that happens,
the corresponding sequence of actions is generated bgaiedrthe best path from its
end, with the same approach used in the Hydraulic-SystemAirlg benchmark. By
I1(AP) we denotd I, (AP)-1I3(AP).

7 Performance Assessment

The number of training instances made available bysakecomporganizers to the
teams of the Model and Solve track was rather small — rangorg % to 7. Such a small
number of instances does not allow us to carry out a thoroaglopnance assessment,
which is also beyond the scope of this paper. Neverthelesgravide some evidence
of the better performance and scalability yielded by theoditgs developed in this
paper over the corresponding pure ASP encodings.

The evaluation was performed on a computer with 4 Intel iZcessors running
at 3GHz, 4GB RAM and FedoraCore 11. The systems used wersco 3.0.3,
CLASP1.3.7,ICLINGO 3.0.3 (withcLASP 1.3.5),BPROLOG7.4 andezCcsP1.6.20b33.

For all benchmarks but one, we compared our encodings wétpuine ASP encod-
ings made available by the ASPCOMP organiZz¢ig and run usingcLASP. Below,
we label these pure ASP encodingsiy(-). For Reverse-Folding benchmark we com-
paredll, (RF), II5(RF'), andII3(RF'). The timeout for experiments wé60 seconds.

The results of the comparison are summarized in Table 1 an gfat the encod-
ings developed in this paper are substantially faster tharohes they are compared
with. It should be noted that, althoudl, (RF) is faster thanl3(RF'), the former is
incomplete for the general case. More detailed results edodnd on theezcspweb

% In these encodings we replaced all disjunctive rules by suitable chd&= ru

page (http://marcy.cjb.net/ezcsp) together with the dimggs described in the paper and
an additional performance assessment on the instance$argbd competition phase
of ASPCOMP

WA RF HP AP
IT,(W A 1T, (W A)|[ITs(RF)| T2 (RF) [I1, (RF)|| IT’ (H P) | I, (H P) || II (AP)[1I,(AP)
Total 0.77 366.80] 67.19 180598 959 0.85 24.48] 63.16 1837.5

Tlo 0 0 0 3 0 0 0 0 2
Ave| 015 7336 1344 36120 1.92| 012 350 1263 367.51

Table 1. Performance comparison (T/o stands for the number of timeouts).

8 Conclusions

In this paper we have described our solutions to four chgifenaspcompproblems.
The solutions involved non-trivial use of solvers for CASRIAASP — selected out of
concerns for the scalability of the pure ASP solutions — faiclh nowadays no pro-
gramming methodology exists. We hope that our descriptasnpnovided an outline of
the methodology we followed and that this may constitutesadilep in the development
of a general methodology for the use of such advanced ASRrsolv
Acknowledgments. The idea to use irrelevant moves in the Reverse-Foldingtbenc
mark is by Selim Erdogan, who also gave valuable suggestiorthis paper and was
a member oEzcspteam inAsPCOMP Yuliya Lierler was supported by a CRA/NSF
2010 Computing Innovation Fellowship.

References

1. Third answer set programming competition (2011), https://www.miaauit/aspcomp2011/

2. Balduccini, M.: A General Method To Solve Complex Problems By Gainy Multiple An-
swer Set Programs. In: ICLP09 Workshop on Answer Set Pragiiaghand Other Computing
Paradigms (ASPOCP09) (Jul 2009)

3. Balduccini, M.: Representing Constraint Satisfaction Problems in AnS&t Programming.
In: ICLP09 Workshop on Answer Set Programming and Other Comp®Raradigms (AS-
POCPQ9) (Jul 2009)

4. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., SchaupThiele, S.: Engineering
an incremental asp solver. In: ICLP. pp. 190-205 (2008)

5. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Corlliasten Answer Set Solving. In:
Veloso, M.M. (ed.) Proceedings of the Twentieth International Joimif€ence on Artificial
Intelligence (IJCAI'07). pp. 386—392 (2007)

6. Gelfond, M., Lifschitz, V.: Classical negation in logic programs aigjudctive databases.
New Generation Computing 9, 365-385 (1991)

7. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perrj,Sarcello, F.: The DLV
System for Knowledge Representation and Reasoning. ACM Transsciio@omputational
Logic 7(3), 499-562 (2006)

