
Computing Stable Models of Logic Programs
Using Metropolis Type Algorithms

Alex Brik, Jeffrey B. Remmel

Department of Mathematics, University of California San Diego, USA
La Jolla, CA 92029-0112

Abstract. We study a novel Monte Carlo type algorithm, which we call
the Metropolized Forward Chaining (MFC) algorithm, to find a stable
model of a normal propositional logic program P if P has a stable model
or to find a maximal subprogram P ′ of P and stable model M ′ of P ′ if P
does not have a stable model. Our algorithm combines the forward chain-
ing algorithm of Marek, Nerode, and Remmel with the Metropolis algo-
rithm. To demonstrate the feasibility of MFC, we conducted computer
experiments on logic programs to find (2,6) van der Waerden’s certifi-
cates. The paper also discusses the use of the Stochastic Approximation
Monte Carlo (SAMC) algorithm instead of the Metropolis algorithm in
MFC.

1 Introduction

The main goal of this paper is to show how one can combine the forward chaining
algorithm of Marek, Nerode, and Remmel [19] with the Metropolis Algorithm to
produce an algorithm which we call the Metropolized Forward Chaining (MFC)
algorithm that will accomplish the following tasks.1

1. Given a finite propositional logic program P which has a stable model, find a
stable model M of P .
2. Given a finite propositional logic program P which has no stable model, find
a maximal program P ′ ⊆ P which has a stable model and find a stable model
M ′ of P ′.

As discussed in [21], finding maximal subprograms that have stable models
is important for certain extensions of ASP for programs where arbitrary set
constraints are used to model both hard and soft preferences. In such situations,
one may not be able to satisfy all soft preferences so that stable models may not
exist that satisfy all preferences. However, if we drop certain soft preferences, we
may be able to find subprograms that do have stable models.

The Metropolis algorithm is a widely applicable procedure for drawing sam-
ples from a specified distribution on a large finite set. The Metropolis algorithm
was introduced by Metropolis et. al. [23] in 1953 for applications in statistical

1 The preliminary but unpublished version of this paper was presented at NonMon@30
conference. The present version of the paper includes additional research on the use
of SAMC algorithm.

physics. It was later generalized to the Metropolis-Hastings algorithm [6]. The
applications of the Metropolis-Hastings algorithm are widespread in chemistry,
physics, biology, statistics, computer science, group theory, cryptography [3] and
linguistics [4]. A key element that is required of any proposed search procedure
for stable models that can be combined with the Metropolis algorithm is that
it must have a simple measure which gives information about how far a given
proposed solution, that fails to be a stable model, is from a stable model. There
are several possibilities for such measures in the search for stable models which
we will discuss in more detail at the end of the paper. However, in the search pro-
cedure introduced by Marek, Nerode, and Remmel [19], called forward chaining
algorithm, there is an unambiguous measure.

One potential problem in all applications of the Metropolis algorithm is the
so-called local trap problem. That is, it may be the case that after entering
a region of high density, the simulation will tend to stay in that region and
will be unlikely to move through a region of low density to another region of
high density, rendering the method ineffective, see [13]. There are numerous
proposals for modifications of the Metropolis algorithm that aim to fix this
problem. Liang in [11] lists some of them. We have run computer experiments on
a version of MFC where we have replaced the Metropolis algorithm by Stochastic
Approximation Monte Carlo (SAMC) algorithm [12], [1] and we will discuss our
SAMC version of MFC in section 3. Our computer experiments indicate that as
problem’s difficulty level increases MFC performs better with SAMC than with
the Metropolis algorithm.

In all these variations of the Metropolis algorithm, the user has a choice of
how to set various parameters associated with algorithm. In general, there are
relatively few exact results on the performance of Metropolis type algorithms
and hence such algorithms are tuned by modifying the choice of input parame-
ters. Thus we will report some results of our computer experiments on certain
instances of problems (1) and (2) which indicate the increase in performance
that can occur by properly tuning such parameters.

We think that Metropolis type algorithms can provide a useful alternative
to standard solvers in the search for stable models. Our methods had some
successes in that MFC can find stable models for certain programs where tested
versions of leading ASP solvers smodels [26] and clasp [8] cannot. However, there
is still considerable work that needs to be done to understand how best to use
Metropolis type algorithms to search for stable models. Thus, we think of this
paper as representing an initial attempt in developing applications of Metropolis
type algorithms for ASP and it is our hope that this paper will motivate others
to research how to refine and improve such applications. We should note that
others have used randomized algorithms to search for stable models in ASP.
For example, Pbmodels due to Liu and Truszczyński [15–17] which uses pseudo-
Boolean constraint solvers to compute stable models of logic programs with
weight constraints.

The outline of this paper is as follows. In section 2, we shall describe the
preliminaries. In section 3, we shall describe Metropolized Forward Chaining

(MFC) - our Metropolis type algorithm. In section 4, we shall present results of
preliminary computer experiments on how the efficiency of the MFC algorithm
depends on the choice of parameters. In section 5, we shall discuss some possible
modifications of input parameters that should be explored further as well as other
possible approaches to use Metropolis type algorithms to find stable models.

2 Preliminaries

ASP. Answer Set Programming (ASP) is logic programming with the stable
model or answer set semantics. ASP systems are ideal logic-based systems to
reason about a variety of types of data and integrate quantitative and qualitative
reasoning. Whether a finite propositional logic program has a stable model is NP-
complete ([5], [22]). Furthermore, any NP-search problem can be (uniformly)
reduced to the problem of finding a stable model of a finite propositional logic
program [20].

A normal propositional logic program P consists of clauses of the form

C = a← a1, . . . , am,¬b1, . . . ,¬bn,

where a, a1, . . . , am, b1, . . . , bn are atoms and ¬ is a non-classical negation op-
erator. Here a1,..., an are called the premises of clause C, b1, . . . , bm are called
the constraints of clause C, and a is called the conclusion of clause C. For any
clause C, we shall write prem(C) = {a1, . . . , an}, cons(C) = {b1, . . . , bm}, and
c(C) = a. Either prem(C), cons(C), or both may be empty. C is said to be
a Horn clause if cons(C) is empty. We let mon(P) denote the set of all Horn
clauses of P and nmon(P) = P \ mon(P). The elements of nmon(P) will be
called nonmonotonic clauses.

Let H(P) denote the Herbrand base of P . A subset M ⊆ H(P) is called a
model of a clause C if whenever prem(C) ⊆ M and cons(C) ∩M = ∅ of C,
then c(C) ∈ M . M is a model of a program P if it is a model of every clause
C ∈ P . The reduct of P with respect to M denoted PM is obtained by removing
every clause C such that cons (C) ∩M 6= ∅ and then removing the constraints
from all the remaining clauses. M is called a stable model of P if M is the
least model of PM .

The Forward Chaining Algorithm. The forward chaining algorithm can
be applied to any normal propositional logic program P of arbitrary cardinal-
ity. Given P and a well-ordering ≺ of nmon(P), the forward chaining algorithm
outputs a subset D≺ of H(P). D≺ will not always be a stable model of P , but it
will be a stable model of a certain subprogram A≺ of P which will be computed
by the forward chaining algorithm. A≺ will be a maximal set of clauses for which
D≺ is a stable model.

For any set S ⊆ H(P), we define the one step provability operator relative
to mon(P) by setting Tmon(P)(S) to be the union of the set S and the set of all
a ∈ H(P) such that there exists a clause C = a ← a1, . . . , am ∈ mon(P) where

a1, . . . , am ∈ S. Then, we define the monotonic closure of S relative of mon(P),

clmon(S), by clmon(S) = Tmon(P)(S) ↑ ω =
⋃
k≥0

T kmon(P) (S).

Let ≺ be a well-ordering of nmon(P). We define two sequences 〈Dξ〉ξ∈α+

and 〈Rξ〉ξ∈α+ of subsets of H(P) where α+ is the least cardinal greater than
the ordinal α determined by the well ordering ≺. The set Dξ is the set of atoms
derived by stage ξ and Rξ is the set of atoms rejected by the stage ξ. We say
that a clause C is applicable at stage ξ + 1 if (i) prem(C) ⊆ D≺ξ , (ii) ({c(C)} ∪
cons(C)) ∩D≺ξ = ∅, and (iii) clmon(D≺ξ ∪ {c(C)}) ∩ (cons(C) ∪R≺ξ) = ∅.

1. At stage 0, let D≺0 = clmon(∅), R≺0 = ∅.
2. At stage β + 1, look for an applicable clause at stage β + 1. If there is no

applicable clause at stage β + 1, then we set D≺β+1 = D≺β and R≺β+1 = R≺β .
Otherwise we let C = Cβ+1 be the ≺-first applicable clause at stage β + 1
and set D≺β+1 = clmon(D≺β ∪ {c(C)}) and R≺β+1 = R≺β ∪ cons(C).

3. If ξ is a limit ordinal, then at stage ξ, we let D≺ξ =
⋃
γ<ξD

≺
γ and R≺ξ =⋃

γ<ξ R
≺
γ .

Let D≺ = D≺α+ =
⋃
γ<α+ D≺γ and R≺ = R≺α+ =

⋃
γ<α+ R≺γ . We say

a clause C is inconsistent relative to P and ≺, if prem(C) ⊆ D≺, ({c(C)} ∪
cons(C))∩D≺ = ∅, but clmon(D≺ ∪{c(C)})∩ (cons(C)∪R≺) 6= ∅. We then let
I≺ = {C : C is inconsistent} and A≺ = P \ I≺.

Then Marek, Nerode, and Remmel [19] proved the following results.

Theorem 1. Let P be a normal propositional logic program.
1. For any well-ordering ≺ of nmon(P), D≺ is a stable model of A≺. Hence if
I≺ = ∅, then D≺ is a stable model of P .
2. If M is a stable model of P , then there exists a well-ordering ≺ of nmon(P)
such that D≺ = M . In fact, for every well-ordering ≺ such that NG(M,P) =
{C ∈ nmon(P) : prem(C) ⊆ M, cons(C) ∩M = ∅} forms an initial segment of
≺, D≺ = M .

We are interested only in finite programs so that a well ordering of nmon(P)
is determined by specifying a permutation σ of nmon(P).

Example 1. Let H = {a, b, c, d, e, f} and let P consist of the following clauses:
(1) a←, (2) b← c, (3) c← a,¬d, (4) d← b,¬c, (5) e← c,¬f , (6) f ← c,¬e.
Here, mon(P) consists of clauses (1) and (2), whereas nmon(P) consists of
clauses (3), (4), (5), and (6).

Let ≺ be the ordering of nmon(P) where (3) ≺ (4) ≺ (5) ≺ (6). Then the
construction of sets D≺n and R≺n is as follows.
Stage 0 D≺0 = clmon(∅) = {a}, R≺0 = ∅.
Stage 1 C1 = (3), D≺1 = clmon({a} ∪ {c}) = {a, b, c}, R≺1 = {d}.
Stage 2 C2 = (5), D≺2 = {a, b, c, e}, and R≺2 = {d, f}.
Stage 3 At this stage our construction stabilizes.
It is easy to see that I≺ = ∅ so D≺ = D≺2 is a stable model of P .

The Metropolis-Hastings Algorithm. The presentation in this section is
based on the description of Markov Chains and the Metropolis algorithm found
in [3], [9], and [14].

A sequence of random variables x0, x1, x2, ... defined on a finite state
space X is called a Markov chain if it satisfies the Markov property: ∀t ≥
0 (P (xt+1 = y| xt = x, ..., x0 = z) = P (xt+1 = y| xt = x)).

In this paper we will consider only Markov chains with the additional prop-
erty: P (xt+1 = y| xt = x) = P (xs+1 = y| xs = x) for all t, s ≥ 0. Hence, we can
record such probabilities as a transition function M (x, y) = P (x1 = y| x0 = x).
We let M (·, ·) denote the matrix which records this transition function and let
Mn (·, ·) denote the n-th power of the matrix M(·, ·) for any n ≥ 1. It then
follows that for all n ≥ 1, P (xn = y| x0 = x) = Mn (x, y).

A probability distribution on X is a function π : X → [0, 1] such that∑
x∈X π (x) = 1. We say that π is a stationary distribution for M if for all

x ∈ X,
∑
y∈X π (y)M (y, x) = π (x) .

Given a Markov chain K (·, ·), called the proposal chain, and a probability
distribution π (·), let G (x, y) = π (y)K (y, x) /π (x)K (x, y) . The Metropolis-
Hastings algorithm defines a new Markov chain M (·, ·), where the probability
M (x, y) is equal to the probability of drawing xt+1 = y given xt = x using the
following procedure:

1. given current state xt = x, draw y based on the Markov chain K (x, ·);
2. draw U from the uniform distribution on [0, 1];
3. set xt+1 = y if U ≤ G (xt, y) and set xt+1 = xt otherwise.
The key result about the Metropolis-Hasting algorithm is the following.

Proposition 1. Let X be a finite set and K (·, ·) be a proposal chain on X
such that ∀x, y ∈ X K (x, y) > 0 iff K (y, x) > 0. Let π (·) be a probability dis-
tribution on X. Let M (·, ·) be the Metropolis-Hastings chain as defined above.
Then π (x)M (x, y) = π (y)M (y, x) for all x, y. In particular, for all x, y ∈ X
lim
n→∞

Mn (x, y) = π (y).

The relevance of this result to the task of finding stable models of normal
propositional logic programs is that it implies that after sampling from M for
sufficiently many steps, the probability of being at y is π (y) regardless of the
starting state. If π (y) is defined to be relatively large whenever y corresponds
to a stable model then for a normal propositional logic program P which has
a stable model, samples generated from M will eventually include those corre-
sponding to the stable models and moreover the sampling from M will be biased
towards those corresponding to the stable models of P .

Stochastic Approximation Monte Carlo (SAMC). SAMC is variant of
the Metropolis algorithm designed to help overcome the local trap problem. Let
π (x) = cψ (x), x ∈ X, denote the target probability distribution, where X is the
sample space and c is an unknown constant. We will assume that X is finite, al-
though such an assumption is not made in [11]. Let E0, ..., Ed denote a partition

of X into subregions and let ωi =
∑
x∈Ei ψ (x). SAMC attempts to draw samples

from the distribution πω(x) ∝
∑d
i=0

piψ(x)
ωi

I (x ∈ Ei) , where I (·) is an indicator
function and p = (p0, ..., pd) is the desired sampling distribution of the subre-
gions E0, . . . , Ed. If ω0, ..., ωd can be well estimated, then in SAMC, sampling
from πω (·) will result in a ”random walk” in the space of subregions with each
subregion being sampled with a frequency proportional to pi. Hence, the local
trap problem can be overcome (provided that the sample space is partitioned
appropriately).

Let ξti denote the working estimate of log (ωi/pi) obtained at iteration t,
ξt = (ξt0, ..., ξtd), and {γt} denote a gain factor sequence such that

(*) lim
t→∞

γt = 0,
∑∞
t=1 γt =∞, and

∞∑
t=1

γηt <∞ for some η ∈ (1, 2).

Let J (x) denote the index of the subregion to which x belongs. Let K (·, ·) be a
proposal distribution as in Metropolis algorithm. Then one iteration of SAMC
can be described as follows.

1. Simulate a sample xt by a single update with the target distribution

πξt (x) ∝
d∑
i=0

ψ(x)

eξti
I (x ∈ Ei). That is, (a) generate y according to the proposal

distributionK (xt, y), (b) calculate the ratio r = e(ξtJ(xt)
−ξtJ(y)) ψ(y)

ψ(xt)
K(y,xt)
K(xt,y)

, and

(c) accept y with probability min (1, r). If it is accepted, set xt+1 = y; otherwise,
set xt+1 = xt.

2. Set ξ∗ = ξt + γt+1 (et − p) where et = (et,0, ..., et,d) and et,i = 1 if xt ∈ Ei
and 0 otherwise. If ξ∗ ∈ Ξ, set ξt+1 = ξ∗; otherwise, set ξt+1 = ξ∗ + c∗, where
c∗ = (c∗, ..., c∗) can be an arbitrary vector which satisfies ξ∗ + c∗ ∈ Ξ. Here Ξ

is a compact region. For example, we can set Ξ = [−B,B]
d

for a large B.

In [12] Liang et al. showed that under mild conditions

θti → C + log

(∑
x∈Ei

ψ (x)

)
− log (pi + h) if Ei 6= ∅ and θti → −∞ if Ei = ∅

as t→∞ where h =
∑

j∈{i:Ei=∅}

pj
d−d0 , d0 is the number of the empty subregions,

and C is an arbitrary constant. A subregion Ei is called empty if
∑
x∈Ei

ψ (x) = 0.

This result states that asymptotically, the working estimates θti of log (ωi/pi)
are equal to log (ωi/pi) after an adjustment for the empty regions. The relevance
of this result to the problem of finding stable models or to the problem of finding
maximal submodels is that it implies that if we partition the sample space into
subregions so that there are subregions that contain only stable models, or there
are subregions that contain only maximal submodels, then, assuming that these
subregions are not empty, they will be visited by SAMC simulation.

3 The Metropolized Forward Chaining Algorithm

In this section, we shall formally define our MFC algorithm. To define the
MFC algorithm, fix a finite normal propositional logic program P and let N =
|nmonP |. Since nmon(P) is finite, the well orderings of nmon(P) can be specified
by permutations σ of nmon(P). So let perm(P) denote the set of all permuta-
tions of nmon(P). Thus |perm(P)| = N !. For any σ ∈ perm(P), we let Dσ, Rσ,
and Iσ denote the set of derived atoms, rejected atoms, and inconsistent clauses
output by the forward chaining algorithm for P relative to the well ordering of
nmon(P) given by σ. We let r(σ) = |Iσ|. Thus if r(σ) = 0, then Dσ is a stable
model of P . Let Fi(P) = {σ ∈ perm(P) : r(σ) = i} .

We say a subprogram P ′ ⊆ P is a maximal size subprogram of P that has a
stable model if P ′ = Aσ for some σ ∈ perm (P) and r (σ) = min

τ∈perm(P)
r (τ).

To apply the Metropolis-Hasting algorithm, we need to specify the state space
X, the Markov chain K(·, ·), and the sampling distribution π (·). Our state space
for the MFC algorithm will be perm(P). Next we fix k where 2 ≤ k < N and
specify K by saying that K(σ, τ) is the probability that starting with σ, we
produce τ by picking k elements 1 ≤ i1 < · · · < ik ≤ N uniformly at random,
then picking permutation γ of i1, . . . , ik uniformly at random, and then creating
a new permutation by replacing σi1 , . . . , σik in σ by σγ(i1), . . . , σγ(ik). It is easy
to see that for all σ, τ ∈ perm(P), K(σ, τ) = K(τ, σ) so that K specifies a
symmetric Markov chain and the acceptance ratio for the Metropolis-Hasting

algorithm is just G(σ, τ) = π(τ)
π(σ) .

In specifying a distribution π we want π(σ) to depend only on r(σ) and we
want the probability of Fi(P) = {σ : r(σ) = i} to be non-zero at least for i in
some initial segment, say 0 ≤ i ≤ n for some n < N . We also want to favor
those σ where r(σ) is small. We shall assume that there exists C1, C2, θ, m with
0 < C1 ≤ C2, 0 < θ < 1, m ≥ 1 independent of N such that
(a) for j = 0, 1, ..., n, C1θ

−jm ≤ |Fj(P)| ≤ C2θ
−jm and

(b) for j = n+ 1, ..., N , |Fj(P)| ≤ C2θ
−jm .

This is basically saying that |Fj(P)| is growing exponentially for j = 1, . . . , n, and
is bounded by an exponential for j = n+1, . . . , N . Of course, this is not true for
all programs P . That is, there are programs where F0(P) = N ! which means that
the forward chaining algorithm always produces a stable model no matter what
ordering we pick for nmon(P). For example, Marek, Nerode, and Remmel [18]
described a class of programs called FC-normal programs for which this is true.
FC-normal logic programs are a generalization of Reiter’s [25] normal default
theories. There are also programs P for which FN (P) = N !. Such a program must
have the following property. For every clause C = a ← b1, . . . , bn,¬c1, . . . ,¬cm
in nmon(P), we have that clmon(a) ∩ {c1, . . . , cm} 6= ∅. Clearly such programs
can have no stable models. Thus our assumptions certainly do not apply to all
programs P . Instead, our goal is to provide a reasonable set of assumptions that
will allow us to define a distribution function π(σ) where the convergence to
orderings σ where r(σ) is small is relatively rapid. There are many other choices
of distribution functions which seem reasonable and we shall briefly address this

issue in the conclusions of the paper. However, for the moment, we shall assume
(a) and (b) and then define a probability distribution πN on perm(P) by setting

πN (σ) = θj
m

N−1∑
s=0

θsm |Fs(P)|
if σ ∈ Fj(P) where 0 ≤ j ≤ N − 1 and πN (σ) = 0 if

σ ∈ FN (P). We can then prove the following.

Theorem 2. For j = 0, 1, ..., n, lim
N→∞

πN (Fj (P))N ≥ C1

C2
> 0.

Moreover, if σi ∈ Fi and σs ∈ Fs where 0 ≤ i, s ≤ N − 1 then πN (σi)
πN (σs)

= θi
m−sm

so that if i ≤ s then πN (σi)
πN (σs)

≥ 1. (Here for any set X, πN (X) =
∑
x∈X

πN (x)).

The relevance of the theorem is that if we are sampling from π, then, for
large enough N , the expected number of samples to encounter a stable model
increases at most linearly with N - the size of the nonmonotonic part of P .

This given, at any step in the MFC algorithm, we do the following.
Given an ordering σ(t) = σ ∈ perm(P), we compute Dσ, Rσ and Iσ by applying
the forward chaining algorithm. We then pick a new ordering τ according to the
chain K(σ, ·). That is, we pick k elements of σ uniformly at random and pick a
random permutation of those k elements and let τ be the permutation that results
by reordering the k chosen elements of σ according to this random permutation.
Then we compute Dτ , Rτ and Iτ by applying the forward chaining algorithm.
Then we draw U from the uniform distribution on [0,1] and set σ(t+1) = τ if

U ≤ πN (τ)
πN (σ) and set σ(t+1) = σ otherwise.

We have three parameters that govern the behavior of the MFC algorithm:
the parameter k which is the number of elements of σ ∈ perm(P) that we
pick when we move to the next permutation of nmon(P) which determines the
proposal chain K(·, ·) and the parameters θ and m which arise in the distribution

πN [θ,m] (σ) = θr(σ)
m

/Z where Z =
N−1∑
s=0

θs
m |Fs (P)|. In the next section, we

shall report on some numerical experiments on how varying these parameters
effects the performance of the MFC algorithm.
Using SAMC in MFC

To adapt SAMC to MFC, the following must be specified: (1) a proposal
chain, K (·, ·), (2) a target probability distribution π (·), (3) a partition function
J (·) that for each x in a sample space returns the index J (x) of the subregion
that contains x, (4) a desired sampling distribution p, and (5) a sequence {γt}∞t=1

satisfying (*).
In our experiments we have used the proposal chain K [k] and probability

distribution π [θ,m] described in the previous sections. A natural choice for a
partition function is r (σ) which for a candidate σ returns the number of in-
consistent clauses corresponding to σ. Then all the candidates corresponding to
stable models of the program P , if such stable models exist, or all the candi-
dates corresponding to the maximal submodels will be contained in a unique
subregion. Moreover such a subregion does not contain any other candidates.
Nevertheless, our computer experiments indicate that the performance of MFC

with SAMC improves if the level sets of r (σ) are further partitioned. The ba-
sis for such a partitioning is a secondary partition function σ → i (σ), that for
each permutation of nmon (P) produces a nonnegative integer i (σ) - the index
of σ. We require that i (σ) lies in {α (|σ|) , ..., β (|σ|)}, for some positive integers
α (|σ|) ≤ β (|σ|) dependent on the size of permutations. For any statement A,
we let I(A) be the indicator function that A is true, i.e., I(A) = 1 if A is true
and I(A) = 0 if A is false.

Suppose that we divide each level set of r (σ) into S subregions for some
S ≥ 1. Given a permutation index function i (·), define JS (·) by

JS (σ) = r (σ) · S + b(i (σ)− α (|σ|))/(bβ (|σ|)− α (|σ|)
S

c+ 1)c.

We use the following function i (σ) =

|σ|∑
s=1

s · I (clause s is inconsistent).

In [12] the authors suggest using a biased desired sampling distribution. We
thus construct a desired sampling distribution as follows: let ρ ∈ (0, 1] be a fixed
constant. For a region E, let r (E) be the number of inconsistent clauses corre-
sponding to any element of E, here we assume that E ⊆ {σ| r (σ) = j} for some

j. Then the weight pE of E is pE = ρj

z where z =
∑

E - is a subregion

ρr(E). In [12],

the authors also suggest that one uses the sequence {γt}∞t=1 where γt = t0
max(t,t0)

for some specified t0 > 1 which is what we did in our computer experiments.
Thus our SAMC adaptation of MFC depends on the following parameters:

(1) k ≥ 2 - the parameter for the proposal chain K [k], which is the number
of elements of σ that we permute, (2) θ ∈ (0, 1), m ≥ 1 - the parameters for

the target probability distribution π (σ) = θr(σ)
m

Z , (3) the secondary partition
function i (σ) and S ≥ 1 - the number of subregions of a level set of r (σ), (4)
ρ ∈ (0, 1] - the bias constant for the desired sampling distribution, and (5) t0 > 1
- a constant that determines the sequence {γt}∞t=1.

4 Numerical Experiments

In this section, we will briefly report on some numerical experiments.
The set of programs that we consider are designed to find so-called certificates

for van der Waerden numbers, see [7]. That is, in 1927 the Dutch mathematician
van der Waerden [27] proved that for given numbers q and t, there exists a
smallest number n - the van der Waerden number W (q, t) - such that for all
m ≥ n, each set partition of the set {1, 2, ...,m} into q parts contains at least
one subset with an arithmetic progression of at least length t. For example, it is
known that W (2, 3) = 9, W (2, 4) = 35, W (2, 5) = 178, and W (2, 6) = 1132, see
[10]. A way to show that W (q, t) > n is to find a (q, t) van der Warden certificate
of size n which is a set partition of {1, 2, ..., n} into q parts, none of which contain
an arithmetic progression of length ≥ t. This problem is a useful benchmark for
the initial study of our algorithm. This is because for n < 1132 a (2, 6) van der

Waerden certificates of size n exist and hence the failure of an algorithm to find
such a certificate cannot be attributed to the absence of a solution.

We carried out numerical experiments on the following simple program whose
stable models correspond to partitions of {1, . . . , S} into 2 parts that have no
arithmetic progression of length 6. The Herbrand base of the program P (S, 2, 6) =
P is the set H(P) = {i, i : i = 1, . . . , S}. First for all t ∈ {1, ..., S} we add the
clauses

t← ¬t and t← ¬t.

Then for each arithmetic progression t, t+ p, t+ 2p, . . . , t+ 5p ∈ {1, . . . , S}, we
add the clauses

t← ¬t,¬t+ p,¬t+ 2p,¬t+ 3p,¬t+ 4p,¬t+ 5p and

t← ¬t,¬t+ p,¬t+ 2p,¬t+ 3p,¬t+ 4p,¬t+ 5p.

It is not difficult to show that the stable models U of P are determined by a set
partition (M,M) of {1, . . . , S} where U = M

⋃
{t : t ∈M} and neither M nor M

contain an arithmetic progression of length 6. In this case nmon(P (S, 2, 6)) =
P (S, 2, 6) and one can show that for any given σ in perm(P (S, 2, 6)), Dσ =
M
⋃
{t : t ∈ M} for some set partition (M,M) of {1, . . . , S} and r(σ) = |Iσ|

is equal to the number of arithmetic progressions of length 6 which appear in
either M or M . We also consider a similar program P (S, 2, 4) to find (2,4)-van
der Warden certificates.

To demonstrate the feasibility of MFC we have conducted four types of nu-
merical experiments.

Experiments on Finding (2,6) van der Waerden Certificates of Size
150
The numerical experiments were conducted in finding the stable models of the
program that encodes (2, 6) van der Waerden certificates of length 150. The pur-
pose of the experiments was to study how the performance of MFC changes with
the variation of the parameters. For each set of the parameters 20 experiments
were conducted. The experiments would start from a fixed initial well ordering.
The program has N = 4649 nonmonotonic clauses.

The results of the experiments are summarized in the tables 1, 2. Each table
lists in its columns values for a parameter k for the proposal chain K [k]. Each
table lists in its rows the values of the parameter n corresponding to the proba-
bility distribution π

[
1
n , 1
]
. Our Java implementation of MFC on 2.50GHz Intel

CPU typically performed 350000 iterations per minute in these experiments. The
best performance was shown at 195189 iterations with k = 25 and n = N/100.
The data in table 1 show that the optimal values for k and θ are: 15 < k < 45
and N/140 < θ < N/20. More experiments are required to reach a conclusion
regarding general applicability of these ranges.

Growth of the Number of Iterations with the Increase in Size of a
Certificate

2 5 10 20 25 30 35 40 50 100

N 2260772 846708 612053 298555 282552 315571 403392 443851 445125 2093764

N/10 2753384 790587 349564 239942 233991 263141 304789 324856 279459 2419806

N/40 2322840 502795 319578 245632 321114 249683 206649 312397 305957 1298756

N/100 2621310 859811 340289 224666 195189 269188 302300 288519 287471 1246021

N/140 2731825 1147510 369233 295081 424040 332511 356360 553428 419744 1364054

N/200 6843363 2282997 1306961 808980 584248 837274 803650 824788 1312579 5012982

Table 1. average number of iterations for (K(k), πN [1/n, 1]), N = 4649, fixed initial
state

2 5 10 20 25 30 35 40 50 100

N 1998982 976440 662526 244302 344523 218712 423850 484295 472330 2200163

N/10 3354477 1020842 259343 175030 198223 190267 287767 333524 157601 4085229

N/40 1851592 366574 225926 188136 246211 184535 169616 362242 255926 1073170

N/100 2547684 532864 180970 130351 128943 139431 243511 195866 206650 943956

N/140 1719185 990320 310028 168601 282443 287981 250897 444768 297726 750645

N/200 3778056 1146486 913365 750605 581623 780580 529109 610343 1076844 2797124

Table 2. standard deviations for (K(k), πN [1/n, 1]), N = 4649, fixed initial state

We have conducted the experiments to study the change in the number of iter-
ations averaged over the experiments with k = 30, n = N/100, m = 1 with the
change in the size of the certificate. The experiments were conducted for sizes
150, 160, 170, 180, 190, 200. The experiments have demonstrated that the log
of the number of iterations is a quadratic function of the size of a certificate.

Finding Maximal Submodels
Since W (2, 4) = 35, see [2], there does not exist a (2, 4) van der Waerden’s
certificate of size 35. Thus our program P (35, 2, 4) = P does not have sta-
ble models. It turns out that there are permutations σ of nmon(P) such that
r(σ) = 1. In this case, we can show that the corresponding model Dσ is of the
form M

⋃
{k : k ∈ M} where (M,M) is a set partition of {1, . . . , 35} such that

there is exactly one arithmetic progression of length 4 that is contained in M or
M .

For each set of parameters, 40 experiments were conducted where we stopped
when we found a σ such that r(σ) = 1. The average number of iterations for
various sets of parameters are shown in the table 3.

We have also conducted experiments using n = N/2, m = 1 for various val-
ues of k. However only a fraction (roughly 1/3) of these runs completed in under

n N/30 N/40 N/50 N/60 N/70 N/80 N/100

k=15 6929312 1199948 368252 256846 132098 357942 5308213

Table 3. average number of iterations for (K(k), πN [1/n, 1]), N = 444, fixed initial
state.

109 iterations. The value of k where the largest fractions of runs completed in
under 109 iterations was k = 15.

Experiments using SAMC algorithm.
We have conducted a set of experiments to compare the performance of MFC
with the Metropolis algorithm and the performance of MFC with SAMC. Three
types of experiments were performed: experiments on finding (2, 6) Van der
Waerden certificates of size 180, experiments on finding maximal stable models
for the problem of finding (2, 4) Van der Waerden certificates of size 35, and the
experiments on finding a largest feasible (2, 6) Van der Waerden certificate, that
is, experiments in which we attempt to find as large a certificate as we can, given
the limitations of the algorithm and that of the computing resources.

For each experiment type, the experiments for MFC based on the Metropolis
algorithm and experiments for MFC based on the SAMC algorithm were per-
formed. For all the experiments we fixed m = 1. The rest of the parameters were
optimized using a univariate method [24]. The details are skipped due to space
limitations.

For the problem of finding (2, 6) Van der Waerden certificates of size 180, we
conducted 40 experiments for each set of parameters for both versions of MFC.
The results are summarized in the table below:

Algorithm Optimized parameters Iterations average
SAMC k = 30, θ = 1

6660 , t0 = 50000, ρ = 0.2, S = 20 1896839
Metropolis k = 20, θ = 110

6660 2919673
The table shows the improvement of using SAMC instead of the Metropolis al-
gorithm of 35%.

For the second type of experiments - those for computing maximal submodels
for the program for finding (2, 4) Van der Waerden certificates of size 35, the best
performance with the Metropolis algorithm was the average of 132098 iterations
for θ = N/70 and k = 15. The best performance showed by SAMC was with the
parameter values θ = 4N , k = 20, t0 = 30000, ρ = 0.15 and S2 = 20 and it was
the average of 267451 iterations.
Finding Maximal Feasible Certificates. Using MFC with the Metropolis
algorithm we were able to produce a size 240 certificate in 504193366 iterations
in under 2 weeks. MFC with SAMC was able to produce a size 300 certificate
in 841851708 in under 2 weeks. Both runs were performed on a 288 processor
cluster.

The difficulty of the problem is illustrated by the fact that when we have
conducted experiments using smodels 2.26 and clasp 1.3.3 solvers to find van der
Waerden certificates (with the program P (S, 2, 6) translated to smodels format)
on a single processor machine smodels failed to find a certificate of size 210
while running for over 3 weeks and clasp failed to find a certificate of size 240
while running for over 2 weeks. This set of experiments is far to small to make
any significant conclusions about the relative power of solvers as compared with
MFC. However, our results do indicate that the problem of finding (2, 6) van der
Waerden certificates of sizes ≥ 210 for our program is not easy for the solvers or
MFC.

5 Conclusion

In this paper we have studied a Monte Carlo type algorithm for solving the
following two problems.

1. Given a finite propositional logic program P which has a stable model,
find a stable model M of P .

2. Given a finite propositional logic program P which has no stable model,
find a maximal program P ′ ⊆ P that has a stable model and find a stable model
M ′ of P ′.

The MFC algorithm combines the Forward Chaining algorithm and the
Metropolis algorithm and can be easily parallelized. We have investigated a par-
ticular setup for MFC that uses a proposal chain K [k] and the target probability
distribution π [θ,m]. There are a number of other proposals for the chain K(·, ·)
which could possibly improve the performance. For example, instead of choosing
a subset k of 1, . . . , |nmon(P)| at random and then choosing a random permuta-
tion of those k elements, one could examine all k! permutations of the k chosen
elements and then pick the best one, i.e. the ordering τ for which r(τ) is the
smallest. This proposal would lead to a non-symmetric Markov chain and thus
we would need the full Metropolis-Hasting algorithm. There are also alternative
distributions π(·) that one should explore. For instance one could consider the
following probability distribution function as an alternative to the one discussed

in the paper: for σ ∈ Fj π (σ) = (n−j)!
Z for some well chosen n with 0 < n < N .

There are other ways in which one might apply the Metropolis algorithm to
find stable models. For example, instead of using the forward chaining algorithm,
one might just consider starting with a subset M of the Herbrand base and then
computing the least model M ′ of the Gelfond-Lifschitz transform of P relative
to M . Then one could compute the cardinality of the symmetric difference of
M and M ′, r(M) = |(M −M ′) ∪ (M ′ −M)|. Then one can move to another
subset M1 by either including new elements in M or excluding elements from
M or both. One can not use this approach to find maximal subprograms that
have stable models of a program that does not have a stable model which is an
important property for some applications we have in mind. However, one could
argue that this approach might be preferable to MFC in that the search space
is 2m where m is the cardinality of the set of conclusions of P as opposed to the
search space of MFC which has size n! where n = |nmon (P)| ≥ m. However this
may not necessarily be the case. While MFC is searching through the set of n!
well-orderings of perm (P), many of these will produce the same stable models.
Thus the question of which approach is preferable requires additional research.

The experiments described in this paper have demonstrated that the MFC
algorithm can successfully solve our two problems. Our goal in these experiments
was to show that the choice of the target distribution and the number k, of clauses
that we permute at each step of the MFC algorithm can have a significant effect
on the performance of the MFC algorithm and our experiments clearly indicate
that this is the case. This suggests that in any particular application where one
plans to run the MFC algorithm multiple times, it is certainly worth the effort
to tune such parameters to achieve maximum performance.

A major drawback of the Metropolis algorithm is the local trap problem (see
section 1). To overcome this problem we investigated a version of MFC where we
used the SAMC algorithm in place of the Metropolis algorithm. Our experiments
indicate that in certain cases, this significantly improves the performance of the
MFC algorithm.

In general, our computer experiments were too limited to draw any significant
conclusions about the question of what is the best choice of parameters and
variant of the Metropolis algorithm that will yield the optimal performance for
the MFC algorithm. We suspect that there is no global answer, but that the
choice is problem specific. Nevertheless, our computer experiments indicate that
this is interesting area for future research.

More research is necessary to determine how MFC compares with the ex-
isting algorithms for finding stable models of logic programs. Regardless of the
competitiveness of the MFC algorithm in finding stable models, we feel that
its ability to find maximal size subprograms that have stable models when the
original program P does not have stable models will have many applications to
planning and negotiations with preferences. That is, it is often impossible to sat-
isfy preferences of everyone. In such a situation, finding maximal subprograms
that have stable models can represent a way to satisfy as many preferences as
possible. This will be the subject of future work.

Acknowledgments. We are grateful to Adriano Garsia for helpful discussion
and for providing a summer research assistantship from NSF grant DMS-0800273
for the first author in order to conduct some of the computer experiments.

The second author was partially supported by NSF grant DMS-0654060.
This research was supported in part by NSF MRI Award 0821816 and by

other computing resources provided by the Center for Computational Mathe-
matics (http://ccom.ucsd.edu/).

References

1. Y. F. Atchade, J. S. Liu, The Wang-Landau algorithm in general state spaces:
applications and convergence analysis. Technical Report, Department of Statistics,
University of Michigan, (2007).

2. V. Chvatal, Some unknown van der Waerden numbers. Combinatorial Structures
and Their Applications, (1970), pp. 31-33.

3. P. Diaconis, The Markov Chain Monte Carlo Revolution. Bulletin of the American
Mathematical Society, 46 (2009), 179-205.

4. M. Dunn, S. J. Greenhill, S. C. Levinson, R. D. Gray, Evolved Structure of Lan-
guages Shows Lineage-Specific Trends in Word-Order Universals. Nature, 473,
(2011), 79-82.

5. C. Elkan, A Rational Reconstruction of Nonmonotonic Truth Maintenance Sys-
tems. Artificial Intelligence, 43 (1990), 219-234.

6. W. Hastings, Monte Carlo sampling methods using Markov chains and their ap-
plications. Biometrica, 57 (1970), 97-109.

7. P. R. Herwig, M. J. H. Heule, P. M. van Lambalgen, and H. van Maaren, A New
Method to Construct Lower Bounds for van der Waerden Numbers. Electronic
Journal of Combinatorics, 14 (2007), #R6.

8. M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub, Conflict-driven answer
set solving. Proceedings of the 20th International Joint Conference on Artificial
Intelligence, (2007), 386–392.

9. S. Karlin and H. M. Taylor, A First Course in Stochastic Processes. Second Edition.
Academic Press. (1975).

10. M. Kouril and J.L. Paul, The van der Waerden number W (2, 6) is 1132. Experi-
mental Mathematics, 17:1 (2008), 53-61.

11. F. Liang, On the use of stochastic approximation Monte Carlo for Monte Carlo
integration. Statistics and Probability Letters 79 (2009), 581-587.

12. F. Liang, C. Liu, and R. J. Carroll, Stochastic Approximation in Monte Carlo
Computation. Journal of the American Statistical Association, 102 (2007), 305-
320.

13. J. S. Liu, F. Liang, and Wing Hung Wong, A Theory for Dynamic Weighting in
Monte Carlo Computation. Journal of the American Statistical Association, 96
(2001), 561-573.

14. J. S. Liu, Monte Carlo Strategies in Scientific Computing. Springer. (2001).
15. L. Liu and M. Truszczyński, Local-search techniques in propositional logic ex-

tended with cardinality atoms. Proceedings of the 9-th International Conference
on Principles and Practice of Constraint Programming, LNCS 2833 (2003), 495-
509.

16. L. Liu and M. Truszczyński, Local search techniques for Boolean combinations of
psuedo-Boolean constraints. Proceedings of the Twentieth National Conference on
Artificial Intelligence, AAAI Press (2006), 98-103.

17. L. Liu and M. Truszczyński, Statisfiability testing of Boolean combinations
of pseudo-boolean constraints using local search techniques. Constraints, 12(3)
(2007), 345-369.

18. W. Marek, A. Nerode, and J. B. Remmel, Context for Belief Revision: FC-Normal
Nonmonotonic Rule Systems. Annals of Pure and Applied Logic, 67 (1994), pp.
269-324.

19. W. Marek, A. Nerode, and J.B. Remmel, Logic programs, well orderings, and
forward chaining. Annals of Pure and Applied Logic, 96 (1999), 231-276.

20. W. Marek, J.B. Remmel, On the expressibility of stable logic programming. Theory
and Practice of Logic Programming, 3(4,5) (2003), 551-567. .

21. W. Marek, J.B. Remmel, Extensions of Answer Set Programming, to appear in a
special volume for Nonmon@30.

22. W. Marek, M. Truszczynski, Computing intersection of autoepistemic expansions.
Logic Programming and Non-monotonic Reasoning, Proceedings of the First Inter-
national Workshop, (1991), 37-50.

23. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller,
Equation of State Calculations by Fast Computing Machines. Journal of Chemical
Physics, 21 (1953), 1087-1092.

24. S. S. Rao, Engineering Optimization: Theory and Practice. Fourth Edition. John
Wiley & Sons, Inc. (2009), p. 315.

25. R. Reiter, A logic for default reasoning. Artificial Intelligence, 13 (1980), 81-132.
26. P. Simons, I. Niemelä, and T. Soininen. Extending and implementing the stable

model semantics. 138 (2002), 181–234.
27. B.L. van der Waerden, Beweis einer Baudetschen Vermutung. Nieuw Archief voor

Wiskunde, 15 (1927), 212-216.

