
Logic Programs with Intensional Functions
(Preliminary Report)

Vladimir Lifschitz

University of Texas at Austin

Abstract. The stable model semantics treats a logic program as a mech-
anism for specifying its intensional predicates. In this note we discuss a
modification of that semantics in which functions, rather than predicates,
are intensional. The idea of the new definition comes from nonmonotonic
causal logic.

1 Introduction

The definition of a stable model proposed in [1] treats a logic program as a mech-
anism for specifying its “intensional predicates.” The model-theoretic meaning
of that definition can be described in terms of a first-order version of equilibrium
logic [2]. Equilibrium models of a formula are defined as the Kripke models with
two worlds that satisfy a certain minimality condition.

In this note we discuss a modification of the definition from [1] in which
functions, rather than predicates, are intensional. The difficulty here is that it
is not clear how to apply the idea of minimality to functions. Predicates can be
viewed as sets, and the subset relation can be used to compare them. Functions
can be viewed as sets also—as sets of ordered pairs. But a function from A
to B cannot be a subset of any other function from A to B; minimality becomes
trivial. The solution adopted in the semantics of functional logic programs [3] is
based on making functions partial. We discuss here another approach.

The idea of the semantics of logic programs with intensional functions defined
below comes from nonmonotonic causal logic [4], extended to the first-order case
in [5]. We discard the minimality condition in the definition of equilibrium logic
altogether and replace it by a uniqueness condition. The result is a language
that bears strong resemblance to causal logic; in fact, many programs in this
language can be easily reformulated as causal theories. At the same time, the
new language is closely related to the traditional stable model semantics of logic
programs: the latter can be embedded into it by treating predicates as Boolean-
valued functions and by adding standard “minimization rules.”

Because programs with intensional functions are similar both to nonmono-
tonic causal theories and to traditional logic programs, they provide a new per-
spective on the relationship between these two knowledge representation lan-
guages. This is one of the reasons why they may be of interest. Another reason
is that they allow us to describe effects of actions on non-Boolean fluents directly,
in pretty much the same way as causal theories in the sense of [5]. In traditional

logic programming, non-Boolean fluents have to be encoded by Boolean fluents;
to express, for instance, that the location of an object x changed between times t
and t+ 1 we have to write

at(x, y, t) ∧ at(x, z, t+ 1) ∧ y 6= z

instead of simply loc(x, t + 1) 6= loc(x, t). Expressing the commonsense law of
inertia [6] for locations requires two rules: a positive inertia rule and a uniqueness
rule (see, for instance, the description of the blocks world in [7, Section 5.1]).
The new language is more concise.

2 Syntax

The definition of a stable model in this note is limited to conjunctions of “rules,”
as in [8]. We take the propositional connectives

> ⊥ ¬ ∧ ∨ →

as primitives. A first-order sentence is a rule if it has the form

∀̃(B → H) (1)

and has no occurrences of → other than the one explicitly shown.1 Formula B
is the body of rule (1), and H is its head. A logic program with intensional
functions, or IF-program for short, is a pair (R, f), where R is a conjunction of
rules, and f is a tuple of distinct function constants.2 We will represent R by the
list of its conjunctive terms (1) written as H ← B, and we will drop ← B if B
is >. The members of f will be called the intensional functions of the program.

Consider, for instance, the IF-program with the rules

f(x) = a← ¬(f(x) 6= a),
f(x) = b← P (x) (2)

and the intensional function f . (Since the formula f(x) 6= a is shorthand for
¬(f(x) = a), the body of the first rule is the double negation of its head.)
Intuitively, the first rule expresses that, by default, the values of f are equal
to a. The second rule expresses that on any argument from P the value of f is b.

3 Semantics

We will define the semantics of IF-programs by specifying which models of R
are considered “stable models” of (R, f). Like the definitions of a stable model
introduced in [1] and [8], the new definition is based on a syntactic transformation

1 ∀̃F stands for the universal closure of F .
2 Object constants can be viewed as function constants of arity 0 and thus are allowed

to be members of f.

that turns logic programs into second-order sentences. An occurrence of a symbol
in a formula F is negated if it belongs to a subformula of F that begins with
negation, and nonnegated otherwise. Let F be a formula, and let f be a tuple
of distinct function constants. For each member f of f , choose a new function
variable υf of the same arity as f , and let υf be the list of all these function
variables. By F �(υf) we denote the formula obtained from F by replacing each
nonnegated occurrence of each member f with the variable υf . By SMf [F] we
denote the sentence

∀υf(F �(υf)↔ υf = f). (3)

(Here υf = f stands for the conjunction of the equalities υf = f for all members f
of the list f and the corresponding members υf of the list υf.) Formula (3)
expresses that f is the only tuple of functions satisfying the condition F �(υf).

A stable model of an IF-program (R, f) is a model of SMf [R] in the sense of
second-order logic.

For example, the stable models of (2) are models of the formula

∀υf((∀x(¬(f(x) 6= a)→ υf(x) = a) ∧ ∀x(P (x)→ υf(x) = b))↔ υf = f), (4)

which is equivalent to the first-order formula

∀x(P (x)→ f(x) = b) ∧ ∀x(¬P (x)→ f(x) = a).

Expression (3) for SMf [F] can be equivalently rewritten as

F ∧ ∀υf(F �(υf)→ υf = f).

Consequently the stable models of (R, f) can be characterized as the models of R
that satisfy the “stability condition”

∀υf(R�(υf)→ υf = f). (5)

4 Comparison with Similar Definitions

To see the similarity between the definition above and the semantics introduced
in [8], recall that a Datalog program in that paper is a pair (R,p), where R is a
conjunction of rules, and p is a tuple of distinct predicate constants. The result
of applying the operator SMp to F is defined there as

F ∧ ¬∃υp((υp < p) ∧ F �(υp)), (6)

where υp is a tuple of predicate variables; the definition of F �(υp) is completely
parallel to the definiton of F �(υf) in Section 3: this is the result of replacing
each nonnegated occurrence of each member of p by the corresponding member
of υp.3 Both (3) and (6) use F �, although in different ways: the former is a
uniqueness condition, and the latter is a minimality condition.
3 For the definition of υp < p see [8, Section 4].

On the other hand, the semantics of causal theories in [5] refers to formulas
of the form

∀υc(· · · ↔ υc = c),

where c is the list of explainable symbols of the theory (it may include both
predicate and function constants), and υc is a tuple of variables; see Section 13.2
for details. The definition (3) of SMf [F] has the same syntactic form, but the
left-hand side of the equivalence is formed there in a different way.

5 Stability-Preserving Transformations

From [9] we know that two logic programs have the same stable models if the
equivalence of their sets of rules can be justified in intuitionistic predicate logic
with some additional postulates, such as the weak law of the excluded middle

¬F ∨ ¬¬F (7)

and the law of the excluded middle for equalities

t1 = t2 ∨ t1 6= t2. (8)

(For the list of additional axioms see [9, Section 3].) In the world of IF-programs,
the situation is somewhat different. If the equivalence between R1 and R2 can
be proved in positive logic (that is to say, using intuitionistic propositional logic
without postulates for negation) then (R1, f) and (R2, f) have the same stable
models, because R�1(υf) is equivalent to R�2(υf) in this case. But the class of stable
models does change after some intuitionistically acceptable transformations. For
instance, the rule

¬(f(x) 6= y)← f(x) = y

is intuitionistically trivial, but adding it to a logic program (R, f) contributes
the nontrivial conjunctive term

∀xy(υf(x) = y → ¬(f(x) 6= y))

to the antecedent of (5). This conjunctive term is equivalent to υf = f , and it
makes (5) significantly weaker.

We need to distinguish between the rules ⊥ ← F and ¬F ← >, even though
they are intuitionistically equivalent: the former contributes ¬F � to the an-
tecedent of the stability condition (5); the latter contributes ¬F . According to
the definition of a constraint in the next section, rules of the form ¬F are con-
straints, and rules of the form ⊥ ← F are generally not.

On the other hand, replacing a rule of the form

F ← ¬¬F

with
F ∨ ¬F,

which is not an intuitionistically equivalent transformation, preserves the class
of stable models, because (F ← ¬¬F)� is equivalent to (F ∨ ¬F)�. Replacing
¬(F ∧ G) with ¬F ∨ ¬G in the head or in the body of a rule does not change
the class of stable models either. These two transformations can be justified in
intuitionistic logic with the weak law of the excluded middle (7).

The law of the excluded middle for equalities (8) is not acceptable in equiv-
alent transformatons of IF-programs when the terms t1, t2 contain explainable
functions. It would allow us to replace the body of the first rule of (2) with
f(x) = y, which would make the rule trivial.

It appears that “the logic of IF-programs” is intermediate between positive
logic and the first-order logic of here-and-there introduced in [9]. It is neither
weaker nor stronger than intuitionistic logic. Stability-preserving transforma-
tions for IF-programs require further study.

6 Constraints

In the context of IF-programs, a constraint is a rule without nonnegated occur-
rences of intensional functions.

Proposition 1 For any IF-program (R, f) and any constraint C, an interpre-
tation I is a stable model of (R ∧ C, f) iff I is a stable model of (R, f) that
satisfies C.

For proofs of propositions, see Section 13.

7 Defaults and Choice

The first rule of program (2), which expresses that the equality f(x) = a “holds
by default,” can be equivalently replaced with

f(x) = a ∨ f(x) 6= a (9)

(see Section 5). More generally, for any terms t1, t2 the idea that the equality
t1 = t2 “holds by default” can be expressed by the formula

t1 = t2 ∨ t1 6= t2.

We will denote this formula by t1 ≈ t2. For instance, (9) can be written as
f(x) ≈ a.

Rules of the form
t ≈ x← B, (10)

where x is a variable that occurs neither in t nor in B, are similar to choice rules
in traditional answer set programming. Rule (10) allows us to choose the value
of t arbitrarily if B holds. We will write it as

{t} ← B.

For instance, the rules of the IF-program

f(x) = a← P (x),
{f(x)} ← ¬P (x)

(with intensional f) say: the value of f on any element of P is a; otherwise, the
values of f are arbitrary. The stable models of this programs are characterized
by the formula

∀x(P (x)→ f(x) = a).

8 Relation to Causal Logic

IF-programs in which negated occurrences of intensional functions are “sepa-
rated” from nonnegated occurrences can be translated into causal logic in the
sense of [5]. Let (R, f) be an IF-program such that all its rules have the form

H+ ∨H− ← B+ ∧B−, (11)

where H+, B+ are formulas without negated occurrences of intensional func-
tions, and H−, B− are formulas without nonnegated occurrences of intensional
functions. (If a conjunctive term of the body doesn’t contain intensional func-
tions, such as P (x) in the second rule of (2), then we are free to choose whether
to include it in B+ or in B−. Similarly, a disjunctive term of the head that
doesn’t contain intensional functions can be included either in H+ or in H−.)
By T we denote the causal theory consisting of the rules

H+ ∨ ¬B+ ⇐ B− ∧ ¬H− (12)

for all rules (11) from R, with the explainable symbols f. The idea of this trans-
formation is that the difference between negated and nonnegated occurrences of
symbols in an IF-program corresponds to the difference between occurrences of
symbols in the body and in the head of a causal rule.

Proposition 2 An interpretation I is a stable model of (R, f) iff I is a model
of causal theory T .

For example, program (2) corresponds to the causal theory with the rules

f(x) = a⇐ ¬(f(x) 6= a),
f(x) = b⇐ P (x),

or, equivalently,
f(x) = a⇐ f(x) = a,
f(x) = b⇐ P (x).

(In causal logic, replacing the head or the body of a rule with an equivalent
formula does not affect the class of models.) The modification of (2) in which
the first rule is replaced with (9) corresponds to the same causal theory.

Using Proposition 2 in combination with stability-preserving transforma-
tions, we can turn any IF-program with quantifier-free rules into an equivalent
causal theory. Conversely, if all rules of a causal theory are quantifier-free and
all its explainable symbols are function symbols then it can be converted into
an equivalent IF-program. Take, for instance, causal theory T1 from [10]:

⊥ ⇐ a = b,
c = a⇐ c = a,
c = b⇐ q,

(13)

with the explainable object constant c. It can be converted into the IF-program

a 6= b,
c ≈ a,
c = b← q.

(14)

9 Describing Actions by IF-Programs

IF-programs, like nonmonotonic causal theories, can be used for describing effects
of actions. The following program describes the effect of moving an object. (It
is similar to causal theory T2 from [10].) For simplicity, we only consider the
time instants 0, 1 and the execution of the move action at time 0. The auxiliary
symbol none is used as the value of loc(x, t) when the arguments are “of a wrong
kind” (that is, when x is not a physical object or when t is not a time instant).
The rules are

loc(x, 0) ≈ y ← obj (x) ∧ place(y),
loc(x, 1) = y ← move(x, y) ∧ obj (x) ∧ place(y),
loc(x, 1) ≈ y ← loc(x, 0) = y ∧ obj (x) ∧ place(y),
loc(x, t) = none ← ¬obj (x) ∨ (t 6= 0 ∧ t 6= 1),
0 6= 1 ∧ 0 6= none ∧ 1 6= none,

and the only intensional function is loc. The first rule says that initially an object
can be at an arbitrary place. The second rule describes the effect of moving an
object, and the third rule expresses the commonsense law of inertia for locations.

To describe the effect of an action on a Boolean-valued fluent by an IF-
program, we represent Boolean values by object constants, say 0 and 1. For
instance, the effect of the action toggle on the Boolean-valued fluent on can be
described by the IF-program consisting of the constraints

0 6= 1,
x = 0 ∨ x = 1 (15)

and the rules
{on(0)},
on(1) = x← on(0) 6= x ∧ toggle,
on(1) ≈ x← on(0) = x.

10 Relation to the 1988 Definition of a Stable Model

Let Π be a finite set of rules of the form

A0 ← A1, . . . , Am,not Am+1, . . . ,not An (16)

(n ≥ m ≥ 0), where each Ai is a propositional atom. The stable models of Π
in the sense of [11] can be characterized in terms of IF-programs as follows. We
reclassify all propositional atoms as intensional object constants, and add to the
signature two non-intensional object constants 0, 1. Each rule (16) is rewritten
as

A0 = 1← A1 = 1 ∧ · · · ∧Am = 1 ∧Am+1 6= 1 ∧ · · · ∧An 6= 1.

For each atom A in the signature of Π we add the “minimization rule” A ≈ 0
(by default, atoms get the value false). Finally, we add constraints (15). The
resulting IF-program will be called the functional image of Π. For instance, the
functional image of the one-rule program

p← not q

consists of the rules
p = 1← q 6= 1,
p ≈ 0,
q ≈ 0

and constraints (15).
It is clear that models of (15) can be viewed as sets of propositional atoms.

Proposition 3 The functional image of Π has the same stable models as Π.

The toggle program from Section 9 is similar in some ways to functional
images as defined above, but there is an essential difference: it includes the
inertia rule

on(1) ≈ x← on(0) = x

instead of the minimization rule

on(1) ≈ 0.

The definition of functional image and Proposition 3 can be extended to
disjunctive programs in a straightforward way. In the next section we show how
to extend them to Datalog programs in the sense of [8].

11 Relation to Datalog Programs

Let (R,p) be a Datalog program that has two object constants in its signature,
say 0 and 1, and includes the constraint 0 6= 1. The functional image of (R,p) is
formed as follows. We reclassify each predicate constant p from p as a function

constant of the same arity. In the rules of R, we replace every atomic subfor-
mula p(t) such that p is a member of p with p(t) = 1. Finally, for each p from p
we add the minimization rule

p(x) ≈ 0 (17)

and the constraint
¬¬(p(x) = 0 ∨ p(x) = 1), (18)

where x is a tuple of distinct object variables.
We will identify the interpretations of the original signature that satisfy 0 6= 1

with the interpretations of the modified signature that satisfy 0 6= 1 and

∀x(p(x) = 0 ∨ p(x) = 1). (19)

Proposition 4 The functional image of (R,p) has the same stable models as
(R,p).

In other words, in the presence of two distinct object constants a Datalog
program has the same meaning as its functional image.

12 An Approach to Implementation

In some cases, answer set solvers can be used to generate the models of a causal
theory that have a given finite universe even in the presence of explainable
functions [10]. The idea is to represent an n-ary function constant f by its
graph—a predicate constant of arity n + 1. In view of the close relationship
between IF-programs and causal theories with explainable functions (Section 8),
the stable models of an IF-program that have a given finite universe can be
sometimes generated in a similar way.

Consider, for instance, the problem of generating all stable models I of pro-
gram (14) such that

|I| = {a, b}, aI = a, bI = b. (20)

(Here |I| is the universe of the interpretation I; appending the superscript I
turns a constant into the object that interprets that constant.) This is equivalent
to the problem of generating the models of causal theory (13) that satisfy these
conditions. As discussed in [10, Section 7.2], this can be accomplished by running
the solver clingo4 on the following input:

u(a;b). #domain u(X).
{q}.
p(a) :- not -p(a).
p(b) :- q.
-p(X) :- not p(X).
:- not 1{p(Z):u(Z)}1.
:- not p(X), not -p(X).

4 http://potassco.sourceforge.net/

In this program, p(x) represents the condition x = c. The first line expresses
that the universe u consists of a and b, and that X is a variable for arbitrary
elements of u. The choice rule in the second line says that q can be assigned
an arbitrary value. The next two lines correspond to the last two rules of (14).
(There is no need to represent the constraint a 6= b; it is taken by clingo for
granted.) The rest is standard for the translation process described in [10]. In
particular, the second line from the end expresses the uniqueness of an object
with the property p.

Given this input, clingo generates two stable models: one containing q and
p(b), the other containing p(a). They correspond to the two stable models of
IF-program (14) that satisfy conditions (20): in one of them

qI = true, cI = b,

in the other
qI = false, cI = a.

The range of applicability of this approach requires further study.

13 Proofs

13.1 Proof of Proposition 1

Proposition 1 For any IF-program (R, f) and any constraint C, an interpre-
tation I is a stable model of (R ∧ C, f) iff I is a stable model of (R, f) that
satisfies C.

Proof:
SMf [R ∧ C]↔ R ∧ C ∧ ∀υf(R�(υf) ∧ C�(υf)→ υf = f)

= R ∧ C ∧ ∀υf(R�(υf) ∧ C → υf = f)
↔ R ∧ C ∧ ∀υf(R�(υf)→ υf = f)
↔ SMf [R] ∧ C.

13.2 Proof of Proposition 2

We begin with a brief review of the syntax and semantics of causal theories
according to [5]. A first-order causal theory T is defined by

– a list c of distinct function and/or predicate constants, called the explainable
symbols of T , and

– a finite set of causal rules of the form F ⇐ G, where F and G are first-order
formulas.

For each member c of c, choose a new variable υc similar to c (that is to
say, if c is a function constant then υc should be a function variable of the same
arity; if c is a predicate constant then υc should be a predicate variable of the

same arity). Let υc stand for the list of all these variables. By T †(υc) we denote
the conjunction of the formulas

∀x(G→ F c
υc) (21)

for all rules F ⇐ G of T , where x is the list of all free variables of F , G.
(The expression F c

υc denotes the result of substituting the variables υc for the
corresponding constants c in F .) Semantically, T is considered shorthand for the
sentence

∀υc(T †(υc)↔ υc = c). (22)

In the statement of Proposition 2, the IF-program (R, f) and the causal
theory T are as described at the beginning of Section 8.

Proposition 2 An interpretation I is a stable model of (R, f) iff I is a model
of causal theory T .

Proof Formula R�(υf) is the conjunction of the formulas

∀x
(
(B+)fυf ∧B− → (H+)fυf ∨H−

)
(23)

for all rules (11) of R, where x is the list of free variables of H+, H−, B+, B−.
Formula T †(υf) is the conjunction of the formulas

∀x
(
B− ∧ ¬H− → (H+)fυf ∨ ¬(B+)fυf

)
. (24)

It is clear that (24) is logically equivalent to (23).

13.3 Proof of Proposition 3

Recall that Π is a finite set of rules of the form (16).

Proposition 3 The functional image of Π has the same stable models as Π.

Proof We will identify Π with the conjunction of its rules written as proposi-
tional formulas. The stable models of Π can be characterized as the models of
the second-order propositional formula (“QBF”)

Π ∧ ¬∃υp((υp < p) ∧Π�(υp)) (25)

[8, Remark 2]. For any second-order propositional formula F , by φF we will
denote the expression obtained by appending the symbols = 1 to each atomic
part of F . This expression can be viewed as a first-order formula if we treat the
propositional constants occurring in F as object constants, and the propositional
variables occurring in F as object variables. We will identify truth assignments
with corresponding models of formulas (15); then φF has the same meaning as F .
Our goal is to prove that the result of applying φ to formula (25) is equivalent
to SMp[R], where R is the set of rules of the functional image of Π.

By the definition of functional image, R is obtained from φΠ by adding the
rules p ≈ 0 for all members p of p and constraints (15). Assuming (15),

SMp[R]↔ SMp

[
φΠ ∧

∧
p(p = 0 ∨ p 6= 0)

]
↔ φΠ ∧ ∀υp

(
φΠ�(υp) ∧

∧
p(υp = 0 ∨ p 6= 0)→ p = υp

)
↔ φΠ ∧ ∀υp

(
φΠ�(υp) ∧

∧
p(υp = 1→ p = 1)→ p = υp

)
↔ φΠ ∧ ∀υp(φ(Π�(υp) ∧ (υp ≤ p))→ p = υp)
↔ φ(Π ∧ ∀υp(Π�(υp) ∧ (υp ≤ p)→ p = υp))
↔ φ(Π ∧ ∀υp¬(Π�(υp) ∧ (υp < p)))
↔ φ(Π ∧ ¬∃υp((υp < p) ∧Π�(υp))).

13.4 Proof of Proposition 4

Recall that (R,p) is a Datalog program that includes the constraint 0 6= 1.

Proposition 4 The functional image of (R,p) has the same stable models as
(R,p).

Proof The rulesR′ of the functional image of (R,p) include φR (see Section 13.3
for the definition of φ), rules (17) and constraints (18). Assuming 0 6= 1 and (19),

SMp[R′]↔ SMp

[
φR ∧

∧
p ∀x(p(x) = 0 ∨ p(x) 6= 0)

]
↔ φR ∧ ∀υp

(
φR�(υp) ∧

∧
p ∀x(υp(x) = 0 ∨ p(x) 6= 0)→ p = υp

)
↔ φR ∧ ∀υp

(
φR�(υp) ∧

∧
p ∀x(υp(x) = 1→ p(x) = 1)→ p = υp

)
↔ φR ∧ ∀υp(φ(R�(υp) ∧ (υp ≤ p))→ p = υp)
↔ φ(R ∧ ∀υp(R�(υp) ∧ (υp ≤ p)→ p = υp))
↔ φ(R ∧ ∀υp¬(R�(υp) ∧ (υp < p)))
↔ φ(R ∧ ¬∃υp((υp < p) ∧R�(υp)))
= φ (SMp[R]) .

14 Related Work

Logic programs with functions have received considerable attention in the litera-
ture on answer set programming,5 and function symbols are allowed in the input
languages of most answer set solvers. But many researchers make all functions
“predefined”: a function either corresponds to a specific arithmetical operation
or operates by simply prepending its name to the list of arguments, as in Her-
brand interpretations. The values of such a function cannot be characterized
using the rules of a program.

Answer set programming with functions in the sense of [14] is different. Under
that approach, the values taken by a function are object constants. We can

5 See, for instance, [12, 13].

express, for instance, that the color of x is red by writing clr(x) = red . The
formalization of the graph coloring problem in [14] uses the constraint

← arc(x, y), clr(x) = clr(y).

On the other hand, the language of that paper allows equalities in the bodies of
rules only, not in the heads. It appears that assumptions about default values of
a function, such as the first rule of IF-program (2), cannot be expressed in that
language.

Functional answer set programming in the sense of [3] is free of this limitation.
An implementation of this language, called lppf, can be downloaded from the
Equilibrium Logic Workbench.6 As pointed out in the introduction, the main
difference between the two nonmonotonic logics is that we use total functions
and uniqueness, instead of partial functions and minimization. The definition in
[3] is stated in model-theoretic terms, and the universe of a model is assumed to
be the set of all ground terms that do not contain evaluable (in our terminology,
intensional) functions.

Default values of functions can be specified also in the language of weight
constraint programs with evaluable functions [15]. For example, the counterpart
of the first rule of (2) in that language is

f(x) = a← [f(x) 6= a : 1] 0.

15 Conclusion

Some features of logic programs with intensional functions make them similar to
traditional logic programs under the stable model semantics; in other ways they
are reminiscent of nonmonotonic causal theories. This note is a preliminary re-
port on properties of these programs, and it leaves many questions unanswered.
What is the model-theoretic meaning of the semantics of IF-programs? How can
one characterize the strong equivalence relation [16, 9] for IF-programs? What
are advantages and disadvantages of the language of IF-programs as a knowl-
edge representation tool, in comparison with causal theories? What kinds of
IF-programs can be translated into the input languages of the existing answer
set solvers? Can IF-programs be related to the systems from [3, 14, 15] in a math-
ematically precise way?

Acknowledgements

Thanks to Pedro Cabalar, Luis Fariñas del Cerro, Michael Gelfond, Joohyung
Lee, Yuliya Lierler, Fangzhen Lin, David Pearce, Yisong Wang, and Fangkai
Yang for useful discussions related to the topic of this note, and to the anonymous
referees for their comments on the previous version. This research was partially
supported by the National Science Foundation under Grant IIS-0712113.
6 http://www.equilibriumlogic.net

References

1. Ferraris, P., Lee, J., Lifschitz, V.: Stable models and circumscription. Artificial
Intelligence 175 (2011) 236–263

2. Pearce, D.: A new logical characterization of stable models and answer sets. In
Dix, J., Pereira, L., Przymusinski, T., eds.: Non-Monotonic Extensions of Logic
Programming (Lecture Notes in Artificial Intelligence 1216), Springer (1997) 57–
70

3. Cabalar, P.: Functional answer set programming. Theory and Practice of Logic
Programming 11 (2011) 203–234

4. McCain, N., Turner, H.: Causal theories of action and change. In: Proceedings of
National Conference on Artificial Intelligence (AAAI). (1997) 460–465

5. Lifschitz, V.: On the logic of causal explanation. Artificial Intelligence 96 (1997)
451–465

6. Shanahan, M.: Solving the Frame Problem: A Mathematical Investigation of the
Common Sense Law of Inertia. MIT Press (1997)

7. Lifschitz, V.: Answer set programming and plan generation. Artificial Intelligence
138 (2002) 39–54

8. Lifschitz, V.: Datalog programs and their stable models7. In: Datalog 2.0 Post
Workshop Proceedings, Springer (2011) To appear.

9. Lifschitz, V., Pearce, D., Valverde, A.: A characterization of strong equivalence
for logic programs with variables. In: Procedings of International Conference on
Logic Programming and Nonmonotonic Reasoning (LPNMR). (2007) 188–200

10. Lifschitz, V., Yang, F.: Eliminating function symbols from a nonmonotonic causal
theory8. Unpublished note (2011)

11. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In
Kowalski, R., Bowen, K., eds.: Proceedings of International Logic Programming
Conference and Symposium, MIT Press (1988) 1070–1080

12. Syrjänen, T.: Omega-restricted logic programs. In: Proceedings of International
Conference on Logic Programming and Nonmonotonic Reasoning. (2001) 267–279

13. Calimeri, F., Cozza, S., Ianni, G., Leone, N.: Computable functions in ASP: the-
ory and implementation. In: Proceedings of International Conference on Logic
Programming (ICLP). (2008) 407–424

14. Lin, F., Wang, Y.: Answer set programming with functions. In: Proceedings of In-
ternational Conference on Principles of Knowledge Representation and Reasoning
(KR). (2008) 454–465

15. Wang, Y., You, J.H., Yuan, L.Y., Mingyi, Z.: Weight constraint programs with
functions. In: Procedings of International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR). (2009) 329–341

16. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM
Transactions on Computational Logic 2 (2001) 526–541

7 http://www.cs.utexas.edu/users/vl/papers/dpsm.pdf
8 http://www.cs.utexas.edu/users/vl/papers/efs.pdf

